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We consider the interplay of the muon g − 2 anomaly and the proton decay in the supersymmetry
(SUSY) SU(5) grand unified theories (GUTs) with generation-independent scalar soft masses. In these
scenarios, we introduce a number of 5þ 5̄ messenger fields with doublet-triplet splitting in general gauge
mediation to transmit SUSY breaking to the visible sector by gauge loops. As a result, squarks and sleptons
receive generation-independent soft SUSY breaking masses, which are split already at the messenger scale.
Taking into account the perturbative unification of gauge couplings as well as the bounds from electroweak
precision and vacuum stability bounds, we showed the parameter space in general gauge mediation to
explain the muon g − 2 anomaly with smuon and sneutrino loops while evading the strong bounds
on squarks and gluinos from the Large Hadron Collider. We also obtained the dominant Higgsino
contributions to the proton decay mode, p → Kþν̄, with general generation-independent sparticle masses
for squarks and sleptons. Even for split scalar soft masses in our model, however, we found that the bounds
from the proton decay are satisfied only if the effective Yukawa couplings of the colored Higgsinos are
suppressed further by a factor of order 10−4–10−3. We illustrated how such a suppression factor is realized
in orbifold GUTs in the extra dimension where the colored Higgsinos in the bulk are not coupled to the
matter fields localized at the orbifold fixed points at the leading order.
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I. INTRODUCTION

Supersymmetry (SUSY) [1] provides an elegant sol-
ution to the gauge hierarchy problem in the Standard
Model (SM) due to the cancellation of huge radiative
corrections to the Higgs mass with supersymmetric
particles (sparticles) at the weak scale or TeV scale
[2,3]. Moreover, three gauge couplings in the SM become
unified at high energy due to the renormalization group
(RG) running with common sparticle masses at low
energy [3], whereas the lightest neutral superpartner is
a stable dark matter candidate for weakly interacting
massive particles (WIMP) in the presence of R parity.
However, since the Large Hadron Collider (LHC) turned
on, there has been no evidence for sparticles and the
limits on the colored sparticle masses such as squarks
and gluinos have reached about 2 TeV or beyond [4–6].
Weak-scale electroweak superpartners such as

neutralinos/charginos and sleptons have been also con-
strained significantly [6–8], but not ruled out completely.
Recently, the new measurement of the muon g − 2 at

Fermilab [9,10] has confirmed the old measurement at
Brookhaven [11] and strengthened the tension between the
SM prediction and the experiments, so models for new
physics explaining the muon g − 2 anomaly have drawn
new attention, although we need to understand better the
hadronic contributions to the muon g − 2 within the SM. In
particular, in the context of SUSY, it is timely to look for
the signatures of electroweak superpartners at the LHC in
connection to the muon g − 2 anomaly and build up a
consistent picture for split masses for squarks/gluinos
the rest of the superparticles in concrete SUSY mediation
scenarios.
As the idea of gauge coupling unification is reinforced in

SUSY models, it is natural to embed the minimal super-
symmetric Standard Model (MSSM) into grand unified
theories (GUTs). In this regard, the discovery of proton
decay will play a decisive role of unraveling the hints of
unified theories by connecting between the unification
scale and the low-energy rare processes. In the minimal
SU(5) GUT, the dimension-six operators that originated
from the X and Y GUT gauge bosons are responsible
for proton decays such as p → π0eþ, which can be
consistent with the current bounds on the proton lifetime,
τðp → π0eþÞ > 2.4 × 1034 yr [12]. However, the colored
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Higgsinos within 5 and 5̄ Higgs multiplets lead to
baryon number violating dimension-five operators with
SM quarks/leptons and scalar superpartners, so MSSM
gaugino [13] or Higgsino loops [14] would induce danger-
ous proton decays through p → Kþν̄ if superparticle
masses are heavy enough [15]. However, it is remarkable
that scalar superpartners and Higgsino masses of order
102 TeV [16,17] increase proton lifetime to the level of the
current experimental bounds, τðp→Kþν̄Þ>6.6×1033 yr
[18]. Thus, it is important to check proton decay processes
for the consistency of SUSY GUTs with general split
sparticle masses. From the effective theory point of view
below the Planck scale, the problem with dimension-five
operators is severe, because the dimensionless coefficients
of such dimension-five operators must be suppressed
sufficiently, unless there is a symmetry protection mecha-
nism for them, such as discrete R symmetries [19].
In this article, we revisit the effects of sleptons and

electroweak superpartners on the muon g − 2 in the
MSSM and the proton lifetime via p → Kþν̄ in the
SUSY SU(5) GUTs with general messenger fields. To this
purpose, we introduce the general formula for the muon
g − 2with new spin-0 or spin-1

2
charged or neutral particles in

loops. We also consider general gauge mediation [20,21] for
SUSY breaking mass parameters for superpartners and show
that squarks and gluinos can be much heavier than sleptons
and electroweak superpartners and scalar soft masses are
generation independent. Anomaly-gravity mixed mediation
can be an option to realize the split spectrum for sparticles,
with a fine-tuning of soft mass parameters of different origin.
Assuming doublet-triplet splitting masses in the mes-

senger chiral multiplets in the representation of 5þ 5̄ under
SU(5) [22–24], we parametrize the scalar soft masses for
squarks and sleptons in terms of the effective numbers of
colored and noncolored messengers N3 and N2, respec-
tively, and the messenger scale ΛG. As a result, taking into
account electroweak precision and vacuum stability
bounds, we identify the parameter space for explaining
the muon g − 2 anomaly and show whether the muon g − 2
constraint favors the lighter slepton to be heavier or lighter
than the lightest neutralino in the MSSM. In gauge
mediation scenarios, the gravitino, the superpartner of
graviton, can be the lightest superparticle (LSP), which
is lighter than the MSSM LSP, so the experimental bounds
from the standard SUSY searches with missing transverse
momentum are not directly applicable. We also check the
unification condition with split messenger fields and split
MSSM fields in general gauge mediation.
Taking the benchmark models with split sparticle

masses for explaining the muon g − 2 anomaly and
realizing squark and gluino masses satisfying the current
LHC bounds, we obtain the proton lifetime from p → Kþν̄
as a function of the squark mass parameter. Having in mind
the embedding of SUSY GUTs into orbifold GUTs in the
extra dimension, we introduce the suppression factor κ for

the Yukawa couplings for the colored Higgsinos. In this
case, we show how the parameter space for the messenger
scale ΛG versus the suppression factor κ is constrained by
the current bounds on the proton decay.
The paper is organized as follows. We first begin with the

setup for the slepton interactions with gauginos and
Higgsinos in MSSM and the mass matrices for neutralinos,
charginos, and sleptons. Then, we discuss the possibility of
generation-independent but nonuniversal sparticle masses
in general gauge mediation and mention another example
with anomaly-gravity mixed mediation. We also check
the consistency conditions for gauge coupling unification,
electroweak precision, and vacuum stability bounds. Next,
we provide the general formulas for the muon g − 2 and
apply them to the supersymmetric case with sleptons and
look for the parameter space for explaining the muon g − 2
anomaly in general gauge mediation. We continue to discuss
the general effective Lagrangian relevant for the proton
decay mode, p → Kþν̄, and obtain the general formula for
the proton lifetime for generation-independent but nonuni-
versal soft mass parameters. Then, conclusions are drawn.
Appendix A summarizes the neutralino and chargino mix-
ings in the perturbative approximation. Appendix B lists the
effective interactions for the sleptons in the basis of mass
eigenstates for sleptons and electroweak superpartners.

II. THE SETUP

Weintroduce the slepton interactions and themassmatrices
for neutralinos, charginos, and sleptons in the MSSM.

A. Slepton interactions

In the flavor basis for leptons and scalar superpartners,
we introduce liL ¼ ðνiL; eiLÞT and l̃iL ¼ ðν̃iL; ẽiLÞT as
SUð2ÞL doublets and eciR and ẽ�iR as SUð2ÞL singlets.
Then, we consider the interactions of the sleptons to
electroweak gauginos (B̃, W̃3, W̃�) and Higgsinos
[H̃d ¼ ðH̃0

d; H̃
−
d Þ], as follows:

Lsleptons ¼ −fijl H̃0
dẽiLe

c
jR þ fijl H̃

−
d ν̃iLe

c
jR − fijl H̃

0
deiLẽ

�
jR

þ fijl H̃
−
dνiLẽ

�
jR þ H:c:

−
ffiffiffi
2

p
g0
�
l̃†iLYlLB̃liL þ ẽiRYecR

B̃eciR þ H:c:
�

−
ffiffiffi
2

p
g
�
l̃†iLT

3W̃3liL þ H:c:
�

− g
�
ẽ�iLW̃

−νiL þ ν̃�iLW̃
þeiL þ H:c:

�
; ð1Þ

where fijl are the Yukawa couplings for the charged
leptons, YlL , YecR

are the hypercharges of lL and ecR, given

by YlL ¼ − 1
2
and YecR

¼ þ1, and T3 ¼ 1
2
σ3. When the

slepton masses are flavor universal, we can write the
Higgsino and gaugino interactions in the diagonal form
in the basis of mass eigenstates of leptons after the sleptons
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are simultaneously rotated. However, there is still a mixing
between the superpartners of left- and right-handed charged
leptons in each generation, such as ẽiL and ẽiR, as will be
discussed shortly.

B. Neutralinos and charginos

The mass terms for neutralinos fB̃; W̃3; H̃0
d; H̃

0
ug, char-

ginos fW̃−; H̃−
dg, and their complex conjugates are given,

respectively, by

LN ¼ −
1

2
ðB̃; W̃3; H̃0

d; H̃
0
uÞMN

0
BBBB@

B̃

W̃3

H̃0
d

H̃0
u

1
CCCCAþ H:c: ð2Þ

with

MN ¼

0
BBB@

M1 0 −mZ sin θW cos β mZ sin θW sin β

0 M2 mZ cos θW cos β −mZ cos θW sin β

−mZ sin θW cos β mZ cos θW cos β 0 −μH
mZ sin θW sin β −mZ cos θW sin β −μH 0

1
CCCA; ð3Þ

and

LC ¼ −ðW̃−
R; H̃

−
uRÞMC

 
W̃−

L

H̃−
dL

!
ð4Þ

with

MC ¼
�

M2

ffiffiffi
2

p
mW cos βffiffiffi

2
p

mW sin β μH

�
: ð5Þ

Here, M1;2 are the soft SUSY breaking masses for bino
and wino gauginos, and μH is the supersymmetric mass
parameter for the Higgsinos. We note that sin β ¼ vu=v

and cos β ¼ vd=v with v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
, for hH0

ui ¼ 1ffiffi
2

p vu
and hH0

di ¼ 1ffiffi
2

p vd.

The mass matrix for neutralinos can be diagonalized by

N�MNN† ¼ Mdiag
N ¼ diagðmχ̃0

1
; mχ̃0

2
; mχ̃0

3
; mχ̃0

4
Þ; ð6Þ

where the rotation matrixN defines the mass eigenstates for
neutralinos in four-component spinor notations as

χ̃0iL ¼ Ni1B̃L þ Ni2W̃3
L þ Ni3H̃0

d;L þ Ni4H̃0
u;L; ð7Þ

χ̃0iR ¼ N�
i1B̃R þ N�

i2W̃
3
R þ N�

i3H̃
0
d;R þ N�

i4H̃
0
u;R; ð8Þ

or

B̃L ¼ N�
i1χ̃

0
iL; W̃3

L ¼ N�
i2χ̃

0
iL;

H̃0
d;L ¼ N�

i3χ̃
0
iL; H̃0

u;L ¼ N�
i4χ̃

0
iL; ð9Þ

B̃R ¼ Ni1χ̃
0
iR; W̃3

R ¼ Ni2χ̃
0
iR;

H̃0
d;R ¼ Ni3χ̃

0
iR; H̃0

u;R ¼ Ni4χ̃
0
iR: ð10Þ

Similarly, the mass matrix for charginos can be also
diagonalized by

URMCU
†
L ¼ Mdiag

C ¼ diagðmχ̃−
1
; mχ̃−

2
Þ; ð11Þ

with

m2
χ̃−
1
;χ̃−

2
¼ 1

2

�
jM2j2 þ jμHj2 þ 2m2

W ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjM2j2 þ jμHj2 þ 2m2

WÞ2 − 4jμHM2 −m2
W sin 2βj2

q �
; ð12Þ

and the mass eigenstates for charginos are

�
χ̃−1
χ̃−2

�
L;R

¼ UL;R

 
W̃−

L

H̃−
dL

!
L;R

: ð13Þ

In the limit of small electroweak symmetry breaking
effects, namely, mZ ≪ jμH �M1j; jμ�M2j, we can
approximate the neutralino masses as

mχ̃0
1
≃M1 −

m2
Zs

2
WðM1 þ μH sin 2βÞ

μ2H −M2
1

; ð14Þ

mχ̃0
2
≃M2 −

m2
WðM2 þ μH sin 2βÞ

μ2H −M2
2

; ð15Þ

mχ̃0
3
≃ μH þm2

Zð1þ sin 2βÞðμH −M1c2W −M2s2WÞ
2ðμH −M1ÞðμH −M2Þ

; ð16Þ
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mχ̃0
4
≃−μHþm2

Zð1−sin2βÞðμHþM1c2WþM2s2WÞ
2ðμHþM1ÞðμHþM2Þ

: ð17Þ

Here, for μH > 0, the leading mass for χ̃04 is negative, so we
need to rescale χ̃04 to iχ̃

0
4 to get a positive mass for χ̃04. On the

other hand, for μH < 0, instead we need to rescale χ̃03 to iχ̃
0
3

to get a positive mass for χ̃03. Then, in the leading order
approximation with a heavy Higgsino, the neutralino mass
eigenstates become χ̃01 ≃ B̃ (binolike), χ̃02 ≃ W̃3 (winolike),
and χ̃03; χ̃

0
4 ≃ ðH̃0

u ∓ H̃0
dÞ=

ffiffiffi
2

p
(Higgsino-like).

Similarly, mW ≪ jμH �M2j, the chargino masses are
approximated to

mχ̃−
1
≃M2 −

m2
WðM2 þ μH sin 2βÞ

μ2H −M2
2

; ð18Þ

mχ̃−
2
≃ μH þm2

WðμH þM2 sin 2βÞ
μ2H −M2

2

; ð19Þ

and chargino mass eigenstates become χ̃−1 ≃ W̃− (winolike)
and χ̃−2 ≃ H̃−

d (Higgsino-like). For μH < 0, we need to
rescale the Higgsino-like chargino by χ̃−2 → iχ̃−2 to get a
positive mass for χ̃−2 . We refer to Appendix A for the
neutralino and chargino mixing matrices with corrections
coming from the electroweak symmetry breaking.

C. Charged sleptons

The mass terms for the charged sleptons are given by

Lẽ ¼ −ðẽ�L; ẽ�RÞM2
ẽ

�
ẽL
ẽR

�
ð20Þ

with

M2
ẽ ¼

 
m2

LL m2
LR

ðm2
LRÞ� m2

RR

!
; ð21Þ

where

m2
LL ¼ m2

ẽL
þm2

Z cos 2β

�
s2W −

1

2

�
þm2

e; ð22Þ

m2
RR ¼ m2

ẽR
−m2

Z cos 2βs
2
W þm2

e; ð23Þ

m2
LR ¼ mlðA�

l − μH tan βÞ: ð24Þ

Here, me is the charged lepton mass, and we assumed that
the trilinear soft SUSY breaking term takes the form in
the alignment limit, Ltrilinear ¼ −Aij

l H
0
dẽiLẽ

�
jR þ H:c:, with

Aij
l ¼ fijl Al, and we dropped the generation indices for the

charged sleptons in the mass matrix. We note that the
A-terms are typically proportional to the Yukawa couplings

in gravity or gauge mediation, so we can ignore them.
However, for a large tan β, the μ-term can give rise to a
large mixing for sleptons, because m2

LR ≃ −mlμH tan β.
After diagonalizing the slepton mass matrix in Eq. (21)

with

�
ẽ2
ẽ1

�
¼
�

cos θẽ sin θẽ
− sin θẽ cos θẽ

��
ẽL
ẽR

�
; ð25Þ

we obtain the slepton mass eigenvalues as

m2
ẽ2;ẽ1

¼ 1

2

"
m2

LL þm2
RR

� ðm2
LL −m2

RRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jm2

LRj2
ðm2

LL −m2
RRÞ2

s #
ð26Þ

and the slepton mixing angle as

tan 2θẽ ¼
2m2

LR

m2
LL −m2

RR
: ð27Þ

Thus, for − π
2
< θẽ < π

2
, we get

sin 2θẽ ¼
2m2

LR

m2
ẽ2
−m2

ẽ1

: ð28Þ

For m2
ẽ2
> m2

ẽ1
or m2

LL > m2
RR, we get sin 2θẽ < 0 for

m2
LR < 0, which is consistent with the correct sign of the

slepton contributions to the muon g − 2, as will be
discussed later. On the other hand, for m2

ẽ2
< m2

ẽ1
or

m2
LL < m2

RR, we get sin 2θẽ > 0 for m2
LR < 0, for which

the slepton contributions to the muon g − 2 are positive.
For the maximal mixing angle, θẽ ¼ � π

4
, namely, for

m2
LR ¼ � 1

2
ðm2

ẽ2
−m2

ẽ1
Þ and m2

RR ¼ m2
LL, we get the slep-

ton mass eigenvalues as

m2
ẽ2
¼ m2

LL þ jm2
LRj ≃m2

ẽL
þm2

Z cos 2β

�
s2W −

1

2

�
þmljμHj tan β; ð29Þ

m2
ẽ1
¼ m2

LL − jm2
LRj ≃m2

ẽL
þm2

Z cos 2β

�
s2W −

1

2

�
−mljμHj tan β: ð30Þ

On the other hand, for a vanishing mixing angle, jθẽj ≪ 1,
we obtain m2

ẽ2
≃m2

LL and m2
ẽ1
≃m2

RR.

III. NONUNIVERSAL SPARTICLE MASSES

In this section, we pursue the possibility of generation-
independent but nonuniversal sparticle masses for squarks
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and sleptons at the messenger scale. Thus, we consider two
concrete mediation mechanisms for SUSY breaking, namely,
general gauge mediation and anomaly-gravity mixed media-
tion. We also discuss the RG running of gauge couplings and
soft mass parameters in general gauge mediation.

A. General gauge mediation

The soft SUSY breaking masses for squarks and sleptons
must be flavor diagonal in order to satisfy the bounds on
flavor changing neutral currents (FCNCs), unless the
supersymmetric particles are sufficiently heavy, for in-
stance, by their masses of order 10 TeV. For the sparticle
masses that are invariant under the SM gauge groups,
sparticle masses satisfym2

ũiL
¼ m2

d̃iL
and m2

ẽiL
¼ m2

ν̃iL
above

the electroweak scale, but m2
ũiR
, m2

d̃iR
and m2

ẽiR
can be

different from the other sparticle masses.
Suppose that soft SUSY breaking masses are generated

by gauge mediation [20] at the GUT scale in the minimal
SU(5). Then, the sparticle masses are generation indepen-
dent and they are further constrained by the SU(5)
unification to m2

ũiL
¼m2

ũiR
¼m2

d̃iL
¼m2

ẽiR
≡m2

10 and m2
d̃iR

¼
m2

ẽiL
¼ m2

ν̃iL
≡m2

5̄ at the unification scale [20,21].
However, if there are mass splittings between the compo-
nents of the messenger multiplets, for instance, due to
doublet-triplet mass splitting in the case of 5þ 5̄messenger
multiplets, we can generate nonuniversal soft masses for
scalar superpartners by general gauge mediation [22].
We consider a singlet SUSY breaking chiral multiplet X

and paired messenger chiral multiplets in the 5þ 5̄ repre-
sentations of SU(5), ϕi þ ϕ̃i, with i ¼ 1; 2;…; N. Then,
after the SU(5) GUT symmetry is broken, we take the
effective superpotential for the component fields of mes-
senger chiral multiplets below the GUT scale, given by

Weff ¼ ðλ3;ijX þm3;ijÞqiq̃j þ ðλ2;ijX þm2;ijÞlil̃j; ð31Þ

where qi þ q̃i and li þ l̃i are the component fields of the
messenger multiplets. Then, taking the vacuum expectation
value of the SUSY breaking chiral multiplet as

hXi ¼ X þ θ2F; ð32Þ

we can get the mass splittings for messenger chiral
multiplets, which give rise to nonzero sparticle masses
in the MSSM at loops.
First, gaugino masses from general gauge mediation take

the same values at the messenger scale as in the minimal
gauge mediation with SU(5) supersymmetric masses for
messenger fields [22], as follows:

Ma ¼
αa
4π

ΛG; a ¼ 1; 2; 3; ð33Þ

with αa ¼ g2a=ð4πÞ and

ΛG ¼ n
F
X
; ð34Þ

so the running gaugino masses at low energy become

M3

α3
¼ M1

α1
¼ M2

α2
¼ ΛG

4π
: ð35Þ

Here, the electroweak gauge couplings g, g0 are related
by g2 ¼ g and g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
g0. We quote the values of the

gauge couplings at the top mass scale by gðmtÞ ¼ 0.64,
g0ðmtÞ ¼ 0.35, and g3ðmtÞ ¼ 1.16. Then, we obtain the
ratios of the gaugino masses at the top quark mass scale
by M3∶M2∶M1 ≃ 6∶2∶1.
The soft masses for scalar superpartners in general gauge

mediation are also given [22] by

m2
f̃
¼ 2

X3
a¼1

Caðf̃Þ
�
αa
4π

�
2

Λ2
a; ð36Þ

where Caðf̃Þ are the quadratic Casimir invariants for f̃
under the SM gauge group, nonzero values of which are
C3ðf̃Þ ¼ 4

3
for f̃ ¼ q̃L, C2ðf̃Þ ¼ 3

4
for f̃ ¼ q̃L; l̃L, and

C1ðf̃Þ ¼ 3
5
Y2
f̃
for all scalar superpartners. Moreover, we

note that

Λ2
a ¼

Λ2
G

Na
; a ¼ 1; 2; 3; ð37Þ

Λ2
1 ¼ 2

5
Λ2
3 þ 3

5
Λ2
2, with the effective number of doublet and

triplet messenger fields being given by

Na ¼
�
1

2n2
jXj2 ∂

2

∂X∂X�
XN
i¼1

�
ln
jMa;ij2

μ2

�
2
�
−1
; a ¼ 2; 3:

ð38Þ
Here, Ma;i (a ¼ 2, 3) are the eigenvalues of the mass
matrices for colored and noncolored components of mes-
senger fields, and

n ¼ 1

RðXÞ
XN
i¼1

ð2 − RðϕiÞ − Rðϕ̃iÞÞ ð39Þ

is the number of messenger fields with RðϕiÞ þ Rðϕ̃iÞ ≠ 2,
satisfying 0 ≤ n ≤ N, with RðϕÞ being the R charges of
ϕ ¼ X;ϕi; ϕ̃i. We note that Na is a continuous function
of the couplings taking values between 0 and N inclusive,
and the asymptotic limits of Na at X → 0;∞ satisfy the
following inequalities [22]:

n2

n2 − ðN − rm − 1Þð2n − N þ rmÞ
≤ NaðX → 0Þ ≤ N − rm

ð40Þ
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and

n2

rλ þ ðrλ − nÞ2 ≤ NaðX → ∞Þ ≤ n2

rλ þ ðrλ−nÞ2
ðN−rλÞ

; ð41Þ

where rλ≡ rankλa and rm¼ rankma, satisfying rλþrm≥N
for the nondegenerate matrix, λX þm.
More explicitly, the general gauge mediation leads to

squark and slepton masses in the MSSM as

m2
q̃L

¼ 8

3

�
α3
4π

�
2

Λ2
3 þ

3

2

�
α2
4π

�
2

Λ2
2

þ 1

150

�
α1
4π

�
2

ð2Λ2
3 þ 3Λ2

2Þ; ð42Þ

m2
ũR

¼ 8

3

�
α3
4π

�
2

Λ2
3 þ

8

75

�
α1
4π

�
2

ð2Λ2
3 þ 3Λ2

2Þ; ð43Þ

m2
d̃R

¼ 8

3

�
α3
4π

�
2

Λ2
3 þ

2

75

�
α1
4π

�
2

ð2Λ2
3 þ 3Λ2

2Þ; ð44Þ

m2
l̃L
¼ 3

2

�
α2
4π

�
2

Λ2
2 þ

3

50

�
α1
4π

�
2

ð2Λ2
3 þ 3Λ2

2Þ; ð45Þ

m2
ẽR

¼ 6

25

�
α1
4π

�
2

ð2Λ2
3 þ 3Λ2

2Þ: ð46Þ

We also remark that the scalar soft masses receive correc-
tions Δϕ ¼ ðT3ϕ −Qϕsin2θWÞM2

Z cos 2β, due to electro-
weak symmetry breaking.
As a consequence, in general gauge mediation with

N3 ≪ N2 or Λ3 ≫ Λ2, we can make the soft mass

parameters for squarks much larger than those for sleptons.
Then, we can explain the deviation of the muon g − 2 from
the SM value with light sleptons, electroweak gauginos,
and Higgsinos [24], while being consistent with the LHC
bounds on the squark masses. Flavor universality in general
gauge mediation restricts the soft masses for sleptons to be
almost generation independent, namely, mẽ ∼mμ̃ ∼mτ̃, up
to the RG running effects and the slepton mixings for the
generation-dependent Yukawa couplings for leptons. Then,
as will be discussed later, we can correlate between the
muon g − 2 with smuon in loops and the proton lifetime
from p → Kν̄ with stau in loops.
In Fig. 1, we depict the soft mass parameters for squarks

and sleptons in general gauge mediation as a function of
ΛG. We fixed N2 ¼ 10, N3 ¼ 2 on the left and N2 ¼ 20,
N3 ¼ 1.5 on the right.mq̃L ,mũR ,md̃R

are shown in red solid
lines, and ml̃L

, mẽR , M3, M2, M1 are drawn in blue solid,
blue dashed, purple solid, purple dashed, and purple dotted
lines, respectively. Here, we note that the squark masses are
shown to be almost degenerate, so they are not distinguish-
able in the plots. We find that it is possible to introduce split
masses for squarks/gluinos and electroweak superpartners
such as bino, wino, and sleptons in general gauge media-
tion. These two benchmark points will be used for a later
discussion on the muon g − 2 and the W boson mass.
We comment on the A-terms in gauge mediation. The

A-terms for squarks and sleptons vanish at one loop in
gauge mediation, but they can be generated by the RG
evolution proportional to gaugino masses [21]. Thus, the
A-terms for sleptons are suppressed by loops as compared
to slepton masses, so we can ignore the contribution of the
A-terms to the mixing between the smuons in this case.
Moreover, the μ- and Bμ-terms call for the solution from
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FIG. 1. Soft mass parameters as a function of ΛG in general gauge mediation. We showedmq̃L ,mũR ,md̃R
, which are almost degenerate,

with red solid lines, and ml̃L
, mẽR ,M3,M2,M1, in blue solid, blue dashed, purple solid, purple dashed, purple dotted lines, respectively.

We chose N2 ¼ 10, N3 ¼ 2 on the left and N2 ¼ 20, N3 ¼ 1.5 on the right.
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singlet extensions of the MSSM and other SUSYmediation
scenarios, such as anomaly mediation [23].

B. Anomaly-gravity mixed mediation

In anomaly mediation [25], the predictive patterns for
sparticle masses are given in terms of the SUSY breaking
scale of the conformal compensator FΦ and the SM gauge
interactions at low energy, but there is a problem with
tachyonic slepton masses [25]. However, adding the
universal masses for squarks and sleptons at the GUT
scale in gravity mediation, we can cure the tachyonic mass
problem for sleptons [25]. In this case, when the slepton
masses in anomaly mediation are almost canceled by those
from gravity mediation, we can make sleptons much lighter
than squarks.
First, the gaugino masses in anomaly mediation are

given by

Ma ¼
αa
4π

baFΦ; a ¼ 1; 2; 3; ð47Þ

where ba ¼ ð− 33
5
;−1; 3Þ are the one-loop β functions for

the SM gauge couplings. On the other hand, the general
formula for scalar soft masses in anomaly mediation is
given by

m2
i ¼ −

1

4

�
∂γi
∂g

βg þ
∂γi
∂y

�
jFΦj2; ð48Þ

where γi, βg are the anomalous dimension for scalar sparticle
i, the β function for the gauge coupling g, and y is the
Yukawa coupling. Thus, adding the universal scalar soft
masses m2

0, we obtain the total scalar soft masses [23] as

m2
q̃3L

¼ m2
0 þ

�
8α23 −

3

2
α22 −

11

50
α21

þ α2t

�
6α2t −

13

15
α1 − 3α3 −

16

13
α3

��
jFΦj2; ð49Þ

m2
ũ3R

¼ m2
0 þ

�
8α23 −

88

25
α21

þ 2α2t

�
6α2t −

13

15
α1 − 3α3 −

16

13
α3

��
jFΦj2; ð50Þ

m2
d̃R

¼ m2
0 þ

�
8α23 −

22

25
α21

�
jFΦj2; ð51Þ

m2
l̃L
¼ m2

0 −
�
99

50
α21 þ

3

2
α22

�
jFΦj2; ð52Þ

m2
ẽR

¼ m2
0 −

198

25
α21jFΦj2; ð53Þ

with αt ¼ y2t =ð4πÞ. The masses for the first and second
generations of up-type squarks are the same as in
Eqs. (49) and (50), but with αt ¼ 0. As a result, choosing
m2

0 ≃ cα22jFΦj2 with c being of order one and positive, we
can make the mass squares for sleptons to be positive and
much lighter than squarks. However, we need a fine-tuning
to get the slepton masses much smaller than the squark
masses in this case, so we do not pursue the detailed
discussion on this possibility.
We also remark that the A-terms are proportional to

the Yukawa couplings, namely, Al¼ 1
2
ðγHd

þγ l̃L þγẽRÞylFΦ
for sleptons. Thus, depending on the hierarchy between
squark and slepton masses, the A-terms for sleptons can be
sizable.

C. Gauge coupling unification
with split sparticle masses

In the presence of split sparticle masses in the MSSM
and messenger sectors, it is important to check the quality
of the unification of gauge couplings at the GUT
scale MGUT.
Keeping in mind the general gauge mediation and

assuming that the colored scalar superpartners are much
heavier than the rest of the MSSM fields, we consider the
running gauge couplings, as follows [22]:

α−1a ðMGUTÞ ¼ α−1a ðMZÞ þ
ba;SM
2π

ln
MGUT

MZ

þ b0a
2π

ln
MGUT

mSUSY
þ ba;g̃

2π
ln
MGUT

mg̃

þ ba;q̃
2π

ln
MGUT

mq̃
−

N
2π

ln
MGUT

Ma

; ð54Þ

where ba;SM ¼ ð−41=10; 19=6; 7Þ are the one-loop β func-
tion coefficients in the SM, b0a ¼ ð−7=5;−8=3; 0Þ for the
second Higgs doublet, electroweak gauginos, Higgsinos,
and sleptons, with common massesmSUSY, ba;g̃¼ð0;0;−2Þ
for gluinos, ba;q̃ ¼ ð−11=10;−3=2;−2Þ for squarks with
common masses mq̃, and Ma are the effective mass scales
for doublet and triplet messenger fields, given by

Ma ¼ ðXnGðma; λaÞÞ1=N; a ¼ 2; 3; ð55Þ

with Gðm; λÞ being some function of masses and
couplings [22], and M1 ¼ ðM2Þ3=5ðM3Þ2=5 is the effec-
tive mass scale for hypercharged messenger fields. We note
that ba ¼ ba;SM þ b0a þ ba;g̃ þ ba;q̃ ¼ ð−33=5;−1; 3Þ are
the one-loop β function coefficients in the MSSM. In
the absence of a doublet-triplet splitting for the messenger
fields, namely,M2 ¼ M3, the unified gauge couplings are
achieved as in the MSSM.
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We now introduce the measure of unification as

B ¼ α−12 ðMZÞ − α−13 ðMZÞ
α−11 ðMZÞ − α−12 ðMZÞ

: ð56Þ

As compared to the MSSM where B ¼ b3−b2
b2−b1

¼ 5
7
for mSUSY ¼ mg̃ ¼ mq̃ ≃MZ, we get a modified measure with the

messenger fields for mSUSY ≃MZ and mg̃;mq̃ being free, as

B ¼
ðb3 − b2Þ ln

�
MGUT
MZ

�
þ ðb3;g̃ − b2;g̃Þ ln

�
mg̃

MZ

�
þ ðb3;q̃ − b2;q̃Þ ln

�
mq̃

MZ

�
þ N ln

�
M3

M2

�
ðb2 − b1Þ ln

�
MGUT
MZ

�
þ ðb2;g̃ − b1;g̃Þ ln

�
mg̃

MZ

�
þ ðb2;q̃ − b1;q̃Þ ln

�
mq̃

MZ

�
− 2

5
N ln

�
M3

M2

� : ð57Þ

Imposing the derivation from the MSSM to be no more than 5%, we get the bound on the extra differential running as				
�
b3;g̃ − b2;g̃
b3 − b2

−
b2;g̃ − b1;g̃
b2 − b1

�
ln
�
mg̃

MZ

�
þ
�
b3;q̃ − b2;q̃
b3 − b2

−
b2;q̃ − b1;q̃
b2 − b1

�
ln
�
mq̃

MZ

�
ð58Þ

þN

�
1

b3 − b2
þ 2

5

1

b2 − b1

�
ln
M3

M2

				≲ 0.036 ln

�
MGUT

MZ

�
: ð59Þ

Then, for lnðMGUT=MZÞ ≃ 33, the quality of unification
requires

				N ln
M3

M2

−
1

2
ln

�
mg̃

MZ

�
−
1

6
ln

�
mq̃

MZ

�				≲ 3.67: ð60Þ

Therefore, we find that there is a destructive interference
between the split colored superpartners in the MSSM and
the messenger fields with M3 ≳M2 in the differential
running of the gauge couplings.
Moreover, for M2 ≈M3 ≡ M̄, the perturbativity con-

dition for the unified coupling gives rise to

N ln
MGUT

M̄
≲ 150: ð61Þ

Thus, we can choose the number of messenger fields
appropriately for perturbativity, for instance, N ¼ 8, 10,
15, 20 for M̄ ¼ 105; 107; 109; 1013 GeV.
It was pointed out in Ref. [22] that, even ifM2 ≈M3, it

is possible to realize an arbitrary amount of doublet-triplet
splitting for the messenger fields, because Gðm; λÞ appear-
ing in the determinant of the mass matrix is generally
independent of some of the couplings. However, in our
case, the unification condition in Eq. (60) can be achieved
even for M3 ≳M2, in the presence of split colored
superpartners in the MSSM.
We also remark that, in the case of anomaly-gravity

mixed mediation, there is no messenger sector that is
charged under the SM gauge groups, so we only have to
consider the MSSM fields for gauge coupling unification.
Thus, setting the contribution of the messenger sector on

the quality of unification in Eq. (60) to zero, we need the
unification condition on the mass splitting in the MSSM
sector, as follows:

1

2
ln

�
mg̃

MZ

�
þ 1

6
ln

�
mq̃

MZ

�
≲ 3.67: ð62Þ

Then, for mg̃ ≃ 2 TeV, we get the upper bound on the
squark masses as mq̃ ≲ 3.14 × 107 GeV. This result is also
true of the case in the general gauge mediation with
M2 ≈M3.
It is remarkable that the scalar soft masses below the

messenger scale are subject to the renormalization group
running due to gaugino masses. Namely, we need to include
the RG running effects by K3 þ K2 þ 1

36
K1, K3 þ 4

9
K1, and

K3 þ 1
9
K1 for m2

q̃L
, m2

ũR
, and m2

d̃R
, respectively, and

K2 þ 1
4
K1, K1 for m2

l̃L
and m2

ẽR
, respectively. Here, K1 ¼

3
10π2

R lnM1

ln μ dt g21ðtÞjM1ðtÞj2, K2¼ 3
8π2

R lnM2

lnμ dtg22ðtÞjM2ðtÞj2,
and K3 ¼ 2

3π2

R lnM3

lnμ dt g23ðtÞjM3ðtÞj2 [26]. Then, for
N ¼ N2 ¼ 10–20 and N3 ¼ Oð1Þ in general gauge media-
tion, the loop corrections are approximately given
by K1 ≃ ð0.06–0.12ÞM2

1ðM̄Þ ≃ ð0.08 − 0.22ÞM2
1, K2 ≃

ð0.14–0.29ÞM2
2ðM̄Þ ¼ ð0.15 − 0.34ÞM2

2, and K3 ≃
ð0.98–1.3ÞM2

3ðM̄Þ ≃ ð0.28 − 0.64ÞM2
3, where MaðM̄Þ are

thegauginomasses at themessenger scale,M2 ≈M3 ≡ M̄,
and Ma simply denotes the gaugino masses at low energy.
Since the RG running is small and squarks are relatively
heavy, the loop corrections to the scalar soft masses
are relatively small, as compared to the case where the
messenger scale is the GUT scale: K1 ≃ 0.15M2

1ðMGUTÞ,
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K2 ≃ 0.5M2
2ðMGUTÞ, and K1 ≃ ð4.5–6.5ÞM2

3ðMGUTÞ, where
MaðMGUTÞ are the gaugino masses at the GUT scale [26].
Therefore, in general gauge mediation with split sparticles, it
is sufficient to include the tree-level effects for the scalar soft
masses due to electroweak symmetry breaking but ignore the
loop corrections.

IV. ELECTROWEAK PRECISION AND VACUUM
STABILITY BOUNDS FROM SLEPTONS

In this section, we include the bounds from electroweak
precision measurements such as the W boson mass and the
vacuum stability bounds on the μ-term as complementary
probes to test the models in addition to the muon g − 2
constraints.

A. Electroweak precision and W boson mass

For a large μ-term, we can have a large slepton mixing so
the contribution of the smuon loops to the muon g − 2 can
be enhanced. However, the larger the μ-term, the larger the
mass splitting within the SUð2Þ doublet slepton, causing a
larger deviation in the electroweak precision data.
The theoretical value of theW boson mass can be derived

from the muon decay amplitude, which relates MW to the
Fermi constant Gμ, the fine structure constant α, and the Z
boson mass MZ, with the following modified formula:

M2
W

�
1 −

M2
W

M2
Z

�
¼ παffiffiffi

2
p

Gμ

ð1þ ΔrÞ; ð63Þ

where Δr encodes the loop corrections in the SM and the
contributions from new physics. We note that Δr ¼ 0.0381
in the SM, which leads to the SM prediction for the W
boson mass, as follows [27,28]:

MSM
W ¼ 80.357 GeV� 6 MeV: ð64Þ

On the other hand, the world average for the measured W
boson mass from PDG [28] is given by

MPDG
W ¼ 80.379 GeV� 12 MeV: ð65Þ

Thus, the SM prediction for theW boson mass is consistent
with the PDG value within 2σ. However, the Fermilab
CDFII experiment [29] has recently measured theW boson
mass as

MCDFII
W ¼ 80.4335 GeV� 9.4 MeV: ð66Þ

So, if confirmed, the result could show a considerable
deviation from the SM prediction at the level of 7.0σ,
calling for a new physics explanation.
In the MSSM, soft SUSY masses are SUð2ÞL invariant,

but SUð2ÞL breaking mass terms split between the
masses of the scalar superpartners within the same

SUð2ÞL doublet, so there can be a sizable contribution to
the ρ parameter [30], as follows:

Δρ ¼ 3Gμ

8
ffiffiffi
2

p
π2

½−sin2θμ̃cos2θμ̃F0ðm2
μ̃1
; m2

μ̃2
Þ

þ cos2θμ̃F0ðm2
ν̃; m

2
μ̃2
Þ þ sin2θμ̃F0ðm2

ν̃; m
2
μ̃1
Þ� ð67Þ

with

F0ðx; yÞ ¼ xþ y −
2xy
x − y

ln
x
y
: ð68Þ

As the new physics contribution is related to the correction
to the ρ parameter by

ðΔrÞnew ¼ −
c2W
s2W

Δρ; ð69Þ

we can turn the correction to the ρ parameter into the
correction to the W boson mass by

ΔMW ≃
1

2
MW

c2W
c2W − s2W

Δρ: ð70Þ

The global fit in the PDG constrains the slepton masses and
mixing by Δρ ¼ ð3.8� 2.0Þ × 10−4 [28].
As will be shown in the next section, we find that the

CDFII results [29] cannot be explained in the parameter
space explaining the muon g − 2, but our results are
consistent with the PDG results within 2σ [28].

B. Vacuum stability bounds

When the charged sleptons have a sizable mixing due to
a large μ-term, we need to consider the bound from vacuum
instability because there can be a deep minimum violating
charge in the scalar potential. There is a recent analysis of
the vacuum stability for the charged sleptons in Ref. [31].
For the vacuum stability in the presence of a large

μ-term, we take the scalar potential for the neutral Higgs
scalar H0

d and charged sleptons ẽL, ẽR,

V ¼m2
LLjẽLj2þm2

RRjẽRj2þm2
Hd
jH0

dj2 þ
1

2

				X
i

gaϕ�
i T

aϕi

				2
þðylAlH0

dẽLẽ
�
R − ylμHðH0

dÞ�ẽLẽ�R þH:c:Þ; ð71Þ
where the fourth term corresponds to the D-term potential
with group generators Ta running over SUð2ÞL × Uð1ÞY
and ϕi being the Higgs doublet and the sleptons. Then,
taking the direction of maximizing the negative contribu-
tion of trilinear terms, jH0

dj¼ jẽLj¼ jẽRj≡ 1ffiffi
6

p ϕ, in Eq. (71),

we obtain the effective potential as follows [32]:

V ¼ 1

2
m̃2ϕ2 −

1

3
ffiffiffi
6

p Aϕ3 þ 1

36
λ2ϕ4; ð72Þ
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with A≡ yljA�
l − μH tan βj, and

m̃2 ¼ 1

3
ðm2

LL þm2
RR þm2

Hd;eff
Þ; ð73Þ

λ ¼ 1ffiffiffi
2

p g0: ð74Þ

Here, m2
Hd;eff

¼ μ2H þm2
Hd

is the effective mass square for
the down-type Higgs doublet. Then, for a vanishing tri-
linear soft mass, i.e., Al ¼ 0, the absolute stability at the
origin ϕ ¼ 0 requires

ffiffiffi
2

p
mμ

v cos β
· jμHj tan β <

ffiffiffi
3

p
λm̃: ð75Þ

On the other hand, the metastability of the false vacuum at
the origin needs the decay rate to be smaller than unity,
namely,

ðΓ=VÞL4 ≪ 1; ð76Þ

where L is the Hubble radius at present, Γ=V ≃ m̃4e−SE is
the decay rate per volume with SE being the Euclidean
action. Therefore, from the Euclidean action along
the direction of jH0

dj ¼ jẽLj ¼ jẽRj≡ 1ffiffi
6

p ϕ, we obtain the

metastability bound [32] as

SE > 400þ 4 lnðm̃=1 TeVÞ: ð77Þ

In the thin-wall approximation with λ2m̃2=A2 → 1=3−, we
get SE ¼ 9π2

2
ðm̃2

A2Þð1 − 3λ2 m̃2

A2Þ−3 [32]. On the other hand, in
the thick-wall limit with jλ2m̃2=A2j ≪ 1, the Euclidean
action is numerically approximated to SE ¼ 1225m̃2=A2

[32]. In this case, for m̃ ∼ 1 TeV and Al ¼ 0, the meta-
stability bound becomes

ffiffiffi
2

p
mμ

v cos β
· jμHj tan β ≲ 1.75m̃; ð78Þ

for jλ2j ≪ 1.
As a consequence, the μ-term is bounded from the above,

due to Eq. (75) for absolute stability or Eq. (78) for
metastability. For instance, for m̃ ¼ 1 TeV, the absolute
stability bound allows for the μ parameter up to jμHjmax ¼
1.1, 9.9 TeV for tan β ¼ 30, 10, respectively, and the

metastability bound in Eq. (78) sets the maximum value
of the μ parameter to jμHjmax ¼ 3.2, 29 TeV for tan β ¼ 30,
10, respectively. If the m̃ is larger than 1 TeV, the μ
parameter can be larger, for instance, due to a large soft
mass for the down-type Higgs doublet. However, we take
the vacuum stability bounds for m̃ ¼ 1 TeV implicitly in
the later discussion.
For comparison, the μ-term is also bounded by the

slepton mixing angle for a given slepton mass splitting.
When the Al-term vanishes, Eq. (28) gives rise to a bound
on the μ parameter as 2mljμHj tan β ≤ m2

ẽ2
−m2

ẽ1
. Then,

we also need to take the slepton mixing angle into
account for choosing the μ parameter, together with the

vacuum stability bounds. For instance, for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ẽ2
−m2

ẽ1

q
¼

100ð300Þ GeV, the μ parameter is bounded by jμHjmax ¼
1.6ð14Þ; 4.7ð42Þ TeV for tan β ¼ 30, 10, respectively.
Therefore, for small slepton masses, the bounds from the
slepton mixing angle are comparable to those from the
vacuum stability.
In the later discussion on the muon g − 2, we take into

account the bounds on the μ-term coming from the vacuum
stability and the physical slepton masses.

V. MUON g− 2 FROM THE SLEPTONS

We present the general formulas for the one-loop
contributions of new charged or neutral particles to the
muon g − 2 and apply them to the case with smuons,
sneutrino, electroweak gauginos, and Higgsinos in the
MSSM. We also show how the muon g − 2 anomaly can
be explained with sparticle masses in general gauge
mediation. We discuss the mass ordering of sleptons and
the lightest neutralino, going beyond the scenarios where
the lightest neutralino is the LSP.

A. Muon g − 2 from new scalars or fermions

We list the general formulas for the muon g − 2 due to
new interactions to the muon. First, suppose that there is an
extra Yukawa-type interaction of the muon to a neutral
scalar ϕwith massmϕ and a charged fermion F with charge
−1 and mass mF, as follows:

L1 ¼ −μ̄ðAS þ APγ
5ÞFϕþ H:c: ð79Þ

Then, the one-loop contribution to the muon g − 2 is
given [33] by

að1Þμ ¼ −
m2

μ

8π2

Z
1

0

dx
jASj2

�
x3 − x2 − x2 mF

mμ

�
þ jAPj2ðmF → −mFÞ

ð1 − xÞm2
ϕ þ ðm2

F −m2
μÞxþ x2m2

μ

¼ mμ

8π2

�
mμ

12m2
ϕ

ðjASj2 þ jAPj2ÞFC
1 ðxFÞ þ

mF

3m2
ϕ

ðjASj2 − jAPj2ÞFC
2 ðxFÞ

�
; ð80Þ
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with xF ¼ m2
F=m

2
ϕ and

FC
1 ðxÞ ¼

2

ð1 − xÞ4 ð2þ 3x − 6x2 þ x3 þ 6x ln xÞ; ð81Þ

FC
2 ðxÞ ¼ −

3

2ð1 − xÞ3 ð3 − 4xþ x2 þ 2 ln xÞ: ð82Þ

Similarly, in the presence of an extra Yukawa-type
interaction of the muon to a charged scalar χ with charge
−1 and mass mχ and a neutral fermion λ with mass mλ,
given by

L2 ¼ −μ̄ðCS þ CPγ
5Þλχ þ H:c:; ð83Þ

we obtain the one-loop contribution to themuon g − 2 [33] as

að2Þμ ¼ m2
μ

8π2

Z
1

0

dx
jCSj2



x3 − x2 þ mλ

mμ
ðx2 − xÞ�þ jCPj2ðmλ → −mλÞ

ð1 − xÞm2
λ þ ðm2

χ −m2
μÞxþ x2m2

μ

¼ mμ

8π2

�
−

mμ

12m2
χ
ðjCSj2 þ jCPj2ÞFN

1 ðxλÞ −
mλ

6m2
χ
ðjCSj2 − jCPj2ÞFN

2 ðxλÞ
�
; ð84Þ

with xλ ¼ m2
λ=m

2
χ and

FN
1 ðxÞ ¼

2

ð1 − xÞ4 ð1 − 6xþ 3x2 þ 2x3 − 6x2 ln xÞ; ð85Þ

FN
2 ðxÞ ¼

3

ð1 − xÞ3 ð1 − x2 þ 2x ln xÞ: ð86Þ

B. Muon g− 2 from sleptons

Now we are in a position to apply the general formulas
for the muon g − 2 to the supersymmetric case with
sleptons [34,35]. Feynman diagrams with sleptons relevant
for the muon g − 2 are shown in Fig. 2.
In the basis of mass eigenstates for neutralinos, chargi-

nos, and sleptons, given in Eqs. (8), (13), and (28), we
rewrite the slepton interactions relevant for the muon g − 2
in Eq. (1), as follows:

Lsleptons ¼ −
ffiffiffi
2

p
g0μ̄ðBL

i;aPL þ BR
i;aPRÞχ̃0i μ̃a

− ν̃μLμ̄ðgU�
R;i1PR − fμU�

L;i2PLÞχ̃−i þ H:c: ð87Þ

with

BL
i;1 ¼ cos θμ̃YecR

N�
i1 þ

1ffiffiffi
2

p
g0
fμ sin θμ̃N�

i3; ð88Þ

BL
i;2 ¼ sin θμ̃YecR

N�
i1 þ

1ffiffiffi
2

p
g0
fμ cos θμ̃N�

i3; ð89Þ

BR
i;1 ¼ − sin θμ̃ðYlLNi1 þ cot θWT3ðμLÞNi2Þ

−
1ffiffiffi
2

p
g0
fμ cos θμ̃Ni3; ð90Þ

BR
i;2 ¼ cos θμ̃ðYlLNi1 þ cot θWT3ðμLÞNi2Þ

−
1ffiffiffi
2

p
g0
fμ sin θμ̃Ni3: ð91Þ

Here, fμ is the muon Yukawa coupling, given by

fμ ¼
ffiffiffi
2

p
mμ=ðv cos βÞ. As compared to the general muon

Yukawa interactions in Eqs. (79) and (83), we can match
the slepton interactions by

Lsleptons ¼ −μ̄


Cði;aÞ
S þ Cði;aÞ

P γ5
�
χ̃0i μ̃a

− ν̃μLμ̄


AðjÞ
S þ AðjÞ

P γ5
�
χ̃−j þ H:c: ð92Þ

with

Cði;aÞ
S ¼ g0ffiffiffi

2
p 


BR
i;a þ BL

i;a

�
; a ¼ 1; 2; ð93Þ

Cði;aÞ
P ¼ g0ffiffiffi

2
p 


BR
i;a − BL

i;a

�
; a ¼ 1; 2; ð94ÞFIG. 2. Feynman diagrams with smuons and sneutrino, con-

tributing to the muon g − 2.
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and

AðjÞ
S ¼ 1

2



gU�

R;j1 − fμU�
L;j2

�
; ð95Þ

AðjÞ
P ¼ 1

2



gU�

R;j1 þ fμU�
L;j2

�
: ð96Þ

Then, we get

jCði;aÞ
S j2 þ jCði;aÞ

P j2 ¼ g02

jBR

i;aj2 þ jBL
i;aj2
�
; ð97Þ

jCði;aÞ
S j2 − jCði;aÞ

P j2 ¼ g02


BR
i;aB

L�
i;a þ BR�

i;aB
L
i;a

�
; ð98Þ

jAðjÞ
S j2 þ jAðjÞ

P j2 ¼ 1

2



g2jU�

R;j1j2 þ f2μjU�
L;j2j2

�
; ð99Þ

jAðjÞ
S j2− jAðjÞ

P j2¼−
1

2
gfμ


U�

R;j1UL;j2þUR;j1U�
L;j2

�
: ð100Þ

As a result, using Eqs. (80) and (84), we obtain the full
one-loop corrections to the muon g − 2 due to the slepton
loops [34] as

Δaμ ¼ að1Þμ þ að2Þμ ð101Þ

with

að1Þμ ¼
X2
j¼1

�
m2

μ

96π2m2
ν̃

FC
1 ðm2

χ̃−j
=m2

ν̃Þ


g2jU�

R;j1j2þf2μjU�
L;j2j2

�

−
gfμmμmχ̃−j

48π2m2
ν̃

FC
2 ðm2

χ̃−j
=m2

ν̃Þ


U�

R;j1UL;j2þUR;j1U�
L;j2

��
;

ð102Þ

að2Þμ ¼
X2
a¼1

X4
i¼1

�
−

g02m2
μ

192π2m2
μ̃2a

FN
1 ðm2

χ̃0i
=m2

μ̃a
Þ
jBR

i;aj2þjBL
i;aj2
�

−
g02mμmχ̃0i

48π2m2
μ̃2a

FN
2 ðm2

χ̃0i
=m2

μ̃a
Þ
BR

i;aB
L�
i;aþBR�

i;aB
L
i;a

��
:

ð103Þ

Here, the muon Yukawa coupling is given by fμ ¼ffiffiffi
2

p
mμ=ðv cos βÞ, so the terms with the muon Yukawa

coupling can be enhanced for a large tan β.
For the contributions from sneutrino and charginos,

we can approximate the one-loop corrections to the muon
g − 2 as

að1Þμ ≃
g2m2

μmχ̃−
2

24π2ðM2
2 − μ2HÞm2

ν̃

ðμH þM2 tan βÞFC
2 ðm2

χ̃−
2
=m2

ν̃Þ

−
g2m2

μmχ̃−
1

24π2ðM2
2 − μ2HÞm2

ν̃

ðμH tan β þM2ÞFC
2 ðm2

χ̃−
1
=m2

ν̃Þ:

ð104Þ

Here, we note that xFC
2 ðxÞ is positive and monotonically

increasing for x > 0. Thus, for a large tan β, we find that the
chargino contribution for the muon g − 2 can be positive.
Similarly, the contributions from smuons and binolike

neutralinos can be enhanced for a large tan β or a sizable
slepton mixing. In this case, in the limit of neglecting the
effects of electroweak symmetry breaking, we also obtain
the corresponding one-loop corrections to the muon g − 2
approximately as

að2Þμ ≃
g02mμmχ̃0

1

96π2
sin 2θμ̃

�
1

m2
μ̃2

FN
2 ðm2

χ̃0
1

=m2
μ̃2
Þ

−
1

m2
μ̃1

FN
2 ðm2

χ̃0
1

=m2
μ̃1
Þ
�
: ð105Þ

Here, we note that xFN
2 ðxÞ is positive and monotonically

increasing for x > 0. Thus, for μH > 0, we can get a
positive contribution to the muon g − 2 for either
sin 2θμ̃ < 0 (or m2

μ̃2
> m2

μ̃1
) [for which the lighter smuon

is SUð2ÞL singletlike] or sin 2θμ̃ > 0 (or m2
μ̃2
< m2

μ̃1
) [for

which the lighter smuon is SUð2ÞL doubletlike].
In Fig. 3, we show the parameter space for N2 and N3 in

general gauge mediation, explaining the muon g − 2 within
1σ and 2σ in yellow and green regions, respectively. We
chose tan β ¼ 30, M1 ¼ M2=2 ¼ 400 GeV for both plots,
and μH ¼ 3M1 on the left and μH ¼ 8M1 on the right. We
took M1 ¼ 400 GeV to make the gluino mass, M3 ≃ 6M1,
sufficiently large for the LHC bounds [4], and the chosen
values of the μ parameter are consistent with the bounds
from the vacuum stability in Eqs. (75) or (78). In both plots,
we divide the parameter space depending on the mass
ordering of smuons and the lightest neutralino: mμ̃1 <
mμ̃2 < mχ̃0

1
,mμ̃1 <mχ̃0

1
<mμ̃2 , andmχ̃0

1
< mμ̃1 < mμ̃2 , in red,

orange, and blue regions, respectively. For this example, the
lighter smuon mass between 200 and 300 GeV is consistent
with the muon g − 2 within 2σ, but the lighter slepton is
lighter than the lightest neutralino.
In Fig. 4, we show the parameter space for N2 and N3

with the same set of other parameters as in Fig. 3, but we
add the bounds from the W boson mass in both plots and
choose a larger μ parameter, μH ¼ 8M1 on the right. In the
left (right) plot of Fig. 3, we also indicated the contours of
the lighter charged slepton mass, mμ̃1 ¼ 200ð250Þ; 300;
400; 500 GeV, by solid, dashed, dotted, and dot-dashed
lines, respectively. We also showed the parameter space
with mμ̃2 < mμ̃1 or m2

LL < m2
RR in gray where the lighter
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smuon is SUð2ÞL doubletlike. We note that the parameter
space favored by the muon g − 2 is consistent with Δρ
bounds in PDG at 2σ, but the W boson mass measured by
CDFII cannot be explained.
From the right plot with μH ¼ 8M1 in Fig. 4, we also

show that there is a parameter space with the lighter smuon
being heavier than the lightest neutralino, explaining the

muon g − 2 anomaly within 2σ for N3 ≲ 0.6 and N2 ≲ 12.
In most of the parameter space in N2 and N3 for the muon
g − 2, the lighter smuon is lighter than the lightest
neutralino, which requires going beyond the standard
searches for sleptons.
In Table I, we present three benchmark models that

are consistent with the muon g − 2 anomaly within 1σ

mslepton,1 (2)<mneutralino,1<mslepton,2 (1)

mslepton,1 , mslepton,2<mneutralino,1

mneutralino,1<mslepton,1 , mslepton,2

Δaμ : 1σ

Δaμ : 2σ
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Δaμ : 1σ

Δaμ : 2σ
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FIG. 3. Parameter space for N2 and N3, explaining the muon g − 2. We indicated the mass ordering of smuons and the lightest
neutralino. We took tan β ¼ 30, M1 ¼ M2=2 ¼ 400 GeV for both plots, and μH ¼ 3M1 on the left and μH ¼ 8M1 on the right.
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FIG. 4. The same for the muon g − 2 constraints as in Fig. 3, except that we also showed the contours for the lighter smuon mass,
mμ̃1 ¼ 200ð250Þ; 300; 400; 500 GeV in solid, dashed, dotted, and dot-dashed lines, respectively. We also showed the gray region where
mμ̃2 < mμ̃1 or m2

LL < m2
RR so the lighter smuon is SUð2ÞL doubletlike.
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(models II and III) or 2σ (model I). We listed the input
parameters for the benchmark models in Table I and the
predicted masses for electroweak superpartners Δaμ and
ΔMW in each model in Table II. In particular, model III is
also consistent with theW boson mass measured by CDFII
within 1σ. In the following, we discuss briefly the collider
signatures for the benchmark models at the LHC.
In model I, the sleptons are heavier than the lightest

neutralino, so the lightest neutralino could be a dark matter
candidate if there is no extra supersymmetric particle
lighter than the lightest neutralino, such as gravitino. If
the SUSY breaking in gauge mediation is the only source
for the gravitino mass, the gravitino can be the LSP and a
dark matter candidate, because the gravitino mass is given
by m3=2 ¼ F=MP and the Planck scale MP is much greater
than the messenger scale in gauge mediation [21]. In this
case, the lightest neutralino could decay into gravitino and
the SM particle such as Z or Higgs bosons. The lifetime
of the LSP X with mass mX in the MSSM is given by

τX¼1.8×103 secðm3=2=100GeVÞ2ð1TeV=mXÞ5, which is
constrained to be less than 5 × 103 sec by big bang
nucleosynthesis (BBN) [36]. If the lightest neutralino
decays at the collider scale, the long-lived particle searches
with displaced vertices at the LHC are applicable [8].
Otherwise, we can consider the bounds from the standard
SUSY searches with missing transverse momentum at the
LHC [7].
In models II and III, the sleptons are lighter than the

lightest neutralino and the sneutrinos would become the
LSP in the MSSM. In this case, the heavier charged lepton
(μ̃2) can be produced at the LHC, decaying through a
three-body decay mode, μ̃2 → ðχ̃01Þ�μ → μ̃1μ̄μ, where the
lighter charged lepton (μ̃1) decays in cascade through a
three-body decay mode, μ̃1 → ðχ̃01Þ�μ → ν̃ ν̄ μ. The lighter
charged lepton (μ̃1) can be produced at the LHC on its
own, undergoing the same three-body decay process. If
the sneutrinos are lighter than the gravitino, the sneutrino
could be a dark matter candidate, but they should not be
dominant components of dark matter, because it would
have been already excluded by the direct detection
bounds. Instead, if the sneutrinos are heavier than the
gravitino, the gravitino can be a dark matter candidate, and
the sneutrinos decay into gravitino and neutrino, being
also constrained by BBN [36]. In this case, the collider
signatures are challenging, because multiple invisible
particles are produced promptly or nonpromptly per each
charged slepton in the final states.

VI. PROTON DECAYS FROM THE SLEPTONS

We discuss the proton decay due to dimension-five
operators induced by colored Higgsinos in the minimal
SU(5) GUT and its extension to orbifold GUT models in
the extra dimensions. We assume that squark and slepton
masses are generation independent but they can be split, as
in general gauge mediation.

A. Dimension-five operators in the minimal SU(5)

In the minimal SUSY SU(5) GUT, the Yukawa couplings
between the MSSMmatter fields, embedded in three copies
of 5̄þ 10 representations, Ψab

i and Φja, with a; b ¼
1; 2;…; 5 and i, j ¼ 1, 2, 3, and the MSSM Higgs fields,
embedded in a pair of 5 and 5̄ representations, Ha and H̄a,
are given by

WY ¼ 1

4
hijϵabcdeΨab

i Ψcd
j He −

ffiffiffi
2

p
fijΨab

i ΦjaH̄b: ð106Þ

Here, the 5 and 5̄ Higgs multiplets areHT ¼ ðHα
C;H

þ
u ; H0

uÞ
and H̄T ¼ ðH̄Cα; H−

d ;−H0
dÞwith α ¼ 1, 2, 3, which contain

not only the MSSM Higgs fields, HT
u ¼ ðHþ

u ; H0
uÞ and

HT
d ¼ ðH0

d; H
−
d ÞT , but also the colored Higgs fields, Hα

C
and H̄Cα.

TABLE I. Soft mass parameters in units of GeV for models
I–III in general gauge mediation.

Model I Model II Model III

ðN2; N3Þ (7, 0.4) (20, 1.5) (11, 0.5)
mq̃L 6968 3600 6230
mũR 6964 3596 6229
md̃R

6959 3594 6224
ml̃L

446 256 367
mẽR 467 244 414
M1 409 409 409
M2 820 820 820
M3 2694 2694 2694
μH 3271 1227 3271
tan β 30 30 30

TABLE II. Electroweak superpartner masses in units of GeV,
Δaμ, and ΔMW for models I–III.

Model I Model II Model III

mν̃ 441 247 361
mμ̃1 474 244 420
mμ̃2 443 264 366
mχ̃0

1
409 408 409

mχ̃0
2

820 813 820
mχ̃0

3
3273 1236 3273

mχ̃0
4

3270 1225 3270
mχ̃�

1
820 813 820

mχ̃�
2

3273 1236 3273
Δaμ 1.56 × 10−9 2.00 × 10−9 2.24 × 10−9

ΔMW 1.12 MeV 3.73 MeV 1.73 MeV
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Then, after the colored Higgsinos are integrated out,
we get the effective dimension-five operators in the super-
potential, as follows [16]:

W5 ¼
κ

2MHC

fuifdlV
�
kle

iφiϵαβγϵrsϵtuQαr
i Qβs

i Qγt
k L

u
l

þ κ

MHC

fuie
iφifdlV

�
klϵ

αβγŪiαĒiŪkβD̄lγ; ð107Þ

where the SU(5) Yukawa couplings for up- and down-type
fermions are parametrized by hij ¼ fuie

iφiδij and fij ¼
V�
ijfdj with Vij being the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. Here, we note that κ parametrizes the
suppression of the couplings of the colored Higgsinos as
in orbifold GUT models [37], where the boundary con-
ditions for the colored Higgsinos in the extra dimensions
suppress the couplings between the colored Higgsinos and
the MSSM matter fields at the orbifold fixed points in the
extra dimension.
We elaborate more on a mechanism to suppress the

Yukawa couplings of the colored Higgsinos. In the minimal
5D SU(5) GUT compactified on S1=Z2 × Z0

2, we can
assign parities for the SU(5) gauge fields under the Z2

parities such that the SU(5) GUT group is broken down to

SUð3Þ × SUð2Þ × Uð1Þ [37,38]. In this case, the Dirichlet
boundary conditions can be imposed on the colored
Higgsinos living in the bulk as the full 5 and 5̄ representa-
tions, so the tree-level Yukawa couplings for the colored
Higgsinos are forbidden at the orbifold fixed point of the
extra dimension where SU(5) is broken [38]. However, we
can also introduce higher-dimensional operators for the
Yukawa couplings at the orbifold fixed points such as
1
Mn�

hijϵabcdeΨab
i Ψcd

j ð∂5ÞnHe and 1
Mn�

fijΨab
i Φjað∂5ÞnH̄b with

n being odd and M� being the fundamental scale in 5D. In
this case, the suppression factor κ in Eq. (107) is obtained
as κ ¼ 1=ðM�RÞn with R being the radius of the extra
dimension, so we can obtain small Yukawa couplings for
the colored Higgsinos as far as M�R ≫ 1. For instance, for
M�R ¼ 20 and n ¼ 3, we can achieve a suppression factor
κ ∼ 10−4. Such a suppression factor in the extra dimension
is comparable to the case where the selection rules due to
discrete R symmetries respect the baryon number con-
servation in the leading order terms [19].
The above superpotential in Eq. (107) gives rise to the

effective dimension-five interactions relevant for the proton
decay between a pair of SM fermions and a pair of scalar
superpartners in components,

Ldim−5 ¼ −
κ

MHC

fuifdlV
�
kle

iφi
�ðuiLdiLÞðũkLẽlLÞ þ ðũiLdiLÞðukLẽlLÞ − ðuiLdiLÞðd̃kν̃lÞ

− ðuiLd̃iLÞðdkν̃lÞ − ðuiLd̃iLÞðd̃kνlÞ − ðũiLdiLÞðd̃kνlÞ − ðũiLd̃iLÞðdkνlÞ



−
κ

MHC

fuie
iφifdlV

�
kl

�ðuciRẽ�iRũ�kRdclRÞ þ ðũ�iRẽ�iRuckRdclRÞ


: ð108Þ

Thus, one-loop corrections with squarks and/or sleptons give rise to the proton decay mode, p → Kþν̄, as shown in Fig. 5.
Therefore, the resultant lifetime of the proton depends on squark and slepton masses as well as chargino masses.

B. Proton decays with split sparticle masses

Taking into account one-loop diagrams in Fig. 5, we get the effective dimension-six operators for proton decay,
p → Kþν̄j, with j ¼ 2, 3, as follows [16]:

Ldim−6 ¼
κα22

MHC
m2

W sin 2β

� X
i;j¼2;3

2FðM2; m2
d̃iL
; m2

ũiL
Þm̄uim̄djVuidVuisV

�
udj

eiφiAði;jÞ
R


ðuLdLÞðνLjsLÞ þ ðuLsLÞðνLjdLÞ
�

þ
X

i;j¼2;3

2FðM2; m2
ũiL
; m2

ẽjL
ÞAð1;jÞ

R m̄um̄djVuisV
�
uidj

eiφiðuLdLÞðνLjsLÞ

−
m̄2

t m̄τV�
tbe

iφ1

m2
W sin 2β

FðμH;m2
t̃R
; m2

τ̃R
ÞAR



mdVudVtsðuRdRÞðντsLÞ þ m̄sVusVtdðuRsRÞðντdLÞ

��
; ð109Þ

where Fðx; y; zÞ is the loop function, given by

Fðx; y2; z2Þ ¼ x
ðx2 − y2Þðy2 − z2Þðz2 − x2Þ

�
x2y2 ln

�
x2

y2

�
þ y2z2 ln

�
y2

z2

�
þ z2x2 ln

�
z2

x2

��
; ð110Þ
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Aði;jÞ
R , AR are the renormalization factors, and mui , m̄di are

the running quark masses defined in the DR scheme at the
scale of μ ¼ 2 GeV [16]. Here, the flavor-diagonal squark
and slepton masses correspond to m2

s̃L
¼ m2

b̃L
, m2

c̃L
¼ m2

t̃L
,

and m2
τ̃R
¼ m2

μ̃R
for the first two generation sparticles, and

the electroweak symmetry leads to m2
s̃L
¼ m2

c̃L
and

m2
b̃L

¼ m2
t̃L
. However, we do not have to set m2

t̃R
¼ m2

τ̃R

for satisfying the bounds on FCNCs.
The slepton loops with charginos in the second line in

Eq. (109) are suppressed by the up-quark mass m̄u, so they
are negligible even if m2

ẽjL
≪ m2

ũiL
is taken in the loop

function. On the other hand, the stop and stau loops with
Higgsinos in Eq. (109) give rise to the dominant contri-
bution to proton decay, so we can find a correlation of the
muon g − 2 with the proton decay only if smuon and stau

masses are related. As discussed in the previous section, in
the general gauge mediation, we can take the squark masses
to be generation independent and sufficiently large while
keeping the slepton masses flavor universal and light. Then,
for smuon and stau of comparable masses, we can correlate
between the muon g − 2 with smuon loops and the proton
decay with stau loops.
We remark that, for the degenerate scalar superpartner

masses in loops, the loop function in Eq. (110) becomes

Fðx; y2; y2Þ ¼ x

�
1

y2 − x2
−

x2

ðy2 − x2Þ2 ln
�
y2

x2

��
; ð111Þ

recovering the results in Refs. [16,17].
As a result, the first two terms in Eq. (109) are sup-

pressed by either light quark masses or small CKM mixing
angles, as compared to the third term in Eq. (109). Then, for
jμHj≳M2 and mũiL ; md̃iL

; mt̃R ≫ mẽiL ; mẽiR ;M2; jμHj, the
loop function in the first term in Eq. (109) is parametrically
smaller than the one in the third term in Eq. (109), so we
can estimate the proton lifetime from Higgsino loops as

τðp → Kþν̄Þ ≃ 4 × 1035 yr × sin42β
�
0.1

AR

�
2

×

 ½2FðμH;m2
t̃R
; m2

τ̃R
Þ�−1

102 TeV

!
2� MHC

=κ

1016 GeV

�
2

:

ð112Þ

In comparison, we note that the current experimental limits
are given by τðp → KþνÞ > 6.6 × 1033 yr [18].
In Fig. 6, we obtain the proton lifetime as a function of

the squark mass mũR for varying the μ-term and stau mass

FIG. 5. Feynman diagrams with dimension-five operators for
proton decay mode, p → Kþν̄.

FIG. 6. Left: proton lifetime in years as a function of the squark mass, mũR in units of GeV. We took κ ¼ 1; 10−2 in blue solid and
dashed lines, respectively. We chose tan β ¼ 30 in common, μH ¼ 1200, mẽR ¼ 250 GeV on the left and μH ¼ 3200, mẽR ¼ 400 GeV
on the right.
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to μH ¼ 1200, mẽR ¼ 250 GeV on the left and μH ¼ 3200,
mẽR ¼ 400 GeV on the right. We also varied the suppression
factor to κ ¼ 1; 10−2 in blue solid and dashed lines,
respectively. The black dotted line corresponds to the current
limit on the proton decay mode, p → Kþν̄. Here, since we
assume that squark and slepton masses are generation

independent up to electroweak corrections, we do not
distinguish flavors for squark and slepton masses.
We now make a direct connection of the proton lifetime

to the parameters in general gauge mediation. In Fig. 7, we
depict the parameter space for the scale of general gauge
mediation ΛG and the suppression factor κ, which is

�p < �p,limit
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FIG. 7. Parameter space for the scale of general gauge mediation ΛG and the suppression factor for the colored Higgsino Yukawa
couplings κ. The gray region is excluded by the bound on the proton lifetime for p → Kþν̄. We showed the contours of the slepton mass
mẽR ¼ 200; 500; 1000 GeV in orange dashed, dotted, and dot-dashed lines, respectively. We took tan β ¼ 30 in common, and
μH ¼ 1200 GeV, N2 ¼ 7, N3 ¼ 0.4 on the left and μH ¼ 3200 GeV, N2 ¼ 20, N3 ¼ 1.5 on the right.

FIG. 8. Parameter space for N2 and N3, explaining the muon g − 2 and satisfying the bound on the proton lifetime for p → Kþν̄. We
showed the parameter space saturating the bound on the proton lifetime for the suppression factor, κ ¼ 6 × 10−4; 10−3; 2 × 10−3 in
dashed, dotted, and dot-dashed lines, respectively. We took tan β ¼ 30, M1 ¼ M2=2 ¼ 400 GeV for both plots, and μH ¼ 3M1 on the
left and μH ¼ 8M1 on the right. The color codes for yellow and green regions are the same as in Fig. 3 or 4.
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excluded by the current bound on the proton lifetime. We
took tan β ¼ 30 for both plots and μH ¼ 1200 GeV,
N2 ¼ 7, N3 ¼ 0.4 (model I in Table I) on the left and
μH ¼ 3200 GeV, N2 ¼ 20, N3 ¼ 1.5 (model II in Table I)
on the right. Orange dashed, dotted, and dot-dashed lines
correspond to the stau masses, mẽR ¼200;500;1000GeV,
respectively. In both cases, for squark masses of order
3–7 TeV in the benchmark models, we need a suppression
factor κ ∼ 10−4–10−3 to satisfy the bound on the proton
lifetime and the slepton masses of order 100 GeV
required for the muon g − 2 anomaly. Therefore, the
low-energy spectrum with split sparticles obtained in
general gauge mediation is consistent with the muon
g − 2 anomaly and the strong bounds from the LHC, but it
hints at a new mechanism beyond the minimal SU(5)
GUTs for suppressing the Yukawa couplings of colored
Higgsinos sufficiently for proton stability.
In Fig. 8, in order to make the correlation between the

muon g − 2 and the proton lifetime more explicit, in the
parameter space for N2 and N3, namely, the effective
number of doublet and triplet messenger fields in general
gauge mediation, we show the region where the muon g − 2
is explained as in Figs. 3 and 4 and overlay the contours
for saturating with the bound on the proton lifetime for
p → Kþν̄, for the suppression factor κ¼6×10−4;10−3;
2×10−3 in dashed, dotted, and dot-dashed lines, respec-
tively. The regions below the dashed, dotted, and dot-
dashed lines are consistent with the bound on the proton
lifetime. On the other hand, the muon g − 2 can be
explained in yellow and green regions at the 1σ and 2σ
levels, respectively. We took tan β ¼ 30, M1 ¼ M2=2 ¼
400 GeV for both plots, and μH ¼ 3M1 on the left and
μH ¼ 8M1 on the right. We find that, as far as κ ≲ 10−3, the
muon g − 2 can be readily explained within 1σ, being
consistent with the bound on the proton lifetime. For a
larger μH as in the right plot of Fig. 8, we can accommodate
larger slepton masses to explain the muon g − 2, namely,
a smaller N3, so the bound on the proton lifetime can be
satisfied for a larger κ.

VII. CONCLUSIONS

We considered the interplay of the muon g − 2 anomaly
and the proton decay in the SUSY SU(5) GUTs with
generation-independent scalar soft masses at the messenger
scale. In particular, in the scenarios of general gauge
mediation with 5þ 5̄ messenger fields, the messenger
sector with doublet-triplet splitting transmits SUSY break-
ing to the visible sector such that squark and slepton masses
are generation independent but split already at the mes-
senger scale. Thus, taking into account the perturbative
unification of gauge couplings as well as the bounds from
electroweak precision and vacuum stability bounds, we
showed the parameter space in general gauge mediation to
explain the muon g − 2 anomaly with smuon and sneutrino

loops while evading the strong bounds on squarks and
gluinos from the LHC.
From the relation between the gluino and bino masses

M3 ≃ 6M1, which is the same as in the constrained
MSSM model, we chose the bino mass M1 to about
400 GeV to satisfy the LHC bounds on the gluino masses.
In this case, we found that the lighter smuon is lighter
than the lightest neutralino in the parameter space
explaining the muon g − 2 anomaly within 1σ, but the
lightest neutralino can be also the LSP at the 2σ level for
the muon g − 2. It is typical that the gravitino can be
lighter than the LSP in the MSSM in gauge mediation due
to the messenger scale being smaller than the Planck
scale. Thus, the gravitino can be a dark matter candidate
whereas the LSP in MSSM is long-lived, decaying into
the gravitino and an SM particle. Depending on whether
the LSP in the MSSM decays within the detector or not,
the long-lived particle searches of displaced vertices or
the standard SUSY searches with missing transverse
momentum are applicable.
In benchmark models with hierarchical effective num-

bers of colored and noncolored messenger fields, we
showed that the muon g − 2 anomaly can be explained
while the direct bounds for superparticles at the LHC are
satisfied. We obtained the dominant Higgsino contributions
to the proton decay, p → Kþν̄, with general generation-
independent sparticle masses for squarks and sleptons
appearing in loops. However, we showed that the scalar
soft masses obtained in our model are not split enough,
so we need an extra suppression factor for the Yukawa
couplings of the colored Higgsinos for the proton stability,
such as the Dirichlet boundary conditions on the colored
Higgsinos in the extra dimension on orbifolds. We showed
that the dimensionless suppression factor of order
10−4–10−3 is sufficient to reconcile the slepton masses
of a few 100 GeV needed for the muon g − 2 anomaly with
the unification.
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APPENDIX A: NEUTRALINO AND
CHARGINO MIXINGS

Keeping the corrections from the electroweak symmetry
breaking, we get the components of the neutralino mixing
matrix in Eq. (8) approximately as

N11 ¼ 1; N12 ¼ 0; ðA1Þ
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N13 ¼
ðM1 cos β þ μH sin βÞmZsW

μ2H −M2
1

; ðA2Þ

N14 ¼ −
ðM1 sin β þ μH cos βÞmZsW

μ2H −M2
1

; ðA3Þ

N21 ¼ 0; N22 ¼ 1; ðA4Þ

N23 ¼ −
ðM2 cos β þ μH sin βÞmZcW

μ2H −M2
2

; ðA5Þ

N24 ¼
ðM2 sin β þ μH cos βÞmZcW

μ2H −M2
2

; ðA6Þ

N31 ¼ −
1ffiffiffi
2

p mZsW
μH −M1

ðcos β þ sin βÞ; ðA7Þ

N32 ¼
1ffiffiffi
2

p mZcW
μH −M2

ðcos β þ sin βÞ; ðA8Þ

N33 ¼ −N34 ¼
1ffiffiffi
2

p ; ðA9Þ

and

N41 ¼
1ffiffiffi
2

p mZsW
μH þM1

ðcos β − sin βÞ; ðA10Þ

N42 ¼ −
1ffiffiffi
2

p mZcW
μH þM2

ðcos β − sin βÞ; ðA11Þ

N43 ¼ N44 ¼
1ffiffiffi
2

p : ðA12Þ

Similarly, we also obtain the components of the chargino
mixing matrices in Eq. (13) approximately as

UL;11 ¼ UL;22 ¼ 1; ðA13Þ

UL;12¼−UL;21¼−
ffiffiffi
2

p
mWðM2cosβþμH sinβÞ

μ2H−M2
2

; ðA14Þ

and

UR;11 ¼ UR;22 ¼ 1; ðA15Þ

UR;12¼−UR;21¼−
ffiffiffi
2

p
mWðM2 sinβþμH cosβÞ

μ2H−M2
2

: ðA16Þ

APPENDIX B: EFFECTIVE INTERACTIONS
FOR SLEPTONS

Keeping the corrections from the electroweak symmetry
breaking to the neutralino and chargino mass matrices, we

get the approximate effective couplings for the sleptons in
Eq. (87) explicitly as

BL
1;1≃cosθμ̃þ

1ffiffiffi
2

p
g0
fμ sinθμ̃ ·

ðM1cβþμHsβÞmZsW
μ2H−M2

1

; ðB1Þ

BL
1;2≃sinθμ̃þ

1ffiffiffi
2

p
g0
fμ cosθμ̃ ·

ðM1cβþμHsβÞmZsW
μ2H−M2

1

; ðB2Þ

BL
2;1 ≃ −

1ffiffiffi
2

p
g0
fμ sin θμ̃ ·

ðM1cβ þ μHsβÞmZcW
μ2H −M2

2

; ðB3Þ

BL
2;2 ≃ −

1ffiffiffi
2

p
g0
fμ cos θμ̃ ·

ðM1cβ þ μHsβÞmZcW
μ2H −M2

2

; ðB4Þ

BL
3;1 ≃

1

2g0
fμ sin θμ̃ −

1ffiffiffi
2

p mZsW
μH −M1

ðcβ þ sβÞ cos θμ̃; ðB5Þ

BL
3;2 ≃

1

2g0
fμ cos θμ̃ −

1ffiffiffi
2

p mZsW
μH −M1

ðcβ þ sβÞ sin θμ̃; ðB6Þ

BL
4;1 ≃

1

2g0
fμ sin θμ̃ þ

1ffiffiffi
2

p mZsW
μH þM1

ðcβ − sβÞ cos θμ̃; ðB7Þ

BL
4;2 ≃

1

2g0
fμ cos θμ̃ þ

1ffiffiffi
2

p mZsW
μH þM1

ðcβ − sβÞ sin θμ̃; ðB8Þ

and

BR
1;1 ≃

1

2
sin θμ̃ −

1ffiffiffi
2

p
g0
fμ cos θμ̃ ·

ðM1cβ þ μHsβÞmZsW
μ2H −M2

1

;

ðB9Þ

BR
1;2 ≃ −

1

2
cos θμ̃ −

1ffiffiffi
2

p
g0
fμ sin θμ̃ ·

ðM1cβ þ μHsβÞmZsW
μ2H −M2

1

;

ðB10Þ

BR
2;1 ≃

1

2
sin θμ̃ cot θW

þ 1ffiffiffi
2

p
g0
fμ cos θμ̃ ·

ðM2cβ þ μHsβÞmZcW
μ2H −M2

2

; ðB11Þ

BR
2;2 ≃ −

1

2
cos θμ̃ cot θW

þ 1ffiffiffi
2

p
g0
fμ sin θμ̃ ·

ðM2cβ þ μHsβÞmZcW
μ2H −M2

2

; ðB12Þ
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BR
3;1 ≃ −

1

2g0
fμ cos θμ̃

−
1

2
ffiffiffi
2

p sin θμ̃ðcβ þ sβÞ
�

mZsW
μH −M1

−
mZc2W=sW
μH −M2

�
;

ðB13Þ

BR
3;2 ≃ −

1

2g0
fμ sin θμ̃

þ 1

2
ffiffiffi
2

p cos θμ̃ðcβ þ sβÞ
�

mZsW
μH −M1

−
mZc2W=sW
μH −M2

�
;

ðB14Þ

BR
4;1 ≃ −

1

2g0
fμ cos θμ̃

þ 1

2
ffiffiffi
2

p sin θμ̃ðcβ − sβÞ
�

mZsW
μH þM1

−
mZc2W=sW
μH þM2

�
;

ðB15Þ

BR
4;2 ≃ −

1

2g0
fμ sin θμ̃

−
1

2
ffiffiffi
2

p cos θμ̃ðcβ − sβÞ
�

mZsW
μH þM1

−
mZc2W=sW
μH þM2

�
:

ðB16Þ
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