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Nuclear recoil from scattering with weakly interacting massive particles (WIMPs) is a signature searched
for in direct detection of dark matter. The underlying WIMP-nucleon interactions could be spin and/or
orbital angular momentum (in)dependent. Evaluation of nuclear recoil rates through these interactions
requires accounting for nuclear structure, e.g., through shell model calculations. We evaluate nuclear
response functions induced by these interactions for 19F, 23Na, 28;29;30Si, 40Ar, 70;72;73;74;76Ge, 127I, and
128;129;130;131;132;134;136Xe nuclei that are relevant to current direct detection experiments, and estimate their
sensitivity to shell model interactions. Shell model calculations are performed with the NuShellX solver.
Nuclear response functions from nonrelativistic effective field theory are evaluated and integrated over
transferred momentum for quantitative comparisons. We show that although the standard spin-independent
response is barely sensitive to the structure of the nuclei, large variations with the shell model interaction
are often observed for the other channels. Significant uncertainties may arise from the nuclear components
of WIMP-nucleus scattering amplitudes due to nuclear structure theory and modeling. These uncertainties
should be accounted for in analyses of direct detection experiments.
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I. INTRODUCTION

The detection of dark matter (DM) remains one of the
most heavily pursued goals in physics today, as its exact
nature continues to elude our understanding [1–4]. Among
the potential DM candidates that have been proposed,
weakly interacting massive particles (WIMPs) [5–7], that
are new elementary particles, not included in the Standard
Model (SM) of particle physics, with a mass and interaction
strength close to the ones of the electroweak interaction,
have attracted significant interest. This class of candidates
can naturally thermally produce DM in the early Universe
in the right amount to match the observed DM density,
assuming they have a self-annihilation cross section of a

similar order to that arising from the weak force; this has
been termed the “WIMP miracle”.
WIMP searches include production in colliders [8],

identification of their annihilation or decay in our
Galaxy [9], as well as direct detection (DD) of scattering
between DM and SM particles through nuclear recoil or
through ionization of target atoms [3,6]. However, all DD
experiments so far have reported a null result [10–12], with
just one longstanding exception (DAMA/LIBRA [13]) that
still requires independent confirmation.
Evaluating WIMP-nucleus interaction rates for direct

detection experiments requires detailed knowledge of the
astrophysical DM halo velocity distribution, beyond the
standard model (BSM) inputs, as well as a microscopic
description of the nuclear structure properties of the target
nuclei. In particular, nuclear structure properties could have
a strong impact on scattering rates [14]. This motivated
recent studies within the context of nonrelativistic effective
field theory (NREFT) [15,16] and chiral effective field
theory (ChEFT) [17–22]. A third alternative approach can
be found in [23].
The standard characterization of the WIMP-nucleus

cross section involves both a spin-independent (SI) term
and a spin-dependent (SD) one. Different DM direct
detection experiments with varying targets [24–30] offer
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the possibility of probing different WIMP-nucleus
interaction channels. The SI (respectively SD) response
functions can be obtained from scalar and/or vector (axial-
vector) effective field theory (EFT) relativistic Lagrangians.
On the one hand, the SI cross section is proportional to
∼A2, where A is the atomic mass number, making SI cross
sections larger for heavier target nuclei. On the other hand,
the SD response is probed by nuclei/isotopes which have
unpaired nucleons [14]. It is expected to be strongly
hindered for spin saturated nuclei (i.e., with even numbers
of protons and neutrons) due to the Pauli exclusion
principle.
Traditionally, the SI and SD responses are obtained

assuming momentum independent interactions between a
WIMP and nucleons. The underlying justification is that
the WIMP is expected to be nonrelativistic with typical
velocity ∼10−3c while the target nucleus is at rest.
However, Fitzpatrick et al. [15] argued that the relative
velocity between the WIMPs and nucleons is dominated by
the internal velocity of the nucleons in the nucleus, which is
of the order of ∼10−1c. As a result, momentum-dependent
operators should be considered, opening additional inter-
action channels involving the nucleon orbital angular
momentum L. In addition to the standard SI and SD
responses, one should then also consider an orbital angular
momentum dependent (LD) response, as well as a response
that depends both on spin and L (LSD). Note that these
responses are evaluated within the NREFT for one-body
currents [15,16,31], while ChEFT also predicts possible
significant contributions from two-body currents [19], e.g.,
induced by WIMP scattering off virtual pions exchanged
between two nucleons [17]. Corrections are also expected
to the one-body currents due to the large Lorentz scalar and
vector mean-fields present in the nucleus [32].
Recent progress in ab initio methods [33] and their

application to DM direct detection [34–37] are promising.
Indeed, even if the use of restricted valence spaces is
sometimes needed, approximations and adjustments are in
principle better controlled than in traditional shell model
calculations. Nevertheless, the latter remain a standard tool
to determine nuclear ground-state wave functions entering
the evaluation of nuclear responses from scattering off
WIMPs, as they often lead to good reproductions of low-
energy nuclear levels and transition amplitudes [38]. There
has been an increased effort to quantify the uncertainties in
these theoretical shell model calculations using statistical
approaches, to enhance comparisons with experimental data
and aid in making further predictions (see for example [39]
for sd shell model valence space nuclei, [40] for the p shell,
as well as [41] for 136Xe in the interacting shell model
picture). However, the reliability of shell model calculations
for evaluating operators that are relevant to WIMP-nucleus
scattering needs to be evaluated. Indeed, the uncertainty on
the NREFT couplings induced by nuclear structure inputs
has been recently evaluated for xenon isotopes by comparing

two shell model interactions, leading to an uncertainty of up
to ∼50% in some channels [42].
Here, we perform a systematic study of the sensitivity of

the WIMP-nucleus elastic scattering amplitude to nuclear
structure for 19F, 23Na, 28–30Si, 40Ar, 70;72–74;76Ge, 127I, and
128–132;134;136Xe target nuclei relevant to direct detection
experiments. Shell model calculations are performed with
various shell model nuclear interactions to obtain nuclear
response functions. Variations of the magnitude of these
nuclear response functions with the nuclear interaction are
used to quantify the level of uncertainty that arises purely
from the nuclear components of WIMP-nucleus interaction.
This is important for mappings between theory and experi-
ment in the context of DM direct detection, as such
uncertainties could be comparable to other sources, and
therefore may be non-negligible.
In Sec. II we provide an overview of the NREFT

formalism adopted from [15,16] and the nuclear operators
which are considered in the current work. Details of the
nuclear shell model calculations are also presented and
linked to the DM-nucleus scattering formalism. In Sec. III
we discuss shell model predictions for typical nuclear
structure observables in 19F, 23Na, and 127I. Nuclear response
functions calculated using different shell model interactions
are presented in Sec. IV for all nuclei in consideration. We
summarize the main results and conclude in Sec. V. The
Appendixes contain further technical details. Analytical
expressions for the nuclear response functions, together
with additional results relevant to DM direct detection
studies are provided in the supplemental material [43].

II. THEORETICAL BACKGROUND AND
METHODS

A. DM-nucleus elastic scattering formalism

The NREFT approach to WIMP-nucleus scattering was
adopted by Fitzpatrick et al. in [15,16]. This work included
LD and LSD nuclear interaction responses, in addition to
the standard SI and SD ones. These provide additional
avenues for a DM particle to interact with a nucleus during
a scattering process, and may be comparatively significant
in magnitude relative to the SI and SD responses for
particular isotopes. We provide the relevant NREFT elastic
scattering formalism. For brevity we only state the most
important information (additional expressions and defini-
tions can be found in Appendix B and in [15,16]).
The EFT interaction Lagrangian consists of four-field

operators of the form,

Lint ¼
X
N¼n;p

X
i

cðNÞ
i Oiχ

þχ−NþN−; ð1Þ

where χ represents the dark matter field and N a nucleon
field. In the nonrelativistic regime, only operators with
terms up to second order in momentum transfer q⃗ ¼ p⃗0 − p⃗
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are included, where p⃗0 is the outgoing χ momentum and p⃗
is the incoming counterpart. Most of the operators consid-
ered arise from the exchange of mediators of spin-1 or less
[which are at most quadratic in either S⃗ (spin operator) or v⃗
(≡v⃗χ;in − v⃗N;in)], while some operators employed do not
arise from this traditional exchange. The Hamiltonian is
Hermitian if it is constructed from the following operators:

iq⃗; v⃗⊥ ≡ v⃗þ q⃗
2μN

; S⃗χ ; S⃗N; ð2Þ

where μN ¼ mNmχ=ðmN þmχÞ is the reduced mass for the
DM-nucleon system. Hence, the list of possible nonrela-
tivistic operators is

O1 ¼ 1; O3 ¼ iS⃗N · ðq⃗ × v⃗⊥Þ; O4 ¼ S⃗χ · S⃗N; O5 ¼ iS⃗χ · ðq⃗ × v⃗⊥Þ;
O6 ¼ ðS⃗N · q⃗ÞðS⃗χ · q⃗Þ; O7 ¼ S⃗N · v⃗⊥; O8 ¼ S⃗χ · v⃗⊥; O9 ¼ iS⃗χ · ðS⃗N × q⃗Þ;
O10 ¼ iS⃗N · q⃗; O11 ¼ iS⃗χ · q⃗; O12 ¼ S⃗χ · ðS⃗N × v⃗⊥Þ; O13 ¼ iðS⃗N · q⃗ÞðS⃗χ · v⃗⊥Þ;
O14 ¼ iðS⃗χ · q⃗ÞðS⃗N · v⃗⊥Þ; O15 ¼ −ðS⃗χ · q⃗ÞððS⃗N × v⃗⊥Þ · q⃗Þ: ð3Þ

The operator O2 ¼ ðv⊥Þ2 is neglected as it is not obtained from the leading-order nonrelativistic reduction of the
relativistic four-field Lint terms in consideration. An additional operatorO16 ¼ −ððS⃗χ × v⃗⊥Þ · q⃗Þ · ðS⃗N · q⃗Þ is also neglected
as it is linearly dependent onO12 andO15. From the list of nonrelativistic interaction operators above, one can show that the
DM-nucleus elastic scattering amplitude is written as a sum of the amplitudes of various nuclear operators, of the form,

1

2Ji þ 1

X
Mi;Mf

����
�
JiMf

����
XA
m¼1

Hintðx⃗mÞ
����JiMi

�����
2

¼ 4π

2Ji þ 1

�X
fj;Xg

X∞
J

jhJijjljXJðqÞjjJiij2

þ
X

fj;Xg;fk;Yg;fX;Yg
X≠Y

X∞
J

Re½hJijjljXJðqÞjjJiihJijjlkYJðqÞjjJii��
�
; ð4Þ

where Hint is the interaction Hamiltonian, Ji is the nuclear
ground-state angular momentum, A is the mass number,
and MiðMfÞ is the initial (final) angular momentum
projection. Here, X and Y are one of six nuclear operators
traditionally written as MJM;Σ00

JM;Σ0
JM;ΔJM;Φ00

JM, and
Φ̃0

JM. The treatment of these nuclear multipole operators
here is familiar from work on semileptonic weak and
electromagnetic interactions with nuclei, such as electron
scattering [44–46], as well as neutrino reactions, charged
lepton capture, and β decay [45,47], where a harmonic
oscillator wave function basis was specifically employed to

evaluate the single-particle matrix elements in [48]. The
long-wavelength limit (q → 0) gauges the type of inter-
action the operators are sensitive to (see Table I). MJM is a
SI operator, Σ00

JM and Σ0
JM are SD, and the remainder are

l-dependent (LD), as well as σ⃗ ⋅ ⃗l- and tensor-dependent
(LSD) operators, respectively, where ⃗l is the orbital angular
momentum and σ⃗ is the spin. The four DM scattering
amplitudes lj; lk ≡ l0;E;M;5, each associated with a specific
nuclear operator X, are encoded with the DM and nuclear
target physics alongside linear combinations of effective
theory couplings. The cross terms in Eq. (4) exist only for

TABLE I. Leading-order terms of the nuclear operators in the long-wavelength limit q → 0 [15].

Response type Leading multipole Long-wavelength limit

MJM: Charge M00ðqx⃗mÞ 1ffiffiffiffi
4π

p 1ðmÞ
L5
JM: Axial longitudinal Σ00

1Mðqx⃗mÞ 1
2
ffiffiffiffi
3π

p σ1MðmÞ
Tel5
JM: Axial transverse electric Σ0

1Mðqx⃗mÞ 1ffiffiffiffi
6π

p σ1MðmÞ
Tmag
JM : Transverse magnetic q

mN
Δ1Mðqx⃗mÞ − q

2mN

ffiffiffiffi
6π

p l1MðmÞ
LJM: Longitudinal

q
mN

Φ00
00ðqx⃗mÞ − q

3mN

ffiffiffiffi
4π

p σ⃗ðmÞ:⃗lðmÞ
q
mN

Φ00
2Mðqx⃗mÞ − q

mN

1ffiffiffiffiffiffi
30π

p ½xm ⊗ ðσ⃗ðmÞ × ∇!
i Þ1�2M

Tel
JM: Transverse electric q

mN
Φ̃0

2Mðqx⃗mÞ − q
mN

1ffiffiffiffiffiffi
20π

p ½xm ⊗ ðσ⃗ðmÞ × ∇!
i Þ1�2M
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two sets of operators,MJM;Φ00
JM, and Σ0

JM;ΔJM. The initial
nuclear spins have been averaged over and final ones
summed over, and the matrix element is written in reduced
matrix element form using the Wigner-Eckart theorem (see
Appendix B). The full form of Eq. (4) in terms of the
operators is also provided in Eq. (B1).

In the context of elastic scattering theory we are only
interested in the ground-state nuclear wave function jJii.
The nuclear matrix elements can be written as a product of
single-nucleon matrix elements and one-body density
matrix elements (OBDMEs) ΨJ;τ

jαj;jβj in the following way:

�
Ji;TMT

����
����
XA
m¼1

ÔJ;τðqx⃗mÞ
����
����Ji;TMT

�
¼ ð−1ÞT−MT

�
T τ T

−MT 0 MT

	�
Ji;T

..

...
.XA
m¼1

ÔJ;τðqx⃗mÞ..
...
.
Ji;T

�

¼ ð−1ÞT−MT

�
T τ T

−MT 0 MT

	X
jαj;jβj

ΨJ;τ
jαj;jβjhjαj..

...
.
ÔJ;τðqx⃗Þ..

...
.jβji; ð5Þ

where α and β are single-nucleon states given by the usual
quantum numbers β ¼ fnβ; lβ; jβ; mjβ ; mtβg, with the re-
duced state notation jβj ¼ fnβ; lβ; jβg. The nucleon-isospin
state tβ ¼ tα ¼ 1=2 is implicit in the notation. The nuclear
isospin is denoted by T and its projectionMT . The notation

..

...
.
denotes a matrix element reduced in both angular

momentum and isospin using the Wigner-Eckart theorem.
Additionally, τ ¼ f0; 1g with ÔJ;τ ¼ ÔJτ

τ
3 and τ3 being

the nucleon isospin operator. Hence, the τ ¼ 0 term
corresponds to the isospin-independent component of the
single-nucleon operator, with τ ¼ 1 corresponding to iso-
spin-dependent counterpart.
The OBDMEs have the form

ΨJ;τ
jαj;jβj ≡

D
Ji;T

..

...
.h
a†jαj ⊗ ãjβj

i
J;τ

..

...
.
Ji;T

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J þ 1Þð2τ þ 1Þp ; ð6Þ

where ãβ ¼ ð−1Þjβ−mjβ
þ1=2−mtβajβj;−mjβ

;−mtβ
and ⊗ denotes

a tensor product. The OBDMEs contain all of the relevant
information about the nuclear ground state for each isotope
in consideration. Varying aspects of the nuclear model may
lead to different OBDME values, and hence to different
values of the nuclear matrix elements. Gauging the sensi-
tivity of these matrix elements to nuclear structure is the
goal of this work.

B. Nuclear structure

The nuclear shell model is a configuration interaction
approach to the nuclear many-body problem that is widely
used to calculate eigenstates of the nuclear hamiltonian as
well as nuclear observables [38]. In practice, shell model
calculations are performed assuming a filled inert core and
a valence space of few single-nucleon orbitals above this
core. Here, nuclear shell model calculations are performed
with NuShellX [49]. Among the program’s user inputs is
the valence (model) space as well as a possible valence
space truncation. For each model space, a range of nuclear

shell model interactions are provided, each predeveloped
based on constrained fits to certain nuclear data.
For each isotope, changing the interaction used for a

particular valence space truncation may provide different
OBDMEs, which may impact the values of the nuclear
matrix elements; this is the investigation that we undertake
in the current work. We employ interactions which differ
from those used in [15,16] and compare the two sets of
results.
TheseΨJ;τ

jαj;jβj values are then inserted into a predeveloped
Mathematica package [16], which calculates the relevant
observables associated with DM-nucleus scattering. The
OBDME values used to perform the calculations in this
work can be found in the supplementary material [43].

C. Nuclear response functions

The aforementioned Mathematica package [16] can be
used to calculate nuclear response functions,

FðN;N0Þ
X;Y ðq2Þ≡ 4π

2Ji þ 1

X2Ji
J¼0

hJijjXðNÞ
J jjJiihJijjYðN0Þ

J jjJii; ð7Þ

where N;N0 ¼fp;ng. We also define FðN;N0Þ
X ðq2Þ≡

FðN;N0Þ
X;X ðq2Þ. These response functions single out the nuclear

aspect of the scattering amplitude and can be used to carry
out an investigation of the effect of nuclear structure on
WIMP-nucleus elastic scattering. The proton and neutron

nuclear operators are given by XðpÞ
J ¼ 1þτ3

2
XJ and

XðnÞ
J ¼ 1−τ3

2
XJ. We have Fðp;nÞ

X;Y ðq2Þ ¼ Fðn;pÞ
X;Y ðq2Þ only for

the noninterference responses with X ¼ Y.
Using a harmonic oscillator single-particle basis, the

response functions take on expressions of the form
e−2ypðyÞ, where pðyÞ is a polynomial with y ¼ ðqb=2Þ2
and b ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
mNω

p ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
41.467=ð45A−1=3 − 25A−2=3Þ

p
fm is

the harmonic oscillator length parameter (mN is the nucleon
mass and ω is the oscillator frequency). Following [15], we
define proton and neutron integrated form factor (IFF)
values as
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Z
100 MeV

0

qdq
2

FðN;NÞ
Xð;YÞ ðq2Þ; ð8Þ

in units of MeV2. These IFF values are a proxy for the
strength of each of the nuclear interaction channels, which
depend on the unique nuclear structure of the isotope in
consideration. The effect of increasing the upper limit of
this integral on the IFF values of 127I is touched upon in
Sec. IVA.

III. SHELL MODEL CALCULATIONS

Before investigating nuclear responses, we compare
shell model predictions of energy spectra and electromag-
netic transitions against experimental values for 19F, 23Na,
and 127I. We provide similar comparisons for the remaining
odd nuclei considered in this work in Appendix A.

A. 19F and 23Na

We use an unrestricted sd model space with single
particle levels 1d5=2; 2s1=2; 1d3=2 for both protons and
neutrons. The work of [15,16] uses the USD [50,51]
nuclear shell model interaction, whereas here we use the
USDB interaction. The latter has been fitted to the energies
of 608 (states) of 77 nuclei with 21 ≤ A ≤ 40 [52].
The 19F and 23Na experimental energy spectra are

compared with the USD and USDB energy levels in
Figs. 1 and 2, respectively. Only positive parity states
are possible for the chosen model space, hence we do not
include the experimental states with negative parity. The

overall agreement between experiment and theory is good
up to ∼3 MeV in 19F and up to ∼5 MeV in 23Na.
As a test of the calculated nuclear matrix elements,

Tables II and III provide a comparison between the
theoretical and experimental electric quadrupole and mag-
netic dipole moments, as well as the electric quadrupole
[B(E2)] and magnetic dipole [B(M1)] transitions between
low-lying states. We note that the USD and USDB
interactions were not fitted to such data. The default values
of the effective charges and parameters of the M1 and E2
operators were used in the calculations. For 19F and 23Na,
the proton and neutron effective charges are ep ¼ 1.36 and
en ¼ 0.45, respectively. The effective g factors take on
values glp ¼ 1.137, gsp ¼ 4.94, gtp ¼ 0.34, gln ¼ −0.079,
gsn ¼ −3.38, and gtn ¼ −0.22 for USD, whilst for USDB
these are glp ¼ 1.174, gsp ¼ 5.00, gtp ¼ 0.24,
gln ¼ −0.11, gsn ¼ −3.44, and gtn ¼ −0.16 (see Table I
of Ref. [53]). Overall, both interactions lead to similar
predictions and agree well with experimental data. As
USDB is an extension of USD, the two interactions are
expected to be similar for these stable isotopes. Both
interactions are expected to produce realistic ground-state
wave functions and could then be used to predict nuclear
responses to WIMP-nucleon elastic scattering.

B. 127I

The work of [15,16] utilizes a nuclear shell model
interaction developed by Baldridge and Dalton [59], which
we refer to as “B&D”. This interaction is used in the model
space which includes all proton and neutron orbits in
the major shell between magic numbers 50 and 82, with
single particle levels 1g7=2, 2d5=2, 2d3=2, 3s1=2, and 1h11=2.

FIG. 1. 19F energy levels (keV) from USD and USDB inter-
actions in the sd model space are compared with experiment
(only positive parity levels are shown).

FIG. 2. Same as Fig. 1 for 23Na.
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The valence space restriction employed in [15,16] involves
fixing the occupation number of 1h11=2 to the minimum
allowed nucleon number.
Here, we consider the SN100PN [60] and GCN5082 [61]

interactions. Both begin with renormalization of the G
matrix based on a nucleon-nucleon potential. The
GCN5082 interaction began with the Bonn-C potential
and was then fitted to about 400 low-lying energy levels of
80 nuclei with 50 ≤ Z;N ≤ 82 by varying various combi-
nations of two-body matrix elements. The SN100PN
interaction was based on the CD-Bonn nucleon-nucleon
interaction, with the renormalization of theGmatrix carried
to third order [62]. No fitting was performed, but the single-
particle energies were set by reference to the energy levels
of 133Sb and 131Sn. Differences between these two inter-
actions represent the theoretical uncertainty in our shell
model calculations.
Our shell model calculations are performed in the same

model space as the B&D calculations of [15,16], but with
different restrictions. We keep the proton valence space
levels 1g7=2 and 2d5=2 unrestricted, with a maximum of two
protons in the rest. The neutron valence space is unre-
stricted for the 2d3=2, 3s1=2, and 1h11=2 levels, with a full
2d5=2 level and a minimum of six neutrons in 1g7=2.
Restrictions were needed to keep the basis space within
the memory limits imposed by NuShellX. Nevertheless, the
restrictions we have used are chosen to pick out the
dominant configurations in the full-space wave function.

The 127I energy levels predicted by the SN100PN and
GCN5082 interactions are plotted in Fig. 3 and compared
with experimental data. The ordering of the first three
experimental levels is not reproduced by either interaction.

TABLE II. Magnetic dipole and electric quadrupole moments of low-lying states of 19F and 23Na. Experimental
moments taken from [54–56].

Q [e fm2] μ [nm]

State USD USDB Exp. USD USDB Exp.

19F 1=2þgs þ2.650 þ2.681 þ2.628a

5=2þ1 −9.53 −9.47 −9.42ð9Þ þ3.504 þ3.424 þ3.605ð8Þ
23Na 3=2þgs þ11.0 þ10.7 þ10.4ð1Þ þ2.194 þ2.128 þ2.218a

aThe uncertainty is much less than �0.001.

TABLE III. Electric quadrupole [B(E2)] and magnetic dipole [B(M1)] transitions between low-lying states of 19F
and 23Na. Experimental transition values are from [57,58].

B(E2) [e2 fm4] B(M1) [nm2]

Transition USD USDB Exp. USD USDB Exp.

19F 5=2þ1 → 1=2þgs 19.22 19.44 20.93(24)
3=2þ1 → 5=2þ1 8.068 7.986 3.03 3.19 4.1(25)
9=2þ1 → 5=2þ1 18.82 19.32 24.7(27)

23Na 5=2þ1 → 3=2þgs 109.2 109.1 124(23) 0.361 0.357 0.403(25)
7=2þ1 → 5=2þ1 61.72 57.03 56.7(85) 0.262 0.238 0.294(34)
1=2þ1 → 5=2þ1 10.31 14.48 11.3(27)

FIG. 3. 127I energy spectra (keV) for experimental data, as well
as the SN100PN and GCN5082 interactions in a restricted model
space. GCN5082* refers to GCN5082 Expanded.
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The calculations also compress the energy spectrum com-
pared with what is observed experimentally. This com-
pression (prediction of excited states at too low an
excitation energy) is often a consequence of the truncation
of the basis space, where the omission of many small
components of the wave function can lead to the prediction
of the ground state and low-lying states at too high an
energy (on an absolute scale). However, the lowest few
states have the same spin-parity in theory and experiment,
which gives confidence that the calculated wave functions
in the restricted basis at least pick up the main components
of a calculation without truncation.
Table IV provides a comparison between theoretical and

experimental magnetic dipole and electric quadrupole
moments for low-lying states. The effective charges and
g factors used here are as adopted in recent studies of
neighboring nuclei (see for example [63]). They specifi-
cally take on values of ep ¼ 1.7 and en ¼ 0.8, as well as
glp ¼ 1.130, gsp ¼ 3.910, and gsn ¼ −2.678 for both
SN100PN and GCN5082. Both interactions are in rela-
tively good agreement with experiment. The spin-parity of
the ground state being experimentally assigned to 5=2þ, it
is appropriate to use the first 5=2þ predicted by the shell
model calculations in the computation of nuclear response
in WIMP-nucleus elastic scattering. GCN5082 correctly
predicts this state to be the ground state, while with
SN100PN it is the first excited state. The two interactions
appear to be performing with a similar level of accuracy as
one another, with respect to the experimental expectations.
The differences are useful in our study as it is anticipated
that they may translate into different nuclear responses to
WIMP-nucleus elastic scattering. Hu et al. have indeed
found large theoretical uncertainties in 127I structure factors
for SD scattering [37].

IV. NUCLEAR RESPONSE FUNCTIONS

It is clear from the previous discussion that strong
variations of nuclear response functions with the under-
lying shell model interactions are expected in the case of
127I. We then focus first on this isotope before presenting
systematic studies of integrated form factors. Note that, in
the following, the Φ̃0 response is included for completeness.
It is however not discussed in detail as it is an exotic

response induced purely by unusual couplings of
WIMPs [15].

A. 127I

The response functions Fðp;pÞ
X ðq2Þ (solid lines) and

Fðn;nÞ
X ðq2Þ (dashed lines) are shown in Fig. 4 for the nuclear

operators X ¼ M, Δ, Σ0, Σ00, Φ00, and Φ̃0. The response
functions obtained from the Mathematica notebook of [16]
(i.e., not the approximated ones published in their manu-
script) with the B&D interaction are reported together with
the SN100PN and GCN5082 results from the present work
(see Sec. III B for details on the valence space truncation).
The Helm response [64] is also plotted for comparison
with the SI responses in Fig. 5, which has the form
FðqÞ ¼ 3e−ðqsÞ2=2ðsinðqrnÞ − qrn cosðqrnÞÞ=ðqrnÞ3, with
nuclear skin thickness s ≈ 0.9 fm and nuclear radius r2n¼
ðð1.23A1=3−0.6Þ2þð7=3Þπ2ð0.52Þ2−5ðs=fmÞ2Þ fm2. All
calculations agree up to q ∼ 120 MeV, beyond which they
differ in value.
The spin-independent response FðN;NÞ

M ðq2Þ is barely
sensitive to the choice of interaction. Although all inter-
actions predict similar shapes for the orbital angular

momentum dependent responses FðN;NÞ
Δ ðq2Þ, significant

variations in magnitude are observed, of the order of
25–45% for the larger differences at low q. These variations
are significantly larger for the other channels involving a
spin dependence (Σ0, Σ00, Φ00, Φ̃0).
In almost all cases, however, all interactions agree on the

respective importance of proton and neutron contributions.
At low q, the spin-independent responses FM are simply
proportional to the square of the number of protons and
neutrons. FΔ, FΣ0 , and FΣ00 responses are largely dominated
by protons. Indeed, 127I has an odd number of protons and an
even number of neutrons. Spin and orbital angular momen-
tum are likely to be canceled in nucleon pairs, leaving these
contributions dominated by the unpaired proton.
In the long-wavelength approximationΦ00 reduces in part

to the spin-orbit operator (see Table I). The latter can lead to
coherent contributions that are maximized when one spin-
orbit partner is fully occupied and the other one empty. In
127I for SN100PN and GCN5082, these contributions are
dominated by the proton 1g9=2;7=2 and neutron 1h11=2;9=2
spin-orbit partners. Indeed, 1g9=2 belongs to the core and is

TABLE IV. Magnetic dipole and electric quadrupole moments of low-lying states of 127I. Experimental moments are taken from [54–
56]. GCN5082* refers to GCN5082 Expanded.

μ [nm] Q [e fm2]

State GCN5082 GCN5082* SN100PN Exp. GCN5082 GCN5082* SN100PN Exp.

5=2þ1 þ2.8920 þ3.1284 þ2.6046 þ2.8087ð14Þ −49.85 −36.41 −58.96 −68.8ð10Þ
7=2þ1 þ2.29 þ2.75 þ2.38 þ2.54ð5Þ −63.83 −33.38 −50.40 −61.7ð11Þ
3=2þ1 þ1.45 þ1.48 þ1.35 þ0.97ð7Þ þ30.19 þ40.85 þ42.87
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FIG. 4. 127I proton-proton (solid lines) and neutron-neutron (dashed lines) nuclear response functions FðN;NÞ
X ðq2Þ obtained with three

different shell model interactions. The B&D results are from [16].
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thus fully occupied, with at most three protons in 1g7=2,
while 1h9=2 is above the valence space and thus empty, with
at least four neutrons in 1h11=2. These coherent effects can
amplify differences coming from the various approxima-
tions used in the shell model calculations. In particular, we
see that the calculations of [16] with the B&D interaction
predict a very small neutron contribution to theΦ00 operator.
This is likely due to the fact that they fix the occupation of
1h11=2 to its minimum (four neutrons), while in our
calculations this value can be larger, thus leading to
stronger neutron contribution in our case.
Figures 6 and 7 show the proton and neutron IFF values

[see Eq. (8)], respectively, for the three shell model

interactions. Although we choose to represent all IFFs
for either protons or neutrons on the same figure, one
should refrain from using them to compare the relative
importance of each response. Indeed, each IFF only reflects
the ability of the nucleus to interact through a specific
channel. Whether WIMPs are themselves able to probe this
channel depends on the particle physics model that trans-
lates into the coefficients ci in Eq. (1). Nevertheless, for
simplicity, and assuming that these ci coefficients are of a
similar order, the SI (M) channels will be considered to be
the leading responses, while subleading responses include
the LSD (Φ00) channel (due to the coherent contribution
from partially occupied spin-orbit partners) as well as the
SD (Σ0 and Σ00) and LD (Δ) channels in nuclei with odd
protons or neutron numbers.
Large variations are observed in almost all subleading

channels, e.g., SD proton (Σ0
p;Σ00

p), LD proton (Δp), LSD
(Φ00

p;n), and their interferences, including with the SI
response (Mp;n). The largest of these variations reach a
factor ∼5 between B&D and the other interactions for the
Φ00

n response. These differences are considered reasonably
significant, especially in comparison with those found in
lighter nuclei, e.g., 19F.
To evaluate the effect of valence space truncation on the

nuclear IFF values, we repeated our shell model calculation
for 127I with the SN100PN interaction using a stricter
valence space truncation for neutrons, with no further
restriction imposed on the proton valence space. The
neutron valence space is still unrestricted for the 2d3=2
and 3s1=2 levels, and the 2d5=2 level is still fully occupied.
However, the 1g7=2 is now assumed to be full (instead of
having a minimum of six neutrons), and 1h11=2 is restricted
to a maximum of eight neutrons (instead of being unre-
stricted). There is an overall of six neutron single particle
states (two occupied and four empty) that have been
restricted compared to the previous calculation.

Helm

B&D

SN100PN

GCN5082

0 50 100 150 200
10–1

1

10

102

103

104

105

q (MeV)

F
M

FIG. 5. 127I SI nuclear response function FMðq2Þ obtained with
three different shell model interactions, with the Helm response
plotted for comparison.

FIG. 6. 127I proton IFF values in units of ðMeVÞ2, evaluated
using Eq. (8).

FIG. 7. Same as Fig. 6 for 127I neutron IFF.
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The resulting IFFs are plotted in Figs. 8 and 9 for protons
and neutrons, respectively. The effect remains relatively
small for some subdominant responses such as Φ00

p;n (less
than 20% variation), whereas some other channels exhibit
larger differences, such as the proton SD channels,
although they are much smaller in magnitude. When
possible, the less restricted valence space should be used
to evaluate nuclear response functions and limit uncertain-
ties on the subleading channels.
We performed a second GCN5082 calculation, named

“GCN5082 Expanded”, which employs an alternative
truncation compared to our original calculation above.
The protons were restricted to a maximum of one proton
excited out of the 1g7=2 and 2d5=2 subshells into the
2d3=2; 3s1=2, and 1h11=2 subshells. Additionally, no more
than two neutrons were excited out of the 1g7=2, and 2d5=2
subshells into the 2d3=2; 3s1=2, and 1h11=2 subshells. In
comparison with the previous restriction, this truncation

allows for a maximum of two neutrons to leave both the
1g7=2 and 2d5=2 subshells, whereas previously the two
neutrons were only allowed to leave the 1g7=2 level.
This new truncation scheme has a significant impact on

the energy spectrum, as seen in Fig. 3. The new spectrum is
much more aligned with experiment, with the ordering and
spacing between the first three levels improved, and is now
comparable with the low-lying states obtained by [21]. The
entire spectrum is also less compressed compared to
previous calculations, which is primarily due to the opening
up of the 2d5=2 level. The theoretical electric quadrupole
and magnetic dipole moments for this calculation are given
in Table IV. The magnetic moments for this calculation
remain in reasonable agreement with experimental values.
However, the electric moments overall seem to be less in
agreement with experiment compared to the previous
GCN5082 calculation.
The IFF values comparing the GCN5082 Expanded

calculation with the original are provided in Figs. 10

FIG. 10. Same as Fig. 6 for different GCN5082 valence space
truncation.

FIG. 9. Same as Fig. 7 for different SN100PN valence space
truncation.

FIG. 8. Same as Fig. 6 for different SN100PN valence space
truncation.

FIG. 11. Same as Fig. 7 for different GCN5082 valence space
truncation.
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and 11 for protons and neutrons respectively. The sublead-
ing proton and neutron Φ00 channels have small differences
of ≲10%, whereas the subleading proton Σ0, Σ00, and Δ
channels exhibit differences of ∼20%–30%. Although
these differences are non-negligible, they are not of the
same order obtained from the Truncated SN100PN case,
where here a more truncated valence space has a bigger
effect on the IFF values for 127I.
The IFF values change by a factor of 1.1–2.5 with

qmax ¼ 200 MeV. Although the IFF variations with the
shell model interaction remain of the same order, the
magnitude of the SD variation sometimes depends on
qmax. Hence, quantitative studies for a specific experiment
should account for the q range adapted to that experiment.

B. Systematic study of integrated form factors

Nuclear responses were computed for a range of isotopes
relevant to DM direct detection: 19F, 23Na, 28;29;30Si, 40Ar,
70;72;73;74;76Ge, 127I, and 128;129;130;131;132;134;136Xe. Analytic
expressions for the momentum dependent response func-
tions are provided in supplementary material [43]. In the
following, IFFs are used to evaluate quantitative variations
induced by the choice of the nuclear interaction for each
specific model space. For elements with more than one
stable isotope, IFFs have been weighted by the natural
abundances of each isotope. Note that isotopes with even
numbers of protons and neutrons only probe theM (SI) and
Φ00 (LSD) responses as their ground states have spin-parity
0þ. The results are grouped and discussed with respect to
valence space (and therefore interactions) used for the shell
model calculations. In all cases the SI (Mp;n) IFF values are
not affected by the choice of interaction and thus we focus
the discussion on the subleading channels. Only nonzero
IFF values are shown in the figures. All isotopes probe the
M and Φ00 channels (as well as their interference), however
only isotopes with ground state Ji ≥ 1=2 can additionally
probe the Σ00, Σ0, and Δ channels, with Ji ≥ 1 isotopes
probing Φ̃0.

1. 19F, 23Na, and 28;29;30Si

We consider the same sd model space for 19F, 23Na,
and silicon isotopes as described in Sec. III A. Proton and
neutron IFF values are shown in Figs. 12–15 for 19F and
23Na, respectively. Both 19F and 23Na have a subleading
spin-dependent proton response due essentially to their
unpaired proton, while their spin-dependent neutron
responses are orders of magnitude smaller. Although both
USD and USDB predict similar responses for Σ0

p and Σ00
p in

19F, about 20% differences are found in 23Na.
The orbital angular momentum dependent (LD) response

Δ in 19F and 23Na is also hindered for neutrons, though this
hindrance is not as strong as in the SD case. The IFF for Δ
is maximum for the 23Na proton response, indicating that
this nucleus could be a good candidate to probe this

FIG. 12. Same as Fig. 6 for 19F proton IFF.

FIG. 13. Same as Fig. 6 for 19F neutron IFF.

FIG. 14. Same as Fig. 6 for 23Na proton IFF.
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channel. The results for this response are also stable with
respect to the interaction, with a variation of only few %
between USD and USDB predictions.
The LSD response in this valence space is dominated by

the spin-orbit partners 1d5=2;3=2 and increases with increas-
ing occupation of 1d5=2 as long as 1d3=2 remains com-
paratively lowly occupied (see supplementary material
[43]). As a result, the IFF value of Φ00 in 19F and 23Na
increases with the number of valence nucleons (one proton
and two neutrons in 19F, and three protons and four
neutrons in 23Na). Here, the impact of the interaction is
non-negligible, with a maximum variation of ∼25%
between USD and USDB in the 19F neutron response.
Indeed, providing no or small momentum dependence of
these variations, they should translate directly into varia-
tions in WIMP-nucleus cross sections.
The IFF values for silicon are shown in Figs. 16 and 17

for protons and neutrons, respectively. We note that since
28Si and 30Si have ground states 0þ, they only probe theM,
Φ00, and jMΦ00j channels, whereas 29Si (1=2þ) probes all
except for Φ̃0. The only subleading channel is the LSD

response Φ00 and its interference with the SI channel M.
Both interactions predict corresponding IFF values within
few %. These IFF values are similar for both protons and
neutrons as the most abundant isotope, 28Si (∼92%), has the
same number of protons and neutrons. The Φ00

p;n IFF are
also larger than in 19F and 23Na as 28Si has six protons and
six neutrons in the sd valance space, allowing for a
configuration in the ground-state wave function with more
full occupation of 1d5=2 while 1d3=2 remains comparatively
poorly occupied (see Ref. [43]), thus maximizing the spin-
orbit contribution. Silicon detectors should then be opti-
mum for the LSD response in this mass region. Note also
that the SD and LD responses are orders of magnitude
larger for neutrons than for protons due to the unpaired
neutron in 29Si. However, its abundance (∼4.7%) is too
small for these channels to be subleading.

2. 40Ar

Shell model calculations for 40Ar have been performed in
the sdpf valence space with single particle levels 1d5=2,
2s1=2, 1d3=2, 1f7=2, 2p3=2, 1f5=2, and 2p1=2. A valence
space truncation has been employed where the protons are
unrestricted in the sd shell and blocked from entering the
pf shell, while neutrons fill the sd shell and are unrestricted
in the pf shell. Several interactions are available for this
model space, including SDPF-NR [65], SDPF-U [66],
EPQQM [67], and SDPF-MU [68]. Although we per-
formed shell model calculations with all four interactions,
we only provide the IFF values for the EPQQM and SDPF-
MU interactions in Fig. 18 as they display the largest
differences. This isotope was not considered in the work
of [15,16].
The LSD proton and neutron subleading responses Φ00

are of the same order as that of 23Na, and about half that of
silicon. As for these nuclei, the protonΦ00 response is due to
the 1d5=2;3=2 spin-orbit partners. However, the proton
contribution to the ground state in 40Ar is now likely to

FIG. 15. Same as Fig. 6 for 23Na neutron IFF.

FIG. 16. Same as Fig. 6 for silicon proton IFF.

FIG. 17. Same as Fig. 6 for silicon neutron IFF.
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be dominated by a configuration with 1d5=2 fully occupied
and 1d3=2 only half empty (see supplementary material for
occupations of all valence levels [43]). The unavoidable
partial occupation of 1d3=2 reduces the Φ00 response as
compared to the optimum situation offered by silicon
isotopes. For neutrons, both 1d5=2;3=2 levels are fully
occupied and thus no contribution to Φ00 is expected from
them. The latter is expected to come from the configuration
with neutrons mostly distributed to the 1f7=2 level with its
spin-orbit partner 1f5=2 comparatively unoccupied.
The absence of SD and LD responses implies that this

target could be a good choice to isolate the SI and LSD
responses. However, large variations are observed for the
Φ00 subleading neutron response as well as in its interfer-
ence with the SI response. In the proton case, the
differences for all operators between all four interactions
are much smaller as they do not exceed 10%.

3. 70;72;73;74;76Ge

Shell model calculations for germanium isotopes were
performed in the f5pg9 model space composed of the

single-particle levels 2p3=2, 1f5=2, 2p1=2, and 1g9=2. The
GCN2850 interaction [61] was used in [15,16] with a
valence space truncation that consisted of limiting the
occupation number of the 1g9=2 level to no more than two
nucleons above the minimum occupation for all isotopes. In
this work, we consider an unrestricted f5pg9 model space
and employ the JUN45 [69] and jj44b [70] interactions.
The isotopic IFF values shown in Figs. 19 and 20 for

protons and neutrons, respectively, are weighted according
to natural abundance. 73Ge is the only stable odd isotope
and thus the only one to contribute to the Σ0, Σ00, Δ, and Φ̃0

responses. Due to its small abundance (7.8%), these
responses remain relatively small, except for the neutron
LD response Δn whose IFF is of the same order as, e.g., Δp

in 23Na. The large Δn response in 73Ge is likely to be due to
a strong contribution of the configuration with a partially
occupied 1g9=2 level (with an orbital angular momentum of
4ℏ) in the ground state (see supplementary material for
occupations of all valence levels [43]).

FIG. 18. Proton (top) and neutron (bottom) IFF values for 40Ar
with the SDPF-MU and EPQQM interactions in the restricted
sdpf valence space.

FIG. 19. Same as Fig. 6 for germanium proton IFF.

FIG. 20. Same as Fig. 6 for germanium neutron IFF.
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The subleading proton LSD response is likely to be due
to the 1f7=2;5=2 spin-orbit partners, with 1f7=2 fully occu-
pied and 1f5=2 with a small occupation in the ground states.
The interpretation of the neutron LSD response is more
complicated as several isotopes contribute with similar
abundances. In a single-particle picture, one would expect a
small contribution as 1f5=2 would be full, the 2p1=2;3=2

spin-orbit partners only have a small angular momentum,
and 1g9=2 only starts getting populated from 73Ge.
However, the single-particle picture is a crude approxima-
tion for mid-shell nuclei whose ground states are expected
to be composed of mixed configurations. In particular,
configurations in which 1f5=2 is not full or in which 1g9=2
has a nonzero occupation (while its spin-orbit partner
1g11=2 remains empty as it lies outside of the valence
space) all contribute to Φ00.
As a result, the neutron LSD response is of the same

order of magnitude as the proton one. However, uncer-
tainties are much larger for neutrons (about a factor of 5
between GCN2850 and jj44b) than for protons where IFF
predictions from different interactions vary by about 20%.

4. 127I and 128;129;130;131;132;134;136Xe

In addition to 127I that is discussed in detail in Sec. IVA,
shell model calculations have been performed with the
SN100PN interaction [60] and within the same model
space (see Sec. III B) for stable xenon isotopes with
isotopic abundance greater than 1%. These isotopes have
been studied in [15,16] with the B&D interaction [59].
Their work considered unrestricted 134Xe and 136Xe calcu-
lations, and their truncation for 128;130;132Xe was identical to
that of their 127I calculation. Their truncation for 129Xe and
131Xe was further restricted by limiting the valence protons
to the 2d5=2 and 1g7=2 levels whilst requiring neutrons to
fully occupy these levels.
Here, we performed unrestricted calculations for

131;132;134;136Xe, with 129Xe and 130Xe employing the same
truncation as our original 127I SN100PN calculation in
Sec. III B. To make the 128Xe calculation more feasible we
further restrict the neutron valence space, by keeping the
2d3=2 and 3s1=2 levels unrestricted whilst completely filling
the 1g7=2 and 2d5=2 levels, with a maximum of 8 neutrons
in 1h11=2.
The xenon IFF values are shown in Figs. 21 and 22 for

protons and neutrons, respectively. Comparing with 127I
IFF in Figs. 6 and 7, we see that SI (M) and LSD (Φ00)
responses are of the same order due to their proximity in the
nuclear chart. However, SD (Σ0 and Σ00) and LD (Δ)
responses are significantly different between both elements.
Indeed, in 127I they are dominated by the unpaired proton,
while for xenon they are essentially induced by the
unpaired neutrons in odd isotopes. Detectors with iodine
and those with xenon are then complementary to investigate
the proton and neutron SD and LD cross sections.

However, strong variations are observed with respect to
the interactions for all but the SI responses. The Φ00 proton
responses vary by a factor ∼2 in 127I (∼40% in xenon)
between B&D and SN100PN predictions. These variations
are even larger for Φ00 neutron responses (factor ∼6 in 127I
and ∼65% in xenon). SD proton responses in 127I vary by
factors ∼2–3 with the interaction. Similar variations are
observed in SD neutron responses in xenon. Variations for
LD responses are somewhat smaller (∼20–40% except for
Δp in xenon which has a comparatively small IFF value).

V. DISCUSSION AND CONCLUSION

Nuclear shell model calculations have been performed
with the NuShellX solver for isotopes relevant to direct
detection experiments. The effect of nuclear structure on
WIMP-nucleus elastic scattering is studied within the
NREFT regime following [15,16]. IFF values were used
as a proxy to evaluate nuclear response strength and the
ability of the nuclei to interact via the six NREFToperators.

FIG. 21. Same as Fig. 6 for xenon proton IFF.

FIG. 22. Same as Fig. 6 for xenon neutron IFF.
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Except for the leading standard SI response, WIMP-
nucleus scattering may be very sensitive to nuclear struc-
ture. The LSD Φ00 response is related to spin-orbit struc-
tures in the long wavelength limit and is maximum when
one spin-orbit partner is fully occupied while the other is
empty. It is expected to be more significant in heavier
nuclei due to large spin-orbit splitting, larger orbital angular
momentum l values, and higher degeneracies of the spin-
orbit partners allowing for more nucleons to contribute
coherently. The Σ00 and Σ0 operators lead to the usual SD
responses, and hence are more sensitive to isotopes with an
odd number of protons (such as 19F, 23Na, and 127I) or
neutrons (e.g., odd isotopes of germanium and xenon). The
Δ operator is l-dependent (in the long wavelength limit)
and is larger for isotopes with unpaired nucleons in higher l
orbits, such as 23Na and 127I for protons, and odd isotopes of
germanium and xenon for neutrons. This dependence of the
strength of the nuclear responses on the ground-state
structure of each isotope means that different experimental
efforts with various detection materials can probe different
aspects of the WIMP-nucleus interaction.
The range of studied nuclei spans several standard

valence spaces used in shell model calculations. These
include sd (F, Na, Si), sdpf (Ar), f5pg9 (Ge) valence
spaces, as well as the valence space with orbits in the major
shell between 50 and 82 magic numbers for iodine and
xenon. Several interactions are available in each valence
space that are usually obtained from different fitting
protocols. In addition, valence space restrictions are some-
times used to make the shell model calculations more
feasible. Various nuclear shell model interactions were then
used for each valence space considered to evaluate uncer-
tainties from ground-state wave functions on nuclear
responses. These sometimes lead to significant variations
in subleading nuclear responses, usually increasing with the
number of nucleons. Although the variations for the LD (Δ)
subleading responses remain relatively small (from ≲10%
in sd and f5pg9 nuclei to ∼30% in 127I and Xe), these are
more significant for SD responses (Σ0 and Σ00), going from
≲20% in sd nuclei up to a factor ∼3 in 127I and Xe. Even
larger variations are found in LSD (Φ00) subleading
responses, going from ≲25% (sd) and ≲65% (sdpf), up
to factors ≲5 (f5pg9) and ≲6 (127I and Xe). The effect of
valence space truncation on the nuclear responses is also
non-negligible and should be accounted for as a source of
uncertainty. To evaluate the effect of truncation, we first
examined two calculations with the SN100PN interaction,
one more severe than the other. This produced a factor of
∼3 difference in the 127I proton SD responses. As a second
case, now with the GCN5082 interaction, two more
comparable truncations were evaluated. This produced
smaller differences of ∼20%–30% in the subleading proton
Σ0, Σ00, andΔ channels. These uncertainties should be taken
into account when determining possible parameter spaces

of NREFT operators from comparison with experiment
(see, e.g., [71]).
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APPENDIX A: ISOTOPE NUCLEAR STRUCTURE

Here, we present the experimental energy spectra plotted
against the theoretical shell model predictions, in addition
to tables comparing the theoretical and experimental
electric quadrupole and magnetic dipole moments and
transitions. This is done for the odd isotopes for which
this information is not presented in Sec. III. The model
space and shell model interactions considered for the
isotopes below are as presented in Sec. IV B.

1. 29Si

The experimental energy levels for 29Si are compared
with the theoretical shell model values for the USD and
USDB interactions in Fig. 23, for an unrestricted model
space. The experimental energy values are well-reproduced
by the shell model calculations, in particular for levels up
to ∼3 MeV.
The effective g factors and charges employed in the

electric quadrupole and magnetic dipole values comparison
are the same as those used for 19F and 23Na. The electric
quadrupole and magnetic dipole values are presented in
Table V. Here, the ground state 1=2þ does not have an
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FIG. 23. Same as Fig. 1 for 29Si.
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electric quadrupole moment. The experimental magnetic
dipole moment is in very good agreement with the USD
and USDB values for the ground state. Good agreement can
also been seen for the electric quadrupole transitions
[B(E2)], from the first two excited states to the ground
state. The magnetic dipole transition is less well reproduced
for these, with factor differences of ∼3 and ∼2 between
experiment and theory.
However, overall agreement between experiment and the

shell model calculations is reasonably good, in particular
for the nuclear ground-state wave function, which is
utilized in the IFF calculations above. USD and USDB
should then be suitable interactions for use with 29Si.

2. 73Ge

The JUN45 shell model interaction begins with a
realistic interaction based on the Bonn-C potential, where
two-body matrix elements and four single-particle energies
are modified to fit 400 experimental binding and excitation
energy data for 69 nuclei with mass numbers A ¼ 63–96.
The germanium isotopes relevant for the current work are
included in this fit data. For the jj44b interaction, the fit was
performed based on 77 binding energies and 470 excitation
energies in nuclei with Z ¼ 28–30 (N ¼ 28–50) and N ¼
48–50 (Z ¼ 28–50), and hence does not include these
germanium isotopes.
The 73Ge experimental energy spectrum is compared to

the shell model values in Fig. 24, using the JUN45 and
jj44b interactions in an unrestricted model space. Neither
interaction reproduces the experimental energies very well,
with the jj44b interaction being considerably less accurate,
potentially due to the lack of inclusion of the germanium
isotopes in its fitting protocol. The theoretical spectra are
not very consistent with each other. However, agreement
between experimental and theoretical levels on the order of
200 keV is often considered satisfactory for heavier nuclei.
The experimental magnetic dipole and electric quadru-

pole moments and transitions are compared to the theo-
retical values in Tables VI and VII. Here, the effective
charges employed are ep ¼ 1.8 and en ¼ 0.8, whilst the
effective g factors are gsp ¼ 3.910, gsn ¼ −2.678,
glp ¼ 1.137, and gln ¼ −0.079. The magnetic moments
of the first two states are closer to experiment for the jj44b

interaction, compared with the JUN45 values, as is the case
for the magnitude of the 5=2þ1 electric moment. Both
ground-state theoretical electric moments are not very
consistent with experiment. The theoretical electric quadru-
pole transition values are much closer to experiment
compared to the magnetic transition counterparts.
Overall, the inconsistency of some aspects of the JUN45

and jj44b interactions with one another and with exper-
imental values indicates a need to improve shell model
calculations for the germanium isotopes, in order to obtain
more accurate predictions for WIMP-nucleus scattering.

3. 129;131Xe

The experimental and theoretical energies are plotted
against one another in Fig. 25 for 129Xe and in Fig. 26 for
131Xe. In both cases the SN100PN interaction was used for
the shell model calculations, where the valence space was
restricted for 129Xe but left unrestricted for 131Xe. For 129Xe,
the ordering of the first two states is consistent between

TABLE V. Magnetic dipole moment, and electric quadrupole [B(E2)] and magnetic dipole [B(M1)] transitions, between low-lying
states of 29Si. Experimental transition values are from [72], while moment are taken from [54].

μ [nm] B(E2) [e2 fm4] B(M1) [nm2]

State=Transition USD USDB Exp. USD USDB Exp. USD USDB Exp.

1=2þgs −0.510 −0.519 −0.555a

3=2þ1 → 1=2þgs 34.87 31.02 21.7(21) 0.0223 0.0179 0.0632(23)
3=2þ2 → 1=2þgs 30.03 32.55 29.12(1165) 0.2026 0.2057 0.1164(72)

aThe uncertainty is much less than �0.001.
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FIG. 24. 73Ge energy spectra (keV) for experimental data, as
well as the jj44b and JUN45 interactions in an unrestricted model
space.
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experiment and theory, however the shell model spectrum
is much more compressed, which could be due to the
valence space truncation employed. This compression is
not observed in the 131Xe spectrum. Although the ordering
of the 131Xe theoretical energy levels is not perfectly
consistent with experiment, the predicted low-lying states
of a given spin and parity are within 100 keVof experiment.
The shell model magnetic dipole and electric quadrupole

moments are displayed against the experimental values in
Table VIII. The effective charges and g factors employed

are the same as those for 127I. The theoretical magnetic
moments for the ground states of both 129;131Xe reproduce
well the experimental counterparts, as is the case for the
129Xe electric moment for the 3=2þ1 state. The 131Xe
ground-state electric moment is not consistent with the
experimental value.
Despite the complexity of the low-energy spectra of the

odd xenon isotopes in consideration here, the SN100PN
shell model interaction overall reproduces reasonably
well some features of the spectra as well as moments.

TABLE VI. Magnetic dipole and electric quadrupole moments of low-lying states of 73Ge. Experimental moments are taken from
[54–56].

Q [e fm2] μ [nm]

State JUN45 jj44b Exp. JUN45 jj44b Exp.

9=2þgs −24.94 −11.66 −19.6ð1Þ −1.22107 −1.0182 −0.87824 a

5=2þ1 þ15.62 þ50.43 70(8)b −1.62940 −0.9484 −1.08ð3Þ
aThe uncertainty is less than �0.001.
bSign not specified.

TABLE VII. Electric quadrupole [B(E2)] and magnetic dipole [B(M1)] transitions between low-lying states of 73Ge. Experimental
transition values are from [73].

B(E2) [e2 fm4] B(M1) [nm2]

Transition JUN45 jj44b Exp. JUN45 jj44b Exp.

5=2þ1 → 9=2þgs 531.3 556.5 441.8(76)
7=2þ1 → 9=2þgs 605.3 931.1 906.1(1087) 0.004034 0.00002011 0.054774(3401)
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FIG. 25. 129Xe energy spectra (keV) for experimental data, as
well as the SN100PN interaction in a restricted model space.
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well as the SN100PN interaction in an unrestricted model space.
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Importantly, the ground-state magnetic moments are reproduced. This interaction can be considered suitable for use in the
nuclear response function calculations.

APPENDIX B: EFT AND DM-NUCLEUS ELASTIC SCATTERING FORMALISM

The general expression for the DM-nucleus scattering amplitude is given by [15,16]

1

2Ji þ 1

X
Mi;Mf

jhJiMfjHintjJiMiij2 ¼
4π

2Ji þ 1

� X∞
J¼1;3;…

jhJijj⃗l5 · q̂Σ00
JðqÞjjJiij2

þ
X∞

J¼0;2;…



jhJijjl0MJðqÞjjJiij2 þ jhJijj⃗lE · q̂

q
mN

Φ00
JðqÞjjJiij2

þ 2Re

�
hJijj⃗lE · q̂

q
mN

Φ00
JðqÞjjJiihJijjl0MJðqÞjjJii�

��

þ q2

2m2
N

X∞
J¼2;4;…

ðhJijj⃗lEΦ̃0
JðqÞjjJii · hJijj⃗lEΦ̃0

JðqÞjjJii� − jhJijj⃗lE · q̂Φ̃0
JðqÞjjJiij2Þ

þ
X∞

J¼1;3;…



q2

2m2
N
ðhJijj⃗lMΔJðqÞjjJii · hJijj⃗lMΔJðqÞjjJii� − jhJijj⃗lM · q̂ΔJðqÞjjJiij2Þ

þ 1

2
ðhJijj⃗l5Σ0

JðqÞjjJii · hJijj⃗l5Σ0
JðqÞjjJii� − jhJijj⃗l5 · q̂Σ0

JðqÞjjJiij2Þ

þ Re

�
iq̂ · hJijj⃗lM

q
mN

ΔJðqÞjjJii × hJijj⃗l5Σ0
JðqÞjjJii�

���
; ðB1Þ

where mN is the nucleon mass, we have averaged over initial nuclear spins and summed over final ones, and the four DM
scattering amplitudes lj ≡ l0;E;M;5 are given by

l0 ¼ ðc01 þ c11τ3Þ − iðq⃗ × S⃗χÞ · v⃗⊥T ðc05 þ c15τ3Þ þ S⃗χ · v⃗⊥T ðc08 þ c18τ3Þ þ iq⃗ · S⃗χðc011 þ c111τ3Þ
⃗l5 ¼

1

2
½iq⃗ × v⃗⊥T ðc03 þ c13τ3Þ þ S⃗χðc04 þ c14τ3Þ þ S⃗χ · q⃗ q⃗ðc06 þ c16τ3Þ þ v⃗⊥T ðc07 þ c17τ3Þ

þ iq⃗ × S⃗χðc09 þ c19τ3Þ þ iq⃗ðc010 þ c110τ3Þ þ v⃗⊥T × S⃗χðc012 þ c112τ3Þ
þ iq⃗v⃗⊥T · S⃗χðc013 þ c113τ3Þ þ iv⃗⊥T q⃗ · S⃗χðc014 þ c114τ3Þ þ q⃗ × v⃗⊥T q⃗ · S⃗χðc015 þ c115τ3Þ�

⃗lM ¼ iq⃗ × S⃗χðc05 þ c15τ3Þ − S⃗χðc08 þ c18τ3Þ
⃗lE ¼ 1

2
½q⃗ðc03 þ c13τ3Þ þ iS⃗χðc012 þ c112τ3Þ − q⃗ × S⃗χðc013 þ c113τ3Þ − iq⃗ q⃗ ·S⃗χðc015 þ c115τ3Þ�: ðB2Þ

Here, v⃗⊥T ¼ 1
2
ðv⃗χ;in þ v⃗χ;out − v⃗T;in − v⃗T;outÞ ¼ v⃗T þ q⃗

2μT
, and v⃗T;inðoutÞ ¼ 1

A

P
A
j¼1 v⃗N;inðoutÞðjÞ.

TABLE VIII. Magnetic dipole and electric quadrupole moments for low-lying states of 129;131Xe. Experimental
moments are taken from [54–56].

Q [e fm2] μ [nm]

Nucleus State=Transition SN100PN Exp. SN100PN Exp.

129Xe 1=2þgs −0.872 −0.778a

3=2þ1 −37.48 −39.3ð10Þ þ0.893 þ0.58ð8Þ
131Xe 3=2þgs þ0.69 −11.4ð1Þ þ0.755 þ0.692a

aThe uncertainty is much less than �0.001.
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The Wigner-Eckart theorem has been used to express matrix elements in reduced form, using the convention,

hj0m0jTJMjjmi ¼ ð−1Þj0−m0
�

j0 J j

−m0 M m

	
hj0jjTJjjji: ðB3Þ

The nuclear operators present in Eq. (B1) have the form,

ΔJMðqx⃗Þ≡ M⃗M
JJðqx⃗Þ ·

1

q
∇!;

Σ0
JMðqx⃗Þ≡ −i

�∇!
q
× M⃗M

JJðqx⃗Þ
�
· σ⃗N ¼ ½J�−1½−

ffiffiffi
J

p
M⃗M

JJþ1ðqx⃗Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

p
M⃗M

JJ−1ðqx⃗Þ� · σ⃗N;

Σ00
JMðqx⃗Þ≡

�∇!
q
MJMðqx⃗Þ

�
· σ⃗N ¼ ½J�−1½ ffiffiffiffiffiffiffiffiffiffiffi

J þ 1
p

M⃗M
JJþ1ðqx⃗Þ þ

ffiffiffi
J

p
M⃗M

JJ−1ðqx⃗Þ� · σ⃗N;

Φ̃0
JMðqx⃗Þ≡

�∇!
q
× M⃗M

JJðqx⃗Þ
	
·

�
σ⃗N ×

1

q
∇!
	
þ 1

2
M⃗M

JJðqx⃗Þ · σ⃗N;

Φ00
JMðqx⃗Þ≡ i

�∇!
q
MJMðqx⃗Þ

	
·

�
σ⃗N ×

1

q
∇!
	
; ðB4Þ

whereMJMðqx⃗Þ≡ jJðqxÞYJMðΩxÞ, M⃗M
JL ≡ jLðqxÞY⃗JLM, ½J� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p
, and σ⃗N is the nucleon spin operator. Here, jJðqxÞ

is the spherical Bessel function, YJM is the spherical harmonic, and Y⃗JLM is the vector spherical harmonic. The following
spherical harmonic and vector spherical harmonic identities are also employed in the derivation,

eiq⃗:x⃗i ¼
X∞
J¼0

ffiffiffiffiffiffi
4π

p
½J�ðiÞJjJðqxiÞYJ0ðΩxiÞ;

êλeiq⃗:x⃗i ¼

8>><
>>:

P
J¼0

∞
ffiffiffiffiffiffi
4π

p ½J�ðiÞJ−1 ∇⃗i
q ðjJðqxiÞYJ0ðΩxiÞÞ; for λ ¼ 0

P
J≥1

∞
ffiffiffiffiffiffi
2π

p ½J�ðiÞJ−2
�
λjJðqxiÞY⃗λ

JJ1ðΩxiÞ þ ∇!i
q × ðjJðqxiÞY⃗λ

JJ1ðΩxiÞÞ
�
; for λ ¼ �1:

ðB5Þ

APPENDIX C: NUSHELLX AND OBDMEs

1. Valence OBDMEs

The OBDME values provided by NuShellX are in proton-neutron (pn) formalism, and have the form,

hJfjj½a†jαjNājβjN �JjjJiiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p ≡ aðNNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p ; ðC1Þ

where āβ ¼ ð−1Þjβ−mjβajβj;−mjβ
and N ¼ fp; ng. This is converted to isospin formalism to be used with the previous

expressions through,

ΨJ;τ
jαj;jβj ≡

hJi;T..
...
.½a†jαj ⊗ ãjβj�J;τ

..

...
.
Ji;Tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J þ 1Þð2τ þ 1Þp

¼ ð−1Þ−τ−2J ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J þ 1Þð2τ þ 1Þp

CTMT
τ0;TMT

½Cτ0
1=21=2;1=2−1=2aðppÞ − Cτ0

1=2−1=2;1=21=2aðnnÞ�; ðC2Þ

where Cj0m0
kq;jm ≡ hkqjmjj0m0i are Clebsch-Gordan (CG) coefficients.
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For τ ¼ 0 and τ ¼ 1 the conversion becomes,

ΨJ;0
jαj;jβj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T þ 1

p ðaðppÞ þ aðnnÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2J þ 1Þp

CTMT
00;TMT

; ðC3Þ

and

ΨJ;1
jαj;jβj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T þ 1

p ð−aðppÞ þ aðnnÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð2J þ 1Þp

CTMT
10;TMT

: ðC4Þ

The coefficients
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T þ 1

p
=CTMT

00;TMT
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T þ 1

p
=CTMT

10;TMT

are both isospin-dependent, and hence must be calculated
separately for each isotope considered.

2. Core OBDMEs

The above OBDMEs provided by NuShellX only
describe the valence single-particle orbitals. Equation (5)
also needs to be evaluated for orbitals within the filled core.
It can be shown that the OBDME expression for core states
has the form,

ΨJ;τ
jβj;jβj ¼

X
Mi;mjβ

;mtβ

ð−1Þjβ−mjβ
þtβ−mtβ ð−1ÞτþJCJ0

jβmjβ
;jβ−mjβ

Cτ0
tβmtβ

;tβ−mtβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T þ 1

p

CTMT
τ0;TMT

CJiMi
J0;JiMi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J þ 1Þð2τ þ 1Þð2Ji þ 1Þp ;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2Ji þ 1Þð2T þ 1Þð2jβ þ 1Þ

q
; ðC5Þ

where Mi is the projection of the angular momentum Ji,
and tβ ¼ 1=2.

APPENDIX D: MATHEMATICA PACKAGE AND
DENSITY MATRIX SYNTAX

This work employs the Mathematica package provided
by [16] to calculate the nuclear form factors presented
above. Among its various functions, this script computes
(in isospin formalism) the nuclear response functions,

Wττ0
X;YðyÞ≡

X
J

hJijjXJ;τðqÞjjJiihJijjYJ;τ0 ðqÞjjJii; ðD1Þ

where Wττ0
X ðyÞ≡Wττ0

X;XðyÞ, and τ ¼ 0ð1Þ indicates isospin-
independence (dependence). Linear combinations of the
functions (D1) give the nuclear response functions in
proton-neutron formalism required in Eq. (7). These
nuclear response functions are given by the script function

ResponseNuclear [y, i, tau, tau2] where i
takes on values from 1 to 8, to give WM, WΣ00 , WΣ0 ,
WΦ00 , WΦ̃0 , WΔ, WMΦ00 , and WΣ0Δ, respectively.
The package provides these functions for the default

density matrices ΨJ;τðjαj; jβjÞ employed to calculate
the results presented in [15,16], for the nuclear isotopes
19F, 23Na, 28;29;30Si, 70;72;73;74;76Ge, 127I, and
128;129;130;131;132;134;136Xe. These can be called on using
SetIsotope [Z, A, bFM, filename] with
filename=“default”. However, custom density matrices
can be loaded into the script through a custom file, whose
format must follow that provided in [16]. We provide
these density matrix files as part of the supplementary
material [43] in the appropriate format for use with the
aforementioned Mathematica package, with density matrix
values obtained from our own nuclear shell model calcu-
lations for 19F, 23Na, 28;29;30Si, 40Ar, 70;72;73;74;76Ge, 127I,
and 128;129;130;131;132;134;136Xe.
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