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We study the stochastic gravitational wave (GW) background resulting from the strong first-order phase
transition (SFOPT) associated with SUð2ÞR × Uð1ÞB−L-breaking in the doublet left-right symmetric model
(DLRSM). For different values of the symmetry-breaking scale vR ¼ 20, 30, and 50 TeV, we construct the
one-loop finite temperature effective potential to explore the parameter space for regions showing SFOPT.
We identify the region where the associated GW background is strong enough to be detected at planned
GWobservatories. A strong GW signature favors a relatively light CP-even neutral scalar H3, arising from
the SUð2ÞR doublet. The SUð2ÞL subgroup of DLRSM is broken by three vacuum expectation values: κ1,
κ2, and vL. We observe a preference forOð1Þ values of the ratio w ¼ vL=κ1, but no clear preference for the
ratio r ¼ κ2=κ1. A large number of points with strong GW signal can be ruled out from precise
measurement of the trilinear Higgs coupling and searches for H3 at the future colliders.
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I. INTRODUCTION

Left-right symmetric models (LRSMs) [1–5] provide an
attractive scenario for addressing several limitations of the
standard model (SM). In LRSM, the SM gauge group
is extended from GSM ¼ SUð3Þc × SUð2ÞL ×Uð1ÞY to
GLRSM ¼ SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L, and the
right-chiral fermions transform as doublets under the
SUð2ÞR subgroup. The nonobservation of a right-handed
charged current at colliders puts a lower bound on
the SUð2ÞR × Uð1ÞB−L-breaking scale, vR ≳Oð10Þ TeV,
while the upper bound remains unconstrained.
There are different realizations of LRSM, depending on

the scalars involved in the spontaneous breaking of GLRSM

to GSM. These also differ in the mechanism for generating
fermion masses. The triplet left-right symmetric model
(TLRSM) [6–8], contains a scalar bidoublet, and two
SUð2Þ triplets. The charged fermion masses are then
generated by the bidoublet, whereas the neutrino masses
are generated by the type-II seesaw mechanism [9]. On the

other hand, the scalar sector of a doublet left-right
symmetric model (DLRSM) consists of a scalar bidoublet
and a pair of SUð2Þ doublets [5,10]. In DLRSM, neutrino
masses can be incorporated by extending the model with
an additional charged singlet scalar [11–14]. Contrary to
TLRSM, where the vacuum expectation value (vev) of the
triplets is constrained to be small, there are no sources of
custodial symmetry breaking in DLRSM at the tree level.
Apart from TLRSM and DLRSM, other variations have
also been discussed in the literature and have different
experimental consequences [15–18].
The era of gravitational wave (GW) astronomy was

kickstarted by the observation of GW from a binary black
hole merger by the aLIGO collaboration in 2015 [19].
Several ground-based and space-based observatories such
as LISA [20], DECIGO [21], BBO [22], ET [23], and
CE [24] are planned and will be functional in the coming
decades. Various phenomena in the early universe, such as
inflation, cosmic strings, domain walls, and strong first-
order phase transitions (SFOPT) can lead to a stochastic
GW background [25–28]. The upcoming GW observato-
ries will be capable of detecting the GW background
from SFOPT up to symmetry-breaking scales as high as
106–107 GeV [29–31].
In the context of LRSM, GWastronomy presents a novel

approach to probe the scale vR by studying the possibility
of an observable GW background from SFOPT within the
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LRSM. Different realizations of LRSM have been explored
in the literature for GW imprints: through SFOPT in
TRLSM [32,33], and in an LR model with seesawlike
fermion mass generation [17], and also from domain
walls arising out of the breaking of the discrete parity
symmetry [34]. However, GW imprints of DLRSM have
not yet been explored in the literature. Recently it was
shown that the pattern of electroweak symmetry breaking
(EWSB) in DLRSM can be vastly different from the other
versions of LRSM, with interesting consequences from
precision observables [35] and Higgs data [36]. It is
therefore interesting to study the GW signature in DLRSM.
EWSB in DLRSM happens via three vevs: κ1, κ2,

coming from the bidoublet, and vL coming from the
SUð2ÞL doublet. These are constrained by the relation,
κ21 þ κ22 þ v2L ¼ v2, where v ¼ 246 GeV. It is useful to
define the vev ratios: r ¼ κ2=κ1; w ¼ vL=κ1. As the cus-
todial symmetry is preserved at the tree level, the vevs κ1,
κ2, and vL can all be sizable, i.e. r and w can beOð0.1Þ and
Oð1Þ respectively. In Ref. [35], it was shown that the EW
precision data prefers a large value of w. Further, in
Ref. [36] it was shown that the measurement of the
Higgs signal strength and meson mixing bounds prefer
large values of r and w. It is therefore interesting to note
that, unlike TLRSM, EWSB in DLRSM can be consid-
erably different from that in SM, even though the
SUð2ÞR ×Uð1ÞB−L-breaking dynamics is decoupled from
the EW scale. In this paper, we ask (i) whether DLRSM
can lead to a detectable GW background in some region of
the parameter space, and (ii) whether this region of the
parameter space prefers a special pattern of EWSB.
The rest of the paper is organized as follows. In Sec. II,

we give a brief review of DLRSM: field content, sym-
metry breaking, and mass generation in the gauge,
fermion, and gauge sectors. In Sec. II D and Sec. II E,
we discuss the theoretical bounds and the constraints from
the Higgs data respectively. In Sec. III, we construct the
one-loop finite temperature effective potential required
to study the phase transition (PT) associated with
SUð2ÞR ×Uð1ÞB−L-breaking. We then describe our pro-
cedure for scanning the parameter space in Sec. IV. In
Sec. V, we discuss the GW background obtained for points
with SFOPT. In Sec. VI, we compute the signal-to-noise
ratio (SNR) for six benchmark points, at various planned
GW detectors such as FP-DECIGO, BBO, and Ultimate-
DECIGO. In Sec. VII, we discuss future collider probes
that can complement the GW signal. Finally, in Sec. VIII,
we summarize our key findings and present concluding
remarks.

II. THE MODEL

We follow the notation of Refs. [35,36] for the scalar
potential and vev structure of the scalar multiplets. The

fermion content of the model has the following charges
under the LRSM gauge group, GLRSM ¼ SUð3Þc×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L,

QL ¼
�
uL
dL

�
∼ ð3; 2; 1; 1=3Þ;

QR ¼
�
uR
dR

�
∼ ð3; 1; 2; 1=3Þ;

LL ¼
�
νL

eL

�
∼ ð1; 2; 1;−1Þ;

LR ¼
�
νR

eR

�
∼ ð1; 1; 2;−1Þ; ð2:1Þ

where the quantum numbers of the multiplets under
the subgroups of GLRSM are indicated in brackets. We have
suppressed the family index i∈ f1; 2; 3g for three gener-
ations of quarks and three generations of leptons.The right-
handed neutrino νR is needed to complete the SUð2ÞR
lepton doublet. This choice of fermions is required for the
cancellation of the Uð1ÞB−L gauge anomaly and ensures
that the model is manifestly symmetric under the trans-
formations: QL ↔ QR, LL ↔ LR.

A. Scalar sector

The scalar sector of DLRSM includes a complex
bidoublet Φ needed to generate charged fermion masses,
and two doublets χL and χR, which participate in the
EW- and LR-symmetry breaking respectively. These scalar
multiplets and their charges under GLRSM are:

Φ ¼
 

ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

!
∼ ð1; 2; 2; 0Þ;

χL ¼
 
χþL
χ0L

!
∼ ð1; 2; 1; 1Þ;

and χR ¼
 
χþR
χ0R

!
∼ ð1; 1; 2; 1Þ: ð2:2Þ

We take the potential to be parity-symmetric, i.e., the
couplings of “L” and “R” fields are equal. This imposes an
additional discrete symmetry P∶ L ↔ R on the
Lagrangian. The most general, CP-conserving, renorma-
lizable scalar potential is then given by,
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V ¼ V2 þ V3 þ V4;

V2 ¼ −μ21TrðΦ†ΦÞ − μ22½TrðΦ̃Φ†Þ þ TrðΦ̃†ΦÞ� − μ23½χ†LχL þ χ†RχR�;
V3 ¼ μ4½χ†LΦχR þ χ†RΦ†χL� þ μ5½χ†LΦ̃χR þ χ†RΦ̃†χL�;
V4 ¼ λ1½TrðΦ†ΦÞ�2 þ λ2½½TrðΦ̃Φ†Þ�2 þ ½TrðΦ̃†ΦÞ�2� þ λ3TrðΦ̃Φ†ÞTrðΦ̃†ΦÞ

þ λ4TrðΦ†ΦÞ½TrðΦ̃Φ†Þ þ TrðΦ̃†ΦÞ� þ ρ1½ðχ†LχLÞ2 þ ðχ†RχRÞ2� þ ρ2χ
†
LχLχ

†
RχR

þ α1TrðΦ†ΦÞ½χ†LχL þ χ†RχR� þ
�
α2
2
½χ†LχLTrðΦ̃Φ†Þ þ χ†RχRTrðΦ̃†ΦÞ� þ H:c:

�
þ α3½χ†LΦΦ†χL þ χ†RΦ†ΦχR� þ α4½χ†LΦ̃Φ̃†χL þ χ†RΦ̃†Φ̃χR�; ð2:3Þ

with Φ̃≡ σ2Φ�σ2. The potential has mass parameters:
fμ1;2;3;4;5g, and quartic couplings: fλ1;2;3;4;α1;2;3;4; ρ1;2g.
We assume all parameters to be real for simplicity.
The neutral scalars can be written in terms of real and

imaginary components,

ϕ0
1 ¼

1ffiffiffi
2

p ðϕ0
1r þ iϕ0

1iÞ; ϕ0
2 ¼

1ffiffiffi
2

p ðϕ0
2r þ iϕ0

2iÞ;

χ0L ¼ 1ffiffiffi
2

p ðχ0Lr þ iχ0LiÞ; χ0R ¼ 1ffiffiffi
2

p ðχ0Rr þ iχ0RiÞ: ð2:4Þ

We assign nonzero vevs only to the real components of the
neutral scalars and do not consider CP- or charge-breaking
minima. The vev structure is denoted by

hΦi ¼ 1ffiffiffi
2

p
�
κ1 0

0 κ2

�
; hχLi ¼

1ffiffiffi
2

p
�

0

vL

�
;

hχRi ¼
1ffiffiffi
2

p
�

0

vR

�
: ð2:5Þ

The pattern of symmetry breaking is as follows:

SUð2ÞL × SUð2ÞR ×Uð1ÞB−L⟶
vR SUð2ÞL

×Uð1ÞY⟶
κ1;κ2;vL Uð1ÞY:

The vev vR of the doublet χR breaks SUð2ÞR ×Uð1ÞB−L,
while the three vevs κ1, κ2, and vL trigger EWSB. Note that
the discrete LR symmetry P, is also broken by vR, which
leads to the formation of domain walls [34,37–41]. Such a
domain wall network can dominate the energy density of
the universe at late times. To avoid domination, a small bias
term can be introduced via explicit LR-breaking operators,
so that the domain walls become unstable and decay before
the epoch of big bang nucleosynthesis. For example, the
bias was generated by Planck-suppressed higher dimen-
sional operators in Ref. [34]. Due to large suppression,
these do not affect the nature and strength of the SUð2ÞR ×
Uð1ÞB−L breaking PT.

As mentioned earlier, the EW vevs can be conveniently
expressed in terms of the vev ratios r and w as, κ2 ¼ rκ1 and
vL ¼ wκ1. Then, κ21ð1þ r2 þ w2Þ ¼ v2, i.e., the value of κ1
is fixed for a given r and w. The absence of a right-handed
charged current in collider experiments implies a hierarchy
of scales vR ≫ v.
In terms of the vevs κ1; κ2; vL, and vR, the minimization

conditions are,

∂V
∂κ1

¼ ∂V
∂κ2

¼ ∂V
∂vL

¼ ∂V
∂vR

¼ 0: ð2:6Þ

Using the minimization conditions, we trade μ21, μ
2
2, μ

2
3, and

μ5 for the vevs, μ4, and quartic couplings (see Appendix A
for full expressions). Thus the parameters of the DLRSM
scalar sector reduce to

fλ1;2;3;4; α1;2;3;4; ρ1;2; μ4; r; w; vRg: ð2:7Þ

The CP-even, CP-odd, and charged scalar mass matrices
are obtained using

m2
ij ¼

∂
2V

∂φi∂φj

����
hφi

; ð2:8Þ

where

φ≡ fϕ0
1r;ϕ

0
2r; χ

0
Lr; χ

0
Rr;ϕ

0
1i;ϕ

0
2i; χ

0
Li; χ

0
Ri;ϕ

�
1 ;ϕ

�
2 ; χ

�
L ; χ

�
Rg:
ð2:9Þ

Physical scalar masses and mixing angles are obtained by
diagonalizing these matrices. We denote the physical
spectrum of scalars by: CP-even scalars, h;H1; H2; H3,
CP-odd scalars, A1, A2, and the charged scalars, H�

1 ; H
�
2 .

The lightest CP-even scalar, h has a mass of the order v,
and is identified with the SM-like Higgs with mass
∼125 GeV. Using nondegenerate perturbation theory, mh
is estimated as [35,36]
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m2
h;analytic ¼

κ21
2ð1þ r2 þ w2Þ ð4ðλ1ðr

2 þ 1Þ2 þ 4rðλ4ðr2 þ 1Þ þ rλ23Þ þ w2ðα124 þ r2ðα1 þ α3Þ þ α2rÞ

þ ρ1w4Þ − 1

ρ1
ðα124 þ r2ðα1 þ α3Þ þ α2rþ 2ρ1w2Þ2Þ; ð2:10Þ

where, α124 ≡ α1 þ rα2 þ α4, and λ23 ¼ 2λ2 þ λ3. In the
limit r; w → 0, the above expression simplifies to

m2
h;analytic ¼ v2

�
2λ1 −

ðα1 þ α4Þ2
2ρ1

�
: ð2:11Þ

However, it was pointed out in Ref. [36] that for certain
values of the quartic parameters, the analytical estimate for
mh may not suffice.
The other scalars have masses of the order vR. To

Oðκ1=vRÞ, these masses are related to each other as

m2
H1

≃m2
A1

≃m2
H�

1

≈
1

2
ðα3 − α4Þv2R;

m2
H2

≃m2
A2

≃m2
H�

2

≈
1

2
ðρ2 − 2ρ1Þv2R;

m2
H3

¼ 2ρ1v2R;

m2
H2

> m2
H1
:

The first two mass expressions are valid in the limit
r; w → 0. Positive-definite nature of the CP-even mass

matrix leads to two approximate criteria: ρ2 > 2ρ1 and
α3 > α4. In our analysis, we calculate the scalar masses and
mixing numerically. The full analytic expressions at the
leading order can be found in the Appendix of Ref. [36].
For the CP-even scalars, the mass-squared matrix is

diagonalized by the orthogonal matrix O,

OTM2
CPEO ¼ ðMdiag

CPEÞ2; Xphysical ¼ OTX; ð2:12Þ

where X¼ðϕ0
1r;ϕ

0
2r;χ

0
Lr;χ

0
RrÞT , Xphysical¼ðh;H1;H2;H3ÞT .

The scalars H1 and A1 can contribute to the mixing of
K0 − K̄0 system, leading to the constraint,mH1;A1

> 15 TeV
[42]. The scalar H3 predominantly originates from the
doublet χR and its coupling to the SM particles is suppressed
by the elementO41 ∼ v2=v2R. So, collider searches allow it to
be much lighter than H1.
The triple Higgs coupling ðch3Þ in DLRSM is given

by [36]

ch3 ¼
κ1
2
ð2ðλ1 þ rλ4ÞO3

11 þ 2ðrλ1 þ λ4ÞO3
21 þ 2wρ1O3

31 þ 2ðrðλ1 þ 4λ2 þ 2λ3Þ þ 3λ4ÞO2
11O21

þ 2ðλ1 þ 4λ2 þ 2λ3 þ 3λ4rÞO11O2
21 þ wðα1 þ α4ÞO2

11O31 þ ðα1 þ rα2 þ α4ÞO11O2
31

þ wðα1 þ α3ÞO2
21O31 þ ðα2 þ rðα1 þ α3ÞÞO21O2

31Þ; ð2:13Þ

with the corresponding coupling multiplier κh ¼ ch3=c
SM
h3

,
where cSM

h3
¼ m2

h=2v ¼ λSMv.

B. Fermion sector

The fermion multiplets couple to the bidoublet Φ via
Yukawa terms:

LY ⊃ −Q̄LiðyijΦþ ỹijΦ̃ÞQRj þ H:c:; ð2:14Þ

which leads to the mass matrices for the quarks:

MU ¼ 1ffiffiffi
2

p ðκ1yþ κ2ỹÞ; MD ¼ 1ffiffiffi
2

p ðκ2yþ κ1ỹÞ;

where MU and MD stand for up-type and down-type mass
matrices in the flavor basis respectively. To obtain the

physical basis of fermions, these mass matrices need to be
diagonalized through unitary transformations described by
the left- and right-handed CKM matrices (VCKM

L;R ). Manifest
left-right symmetry implies VCKM

R ¼ VCKM
L . For the calcu-

lation of the effective potential in the next section, it is
enough to take y ≈ diagð0; 0; y33Þ and ỹ ≈ diagð0; 0; ỹ33Þ.
In the limit VCKM

33 ≈ 1,

y33 ¼
ffiffiffi
2

p ð1þ r2 þ w2Þ1=2
vð1 − r2Þ ðmt − rmbÞ;

ỹ33 ¼
ffiffiffi
2

p ð1þ r2 þ w2Þ1=2
vð1 − r2Þ ðmb − rmtÞ; ð2:15Þ

where the top and bottom quark masses are mt ¼
173.5 GeV, and mb ≈ 5 GeV. In the limit r; w → 0, y33
and ỹ33 reduce to the SM Yukawa couplings yt and yb
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respectively. However, we do not make any such assumption
and use Eq. (2.15), allowing r, w to be arbitrary.
The couplings of the SM-like Higgs with the third-

generation quarks are given by:

chttðhbbÞ ¼
κ1
κ2−

ððO11 − rO21ÞmtðbÞ

þ ðO21 − rO11ÞðVCKM
L M̂DðUÞV

CKM†
R Þ33Þ; ð2:16Þ

where κ2− ¼ κ21 − κ22 ¼ κ21ð1 − r2Þ and M̂UðDÞ denotes the
diagonal up (down)-type quark mass matrix. Here Oij are
the elements of the orthogonal transformation matrix
appearing in Eq. (2.12). Then the coupling multipliers,
κb and κt are: κf ¼ chff=cSMhff, where cSMhff ¼ mf=v and
f ¼ t, b.
Since VCKM

L;R ≈ 1, Eq. (2.16), becomes,

chtt ≈
κ1
κ2−

ðO11ðmt − rmbÞ þO21ðmb − rmtÞÞ;

chbb ≈
κ1
κ2−

ðO11ðmb − rmtÞ þO21ðmt − rmbÞÞ

Note that there is a hierarchy, O21 ≪ O11 ∼ 1, mt ≫ mb,
and r ≪ 1. The SM couplings are recovered by setting
O11 ¼ 1; O21 ¼ 0; r ¼ 0, in the above expressions. For a
large ϕ0

1r − ϕ0
2r mixing, i.e.,O21 ≳Oð10−2Þ or large κ2, i.e.,

r ∼Oð10−1Þ, the deviation of hbb̄ coupling from the SM
value can be quite large due to the multiplicative factors
proportional to O21mt, and rO11mt. On the other hand, the
deviation of htt̄ coupling is proportional to O21mb and
rO21mt, and is therefore rather small for the current
precision of κt measurement.

The Yukawa term for leptons is similar to that of quarks
given in Eq. (2.14). However, since neutrino masses are
tiny, generating them in DLRSM would lead to a large
hierarchy among lepton Yukawa couplings. Moreover, the
neutrinos could be Majorana, in which case DLRSM
cannot account for them. In Refs. [11–14], neutrino masses
were explained by adding a singlet charged scalar to
DLRSM. In Appendix C, we show that this extra field
does not modify the strength of FOPT.

C. Gauge sector

In this paper, we work under the assumption of manifest
left-right symmetry of the UV-Lagrangian, i.e., gR ¼
gL ¼ g. Here, gLðRÞ are the gauge couplings of
SUð2ÞLðRÞ, and g is the SUð2ÞL gauge coupling of SM.
The mass matrix for charged gauge bosons is

Lmass ⊃
g2

8
ðWþ

L Wþ
R Þ
�

v2 −2κ1κ2
−2κ1κ2 V2

��
W−

L

W−
R

�
; ð2:17Þ

where, v2 ¼ κ21 þ κ22 þ v2L and V2 ¼ κ21 þ κ22 þ v2R. The
physical charged gauge bosons have masses,

m2
W1;2

¼ g2

4
ðv2 þ V2 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − V2Þ2 þ 16κ21κ

2
2

q
Þ; ð2:18Þ

W�
1 is identified as the SM W� boson and W�

2 is the new
charged gauge boson with mass ∼OðvRÞ. The mixing
matrix is characterized by an orthogonal rotation with
angle ξ ≃ 2κ1κ2=v2R.

Similarly, the neutral gauge boson mass matrix is,

Lmass ⊃
1

8
ðW3μ

L W3μ
R BμÞ

0
B@

g2v2 −g2κ2þ −ggBLv2L
g2V2 −ggBLv2R

g2BLðv2L þ v2RÞ

1
CA
0
B@

W3
Lμ

W3
Rμ

Bμ

1
CA; ð2:19Þ

where κ2þ ¼ κ21 þ κ22, gBL is the gauge coupling of Uð1ÞB−L and here some of the elements have been suppressed since the
matrix is symmetric. The lightest eigenstate is massless and identified as the photon, while the other two states have masses

m2
Z1;Z2

¼ 1

8
ðg2v2 þ g2V2 þ g2BLðv2L þ v2RÞ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2v2 þ g2V2 þ g2BLðv2L þ v2RÞÞ2 þ 4ðg4 þ 2g2g2BLÞðκ4þ − v2V2Þ

q
Þ: ð2:20Þ

The lighter mass eigenstate Z1 corresponds to the SM Z boson, while Z2 has a mass ∼OðvRÞ.
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In the limit κ1; κ2; vL ≪ vR the mixing matrix is [43]0
B@

Aμ

Z1μ

Z2μ

1
CA ¼

0
B@

sW cWsY cWcY
−cW sWsY sWcY
0 cY sY

1
CA
0
B@

W3
Lμ

W3
Rμ

Bμ

1
CA; ð2:21Þ

where

sW≡ sinθW ¼ gBLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ2g2BL

p ; cW≡ cosθW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg2BL
g2þ2g2BL

s
;

sY ≡ sinθY ¼
gBLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg2BL

p ; cY ≡ cosθY ¼
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2þg2BL
p :

ð2:22Þ
We fix gBL ¼ gg0=ðg2 − g02Þ1=2, where g0 is the gauge
coupling for Uð1ÞY of SM. Direct searches for spin-1
resonances have put a lower limit on the masses of the new
charged and neutral gauge bosons. In DLRSM, the masses
of such new gauge bosons are mW2

∼ gvR=2 ¼ and
mZ2

∼mW2
= cos θY . Recently, the lower limit on the mass

of W2 in DLRSM has been estimated to be, mW2
>

5.1 TeV [44], which leads to a lower bound on vR,
vR > 2mW2

=g ¼ 15.7 TeV. The constraint on mZ2
is com-

paratively weaker, mZ2
> 4.3 TeV. Therefore, the lowest

value of vR we use in our benchmark scenarios
is vR ¼ 20 TeV.

D. Theoretical bounds

We incorporate the following theoretical constraints:
(i) Perturbativity: The quartic couplings of the scalar

potential, fλ1;2;3;4;α1;2;3;4; ρ1;2g, are subjected to the
upper limit of 4π from perturbativity. Moreover, the
Yukawa couplings of the DLRSM Lagrangian must
satisfy the perturbativity bound y33; ỹ33 <

ffiffiffiffiffiffi
4π

p
,

with y33; ỹ33 defined in Eq. (2.15), These constrain
the value of vev ratios roughly to r < 0.8 and
w < 3.5 [36].

(ii) Unitarity: The scattering amplitudes of 2 → 2 proc-
esses involving scalars and gauge bosons must
satisfy perturbative unitarity. To Oðκ1=vRÞ, these
constraints can be expressed in terms of the masses
of the new scalars in DLRSM [35],

0 < ρ1 <
8π

3
; or;

m2
H3

v2R
<

16π

3
;

ðcH3
Þ2

k4
m2

H3

v2R
<

16π

3
;

2
w2

k2
X
i¼1;2

F2
i

m2
H�

i

v2R
þ cH3

k2
m2

H3

v2R
< 16π;

2
w2

k2
X
i¼1;2

S2i
m2

H�
i

v2R
þ cH3

k2
m2

H3

v2R
< 16π; ð2:23Þ

where k2 ¼ 1þ r2 þ w2 and Fi, Si, and cH3
are

defined in terms of the parameters of the poten-
tial [35].

(iii) Boundedness from below: The scalar potential must
be bounded from below (BFB) along all directions in
field space. This leads to additional constraints on
the quartic couplings of the model. The full set of
such constraints was derived in Ref. [36], which we
have implemented in our numerical analysis.

E. Constraints from hð125Þ data
In the following, we qualitatively describe the constraints

on DLRSM from Higgs-related measurements at the LHC.
(i) The key constraint comes from the measurement

of the mass of SM-like Higgs, mh ¼ 125.38�
0.14 GeV [45]. If the theoretical bounds of pertur-
bativity and boundedness from below are taken into
account together with mh;analytic ≃ 125 GeV, it leads
to an upper bound on the vev ratio, w≲ 2.93þ
4.35r − 0.48r2.

(ii) One of the most stringent constraints on the DLRSM
parameter space comes from the measurement of
hbb̄ coupling, κb ¼ 0.98þ0.14

−0.13 [46]. If the mixing
between ϕ0

1r and ϕ0
2r takes large values, κb can

deviate from unity, thereby ruling out a large region
of parameter space allowed by theoretical bounds
and the measurement of mh. However, htt̄ coupling
is not significantly modified and does not result in
any new constraints.

(iii) As discussed in Sec. II C, a large value of vR ensures
that the mixings between the SM-like and heavier
gauge bosons are rather small, ξ ∼Oðv2=v2RÞ. There-
fore, the hW1W1 and hZ1Z1 couplings are quite
close to their SM values and do not lead to any
additional constraints on the DLRSM param-
eter space.

(iv) The trilinear coupling of the SM-like Higgs given in
Eq. (2.13), does not necessarily align with the SM
value. As seen in Eq. (2.13), for nonzero mixings,
particularly, O21 ≠ 0, the parameters appearing in
the paranthesis can individually take a wide range of
values, leading to a potentially significant deviation
of ch3 from cSM

h3
. In our analysis, we impose the

ATLAS bound of κh ¼ ½−2.3; 10.3� at 95% CL [47].

III. EFFECTIVE POTENTIAL

In this section, we construct the full one-loop finite
temperature effective potential [48,49] required to study
the nature of the PT associated with the breaking of
SUð2ÞR ×Uð1ÞB−L. Below we describe the procedure step
by step.
The tree-level effective potential is obtained by setting

all the fields to their respective background field value in
the potential given in Eq. (2.3). The CP-even neutral
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component of χR is responsible for breaking the SUð2ÞR ×
Uð1ÞB−L gauge group, whose background value we denote
by R. Since vR ≫ v, all other field values can be set to
zero. Hence, in the notation of Eq. (2.9), the background
fields are

hφi ¼ f0; 0; 0; R; 0; 0; 0; 0; 0; 0; 0; 0g:

The tree-level effective potential is then given by

V0ðRÞ ¼ −
μ23
2
R2 þ ρ1

4
R4: ð3:1Þ

At the one-loop level, the zero-temperature correction to
the effective potential is given by the Coleman-Weinberg
(CW) formula [50]. In the Landau gauge, with MS
renormalization scheme, the CW potential is [48]

VCWðRÞ ¼
1

64π2
X
i

ð−1Þfinim4
i ðRÞ

�
log

�
m2

i ðRÞ
μ2

�
− ci

	
;

ð3:2Þ

where i runs over all species coupling to the SUð2ÞR ×
Uð1ÞB−L-breaking field χ0Rr. The field-dependent mass,
miðRÞ is the mass of the species i in the presence of the
background field R. When there is mixing between the
different species, the masses are extracted as the eigenvalues
of the corresponding mass matrices. The expressions for the
field-dependent masses can be found in Appendix B. In
Appendix C we take the minimal mechanism of neutrino
mass generation of Refs. [11,12] and show that the right-
handed neutrino νR and the extra charged scalar do not
contribute to the effective potential. Therefore the contri-
butions only come from the CP-even scalars: fϕ0

1r;ϕ
0
2r;

χ0Lr; χ
0
Rrg, CP-odd scalars: fϕ0

1i;ϕ
0
2i; χ

0
Li; χ

0
Rig, charged

scalars: fϕ�
1 ;ϕ

�
2 ; χ

�
L ; χ

�
Rg, and gauge bosons W�

L;R, ZL;R

and B. The factor fi is 0 (1) for bosons (fermions), and the
number of degrees of freedom ni are,

nϕ0
1r
¼ nϕ0

2r
¼ nχ0Lr ¼ nχ0Rr ¼ 1;

nϕ0
1i
¼ nϕ0

2i
¼ nχ0Li ¼ nχ0Ri ¼ 1;

nϕ�
1
¼ nϕ�

2
¼ nχ�L ¼ nχ�R ¼ 2;

nW�
Lt
¼ nW�

Rt
¼ 4;

nW�
Ll
¼ nW�

Rl
¼ 2;

nZLt
¼ nZRt

¼ nBt
¼ 2;

nZLl
¼ nZRl

¼ nBl
¼ 1:

The subscripts t and l stand for transverse and longitudinal
polarizations of the gauge bosons. The constant ci ¼ 5=6
for gauge bosons, and 3=2 for all other fields. We set the

renormalization scale μ ¼ vR to ensure the validity of the
CW formula by having Oð1Þ logs.
We impose the “on-shell” renormalization condition so

that the position of the minimum and the mass of the CP-
even scalar χ0Rr calculated from the one-loop potential
coincides with the corresponding tree-level value. This is
achieved by introducing a counterterm potential

Vc:t:ðRÞ ¼ −
δμ23
2

R2 þ δρ1
4

R4; ð3:3Þ

where the unknown coefficients δμ23 and δρ1 are fixed by
demanding

∂

∂R
ðVCW þ Vc:t:Þ

����
R¼vR

¼ 0; ð3:4aÞ

∂
2

∂R2
ðVCW þ Vc:t:Þ

����
R¼vR

¼ 0: ð3:4bÞ

This leads to

δμ23 ¼
3

2vR

∂VCW

∂R

����
R¼vR

−
1

2

∂
2VCW

∂R2

����
R¼vR

; ð3:5aÞ

δρ1 ¼
1

2v3R

∂VCW

∂R

����
R¼vR

−
1

2v2R

∂
2VCW

∂R2

����
R¼vR

: ð3:5bÞ

Then the one-loop contribution to the effective
potential is

V1 ¼ VCW þ Vc:t:: ð3:6Þ

Next, we include the one-loop finite temperature cor-
rection [48,51]

V1TðR; TÞ ¼
T4

2π2
X
i

ð−1ÞfiniJb=f
�
m2

i

T2

�
; ð3:7Þ

where the functions Jb=f are given by

Jb=fðx2Þ ¼
Z

∞

0

dyy2 log½1 ∓ e−
ffiffiffiffiffiffiffiffiffi
y2þx2

p
�: ð3:8Þ

In the high-T approximation, i.e. x2 ≡ m2
i

T2 ≪ 1, Eq. (3.8)
simplifies to [52]

Jfðx2Þ ≈ −
7π4

360
þ π2

24
x2 þOðx4Þ;

Jbðx2Þ ≈ −
π4

45
þ π2

12
x2 −

π

6
ðx2Þ3=2 þOðx4Þ: ð3:9Þ

The nonanalytic ðx2Þ3=2 term present in the bosonic case is
mainly responsible for the formation of a barrier between
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the minima of the effective potential at zero and nonzero
field values, leading to a FOPT.
In addition to the one-loop terms, multiloop contribu-

tions from daisy diagrams need to be re-summed to cure
the infrared divergence arising from the bosonic zero-
modes [53]. There are two ways to do this: the Parwani
method [54] and the Arnold-Espinosa method [55]. In the
Parwani method, the field-dependent mass is replaced with
thermally corrected mass, i.e., m2

i ðRÞ → m2
i ðRÞ þ ΠiðTÞ,

in the expressions of VCW and V1T . Here Πi is the thermal
mass obtained using the high-T expansion of V1T , as shown
in Appendix B. The daisy re-summed effective potential is
given by

Veff ¼ V0 þ VCWðm2
i ðRÞ þ ΠiðTÞÞ þ Vc:t:

þ V1Tðm2
i ðRÞ þ ΠiðTÞÞ: ð3:10Þ

In the Arnold-Espinosa method, no such replacement for
field-dependent mass is made, but an extra daisy term is
added to the effective potential:

VD ¼ −
T
12π

X
i

niððm2
i ðRÞ þ ΠiðTÞÞ3=2 − ðm2

i ðRÞÞ3=2Þ:

ð3:11Þ

Thus the effective potential is given by

Veff ¼ V0 þ VCW þ Vc:t: þ V1T þ VD: ð3:12Þ

In our analysis, we use the Arnold-Espinosa method, as it
takes into account the daisy resummation consistently at the
one-loop level, while the Parwani method mixes higher-
order loop effects in the one-loop analysis.

IV. PARAMETER SCAN

As discussed earlier, DLRSM has a large number of
parameters: ten quartic couplings, along with r; w; μ4, and
vR. This is called the generic basis. To reduce the number
of parameters for our analysis, we work in the simple basis,
introduced in Ref. [36]. The condition of boundedness from
below, discussed in Sec. II D, requires that the ratio x ¼
λ2=λ4 is restricted to the range x∈ ½0.25; 0.85�. Therefore,
we keep λ2 as a separate parameter, while we equate
λ1 ¼ λ3 ¼ λ4 ≡ λ0. Similarly, guided by the approximate
mass relation, mH1

≈ 1
2
ðα3 − α4Þ, we allow for the pos-

sibility of having α3 ≠ α4 by keeping them independent,
while setting α1 ¼ α2 ¼ α4 ≡ α0. Thus the simple basis
contains six quartic couplings

fλ0; λ2; α0; α3; ρ1; ρ2g: ð4:1Þ

Along with these quartic couplings, we also scan over the
vev ratios r, w, and take vR ¼ 20, 30, 50 TeV. As the mass
parameter μ4 plays an insignificant role in the effective
potential, we set μ4 ¼ 0 in our analysis. Using the simple
basis allows us to capture the key features of GW
phenomenology of DLRSM while retaining the interplay
of the existing theoretical and collider constraints.
In preliminary scans, we find that promising scenarios of

strong first-order phase transition occur for small values of
ρ1. For points with relatively large couplings, the daisy
potential, VD, given in Eq. (3.11) starts dominating over the
contribution from the thermal potential, V1T , given in
Eq. (3.7). When this happens, the symmetry-restoring
property of the finite temperature effective potential is lost
and instead, symmetry nonrestoration is observed. Then the
minimum at the nonzero field value becomes deeper at high
temperatures, implying the absence of a phase transition, as
discussed in Refs. [56–58]. Based on these observations,
we choose the following parameter ranges:

log α0 ∈ ½−3; 0�; logα3 ∈ ½−3; 0�; log ρ1 ∈ ½−3.5;−0.5�; ρ2 ∈ ½0; 4π�;
x∈ ½0.25; 0.85�; log r∈ ½−3; 0�; logw∈ ½−6; 1�; vR ¼ 20; 30; 50 TeV: ð4:2Þ

Each parameter is selected randomly from a uniform
distribution in the respective range. The parameter λ0 is
chosen in the following manner:

(i) To increase the number of points satisfying the
bound on SM-like Higgs mass (mh), we solve the
equation, mh;analyticðλ0 ¼ Λ0Þ ¼ 125.38 GeV, for a
fixed set of values fα0; α3; ρ1; ρ2; xg.

(ii) Using the solution Λ0, we choose a random value of
λ0 as, λ0 ¼ ð1þ yÞΛ0, with y∈ ½−0.1; 0.1�.

(iii) Finally, each parameter point is defined by the set:

fλ0; λ2 ¼ xλ0; α0; α3; ρ1; ρ2; r; w; vRg

Given a parameter point, we first check if it satisfies the
theoretical constraints: boundedness from below, pertur-
bativity, and unitarity, discussed in Sec. II D. Next, the
Higgs constraints described in Sec. II E are checked.
Furthermore, the constraint from meson mixing mH1

>
15 TeV is imposed.
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If the parameter point passes all the aforementioned
theoretical and experimental constraints, we construct the
effective potential using the Arnold-Espinosa method. We
satisfy the Linde-Weinberg bound [59,60] by numerically
checking that the minimum of the zero-temperature
effective potential at R ¼ vR is the absolute minimum.
We reject the point if symmetry nonrestoration persists at
high temperatures. Next, we check for a possible first-
order phase transition, using the python-based package
COSMOTRANSITIONS [61]. The strength of FOPT can be
quantified by the ratio

ξc ¼
vc
Tc

; ð4:3Þ

where Tc is the critical temperature at which the two
minima become degenerate and vc is the vev at Tc. The
FOPT is considered to be strong if the following criterion
is met [62],1

ξc > 1: ð4:4Þ

In Fig. 1, we show the points with FOPT projected onto
the ρ1–ρ2 plane for vR ¼ 30 TeV, color-coded according to
the value of ξc. The left panel shows all points with ξc > 0,
while the right panel only shows points satisfying the
SFOPT criterion ξc > 1. The gray dots depict parameter

points passing the existing theoretical and experimental
bounds. As suggested by the preliminary scans, SFOPT
prefers ρ1 ≲Oð0.1Þ. Points with ρ1 ≲Oð10−2Þ and ρ2 ≳
Oð1Þ violate the Linde-Weinberg bound. Therefore, there
are no points showing SFOPT in this region. A large
number of points with ρ2 ≳ 6 also exhibit symmetry
nonrestoration at high temperatures.
Figure 2 shows various two-dimensional projections of

the DLRSM parameter space for vR ¼ 30 TeV, depicting
points with SFOPT. The parameter α0 is always smaller
than 1, as indicated by the left panels in the top and the
bottom row. We also restrict ourselves to α3 < 1 to avoid
points showing symmetry nonrestoration. Along the α3
direction, there is a sharp change in the density of points
around α3 ≈ 0.5, coming from the bound mH1

> 15 TeV.
The value of α3 where the density changes is different for
vR ¼ 20, 30, and 50 TeV. Since the couplings are small for
a large number of parameter points, the approximate
relation given in Eq. (2.11) tells us that λ1 can take values
close to λSM ≈ 0.13. In the top right and bottom left panels,
we indeed observe an overdensity of points clustered
around λ0 ≈ 0.13. In the ρ1–λ0 plane, a majority of points
with large ξc occur for small ρ1, and large λ0. In the r–w
plane, points with large ξc occur mostly at higher values of
w [≳Oð0.1Þ] and are less frequent for smaller values of w.
So this parameter region can lead to a detectable GW
background. There is no preference along the r direction.
The points with large ξc also have relatively large values of
y33, as indicated by the contours corresponding to y33 ¼ 1,
1.5, and

ffiffiffiffiffiffi
4π

p
.

The strength of FOPT is more rigorously characterized
by three parameters, α; β=H�, and Tn, which are required to
compute the GW spectrum. These are defined as follows:

FIG. 1. Points with strong FOPT in the ρ1–ρ2 plane, for vR ¼ 30 TeV. The gray points have passed the theoretical and
experimental constraints. The left panel shows all points showing FOPT with ξc > 0, whereas in the right panel, the points satisfy
the condition ξc > 1.

1It is known that the field value, vc, and Tc are gauge
dependent, therefore, so is the ratio vc

Tc
. However changing the

gauge-fixing parameter has a subleading effect on vc
Tc

[63,64]. In
the subsequent analysis, we work in the Landau gauge, for which
the gauge-dependence is numerically minimized.
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(i) The probability of tunneling from the metastable to
the stable minimum is given by [65]

ΓðTÞ ≈ T4

�
S3
2πT

�
3=2

e−
S3
T ; ð4:5Þ

where S3 is the Oð3Þ-symmetric Euclidean bounce
action. This is calculated using the tunneling sol-
ution of the equation of motion of the scalar field.
We use COSMOTRANSITIONS [61] to compute S3. The
probability of nucleating a bubble within a Hubble
volume increases as the universe cools below Tc, and
becomes Oð1Þ at the nucleation temperature, Tn.
This happens when

ΓðTnÞ ≈ ðHðTnÞÞ4: ð4:6Þ

In the radiation-dominated era, this implies [66]

S3ðTnÞ
Tn

≃ −4 ln
�
Tn

mPl

�
; ð4:7Þ

where the Planck mass mPl ¼ 1.22 × 1019 GeV.
(ii) The parameter α is the vacuum energy released

during the transition, ρvac, normalized by the radi-
ation density at the time of FOPT [67],

α≡ ρvac
ρrad

; ð4:8Þ

where,

ρvac ¼ ðVHigh −VLowÞ−
T
4

�
∂VHigh

∂T
−
∂VLow

∂T

�����
T¼T�

;

ð4:9Þ

ρrad ¼
π2

30
g�T4�: ð4:10Þ

Here T� is the temperature of the universe at the time
when dominant GW production takes place. We take
T� ≃ Tn in our calculations. The subscripts “High”
and “Low” refer to the metastable and stable minima
respectively, at the time of tunneling. g� is the
number of relativistic degrees of freedom at T ¼
T�. For DLRSM, g� ¼ 130.

(iii) β is related to the rate or inverse duration of the
phase transition, defined as [25]

β≡ −
dS
dt

����
t¼t�

¼ TH�
dS
dT

����
T¼T�

; ð4:11Þ

where, S ¼ S3=T and H� is the Hubble’s constant
at T ¼ T�.

FIG. 2. Projections showing the points with SFOPT on different parameter planes, for vR ¼ 30 TeV. The gray points show all points
passing the theoretical and experimental constraints. The points satisfy the condition ξc > 1.
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For points satisfying ξc > 1, we compute the nucleation
temperature Tn. We find the solution of Eq. (4.7) using the
secant method, where the tunneling action is calculated by
COSMOTRANSITIONS. We remove any points with Tn < 0, as
this indicates that the PT is not completed till the present
time. Moreover, we set a lower bound of Tn > 500 GeV to
ensure that the PT is completed before the EW epoch.
Once Tn is obtained, α and β=H� can be computed using
Eqs. (4.8) and (4.11) respectively. Figure 3 shows the
variation of the PT parameters α (left panel), β=H� (middle
panel), and Tn (right panel), in the ρ1–ρ2 plane. The
evaluated ranges roughly are, α∈ ½0; 0.8�, β=H� ∈
½102; 106�, and Tn ∈ ½2; 16� TeV. Tn is observed to take
smaller values in regions where the strength of SFOPT
is high.

V. GRAVITATIONAL WAVE BACKGROUND

The GW spectrum is defined as [25]

ΩGWðfÞ≡ 1

ρc

dρGW
d ln f

; ð5:1Þ

where f is the frequency, ρGW is GWenergy density, and ρc
is the critical energy density of the universe, given by,

ρc ¼
3H2

0

8πG
: ð5:2Þ

Here, H0 ¼ 100h km s−1 Mpc−1 is the Hubble constant
with the current value of h ¼ 0.6736� 0.0054 [68] and G
is Newton’s gravitational constant.
A strong FOPT proceeds by nucleation of bubbles of the

stable phase which expand rapidly in the sea of the
metastable phase. GWs are produced when the expanding
bubbles collide and coalesce with each other. If sufficient
friction exists in the plasma, the bubble walls may reach a
terminal velocity vw. We take vw ¼ 1 in our analysis. GW
production happens via three main processes: bubble wall
collisions (Ωcol), sound waves produced in the thermal

plasma (Ωsw), and the resulting MHD turbulence (Ωturb).
For a recent review of the different GW production
mechanisms, please refer to [26]. In the nonrunaway
scenario [25], GW production happens primarily through
sound waves and turbulence, i.e.,

h2ΩGW ≃ h2Ωsw þ h2Ωturb; ð5:3Þ

where [25,69],

h2ΩswðfÞ ¼ 2.65 × 10−6
�
100

g�

�
1=3
�
H�
β

�
2

×

�
κswα

1þ α

�
2

vwSswðfÞϒðτswÞ; ð5:4Þ

h2ΩturbðfÞ ¼ 3.35 × 10−4
�
100

g�

�
1=3
�
H�
β

�
2

×

�
κturbα

1þ α

�
3=2

vwSturbðfÞ: ð5:5Þ

Here, κsw and κturb are the efficiency factors for the
respective processes. The efficiency factor κsw is given by

κsw ¼ α

0.73þ 0.083
ffiffiffi
α

p þ α
; ð5:6Þ

and κturb is known to be at most 5–10% of κsw. Here we take
κturb ¼ 0.05κsw. We have included the suppression factor
ϒðτswÞ that arises due to the finite lifetime τsw of sound
waves [69],

ϒðτswÞ ¼ 1 −
1

1þ 2τswH�
; ð5:7Þ

with

τsw ¼ R�
Uf

; ð5:8Þ

FIG. 3. Variation of PT parameters in the ρ1–ρ2 plane. Color code shows the variation of α (left), β=H� (middle), and Tn (right). Here,
vR ¼ 30 TeV.
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where the mean bubble separation R� ≃ ð8πÞ1=3vw=β and
the mean square velocity is

Uf
2 ¼ 3

4

α

1þ α
κsw: ð5:9Þ

The spectral shape functions, Ssw and Sturb determine the
behavior of each contribution at low and high frequencies.
These are

SswðfÞ ¼
�

f
fsw

�
3
�

7

4þ 3ðf=fswÞ2
�

7=2
;

SturbðfÞ ¼
�

f
fturb

�
3 1

½1þ ðf=fturbÞ�11=3ð1þ 8πf=h�Þ
:

ð5:10Þ

Here, h� is the Hubble rate at T ¼ T�,

h� ¼ 1.65 × 10−7 Hz

�
T�

100 GeV

��
g�
100

�
1=6

: ð5:11Þ

The redshifted peak frequencies, after taking into account
the expansion of the universe, are,

fsw ¼ 1.9 × 10−5 Hz

�
g�
100

�
1=6 1

vw

�
β

H�

��
T�

100 GeV

�
;

ð5:12Þ

fturb ¼ 2.7 × 10−5 Hz

�
g�
100

�
1=6 1

vw

�
β

H�

��
T�

100 GeV

�
:

ð5:13Þ

From the expressions of Ωsw and Ωturb, it is clear that
large α and small β=H� lead to a strong GW spectrum. The
peak frequency is proportional to Tn ∼ vR and hence, the
peak shifts to the right for larger vR. This is illustrated in
Fig. 4, where we show scatter plots of the parameter points
for which α; β=H�, and Tn have been computed. Each point
represents the peak value corresponding to the GW spec-
trum, h2ΩGW. The left panel shows that these points shift to
the right as vR is progressively increased between vR ¼ 20,
30 and 50 TeV. The strength of the GW signature is not
affected by varying vR. The right panel shows the variation
of α for the points corresponding to vR ¼ 20, 30, and
50 TeV combined. There is clearly a positive correlation
between large α and the strength of GW. The solid lines
represent the power-law integrated sensitivity curves [70]
corresponding to various planned detectors calculated for an
observation time of τ ¼ 1 year, and a threshold SNR ¼ 1

[see Eq. (6.1)]. The curve for Ultimate-DECIGO is obtained
following the prescription of Ref. [71], while the other
curves are taken from [72]. Points lying above the sensi-
tivity curve of a detector feature SNR > 1, and have strong
detection prospects. The DLRSM phase transition has good
detection prospects for the detectors FP-DECIGO, BBO,
and Ultimate-DECIGO for the chosen set of vR values. The
GW spectrum is too weak to be detected at ET and CE for
the chosen range of vR. If the scale vR is increased by a
factor of∼10–100, these two detectors may be able to detect
them, but we ignore this region as the complementary
collider constraints would be too weak.
In Fig. 5 we illustrate the distribution of the points with

detectable GW signal in the r–w plane. The gray points pass
all the theoretical and experimental constraints. The blue
points are only detectable at Ultimate-DECIGO, the green
points are detectable by Ultimate-DECIGO as well as BBO,
and the red points can be detected at all three detectors.

FIG. 4. The peak of the GW spectrum ΩGW for points with SFOPT, along with the power-law integrated sensitivity curves of various
upcoming GW detectors. Left: points corresponding to vR ¼ 20, 30, and 50 TeVare shown. Right: Points are color-coded according to
the value of α, for vR ¼ 20, 30, and 50 TeV combined.
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Interestingly, for vR ¼ 20 TeV, the red, green, and blue
points are densely clustered around w ∼Oð1Þ. For most of
these points, y33 is also large, y33 ∼ 1.5 −

ffiffiffiffiffiffi
4π

p
. In the

middle panel, i.e. vR ¼ 30 TeV, the majority of points still
prefer w ∼Oð1Þ, but now there are also points at lower
values of w. In the case of vR ¼ 50 TeV, we see that the
clustering of points around Oð1Þ values of w is even more
diffuse. In all three cases, i.e., vR ¼ 20, 30, and 50 TeV,
there is no particular preference in the r direction, as also
seen from the SFOPT plots given in Fig. 2.

VI. DETECTION PROSPECTS

The prospect of detecting a GW signal in a given GW
observatory can be quantified using the signal-to-noise
ratio (SNR), defined as [26,70]

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ndetτ

Z
fmax

fmin

df

�
ΩGWðfÞh2
ΩsensðfÞh2

	
2

s
; ð6:1Þ

where τ is the time period (in seconds) over which the
detector is active, and the integration is carried out over the
entire frequency range ½fmin; fmax� of the detector. For
calculations, we take τ ¼ 1 year. The factor ndet is two for
experiments aimed at GW detection via cross-correlation
measurement, or one for experiments aimed at detection via
auto-correlation measurement (e.g., LISA). ΩsensðfÞ is the
noise energy density power spectrum for the chosen
detector. A signal is detectable if the observed SNR value
exceeds a threshold SNR, denoted as SNRthres. The value of
SNRthres varies from detector to detector. We take
SNRthres ¼ 1 for the purpose of discussion.

FIG. 5. Points with detectable GW signature at upcoming observatories: Ultimate-DECIGO (UDECIGO), BBO, and FP-DECIGO.
The scale is chosen to be, vR ¼ 20 TeV (left), vR ¼ 30 TeV (middle), and vR ¼ 50 TeV (right). The purple, blue, and yellow contours
represent the upper limits on y33 ¼ 1; 1.5;

ffiffiffiffiffi
4π

p
respectively based on Eq. (2.15).

TABLE I. Benchmark points for DLRSM in the simple basis.

BP1 BP2 BP3 BP4 BP5 BP6

vR (TeV) 30 30 30 30 20 50
λ0 0.126796 0.466090 0.308396 0.324564 1.982649 0.799371
λ2 0.097015 0.253725 0.141320 0.267655 1.670007 0.413236
α0 0.004789 0.003504 0.007640 0.012450 0.012042 0.021020
α3 0.957421 0.005786 0.006466 0.004839 0.001015 0.003094
ρ1 0.019071 0.001274 0.001929 0.005930 0.009976 0.003445
ρ2 2.003479 0.627225 1.166146 1.674371 5.574184 2.275937
r 0.008261 0.008136 0.418869 0.020970 0.390416 0.424048
w 4 × 10−6 0.950364 1.439902 0.766492 2.702912 2.018973

mW�
R
(TeV) 9.81 9.81 9.81 9.81 6.54 16.35

mZR
(TeV) 11.58 11.58 11.58 11.58 7.72 19.30

mH1
(TeV) 20.72 15.97 32.79 20.89 81.06 99.90

mH2
(TeV) 29.74 23.13 45.58 34.46 116.99 144.97

mH3
(TeV) 5.86 1.51 1.86 3.27 2.82 4.15

α 0.280 0.274 0.243 0.122 0.428 0.273
β=H� 422 1050 2648 8267 975 3204
Tc (TeV) 5.78 3.26 3.46 4.83 2.82 5.87
Tn (TeV) 3.08 1.68 1.86 2.91 1.37 3.26
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Table I presents six benchmark points (BP) with high
SNR values for FP-DECIGO, BBO, and Ultimate-
DECIGO, obtained using Eq. (6.1). BP1, BP2, BP3, and
BP4 have been chosen at the SUð2ÞR breaking scale
vR ¼ 30 TeV, while for BP5 and BP6 the chosen scales
are vR ¼ 20 TeV and 50 TeV respectively. The top seg-
ment of the table shows the values of the quartic couplings,
while the middle segment gives the mass spectrum corre-
sponding to each BP. The bottom segment gives the values
of PT parameters α, β=H�, Tc and Tn. Barring BP1, all
other BPs have w ∼Oð1Þ. All BPs have ρ1 ≲Oð10−1Þ and
hence smaller values of mH3

are preferred.
The full GW spectra for the BPs are shown in Fig. 6. The

peak of the spectrum corresponds to the frequency fsw
defined in Eq. (5.12) since Ωsw gives the dominant
contribution. The peak of BP4 lies only above Ultimate-
DECIGO and below BBO and FP-DECIGO, while all other
BPs have GW peaks above the sensitivity curves of
Ultimate-DECIGO, BBO, and FP-DECIGO. The low-
and high-frequency tails are dominated by the power
law behavior of Ωturb.
The SNR of the BPs are listed in Table II. As proclaimed

in the previous section, the BPs generally yield high SNR
values for FP-DECIGO, BBO, and Ultimate-DECIGO. The
SNR values for BP1, BP2, BP3, BP5, and BP6 are higher
than 1 for FP-DECIGO, BBO, and Ultimate-DECIGO, and
hence have good detection prospects. Ultimate-DECIGO,
being the most sensitive, can detect all the BPs listed in
Table II with large SNR values > 104. The point BP4 is not

detectable at FP-DECIGO and BBO, but can be detected by
Ultimate-DECIGO.

VII. COMPLEMENTARY COLLIDER PROBES

Now we describe the collider probes that complement
the GW signatures discussed in the previous sections. We
discuss two important collider implications, namely the
precision of κh and detection of H3.

(i) As argued in Sec. II E, in DLRSM the trilinear Higgs
coupling can deviate significantly from its SM value.
In Table III, we present the percentage of points
leading to detectable GW signal at Ultimate-DEC-
IGO, which also show deviation of κh at 5%, 10%,
20%, and 50%. The current ATLAS measurement
allows for a rather large range of κh ∈ ½−2.3; 10.3�.
However, future colliders will significantly tighten
the bound. Here we quote the projected sensitivities
of κh from Ref. [73]. HL-LHC will achieve a
sensitivity of 50% from the di-Higgs production
channel. The proposed colliders, such as HE-LHC,
CLIC3000, and FCC-hh are expected to improve the
sensitivity of κh to ∼20%; 10%, and 5% respectively.
These colliders therefore will rule out a considerable
number of points showing a strong GW signal.

(ii) The scalar H3 can be produced at pp colliders
through several channels, for example [43],
(a) H1-decay, pp → H1 → hH3,
(b) decay of boosted h, pp → h� → hH3; H3H3,
(c) Higgsstrahlung, pp → V�

R → VRH3,
(d) VRVR fusion, pp → H3jj .

The relative strength of these processes depends on the
mass spectrum of DLRSM. In Fig. 7, we show the
distribution of SFOPT points in the mH1

–mH3
plane for

vR ¼ 20 TeV, overlaid with points which are detectable at
Ultimate-DECIGO, BBO, and FP-DECIGO. The detect-
able points mostly occur for smallmH3

, with the minimum
value of mH3

¼ 741 GeV. For the range mH3
¼

740 GeV − 1.2 TeV, the production cross-section of H3

at FCC-hh with
ffiffiffi
s

p ¼ 100 TeV can be ∼OðfbÞ [43].
For vR ¼ 20 TeV, mH3

≲ 500 GeV can be ruled out
from the observations of the channel (iv) at FCC-hh with a
luminosity of 30 ab−1. For large values of quartic cou-
plings, the decay width h� → hH3 and h� → H3H3 can be
large and subsequently, channel (ii) can rule out
mH3

≲ 700 GeV. For channel (i), H1 with mass 15 TeV
can be produced with a cross section ∼0.5 fb and have

FIG. 6. GW spectra for the benchmark points listed in table I.

TABLE II. SNR values corresponding to different detectors for the benchmark points.

SNR BP1 BP2 BP3 BP4 BP5 BP6

FP-DECIGO 6.5 × 103 736.0 14.4 6.5 × 10−3 3.0 × 103 2.4
BBO 5.4 × 104 7.0 × 103 174.2 6.5 × 10−2 2.5 × 104 28.2
Ultimate-DECIGO 1.2 × 109 2.6 × 108 2.9 × 107 2.2 × 104 6.0 × 108 8.0 × 106
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sizable branching ratios of H1 → hH3; H3H3. As a result,
channel (i) can rule out masses up to mH3

∼ 2 TeV. Thus,
these searches are capable of ruling out a large number of
points with low-mH3

, thus low-ρ1, providing a comple-
mentarity to the GW probe of DLRSM.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we studied the possibility of an observable
stochastic GW background resulting from SFOPT associ-
ated with the spontaneous breaking of SUð2ÞR ×Uð1ÞB−L
in DLRSM. The gauge symmetry of DLRSM breaks in the
following pattern:

SUð2ÞL × SUð2ÞR ×Uð1ÞB−L⟶
vR SUð2ÞL

×Uð1ÞY⟶
κ1;κ2;vL Uð1ÞY:

The nonobservation of a right-handed current at colliders
puts a lower bound on the scale vR to be around 20 TeV.

Due to the hierarchy vR ≫ v, the SUð2ÞR ×Uð1ÞB−L-
breaking dynamics is decoupled from the EWPT. We chose
the scale vR ¼ 20, 30, and 50 TeV to study the possible
detection of GW background at the planned observatories.
For these values of vR, complementary searches for new
scalars of DLRSM are feasible at future colliders.
Our analysis was carried out using the simple basis

defined in Ref. [36], to reduce the number of independent
parameters. It should be noted that analysis with the full set
of parameters also gives similar patterns of SFOPT in the
ρ1 − ρ2 and r–w planes. The parameters in the simple basis
include the quartic couplings: λ0, λ2, α0, α3, ρ1, ρ2. In
addition, we defined EW vevs through the ratios r and w.
Most studies on LRSM take the simplified limit r; w → 0.
However, it was pointed out in Refs. [35,36] that the
DLRSM phenomenology allows for significant deviation
from this limit. Therefore, we also scanned over r and w.
We constructed the one-loop finite temperature effective

potential for each parameter point and analyzed the nature
of PT using the package COSMOTRANSITIONS. Due to the
large separation between vR and the EW scale, the effective
potential depends solely on the background field value of
the neutral CP-even scalar, χ0Rr. The condition for SFOPT,
ξc > 1 was used to identify viable regions of the parameter
space. SFOPT favors small values of the quartic coupling
ρ1 ≲Oð10−1Þ, which leads to mH3

≪ vR. This feature has
also been observed in other variants of LRSM, discussed in
Refs. [17,32,33].
We find that for very small values, ρ1 ≲ 10−3 however,

the zero temperature minimum of the one-loop effective
potential at R ¼ vR becomes metastable, violating the
Linde-Weinberg bound. Hence there is a lower bound on
ρ1 below which FOPT is not observed. Most points with
SFOPT also feature w ∼Oð1Þ, while for smaller values of
w, very few points show SFOPT. Out of the chosen set of
parameters, the SFOPT region is most sensitive to the
parameters ρ1 and w and to some extent λ0. However, we
see no particular preference for the vev ratio r and the
quartic couplings relating the bidoublet and the doublet
fields, i.e., α0 and α3, as illustrated by the projections given
in Fig. 2.
For parameter points showing SFOPT, we computed the

PT parameters, α, β=H�, and Tn, needed for the calculation
of the GW spectrum. In the nonrunaway scenario, the
stochastic GW background resulting from SFOPT comes
primarily from sound waves and turbulence, while the
contribution from bubble wall collisions remains sub-
dominant. Figure 4 shows the position of the peak of
the GW spectrum for points satisfying the SFOPT criterion.
While for a large number of points, the GW spectrum is too
weak to be detected, there is a significant number of points
lying above the sensitivity curves for Ultimate-DECIGO,
BBO, and FP-DECIGO. Such points will be accessible to
these detectors in the coming years. The detectable points

FIG. 7. The mass spectrum of DLRSM for vR ¼ 20 TeV
depicting points with ξc > 1. The cyan and orange points lead
to a GW signal detectable at Ultimate-DECIGO and Ultimate-
DECIGO+BBO+FP-DECIGO respectively.

TABLE III. Percentage of points detectable at Ultimate-DEC-
IGO to be ruled out when the sensitivity of κh reaches 5%, 10%,
20%, and 50%, for vR ¼ 20, 30, and 50 TeV.

δκh 20 TeV 30 TeV 50 TeV Combined

> 5% 52% 58% 50% 54%
> 10% 21% 34% 33% 30%
> 20% 8% 20% 25% 17%
> 50% 1.3% 12% 15% 9%
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also prefer w ∼Oð1Þ, which in turn, correspond to a large
value of y33 as seen in Fig. 5.
The strength of the GW spectrum does not depend on the

scale vR. On the other hand, since the peak frequency is
proportional to Tn ∼ vR, the points shift to the right as vR
changes from 20 to 30 to 50 TeV. To quantify the detection
prospects, we computed the signal-to-noise ratio at these
detectors for the detectable points. Six benchmark points
are given in Table II, featuring SNR values higher than 105.
We see that for all the BPs, mH3

≲ 5 TeV.
There are primarily two complementary collider probes

for the points with detectable GW signals. It was found that
a significant fraction of points leads to 50%, 20%, 10%, and
5% deviation of kh from unity, which can be ruled out at
HL-LHC, HE-LHC, CLIC3000, and FCC-hh respectively.
Due to a relatively low mass of H3, it can be produced at
future colliders through various channels. In particular,
FCC-hh can rule out up to mH3

∼ 2 TeV.
Here we make a note of some subtleties involved in

computing the GW spectrum that contribute to theoretical
uncertainty: (i) The suppression factor ϒ, introduced in
(5.4) was recently proposed, to take the finite lifetime of
sound waves into account. For the chosen benchmark
points this suppression factor takes Oð0.1Þ values.
(ii) As pointed out earlier, the value of vc=Tc depends
on the particular choice of gauge since the effective
potential is gauge dependent. The effect of gauge-depend-
ence in minimized in the Landau gauge, which we use for
our calculations. (iii) In principle, the bubble wall velocity
can be computed from the model parameters, as seen in
Refs. [74–76]. We use vw ¼ 1, which is valid when the
friction on the walls is low. Thus a particular choice of vw

can cause small shifts in the GW spectrum. We checked
that the uncertainties mentioned above contribute to
roughly Oð0.1–1Þ deviations in the GW spectrum of the
BPs. However, the BPs would still be detectable at
respective detetectors, BBO and/or DECIGO.
The spontaneous breaking of the discrete LR symmetry

P can lead to the formation of domain walls. The GW
imprint from the domain wall network peaks at much lower
frequencies, as compared to that from FOPT [34,41]. Since
there is no overlap of the GW signals, we have focussed our
discussion on FOPT.
Although DLRSM does not account for neutrino masses,

it is interesting to ask if incorporating them by adding extra
fields to the model could modify the strength of FOPT. In
Appendix C, we have shown that it is possible to include
neutrino masses without impacting the results of our
analysis.
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APPENDIX A: MINIMIZATION AT THE EW VACUA

The minimization conditions are given by:

μ21 ¼
1

2ðr2 − 1Þ ðκ
2
1ðw2ððr2 − 1Þα1 þ r2α3 − α4Þ þ 2ðr2 − 1Þððr2 þ 1Þλ1 þ 2rλ4ÞÞ

þ 2
ffiffiffi
2

p
rvRwμ4 þ v2Rððr2 − 1Þα1 þ r2α3 − α4 þ 2w2ρ12ÞÞ;

μ22 ¼
1

4ðr2 − 1Þ ðκ
2
1ðw2ðr2 − 1Þα2 − w2rα34 þ 2ðr2 − 1Þð2rλ23 þ ðr2 þ 1Þλ4ÞÞ

−
ffiffiffi
2

p
ðr2 þ 1ÞvRwμ4 þ v2Rððr2 − 1Þα2 − rα34 − 2w2ρ12ÞÞ;

μ23 ¼
1

2
κ21ððr2 þ 1Þα1 þ 2rα2 þ r2α3 þ α4 þ 2w2ρ1Þ þ v2Rρ1;

μ5 ¼ −rμ4 −
ffiffiffi
2

p
vRwρ12; ðA1Þ

where, ρ12 ¼ ρ2=2 − ρ1, α34 ¼ α3 − α4, and λ23 ¼ 2λ2 þ λ3.
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APPENDIX B: FIELD-DEPENDENT MASSES

The field-dependent mass matrices are obtained from the tree-level effective potential:

m2
ijðRÞ ¼

∂
2

∂φi∂φj
V0

����
h���i

ðB1Þ

where h� � �i denotes the background field value. This amounts to replacing vR → R, and κ1; κ2; vL → 0 in the usual mass
matrices.
For the CP-even sector, in the basis fϕ0

1r;ϕ
0
2r; χ

0
Lr; χ

0
Rrg, we obtain,

M2
CPE ¼

0
BBBBB@

−μ21 þ 1
2
ðα1 þ α4ÞR2 −2μ22 þ 1

2
α2R2 1ffiffi

2
p μ5R 0

−2μ22 þ 1
2
α2R2 −μ21 þ 1

2
ðα1 þ α3ÞR2 1ffiffi

2
p μ4R 0

1ffiffi
2

p μ5R
1ffiffi
2

p μ4R −μ23 þ 1
2
ρ2R2 0

0 0 0 −μ23 þ 3ρ1R2

1
CCCCCA: ðB2Þ

For the CP-odd scalars, in the basis fϕ0
1i;ϕ

0
2i; χ

0
Li; χ

0
Rig,

M2
CP0 ¼

0
BBBBB@

−μ21 þ 1
2
ðα1 þ α4ÞR2 2μ22 − 1

2
α2R2 − 1ffiffi

2
p μ5R 0

2μ22 − 1
2
α2R2 −μ21 þ 1

2
ðα1 þ α3ÞR2 1ffiffi

2
p μ4R 0

− 1ffiffi
2

p μ5R 1ffiffi
2

p μ4R −μ23 þ 1
2
ρ2R2 0

0 0 0 −μ23 þ ρ1R2

1
CCCCCA; ðB3Þ

and for the charged scalars, in the basis fϕ�
1 ;ϕ

�
2 ; χ

�
L ; χ

�
Rg we get,

M2
charged ¼

0
BBBBB@

−μ21 þ 1
2
ðα1 þ α4ÞR2 2μ22 − 1

2
α2R2 − 1ffiffi

2
p μ5R 0

2μ22 − 1
2
α2R2 −μ21 þ 1

2
ðα1 þ α3ÞR2 1ffiffi

2
p μ4R 0

− 1ffiffi
2

p μ5R
1ffiffi
2

p μ4R −μ23 þ 1
2
ρ2R2 0

0 0 0 −μ23 þ ρ1R2

1
CCCCCA: ðB4Þ

The neutral gauge boson mass matrix, in the basis fZμ
L; Z

μ
R; B

μg, is,

M2
Z ¼

0
BBBBB@

0 0 0

0 0 0

0 1
4
g2RR

2 − 1
4
gBLgRR2

0 − 1
4
gBLgRR2 1

4
g2BLR

2

1
CCCCCA: ðB5Þ

For the charged bosons, in the basis fWμ�
L ;Wμ�

R g,

M2
W ¼

�
0 0

0 1
4
g2RR

2

�
: ðB6Þ

In addition to the field-dependent masses, we also need thermal self-energies of the fields for daisy resummation. These
are obtained from the high-T expansion of the one-loop thermal potential. Substituting Eq. (3.9) in Eq. (3.7) gives, to
leading order,
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Vhigh
1T ¼ T2

24

�X
b

nbm2
b þ

1

2

X
f

nfm2
f

�
: ðB7Þ

Here, index b runs over bosons, while index f runs over
fermions. Each sum can be expressed as the trace of the
respective matrix. Thermal mass matrices are then
expressed as, Πij ¼ cijT2, where cij are,

cij ¼
1

T2

∂
2

∂φi∂φj
Vhigh
1T

����
h���i

: ðB8Þ

We define,

d1¼
1

48
ð9g2Lþ9g2Rþ8ð2α1þα3þα4þ5λ1þ2λ3ÞÞ; ðB9Þ

d01 ¼ d1 þ
y233
4

þ ỹ233
4

; ðB10Þ

d2 ¼
1

3
ð2α2 þ 3λ4Þ; ðB11Þ

d02 ¼ d2 þ
y33ỹ33
4

; ðB12Þ

dL ¼ 1

48
ð3g2BL þ 9g2L þ 8ð2α1 þ α3 þ α4 þ 3ρ1 þ ρ2ÞÞ;

ðB13Þ

dR ¼ 1

48
ð3g2BL þ 9g2R þ 8ð2α1 þ α3 þ α4 þ 3ρ1 þ ρ2ÞÞ:

ðB14Þ

We obtain the following thermal mass matrices:

ΠCPE ¼ T2

0
BBBBB@

d01 d02 0 0

d02 d01 0 0

0 0 dL 0

0 0 0 dR

1
CCCCCA; ðB15Þ

ΠCP0 ¼ T2

0
BBBBB@

d01 −d02 0 0

−d02 d01 0 0

0 0 dL 0

0 0 0 dR

1
CCCCCA; ðB16Þ

Πcharged ¼ T2

0
BBBBB@

d1 −d2 0 0

−d2 d1 0 0

0 0 dL 0

0 0 0 dR

1
CCCCCA: ðB17Þ

The thermal mass matrices for the longitudinal gauge
bosons are,

ΠZ ¼ T2

6

0
BBB@

13g2L 0 0

0 13g2R 0

0 0 6g2BL

1
CCCA; ðB18Þ

ΠW� ¼ 13

6
T2

�
g2L 0

0 g2R

�
: ðB19Þ

The mass of each species with the above thermal
corrections is obtained as the eigenvalue of the matrix,
m2ðRÞ þ ΠðTÞ. After diagonalization, the longitudinal
polarization of the photon becomes massive, while the
transverse components remain massless.

APPENDIX C: NEUTRINO MASSES IN DLRSM

We have not taken into account a mechanism for
generating neutrino mass in our version of DLRSM. In
this section, we argue the minimal way of incorporating
neutrino mass in this model do not give any additional
contribution to the GW phenomenology of the model.
To demonstrate our point, we consider the model

discussed in Refs. [12,13]. Small neutrino masses are
generated radiatively by the Zee mechanism, by adding
a charged singlet scalar δþ ∼ ð1; 1; 1; 2Þ to DLRSM. In our
notation, the Majorana Lagrangian is,

−LM
LR ¼ γLLLLLδ

þ þ γRLRLRδ
þ þ γ1χ

T
Liσ2ΦχRδ

−

þ γ1χ
T
Liσ2Φ̃χRδ

− þ H:c:; ðC1Þ

where, γL;R; γ1; γ2 are the new Yukawa couplings. As there
is no tree-level right-handed neutrino mass, the contribution
of the RH neutrinos to the effective potential is zero.
However, the quartic terms involving δþ modify the mixing
between the charged scalars. In the basis of fϕ�

1 ;ϕ
�
2 ;

χ�L ; χ
�
R ; δ

�g, the additional contribution to the charged mass
matrix, M2

charged is,
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δM2
charged ¼ v2R

0
BBBBBBBBBB@

0 0 0 0 γ2
2
vL
vR

0 0 0 0 − γ1
2
vL
vR

0 0 0 0
ðγ1κ2þγ2κ1Þ

2vR

0 0 0 0 − vLðγ1κ1þγ2κ2Þ
2v2R

γ2
2
vL
vR

− γ1
2
vL
vR

ðγ1κ2þγ2κ1Þ
2vR

− vLðγ1κ1þγ2κ2Þ
2v2R

0

1
CCCCCCCCCCA
: ðC2Þ

Each of the nonzero entries is suppressed by a factor vL=vR or κ1;2=vR compared to v2R. Therefore the mixing of the
charged scalars of DLRSM with δþ is negligible, while their mixing among themselves remains unchanged. In the field-
dependent mass matrix, we put vL → 0; κ1;2 → 0, and vR → R, by which the additional mixing matrix, δM2

chargedðRÞ,
vanishes entirely. Hence the presence of δþ does not alter the field-dependent mass matrices and therefore does not
contribute to the effective potential.
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