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Axion-pion scattering at finite temperature in chiral perturbation theory
and its influence in axion thermalization
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Axion-pion scattering amplitudes at finite temperatures are calculated within chiral perturbation theory
up to the one loop level. Unitarization procedure is implemented to these amplitudes in order to extend the
applicable range of energy and temperature. The influence of the thermal axion-pion scattering amplitudes
on the ar — iz cross sections and the axion thermalization rate is investigated, with the emphasis on the
comparison with the zero-temperature-amplitude case. A brief discussion on the cosmological implication
of the axion thermalization rate, which is calculated by using the az — zz amplitudes at finite
temperatures, is also given. The thermal corrections to the axion-pion scattering amplitudes can cause
around a 10% shift of the determination of the axion decay constant f, and its mass m,, comparing with the
results by using the az — zz amplitudes at zero temperature.
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I. INTRODUCTION

The conjectural particle axion constitutes a dynamical
research subject in many areas of physics, including
particle physics, cosmology, astronomy, etc. [1-6]. The
primary aim of the QCD axion is to solve the strong CP
problem, which can be elegantly addressed within the
Peccei-Quinn (PQ) mechanism [7-9]. The axion is con-
jectured to be a Nambu-Goldstone boson that arises from
the spontaneous breaking of a global U(1)p, symmetry at
some high energy scale f,, also known as the axion decay
constant. The key idea of the PQ mechanism is to promote
the anomalous term #GG in QCD, being G and G the gluon
filed tensor and its dual, by the dynamical axion field a
as fiGG which softly breaks the U(1)p, symmetry and
makes the axion actually a pseudo-Nambu-Goldstone
boson (pNGB). In fact the anomalous %GG term 1is

commonly regarded as the model independent part in the
construction of various axion models. Being the essential
QCD nature, axion inevitably interacts with the hadrons
and intensive investigations are carried out to find evidence
for such interactions [4].
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One attractive way to trace the axion imprint is to study
the axion production in the thermal medium of the early
Universe. Below the critical temperature (7. ~ 150 MeV)
of QCD phase transition, the quarks and gluons are
confined inside hadrons and consequently one needs the
axion-hadron interactions as inputs to reliably calculate
the axion production in the thermal bath. As the lightest
QCD hadron, the pions are expected to provide the most
important sources for the axion production below T..
Indeed, continuous efforts have been made to refine the
axion-pion interactions in recent years, in order to improve
the cosmological constraints on the axion properties. In a
pioneer work [10], the axion-pion scattering amplitude is
calculated by taking the leading-order (LO) chiral pertur-
bation theory (yPT). The LO yPT axion-pion amplitude is
adopted in many sequential works to constrain the axion
decay constant f, or its mass m, [11-15]. Recently, the
calculation of the axion-pion scattering amplitude is pur-
sued up to the next-to-leading order (NLO) in yPT, and an
important finding is that the perturbative yPT results
become unreliable for the temperature 7 > 62 MeV, due
to the loss of convergence of the chiral expansion for the
axion thermalization rate [16]. Later on, different strategies
are proposed to extend the applicable region of the yPT
amplitudes in Refs. [17,18]. The inverse amplitude method
(IAM) is employed in Ref. [18] to unitarize the NLO axion-
pion amplitude. While, in Ref. [17] it is assumed that the
axion-pion amplitudes can be approximated by scaling the
pion-pion amplitudes with the axion-pion mixing strength
factor. It is pointed out that in all the previous works the
axion thermalization rates are calculated by taking the
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axion-pion scattering amplitudes at zero temperature,
instead of the thermal ones, as an approximation. In this
work, we fill this gap by performing the az — zx scattering
amplitudes at finite temperatures in yPT up to the one-loop
level. Then we briefly study the influence of the thermal
ar — nz amplitudes on the axion thermalization rates and
the determinations of the axion parameters by confronting
the extra effective number of relativistic thermal degrees of
freedom AN .

This article is organized as follows. In Sec. II, we
elaborate the relevant axion chiral Lagrangian and the
calculation of azm — zz scattering amplitudes at finite
temperatures up to the one-loop level. A survey of thermal
corrections to the scattering amplitudes will be also given in
this section, with the emphasis on comparing with the zero-
temperature amplitudes used in literature. In Sec. 111, a brief
discussion about the cosmological constraints on the axion
parameters relying on the averaged axion thermalization
rates calculated from the thermal az — zz scattering
amplitudes will be presented. We give a short summary
and conclusions in Sec. IV. Technical details about the
calculations of thermal loops and phase space integrals are
given in Appendices.

II. AXION-PION SCATTERING AMPLITUDES
AT FINITE TEMPERATURES

A. Relevant axion yPT Lagrangians
In this work we stick to the minimal QCD axion
Lagrangian

2
a g

. 3272

ﬁaQCD = ﬁQCD + %aﬂaﬁﬂa + G;DG'ZV, (1)
with the dual of the gluon tensor Gt = &*°GS,/2.
Various extensions of the axion interactions with quarks,
leptons and photons can be found in many recent reviews
[1-6]. By performing the quark field transformation
q— eiﬁQ”“q, being O, a 2 x 2 Hermite matrix in quark
flavor space with Tr(Q,) =1, one can eliminate the
anomalous term ¢GG and in the meantime also introduce
additional axial-vector coupling

d,a
— HT Gy 2
2f, 4r"750ud (2)
and a modification to the quark mass term as
_gleiﬁQurs quiﬁQaJ’sq, (3)

where M, corresponds to the two-flavor quark mass
matrix M, = diag(m,, my).

Based on these ingredients, the axion yPT Lagrangian
can be constructed order by order as the usual yPT [19,20]

1
Lypr =50,a0"a+ Lo+ L4+ - (4)

2

The LO axion yPT Lagrangian at O(p?) in the SU(2) reads

F? + + T aﬂa M
£2 = T<aﬂUaﬂU +)(aU + U)(!l> +FJA|LO’
where F corresponds to the pion decay constant at LO,
Xa = 2BoM ,(a), and the axion dressed quark mass matrix
M,(a) is given by

(5)

M, (a) = e7aC M e~ (6)
The pion fields are collected in U = ¢'V2®/F with
7° +
—
o= ( . ) (7)
T T

J4lLo stands for the axial-vector current —gy*ysQ,q in
Eq. (2) at the hadron level from the LO yPT

2
Tilo = =i (Q@UUT L URU)).  (8)
In literature sometimes different assignments for the chiral
transformation behaviors of the chiral building blocks, espe-
cially the axion dressed quark mass terms, are assumed in the
calculation. Here we follow the conventions of the seminal
xPT works in Refs. [19,20] for the chiral transformation
behaviors of the various building blocks: y = 2B(s + ip) —
¥ = VR)(VZ (so that the QCD quark mass term —gg(s +
ip)q, + H.c. is chiral invariant), and U — U’ = VRxUV],
the latter of which implies that the covariant derivative takes
the form D, U =09,U —ir,U +iUl,, with the relations
between the right/left-hand (r,/l,) and vector/axial-vector
(v,/a,) external sources: r, = v, +a, and [, = v, —a,,.
The sign conventions introduced in Eq. (6) for the axion
dressed quark mass and Eq. (8) for the axial-vector current
are consistent with the just mentioned definitions of chiral
transformation behaviors used in Refs. [19,20]. It is men-
tioned that there is a minus sign difference for the definition of
hadronic axial-vector currents between ours in Eq. (8) and the
one in Ref. [18].

Regarding the choice of Q,, it is noticed in Ref. [21] that
by taking

—a

-1
M

U

0, = (9)

the mass mixing between axion and pion will be auto-
matically eliminated at LO. Nevertheless, the last term in
Eq. (5) will lead to the kinematic mixing for axion and pion.
To be definite in our calculation, we will take the form of
0, in Eq. (9) throughout, although the physical quantities
should remain the same with different choices of Q,.
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The axion-pion scattering amplitudes receive the NLO contributions at O(p*) both from the loops by taking the LO

vertices in Eq. (5) and the O(p*

. l3+l4

<)(aUT + U)(ﬂ><)(uUT + U)(a>

) local chiral operators [19,22]

) .
g“(aﬂuaﬂuwxau + Uyh)

1 hy —hsy =1
— 16 WaU" = Urd) (raU" = Ura) + =— 20— [((raU" + Ugl)?
N d,a
+(<)(aUT - U)(:rl>)2 _ZO(QUT aU' + U)(ZU)(II” +#"Z|NLO? (10)

where the NLO piece of the axial-vector current is

Jilnro = —=il1(Q.{0*U, U'})(0,U*U")

!
~ 200U U@V U + 0 U )

OV U U U, ()

Notice that only the terms relevant to this work are kept in
Egs. (10) and (11). Another subtlety issue is that by taking
Q, in Eq. (9) the axial-vector currents J% |, o and J% |xi0
will contain the isosinglet components, which are closely
related to the QCD U, (1) anomaly and the massive /. A
consistent framework to handle the isosinglet axial-vector
current is the U(3) chiral theory [23,24], and this is beyond
the scope of the present study. It is noted that the isosinglet
components from both the LO and NLO hadronic axial-
vector currents in Egs. (8) and (11) vanish. We remind that
when new dynamical degrees of freedom are incorporated
into the yPT framework, in general additional operators
could be constructed accordingly, apart from the Gasser-
Leutwyler types in Refs. [19,20]. A well-known example of
such kind is given in the series of works in Refs. [25-28],
where it is demonstrated that when photons are considered
as dynamical fields running in the loops a plethora of new
operators will be needed in the chiral Lagrangian. However,
it is pointed out that the virtual corrections from the axion
loops will be extremely suppressed by the extra (1/f,)?
factors in the axion-pion amplitudes and hence we do not
further consider such possible effects in this work.

We use the imaginary time approach to include the finite-
temperature effects [29-31]. Within the framework of yPT
[32,33], the thermal corrections only enter via the chiral
loops, while the low energy constants (LECs) [; and #;
accompanying the local operators in Egs. (10) and (11) do
not depend on the temperatures. This in turn implies that
once the values of the unknown LECs are fixed at zero
temperature one can make pure predictions at finite temper-
atures. In Appendix A, we give relevant formulas for the
one-loop integrals at finite temperatures.

B. Calculation of axion-pion scattering amplitudes
at finite temperatures up to one loop

For the calculation of the amplitudes, one needs to
address the LO a — 7° mixing first. After taking the specific
form of Q,, in Eq. (9), the a-z° mixing at LO is exclusively
caused by the d,aJ}| o term in Eq. (5), which leads to
5u,,aﬂa0”ﬂ° with

61F _md—mu
2f. T

By taking the field redefinition: @ — a — ,,7° + O(1/f2),
7% = 2% + O(1/£2), one can eliminate the mixing term of
axion and 7° at LO and in the meantime render the
coefficients of their kinetic terms as 1/2 at the level of
O(1/f,) (see Appendix B). Nevertheless, the a-z° mixing
will appear again at NLO in the chiral expansion, which leads
to anondiagonal two-point functions G;; with i, j = a, 7% In
Appendix B, we give a detailed d1scus51on about the two-
point functions up to NLO, along with the temperature
dependence of the axion and pion masses. The terms of
O(1/£2) will be neglected in the calculation of the axion-
pion scattering amplitudes throughout.

The axion-pion scattering amplitudes can be extracted
from the four-point Green functions by using the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formula, as done
in Ref. [16]. Retaining the contributions up to NLO, the

an’ = 77~ and an’ — 2°2° scattering amplitudes read

Oar = (12)

my+m,

3 /
Mgy — <1 25l <m,z,>)AgU;,,+ﬂ
4)
250
+ Af::z)ogﬂ‘zr‘ - a:;Z( )Aﬁ’zto;zr*n" (13)

./\/l(moﬂo,ro = ( + = Z;m m ))A[m)o”oﬂo

(4) (0
+A( )0 0,0 ”02 o 0..0,09 (14)

an”w m T

M

and the other two charged channels az™ — 77z’ and

an~ — 7’z are connected to az® — ztx~ by crossing
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FIG. 1.

S~

() (2)

Feynman diagrams of the amputated four-point Green functions in Eqs. (13) and (14). The dashed line stands for the axion

field and the solid line corresponds to the pion field. The number n for each vertex denotes its chiral order of O(p”"). Diagrams 1(a)-1(f)

denote Ag%;i,),,, and diagram 1(g) corresponds to Ag,%,);,,,, which will be multiplied by the NLO a-z° mixing to give one type of
contributions to the az — zz scattering amplitudes at O(p*), i.e., the last terms in Egs. (13) and (14).

symmetry. The quantities of A,(ﬁ,f,),, and AE,%,);M in Egs. (13)

and (14) stand for the amputated four-point Green functions

9

by taking the physical masses for the external states. Xz

and 25;2 are the two-point one-particle-irreducible (1PI)
amplitudes whose expressions can be found in Appendix B,
and Z,(;Q/ stands for the derivative of ZS,?. The superscripts

(2) and (4) denote the chiral orders. The corresponding

Feynman diagrams for the amputated amplitudes Aﬁ,%;f;),, and

Ag,{,m can be seen in Fig. 1. The NLO amplitudes consist
two parts: the chiral loops with the LO vertices (5) and the
pieces contributed by the O(p*) local operators.

For the a(p,)n(p,) = =(p3)=(p,) scattering amplitude
at finite temperatures, it can be decomposed into two parts:
the zero temperature part and the thermal correction one,

Moezan = M 4 AMS (15)

The amplitude MEZ,T;(,),) at zero temperature up to one loop
has been computed and then plugged into the phase space
integrals weighted by the Bose-Einstein (BE) distribution
factors to estimate the axion thermal rates in Refs. [16,18].
As an improvement, we calculate the thermal correction

part A/\/lg,);,m up to one loop in this work, and its full
expressions are given in Appendix C. It is noted that at
finite temperatures the commonly adopted Mandelstam
variables

u=(p1—pas) (16)

s=(p1+p2)? t=(pi—p3)

are not enough to describe the thermal amplitudes

AMSZ,?M, due to the loss of the Lorentz invariance at
finite temperature 7. As shown later in Appendix C it is
convenient to introduce the four momenta p,, p;, P,
corresponding to s, t, u, respectively, to describe the
thermal amplitudes [34]

Ps=pi+py Pi=pi—P3 Pu=pPi—Ps (17)
In general the thermal amplitude can depend on the
temporal and spatial components of the four momenta in
a separate manner, as can be seen in Appendix C. Due to

the rotation invariance, the number of independent kin-
ematic variables in the finite-temperature amplitudes is
five, and this number is also the effective dimension of the
phase space integral in the evaluation of axion rate. In
Appendix D we will illustrate in detail about the five
specific kinematic variables to calculate the phase space
integral.

Due to the momentum expansion feature of yPT, its
amplitudes are not expected to be convergent well at
relatively high energy regions, especially where the reso-
nances can appear. In Ref. [16], it is demonstrated that the
axion thermalization rates calculated from the NLO yPT
amplitudes are questioned to be valid above T > 62 MeV.
In the thermal bath the mean energy of a particle increases
when the temperature raises. E.g., it was estimated in
Ref. [16] that the mean energy of the pion at 7 = 100 MeV
is (E,) ~ 350 MeV. To restore the unitarity relations of the
partial-wave (PW) amplitudes can extend the applicable
energy region of the perturbative yPT results and generate
the heavier resonances that can paly relevant roles at finite
temperatures. Therefore the unitarization procedure also
provides an efficient way to enlarge the validity region of
temperatures for the perturbative yPT amplitudes. We will
use the inverse amplitude method (IAM) [35-38] to
perform such unitarization, which will be done in the
isospin (/) bases

2 1
ManU;I:O = _EMLMO;E*H’ - %Maﬂo;ﬂoﬂo’ (18)

2 2

Mazro;l=2 = _\/;Mano;zﬁﬂ + \/;Maﬂo;ﬂ'oﬂo7 (19)
1 1

MM+;1=1 = - EMM+;”+,,0 + EML”[+;”0”+, (20)

1 1
Maﬂ+:1:2 = _\/;Maﬂ+;ﬂ+ﬂ'o - \/%Maﬂ'+2ﬂoﬂ+’ (21)

where the conventions |/, I3) of the pions: |z7) = —|1, 1),
|z7) = |1,—1) and |z°) = |1, 0) are used to obtain the above
relations. Slight differences of the isotensor amplitudes in
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Egs. (19) and (21) arise due to the isospin breaking effects in
the axion-pion interactions.

At finite temperature 7, we will work in the center of
mass (CM) frame to perform the PW expansion

Man,I(Ecm’Cos 9) = Z(Z‘] + 1)PJ(COS H)Man;IJ(Ecm)v
J

(22)

in order to proceed the unitarization procedure, with
P;(cos @) the Legendre polynomials. In the CM frame
all the kinematic variables appearing in the thermal
amplitudes can be related to the energy E., and the
scattering angle @ defined in that frame. The PW amplitudes
with definite angular momentum J can be obtained via
Eq. (22) by performing the PW integrals

1 [+1
Mz1s(Een) = —/ dcos OM .1 (Ecp. cos 0)Pj(cos 0).

2 J-
(23)

We follow the IAM procedure to construct the unitarized
PW an — zz amplitude at finite temperature

(M(2)'IJ)2

IAM __ an;

Mazr;l] - (2) 4) (24)
Mmr;[] - Muﬂ;l]

where Mfﬁ} ;7 and ME;L); 1y denote the yPT amplitudes at

O(p?*) and O(p*), respectively. The s-channel thermal

)

unitariy relation of the amplitude M, .,;; takes the form

am;l
4) 02(Edm)
ImM(m;IJ(ECm) = 3272_
E
1 2 cm
<[1+2m(5)]
X Mgz%:);ﬁf-/\/l,(;);lj’ (Ecm > 2mn) (25)
with
4 2
oals) = \[1 =27, (26)
S
and the BE distribution factor
1
ng(E) = — . (27)
et — 1

In the zero-temperature limit, the BE distribution factor
ng(E) tends to vanish and the thermal unitarity relation in
Eq. (25) recovers the standard one at zero temperature
given in Ref. [18]. A subtle difference comes up in the
finite-temperature case that additional thermal Landau cuts
generally appear [39-41]. E.g., in the Kz — K= scattering

process, the thermal Landau cuts generated in the u channel
show up in the physical energy region above the K=
threshold [41]. In the current study of the az — 7z process,
apart from the thermal unitarity cuts shown in Eq. (25),
there are also thermal Landau cuts in the energy region
E., > 2m, contributed from both the ¢ and u channels,
which magnitudes turn out to be generally much smaller
than the unitarity cuts.

C. Surveys of the thermal corrections to the axion-pion
scattering amplitudes and cross sections

In this part, we examine to what extent the finite-
temperature corrections can affect the axion-pion scattering
amplitudes and cross sections, comparing with the zero-
temperature results. To make close comparison with the
zero-temperature study of Ref. [18], we will take the same
inputs for the O(p*) LECs and other parameters as those
used in the former reference, i.e., in perturbative calculation
we take [; = —0.36(59), I, = 4.31(11), I; = 3.53(26),
1, = 4.73(10), I; = 0.007(4), together with m,/m,; =
0.50(2), F,=92.1(8) MeV and m, = 137 MeV; while
for the IAM results we take the combinations [; — [, =
—-5.95(2), I, +1, =4.9(6), and others are same as the
perturbative case.

In Fig. 2, we give the magnitudes of different PW
amplitudes at 7 = 0, 100 and 155 MeV. The first lesson we
can learn from this figure is that the thermal corrections to
the perturbative NLO amplitudes are insignificant up to
T = 155 MeV. Regarding the unitarized amplitudes, the
largest thermal effects appear in the TAM amplitudes for the
IJ = 11 channel and clear deviations can be seen in this
case when increasing the temperatures, while the thermal
corrections to the IAM amplitudes in other channels look
small up to T = 155 MeV.

We then calculate the cross sections for the azr — z7 in
charged bases, both at zero and finite temperatures,

1 Dyl

E = _/\[77
o(Em) =N 6278z, 5

dQ|M

2 (28

where |p;| and |p | are the magnitudes of three-momenta of
the initial and final particles in the CM frame, and N' = 1/2
for identical particles and otherwise N' = 1. The compar-
isons are shown in Fig. 3. For the evaluation of the cross
sections by using the perturbative amplitudes, one can
expand the amplitude squared as

IMP? = |MPD|2 2 MPRe(M®) 4 |IMP)|?

. (29)

where the property that the LO M) is real has been used.
In later discussions, we will denote o1 as the LO cross
section when taking |M®)|> in Eq. (29), and designate
ontLo When taking the first two terms of Eq. (29), and oy o
when taking all the three terms of Eq. (29) to evaluate the
cross sections in Eq. (28). When using the unitarized IAM
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50f —LO
~ — NLO, T=0 MeV
40f - NLO, T=100 MeV
P NLO, T=155 MeV
% 30
z — IAM, T=0 MeV
P S IAM, T=100 MeV .
&, 20
I - IAM, T=155 MeV, -
~ 10 ';__.._._-_-,;7_-,:7:.-.1: -----------------
0
03 04 05 06 07 08 09 10
E.m [GeV]
14
~ 12
510 N
S
z 8
< 6 >
&
s ¢ e
) <
0
03 04 05 06 07 08 09 1.0
Ecm [GeV]

(ol FYAbS(M050)

(fa/FYAbS(M50)

FIG. 2. Magnitudes of the various az — zz partial-wave amplitudes in the isospin bases. The curves labeled as NLO include both the

contributions at O(p?) and O(p*).

amplitude M™M in Eq. (24) to calculate the cross sections,
the result is simply denoted as oj5y. One can gain a rough
estimate about how the next-to-next-to-leading order per-
turbative corrections may affect the cross sections by
comparing onro With oy at low energies.

The curves corresponding to the IJAM amplitudes in
Figs. 2 and 3 are considered to be the preferred results in
this work. By taking a closer look at different curves, one
can gain a rough conclusion that the perturbative NLO
amplitudes begin to be unreliable around E ~ 0.5 GeV,
above which the next-to-next-to-leading order and 1AM
results begin to deviate noticeably.

The resonant shapes of the IAM amplitudes around
0.7-0.8 GeVin the IJ = 11 channel in Fig. 2, i.e., the black
lines in bottom left panel of this figure, clearly indicate the
existence of the p(770) resonance. To search the precise
resonance pole position, we need to extrapolate the IAM
amplitude of Eq. (24) on the physical/first Riemann sheet
(RS) into the second RS, which is given by

(M)
T ME, - MO 0
am,lJ arm,lJ

with

. 04(5)
B AN
16

X |:1 + 2np (?) :| Mft‘llt(ﬂzng((li)lj (31)

The resonance pole corresponds to the zero of the denom-
inator of the second-sheet IAM amplitude Moy (s).
Around the resonance pole position sg, the unitarized

IAM amplitude on the second RS can be written as

IAM.II 9Rax9Rrr
Maﬂ;lj <S)|x_>SR ~ = ’
S —Sp

M (s) = MU (s)

(32)

where the magnitudes of the residues of gg,, and gg,,
correspond to the couplings of the resonance R with the ax
and zz channels, respectively.

= 5 — o — iam. T=0 MeV . = 14
E 4l — oo T0MeV - oy, T=100 MeV E 12
| o TEI00MEY ey T155 MeV = 10

& 3F - onio, T=155 MeV / =
°s: — onLos T=0 MeV Osj 08
5 2} - ono, T=100 MeV b 06
B oo TeISS M = 04
& : S
S S 0.
0.0

3.5
3.0
25
2.0
1.5
1.0
0.5
0.0

(ful F )0 e o [mb]

Ecm [GeV]

FIG. 3.

contributions to the az® — z°

03 04 05 06 07 08 09 10
Ecm [GeV]

03 04 05 06 07 08 09 10
Ecm [GeV]

Cross sections in the charged bases. For the notaions of 610N oNLO 1AM, S€€ the text for details. Notice that the LO
7° amplitude and cross section vanish.
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At zero temperature, the o/ f((500) and p(770) poles
from the unitarized ar — 2z amplitudes in Eq. (30) are
found to be 422 — 1240 MeV and 739 — i72 MeV, respec-
tively, which are almost identical to the results from the
unitarized zz — zz IAM amplitudes: 428 — i241 MeV
and 742 — {74 MeV, in order. The tiny difference arises
since the IAM ar — 7z amplitude adopted in Eq. (24) does
not fully satisfy the unitarity relation up to higher order.
While, on the other hand, the minute differences of the
resonance pole positions from the az — 7z amplitudes,
compared to the results of the rigorous IAM zzx — zx
amplitudes, also indicate that the IAM formalism provides
a reliable framework to unitarize the ar — zz system. To
fix the |ggs.| from the TAM 7z — zz amplitudes and
the products of |grur9rs:| from the azr — 7z case, at
zero temperature we obtain |f,¢,q.| = 0.032 GeV? and
|fa9par| = 0.035 GeV?, implying a similar ratio between
the two couplings |¢,4z/Grar| = 1.1.

In order to perform an efficient numerical calculation of
the resonance positions and their residues in the az — zx
amplitudes at finite temperatures, we make the approxi-
mation by only including the s-channel thermal unitarity
effects. At T = 100 MeV, the ¢ and p(770) poles in the
arn — zx amplitudes evolve to 368 —i310 MeV and
744 — i77 MeV, respectively, which are qualitatively sim-
ilar to the results from the unitarized zz — 7z amplitudes
[34,42,43]. The ratio of the pax and cax couplings slightly
decreases t0 |g,qz/Graz| = 0.96 at T = 100 MeV.

III. BRIEF DISCUSSIONS ON THE AXION
THERMALIZATION RATE AND ITS
COSMOLOGY IMPLICATION

We will closely follow Refs. [16,18] to proceed a brief
discussion of the cosmological constraint on the axion
parameters based on our updated calculation of the thermal
ar — nn amplitudes. The axion decoupling temperature
Tp plays the key role, and according to the proposal in
Ref. [11] it can be estimated as the temperature at which the
axion interaction rate turns to be lower than the expansion
rate of the universe. The explicit freeze out condition
advocated in Ref. [11] to determine the axion decoupling
temperature is

1—‘a(TD) = H(TD)’ (33)

where H(T) = T%\/4x°g,(T)/45/mp denotes the Hubble

expansion parameter, with g, (7) the effective number of
relativistic thermal degrees of freedom (d.o.f) and myp, the
Plank mass. I",(T') in Eq. (33) stands for the averaged axion
thermalization rate in the pion thermal bath, and it can be
calculated via

1 -
— [ A0S I MuelPra B )

x [1+ ng(E3)|[1 + ng(Ey)], (34)

L(T)

where the sum runs over all the possible az reaction
channels, the axion number density in equilibrium is ngd =
¢(3)T3/x* with ¢ the Riemann zeta function, and the phase
space integral is

Ja=] (H s

The recipe given in Ref. [44] will be used to calculate the
above phase space integral. For the sake of completeness,
we give some details about the evaluation of this integral
in Appendix D. A more sophisticated way to solve the
momentum dependent Boltzmann equations for the axion-
pion scatterings, rather than taking the criteria in Eq. (33), is
proposed in Refs. [17,45]. However, the primary aim of this
work is to examine to what extent the thermal corrections
to the ar — zz scattering amplitudes can influence the
determinations of the axion parameters, comparing with
the situation by using the amplitudes at zero temperature,
and therefore we will stick to the criteria in Eq. (33) to
proceed.

For the perturbative calculation up to NLO, we expand
the squared amplitude as > |MP x> |IMOPP? 4
> 2MPRe(M@), and then the perturbative axion rate
will be casted into the following form [11]

. o \2..[~ m,\ T?- m,
Fge l(T) = <3f:F) TS |:hlohlo <7> +ﬁhnlohnlo <7>:| ’
(36)

1
2E~> (27)*6*(p1 + p2 — P3 — Pa).

(35)

where the dimensionless functions /%, and &, denote the
contributions from Y [M®@|> and 3 2Re(MPM@),
respectively. The numeric factors &y, and /1, are intro-
duced so that hy,(m,/T) and hy,(m,/T) are separately
normalized at unity at the temperature 7., which will be set
as 155 MeV in order to make close comparisons with the
results in Refs. [16,18]. The values of these factors are:
hyo ~ 0.164, T, ~ —0.0550 (when using zero-temperature
amplitudes) and —0.0755 (when using thermal amplitudes).
When using IAM amplitudes as inputs, the rate is simply
expressed as

ravcry — (O N psi e (M 37
a ( ) 3f F TAM*IAM T . ( )

For comparison, Ay (m,/T) is also normalized to unity at
T. = 155 MeV by the numeric factor yan =~ 0.117 (when
using zero-temperature amplitudes) and 0.0817 (when using
thermal amplitudes). The results of /o 0 1am(m,/T) are
shown in Fig. 4(a).

For the axion thermalization rates estimated from the
perturbative yPT amplitudes, the corresponding curves are
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FIG. 4. The symbols of ZT and FT indicate that the results are calculated by taking the zero-temperature and finite-temperature
scattering amplitudes, respectively. (a) The curves for the /iy, o 1am (7, /T) functions are defined in Eqs. (36) and (37). (b) The axion
rates in this figure are calculated by taking the perturbative az — zz scattering amplitudes upto NLO, with f, = 1.5 x 107 GeV for

illustration. ', only includes the contribution from A,,, and "N-O

contains the contribution both from £y, and A, (c) Ratio between the

NLO parts and LO parts of the axion thermal averaged rates. I'' denotes the LO part of the perturbative rate and I'™)'® denotes the part of

perturbative rate contributed only by /.

given in Fig. 4(b). After considering the NLO corrections of
the amplitudes, the axion rate even drops to a negative value
at high temperatures, due to the extreme breakdown of the
chiral expansion in these regions. In Refs. [16,18], it is
proposed to inspect the valid region of yPT by using the
ratios of the NLO and LO parts of the thermalization rates
as a criteria. Our results for such ratios as a function of 7" are
given in Fig. 4(c). The breakdown temperature of yPT was
extracted from the maximum of the ratio for the az™
channel [18]. By approximating the az scattering ampli-
tude from its zero-temperature expression, we confirm that
the yPT breakdown temperature deduced from the ax™
channel is around 70 MeV, and at this point the ratio
reaches the maximum value that is around 60%, see the
blue solid line in Fig. 4(c). For the result after taking the
thermal correction to the az scattering amplitude, i.e.,
the blue dashed line, the maximum point of the ratio
for ant channel increases to around 85 MeV, with the
maximum ratio around 65%. The dashed lines in Fig. 4(c)
are all above the solid lines, thus the convergence of the
chiral expansion for axion thermalization rate gets worse
after taking the thermal corrections into the arx scattering
amplitudes. Therefore after including the thermal correc-
tions to the az — zz amplitudes it is still unlikely to extract
reliable bounds from the axion thermalization rates by
using the perturbative yPT amplitudes, validating the
previous conclusion in Refs. [16,18] that was obtained
by taking the zero-temperature ax — zz amplitudes.

The axion averaged thermalization rates as a function of
T from the IAM amplitudes are illustrated in Fig. 5(a),
where two groups of lines corresponding to two specific
values of f, are given. We then compare the axion rates by
scanning the values of f, with the Hubble parameters by
taking the cosmological inputs from Ref. [46]. According
to the criteria in Eq. (33), the interception point of the two
curves of T',(T) and H(T) correspond to the axion
decoupling temperature 7'p, which varies with the value
of f,. In Fig. 5(b), we show the relations between T, and

fa by taking the scattering amplitudes both at zero and
finite temperatures to evaluate I", (7). The effects from the
thermal corrections to the scattering amplitudes become
noticeably important at higher values of f,,.

To take a comprehensive study of the cosmological
analysis goes beyond the scope of this work, here we will
concentrate on exploring the constraint of the extra effec-
tive number of relativistic d.o.f:

4
ANgp = 7

43

(i)

on the axion parameters as done in Refs. [16,18], where
945 (T) corresponds to the effective number of entropy d.o.f
at temperature 7, and the cosmological determinations in
Ref. [46] will be used in our analysis. The constraint of
AN on the axion decay constant f, is given in Fig. 5(c),
where the gray area in the bottom corresponds to the region
for T > 155 MeV and the IAM yPT is considered to be
untrustworthy in this region. Our study indicates that the
inclusion of the thermal corrections to the scattering ampli-
tudes can slightly lower the bound f, = 2.1 x 107 GeV,
comparing with the constraint f,, > 2.3 x 10’ GeV obtained
by taking the az — =z scatering amplitudes at zero temper-
ature. That is to say the thermal corrections to the scattering
amplitudes can cause around a 10% shift to the constraint of
the axion decay constant f,.

In turn one could translate the bounds of f, into the
constraints of the axion mass m,, relying on the LO/NLO
xPT predictions in Appendix B. The constraints on the
QCD axion mass m, are shown in Fig. 5(d), where we have
distinguished the constraints by including/excluding the
thermal corrections to the ax scattering amplitudes and also
using the LO/NLO expressions for the axion masses. When
excluding the thermal corrections of az scattering ampli-
tudes, the bounds for the axion masses are m, < 0.24 eV
by mL® and m, <0.25 eV by m)'°. When including the
thermal corrections of ax scattering amplitudes, the bounds

(38)
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The symbols of ZT and FT indicate that the results are calculated by taking the zero-temperature and finite-temperature

scattering amplitudes, respectively. (a) Axion thermalization rates calculated with the IAM amplitudes as a function of 7. The solid lines
denote the results by taking the amplitudes at zero temperature as an approximation and the dashed lines correspond to the updated
results by including the thermal corrections to the az — zz amplitudes. (b) Axion decoupling temperature as a function of the axion
decay constant f,. (c) Extra effective thermal relativistic d.o.f. as a function of f,. (d) The bounds on the axion masses m,. The notations

of m50 and m©

for the axion mass are m, <0.27 eV by mL° and m, <
0.28 eV by m)O. Therefore the thermal corrections of the
amplitudes introduce a 10% variation to the determination
of the upper limits of m,.

IV. SUMMARY AND CONCLUSIONS

In this work we have performed the complete calculation
of the ar — zx scattering amplitudes up to the one-loop
level at finite temperatures within the SU(2) QCD axion
chiral perturbation theory. The inverse amplitude method is
further used to unitarize the partial-wave ax — 7z scatter-
ing amplitudes, which extends the applicable energy and
temperature regions of the amplitudes in chiral perturbation
theory. The largest effect from the thermal correction to the
an — nn scattering amplitudes appears in the ar™ — 7*7°
channels with IJ = 11 for the zz system, while the thermal
effects in other scattering amplitudes are small.

The axion averaged thermalization rates are then calcu-
lated by using the updated arx — zz scattering amplitudes
at finite temperatures. The axion decoupling temperatures
are obtained with the averaged axion thermalization rates
calculated from the thermal ax — zz scattering amplitudes

refer to the situations by using the LO/NLO expressions for the axion masses.

within the inverse amplitude method. The extra effective
number of relativistic degrees of freedom ANy is then
used to constrain the axion decay constant f,, which gives
fa>2.1x107 GeV, comparing with the bound of f, >
2.3 x 107 GeV when neglecting the thermal corrections in
the ax scattering amplitudes. This 10% correction effect for
the lower limit of f, also delivers a similar magnitude of
shift to the upper limit of the axion mass. Therefore our
study shows that the inclusion of the thermal effects in the
ar — nm scattering amplitudes can cause a mild shift
(around 10%) of the axion parameters when confronting
with the cosmological constraint of AN . It is necessary to
include the thermal corrections in the az scattering ampli-
tudes in the future attempts that aim to improve the
cosmological determination of the axion parameters at
this level.
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APPENDIX A: RELEVANT ONE-LOOP
INTEGRALS AT FINITE TEMPERATURES

In the imaginary time formalism, the finite-temperature
effects enter via the chiral loops by replacing the temporal
integrals with the Matsubara sums, i.e.,

d

d - [ d o
_l/(zﬂgdl(qov q) - _l\//}' (zﬂgdl(qov Q)
d-1
=1y [ Gl d). (AN

where the replacement of ¢° — iw, = i2znT withn € Z is
taken and the symbol g is introduced to highlight the
integrals with finite-temperature corrections. Meanwhile,
the zeroth components of all external momenta also
need to be replaced by the Matsubara frequencies, which
can be extrapolated to real energies after completing the
Matsubara sums. When performing such sums, one can
always separate the results into the zero-temperature part
and the finite-temperature correction part:

d—1
G(T) = TZ/#I(L’@,,,@)
n dCIE

d o too-i0" dz
= 1(ig%, =
/(2”)d (IQE q) +/—oo—i()+ 20
&dqg L o .
X 27 U(izg, q) + I(=izg, §)|ng(izg)

= G(T = 0) + AG(T),

(A2)

where the first term corresponds to the zero-temperature
integral and the second one stands for the finite-temperature
correction. One can use the standard dimensional regulari-
zation to calculate the zero-temperature integral, in which
the UV divergence will appear. We use the conventional
MS — 1 renormalization scheme that is widely employed in
PT [19] for the zero-temperature integrals G(7T = 0).

Next we give relevant formulas for the one-loop integrals
at finite temperatures, i.e., the AG(T) part. The finite-
temperature integrals in this work are the same as those in
thermal zz scattering [34], which include the tadpole
integrals, like the diagram I(c), and the one-loop two-
point integrals for diagram 1(d)-1(f).

1. Tadpole loop integral
According to Eq. (A2), the basic tadpole integral reads

d
Fy(T) = —i/ﬁ (;l;)ld = _1 = F(0) + AFy(T).

(A3)

where the zero-temperature integral in the MS —1
scheme is

2 m2

Fy(0) = —logﬁ, (A4)

1672

and the finite-temperature correction is

1 +o0 > -
AF/}(T) = —2—”2 . qu\/Eq—m nB(Eq), (AS)
with E, = \/|g|* — m*.

For the integrals with p - ¢ or ¢° in the numerators, the
results are

[ dq p-g
- /ﬁ Cayi g —mt (A6)
[ dq ¢
"/ﬂwm”%(” (A7)

2. Basic two-point one-loop integrals
at finite temperatures

Four types of the two-point one-loop integrals will
appear in the calculation of yPT

dd 17 ° b 27 ‘ :
_i/ g (1.pi-9.9°.p1-qp2-q) (AS)
B

2n)? (q* = m?)[(k = q)* = m?]”

whose zero-temperature parts can be given in terms of the
By (k*, m*) function [19]

-1 m?
1672By (K2 m?) = -6 log 2™~ — _ 1 4 log .
P80 17) = o log 22~ 1+ log
4m?
Om(K2) = /1 = R (A9)

due to the Lorentz invariance. In the following, we refrain
from discussing the zero-temperature parts of the integrals
in Eq. (A8) and focus on the finite-temperature correction
(FTC). While for the latter part, the Lorentz invariance is
lost and one needs to separately treat the temporal and
spatial components of the integration variable ¢* = (¢°, ¢')
in the evaluation. It turns out that the 77 C parts of the four
types of integrals in Eq. (A8) can be expressed in terms of
three independent thermal loop functions [34]

L[ ddg (4°)
AT K, [K]) ="/ﬁ (2x)! (% =m)[(k=q)* =m?]| ¢’
(1=0,1,2), (A10)

where the subscript 77 C is introduced to emphasize that
AJ(T, KO, |/2|) only include the finite-temperature parts of
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the integrals. After completing the Matsubara sums, the
integrals in Eq. (A10) can be written as

k)= > £ (10 1k)).

I do—=1

AJ(T, K°,

(Al1)

with
];D—/ d3q 1 /11/12
) (2n)34E,E,_ k'~ E,—JyE;_,+i0"
X[—/ll(ﬂlEq)lnB(Eq)
— (K= Ey_ ) np(E_,)].

and Ey_, = 1/ (k—3)* + m>. Thefunctionsfﬁll)ﬂz(T, KO, |k))

depend on £° and \l? | in a separate manner. Before giving the
|

[
£ TR,

(A12)

technical details about the calculation of the thermal loop
functions in Eq. (A12), we first elaborate the reduction
formulas for the temperature correction parts of the two-point
one-loop integrals in Eq. (A8).

3. Reduction of the two-point one-loop integrals
at finite temperatures

The numerators with spatial components ¢’ in the
integrals of Eq. (A8) can be written in terms of the basic
ones in Egs. (A3) and (A10). For the sake of completeness,
we give a brief discussion about the finite-temperature parts
of the various integrals in Eq. (AS).

For the three types of numerators with (p; - q), ¢%, (p; -
q)(p> - q) in the integrals of Eq. (A8), their 77 C parts can

be reduced to AF(T) (A3) and AJ,(T, k%, |k|) (A10). The
FTC reduction formulas take the form

@ (p1-49)
"'/ ddqd s = POAT(TLRO[R]) = (B - K) AL (T KO, [R]), (A13)
5 (2n)" (q° = m*)[(k = q)* = m?]| r1¢
with
- 1 - -
Ab (T KO, |k|) = ﬁ[zkoml(n KO, [K]) — K2AJo (T, KO, |k))]; (A14)
(i) ¢*
—i/ ddqd S q | = AFR(T) + mEATo(T, KO, |K)); (A15)
5 (27)" (g7 = m?)[(k = q)* = m*]| rre
(i) (py-q)(p2-q)
dig (P1-9)(p2-q) 0.0 > - Loz >
—i = pOpATL (T, KO, |k|) — [PO(Pa - k) + YDy - k)| AL, (T, K°, |k
/ﬁ (Zﬂ)d (qz —m2)[(k—q)2 _mZ] e 172 2 | { 1\F2 ) 2\F1 ] J1 |)
+ (D1 - P2)Aby (T K%, [k|) + (Py - k)(Py - k) Aby (T, kO, |k|), (A16)
with
Aby (T KO, |k]) = i [—KOAF4(T) + 2kOAJ (T, KO, [k|) — K2AJ (T, KO, |k])], (A17)
- 1 [k K+ 4m2|k|? - . -
Aby (T, k°, |k]) :w 7AFﬂ(T) —++||AJ0(T, KO, |k|) + KOk2 AT (T, KO, |k|) — K2 AT (T, K2, |k|) |,

(A18)
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1 [ 3k92 4 |kP
2[k* 2

3k + 4m?|k|?

Aby(T, k0, |k|) = 4

AJo(T. K, |k|)

AFy(T) +

— 3KOK2AT, (T, kO, |K]) + (3K°2 — |k|) AT, (T, KO, |K]) | . (A19)

It is reiterated that the above reduction formulas with the subscript of F7C include only the finite-temperature
correction parts.

4. Technical details about the evaluation of basic thermal loop functions

We give some technical details below about how to evaluate the integrals in Eq. (A12). It is noted that fﬁll)lz(T, KO, |/2|)
satisfy the following reflection relations with respect to k% [40]

FODT K0, [K]) = [FOD(T. &, [K|)]", (T -k,
FUT K0, [K]) = =[O K. K], f+_<T, —KO, [k

Kl) = [F22 (1.8, K],
(LT R R (A20)

which lead to the following relations of the various loop functions introduced previously

AJoo(T. =K. [K]) = [AJoo(T. K. [K])]". (A21)
AJy (T, =K, [k]) = =[AJ, (T, K. K], (A22)
Aby1 20.0) (T =K, [k]) = [Ab1 200 (T, K. [K])]", (A23)
Abyy (T. =K. |K|) = —[Aby, (T, K. [K])]". (A24)

Next we use a similar procedure in Ref. [40] to simplify the expressions of f;ll)/b (T, kO, k ) given in Eq. (A12). To proceed

the evaluation of the integrals in Eq. (A12), we take E, = \/g* + m* and E;_, = \/l_c'2 + 3% = 2|k||| cos 0 + m? as the
two integral variables, i.e.,

d’q 1 1 +oo0 Ep™
. = - dE, | "' dE,. (A25)
(27)*4E,Ery  4(27)2 k| Jm £y
with
En/me = \/|k|2 + B2 F 2/k|\/ E2 — m? (A26)

The real and imaginary parts of the fgl])xz(T’ KO, |1€|) functions are given by

- +oo B 1 Iy
)_/ quum/ dE,., —— 2
m min 4(2x)? k| k° — M E; — LBy,

Ref ), (T, K,

X [~ (ME,) ng(E,) — A2 (k® — L Ey_y) ng(Er_y)]. (A27)
O (7 10 1% 5
tmf ) (7,9, [K]) = - % |k| ) dE,_ 8K = LE, — hE;_,)
X MAo[—Ai (M E,) np(E,) —ﬂz(k — hEi_ ) np(E_,)]. (A28)
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where P denotes taking principle value of the integrals. The § Next we can integrate out E_, in Im ffll)/l (T, k°
- MmN

. . 1 7 7
functions in Imf{, (7. %, |k|) and TmfU) (T, k0, |k|) are the & function. We take Tm/", (T, k9
nonvanishing for k*> > 4m?, which give the unitary cuts.

While the & functions in Imf (7.%% |k|) and

, |k[) by

, ~)) for illustration.

The integral for Imf(l)Jr(T, K, |/2|) is nonvanishing only if
EP < k0 —E, < EP™, and to combine with k* > 4m?

Imf(_lzr(T, kO, ﬁ) are nonvanishing for k%> < 0, leading to one can get k-
the so-called Landau cuts.
|
KRk, K[k
B <E <—+4 2). A2
e <2, <5 o) (A29)
Therefore, we have
- —0(k° — Eth EQ,
tm 0, (7.0, |7 = “2E D / dE, (E,)'[=np(E,) = ny(k® = E,)].
167[k| et
rmn ko |k| max ko |I_€'|
Bty = 575 (k). EgYy = 5t ?am(kz), (A30)
with E" = y/|K|> + 4m?. Similarly, one can obtain
- -0 —k2 +o00
tog (780, ) = ) [ 4k, (g (E,) = (B, - 10
l677:|k| min
L L ey A3l
g = 7 + 5 Om n(k%); (A31)
- -0 —k2 +00
ImfY, (T, k0, |k]) = —0(=K) T dE,(~E,)[-np(E,) + np(k° + E,)],
167|k| JED™,
Emm — ___’_m (kZ) (A32)
&t 22 ’
(1) 0|7 —0(=K’ — E}") [E 1 0
ImfY) (T, K, |k|) = ———F= dE,(-E,) [ng(E,) + ng(—k" — E,)],
167 k| in
K k] k]
Emln — A e | k2 EMmax  — - L) k2 . A
q.— 2 2 ( )’ q,— 2 + 2 ( ) ( 33)

The remaining integration of £, in Im f/(ll])/lz (T, K, |I€|) is straightforward and can be even analytically evaluated, nevertheless
we do not explicitly show the results here, due to the rather lengthy expressions.
In the special case of [k| =0, AJ{(T,k°,0) and AJ,(T,k°,0) can be reduced to AF4(T) and AJo(T,k°,0):

kO
1 kO 2
AJ, (T, K°,0) = 5AF,j(T) + <2> AJo (T, k°,0), (A35)

with

AJ0<T,k0,0>=e<k°—2m>ﬂ ("O) Ok — 2m )Lj(n)(—%o)

1 1 )
+— E,\[1- ng(E,). (A36)
(27)? E2 kO +2E, K’ -2E, 1
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APPENDIX B: TWO-POINT FUNCTIONS
AND MASSES OF AXION AND PION
AT FINITE TEMPERATURES

The bilinear terms of a and z° from the LO Lagrangian
(5) read

1
L) vilinear = 2 0,a0'a + = 0,n°*n° + 8,,0,a0"7°

ﬁlﬁaz -

(B1)

N —

where 0, is given in Eq. (12) and the QCD axion mass at
LO is

F? m,m
3= Vae —5 » =4 (B2
a Yud g Yud (mu + md)z ( )

The barred quantities correspond to their LO expressions.
Up to O(1/£2), the a — z° mixing in Eq. (B1) can be
eliminated by the field redefinition

a—a—58,1"+O0(1/f).

1
0 - (1 + 552,,) 2 +01/£3), (B3)
and the Lagrangian in Eq. (B1) becomes
1 | P
L) pilinear = Eaﬂaa”a + 56,,7: o
1
=3 mia* ——ma(1 + 62,)n°z°.  (B4)

The correction term &2, in the pion mass behaves O(1/f%)
and can be safely ignored. Then the LO propagators of a

and 7 read
= Gaa 0
- < 0 G o>’ (BS)
with
G Gopo ! (B6)
W@ T Dm0t R T om0t

With contributions from the various two-point 1PI ampli-

tudes %;;, the two-point Green functions of a and 7 take
the form

G =G.[1 - (-i2).G]™", (B7)
with

Gua  Gupo Zaa  Zaad

G= , X= . (BY)
Gaﬂ.ﬂ GITOJI.'O Eaﬂ.ﬂ Zn.()ﬂﬂ

Up to NLO in chiral expansion, the explicit expressions of

the matrix elements of G and X read

i

Gu = ’ (B9)
P2 -k =3 ot
i
G0 = ) (BIO)
p? =iz =28, +i0F
. iz
aﬂo pr— b
(P> — 2 — 25 +i0%) (p? — 2 — =), + io)
(B11)
where
3th — Yud -
S (p?) = M m2Fy(T) + 2(1s + hy — hy) " i
2fa fa
yz
— 8174 s, (B12)
1 _ 2
Zﬁ)),,o([’z) = —@(417 = imz) Fy(T) = — Lymzp?
2 . 265
+ﬁ(l3 +l4)m,,—F—2’l7m;‘,, (B13)
S (p2) = =81 = PPFT) = 6y L
ar 3Ff b Ffa "
4
+6 Fyf" Ly, (B14)

and the superscript (4) denotes the O(p*) contribution.
In this work, the isospin breaking correction in m, is
neglected, and therefore we have

= (07) = 2 (07) = Z(p?)

T

1 _ 2

2 _

In the calculation of the axion-pion scattering amplitudes
one will need G0 (m?2) to account for the a — z° mixing at
NLO. Ignoring the terms of O(1/f2) and pulling out the
axion pole in Eq. (B11), by keeping the terms up to NLO
one has
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FIG. 6. The ratios of the axion and pion masses at finite and
zero temperatures predicted by the NLO yPT.

R
p? 40" mz )

Up to NLO in yPT, the ratios of the pion and axion
masses at finite and zero temperatures can be written as

Gaﬂo(p2)|p2—>() = (B16)

m2(T) 1 m%(T) 3
——=1—-—=AFy(T), = =1+=—5AF4(T),
m2(0) 2 A7) mZ(0) o AT
(B17)
where the masses at zero temperature read
2 2 ;g
0)=m2 |1 -3 —"—|, B18
ml[( ) mﬂ|: 32(47[F)2:| ( )
P, o m
mg(O) = yudm f2 {1 —2W10g”—2
m? m2
2 0) = ] 5 = St e (B19)

In Eq. (B19) we have replaced /2 with the “physical” pion
mass m2 up to NLO. The results are consistent with

_ b
MBT=0) _ )i
! 192;;2 f.F°

an’nt

Ref. [47] by ignoring &, term in m2. When calculating
the boundary of the axion mass, the renormalization scale u
is set at 770 MeV, and h; = h; = 0 is taken. Our result
confirms the temperature dependence of the QCD axion
mass in the former reference as well. The curves of
my(T)/m, (T =0) and m,(T)/m,(T =0) are given in
Fig. 6. As shown in this figure, the thermal correction
decreases the axion mass around 10% up to T = 155 MeV,
while it slightly increases the pion mass at the level
around 3%.

APPENDIX C: EXPLICIT EXPRESSIONS OF
THE ar — 7z SCATTERING AMPLITUDES
AT FINITE TEMPERATURES

Here we give the explicit one-loop expressions of the
an’ and an’ — 7°2° scattering amplitudes at
finite temperatures. For completeness we also give the
zero-temperature parts of the scattering amplitudes,
although they have been given in Ref. [18]. The finite-
temperature corrections to the az — zz scattering ampli-
tudes represent the new ingredients of this work.

-t

1. a(p1)n’(p;) — n* (p3)n~ (p4) scattering amplitudes
The LO amplitude for az’ — ztz~ is
MO = Oy (C1)
ansnt 2f,F /e

In this work, we will use in the scattering amplitudes the
LO pion decay constant F, which is independent of the
temperature 7. Up to NLO, F is related to the physical pion

decay constant F, via F = F,[1 — (4ﬂF > 14] [19], which

leads to F = 86.0 MeV by taking the same value of
1, = 4.73 from Ref. [18].

The NLO amplitude is decomposed into the zero-
temperature part and finite-temperature correction part.
The zero-temperature part is [18]

{271 (s —m2)(s —2m2) + 2L, [4m% + 2 + u® = 3m2(t + u)]

-1
3102+ 80 112 = 152+ )]+ 35(5 = m)o(5) 10g<46ﬂ<S) )
o.(s

+ [9m} —dm2(s + 2t) + t(s + 2t)]o,(t

+[9m — 4m2 (s + 2u) + u(s + 2u)]o,(u

with o,(s) =

MM

3 ' a
= A (MM -+ AALTY

1 — 4m2/s. The finite-temperature correction part is

o,(u)—1 4y,46
Ay A Ay (C3)

an k'
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where AZS;QI is the finite-temperature part of the derivative of Eq. (B15)
4y 2
A (m2) = — 72 AFH(T). (C4)

The last four terms of Eq. (C3) correspond to the finite-temperature correction parts from the tadpole diagram 1(c), the
s-[1(d)], #-[1(e)], and u-channel [1(f)] diagrams, respectively, whose expressions read

a 56
AA(4)0T d 1

a7t T 6f 3 (S - m%)AFﬁ(T)9 (CS)

. 5
n !

an®:rt = 6f F3 ﬁsD +p9(s_m72r)AJ1(T7 pg? |ﬁs|)
= (s = m)AF(T) = | ps[* (s = mz) Ab (T, pQ. |Bs])]. (Co)

4 O; 1 - 1
DMyl =g\ 3 = M= 3NN (T L Pi]) = 5 (1 = m) AFy(T)

[S(S - mlzl')AJO(T’ p??

Ps

1 R -

+e(i- m2)(pY+2p3)AJ\(T, p?. |p.|) = P2(PS + pY)AJL(T. p?. | i)
1 R oy - R

—glt- m2)[(Py + 2P4) - PJAb (T pY. |P,])

+ [pY(P2 + Pa) - Be+ (P + P)P1 - B AL (T, p?.|5,|)

= D1 (P2 + Pa)Aboi (T, i |Bi]) = 1 Bil(P2 + Pa) - BiJAbao(T, pY. IﬁII)}» (C7)

" o 1 R 1
M = = 2= SR A(T. ) = 5 0= ) AR (T)

Pul) = PY(PS + PYALL(T. pl. |Pul)

(u—m2) (P2 +2P3) - DuJAb((T. pY. | D)
+ [PY(P2+ P3) - Pu+ (P + P P1 - PuJAD ;i (T, pl. [Pul)

= D1 (P + P3)Abor (T, pit. [Pul) = Br - Bul(P2 + P3) - BulAbao(T. pi. Iﬁul)}- (C8)

2. a(py)7(p,) — n°(p3)n°(p4) scattering amplitudes

The nonvanishing contribution to the az’ — 7°2° scattering amplitude begins at O(p*). The zero temperature part is

@.r=0) _ 0
0..0_0

an¥7%72% T 32”2faF3

(5= m2en(s)tog (2201 0) - w2, o og (01

-1 127,46
_2N\2 1 o-”(u) ud Il 4. 9

+ (” mn’) Gn:(u) og (0,,(14) +1 =+ faF3 7My ( )
It is noted that there is a typo for the /; term in Ref. [18] and the numeric coefficient should be 12, instead of 36." The finite-
temperature correction part of the amplitude is

1 - _
[g (I} +2L) (s> + 2 + u? = 3m3) + (s> + 2 + u?> = 3m3})

4), o - -
AM il =5 o = AT PO Bul) 4 (1 = m2 P ATo(T. . 17
+ (4= m3)2AJo(T. Pl 5] (C10)

'"We thank Gioacchino Piazza for confirming this coefficient.
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APPENDIX D: PHASE SPACE INTEGRALS IN ﬁ 12 ﬁ
THE AXION THERMALIZATION RATE ﬁ s 2
4x

We follow the steps of Ref. [44] to reduce the twelve- ;
dimensional phase space integral in the axion thermal- .
ization rate to a five-dimensional one. It is convenient to use o b3
ps = p1+ p» = (E,, py) for illustration. Due to the rota- > \
tional invariance, the integrand of Eq. (34) does not depend L
on the direction of p, and thus we can take the 7 direction as y

7= p, /1P|, as shown in Fig. 7. Without loss of generality,
one can assign the (p;, p,) plane as the (X, 7) plane. And ¢
stands for the angle between the (ps, psy) plane and the X

(P1. P2) plane.
By defining p; - p, = | p;||P;| cos 6; and using the three-  FIG. 7. Coordinate system chosen for the evaluation of the

momenta conservation, one has phase space integral.
|
2 2 _ |72 2 2 _ |32
cosg, L PEHBE 1B B BRI
2| B[P 2| B[ P2l
2 2 _ |32 2 2 _ |72
cos Oy — [Pl + 1Psl” — [Pal” cos 6, — |Bs|* + |Pal” — |3 (1)
2|p,l1ps| 2|ps||Pal
According to the coordinate of Fig. 7, each component of p; can be written as
p1 = |p1|(sind;,0,cos6,), (D2)
P2 = |P2|(=sin 6,0, cos 6,), (D3)
D3 = | P3| (sin 05 cos ¢, sin 65 sin ¢, cos 05), (D4)
Da = |Pa|(—sin b, cos ¢, —sin O, sin ¢, cos ). (D5)

Next we reduce the twelve-dimensional integral of Eq. (35) to a five-dimensional one. In the first step we substitute the
following identity

“+o00
1= /0 dE, / B pS(E, — Ey — E2)8 (B, — Py - Ba). (D6)

into the Eq. (35), and then p, and p, can be integrated out by the two § functions of three-momenta conservation

S(E,— E,— E
/dF / dE /d3ps/d3p1/ Hz 1,3 ( ; 1+1>
16(27)°E\ExESEy |55 -5, pi=p.—ps

0 00 0 o T +1
= [ag [Tam) [Tam [T [ d¢( [ Hdcosei)
0 0 0 0 0 -1 =13

AR
X 5(E3_Ei_Ei ]):| . (D7)
[11_1[3 " 8(2”)6E1E2E3E4

The integrals over cos 6, 3 can be performed by the remaining two & functions. Using 6(g(x)) = >, 6(x — X;)/|¢ (%;)| with
X; the root of g(x), we have

E,E 2E
[, -E-Eiy) = 274 Ha(cosa,.— (D8)

P> +mi = (s +m} — mfﬂ))
> > > s
i AR

2|P,lIPi]
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with s = E2 — ||, which requires that

2E,\/|Pil* + mi = (s + mi —m3,,)

T <1. (D9)
2[pl|pil
Expanding the above inequality one can get
165%|p,|* + (8sB; — 16A2E2)|p,|?
+ B2 — 16A2E2m? <0, (D10)

with A; =s+m?—m?, and B; =A? +4Em}. The
existence of solutions for the quadratic inequality about
|pi|* requires s > (m; + m;,;)?, which is equivalent to

Ezmitmyr. [P <\/E~(m+mo)h (D)

For the cases of i = 1 and 3, the requirements for £, and
|| are

EP" = max{m; +m;.}.
i=1,

‘l_js|max = {E}%{\/E% - (mi + mi+1)2}'

(D12)

The solutions of Eq. (D10) provide the integral boundaries
to the |p,_; 3| variables [44]

- 1
Bilwinmax = 5| B/ [5 = Oy = mi 125 = (mg i1 )

F (s +mi—mi,)|pl|. (D13)

Therefore the phase space integral in the axion thermal-
ization rate can be now written as a five-dimensional
integral

1P max -
at= [“a, [T app) (7
‘P?'max N |p1 |p3‘
a7 / ap
/173 mm 6EE

with the integral boundaries given in Egs. (D12) and (D13).
All the kinematic variables in thermal scattering amplitudes
given in Appendix C can be expressed by the five integral
variables in Eq. (D14) through Egs. (D2)—(D5).

|I7] ‘max

pl ‘mm

(D14)
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