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Kinematics restricts the ability of rare charm decays to explore the charged lepton-flavor-violation
processes mediated by the quark-level c → ulτ transition. To fill the gap, we propose exploring new
physics (NP) through the quasielastic scattering process e−p → τ−Λc and the polarization of the τ lepton.
As analyzing modes for the τ polarization, we consider the decays τ− → π−ντ, τ− → ρ−ντ, and
τ− → l−ν̄lντ, and show that the τ polarization components can be extracted from analyzing the kinematics
of the τ visible decay products. In the framework of a general low-energy effective Lagrangian, we then
perform a detailed analysis of the polarization components in various aspects and scrutinize possible NP
signals. With one upcoming experimental setup, we finally demonstrate promising event rate can be
expected for the cascade process and, even in the worst-case scenario—no signals are observed at all—it
can still provide a competitive potential for constraining the NP, compared with those from the high-pT

dilepton invariant mass tails at high-energy colliders.
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I. INTRODUCTION

The observation of neutrino oscillations has established
that lepton flavor symmetry, an accidental symmetry in the
Standard Model (SM), is explicitly broken. If neutrinos get
their masses through Yukawa interactions with the SM
Higgs, the expected rates for charged lepton flavor viola-
tion (cLFV) enabled by the neutrino oscillations are sup-
pressed by G2

Fm
4
ν ∼ 10−50, making them practically

unobservable in current experiments [1,2]. Thus observa-
tion of cLFV would clearly point to the existence of new
physics (NP) beyond the SM.
Among the various cLFV processes (see Refs. [1–5] for

recent reviews), the ones mediated by the c → ull0
transitions at the quark level have received appreciable
attention in recent years. These processes have been
extensively studied in rare charm decays [6–17] and also
been explored by analyzing the high-pT dilepton invariant
mass tails in the processes pp → ll0 [18–20]. Recently, we

have proposed studying them through a low-energy scat-
tering experiment, which turns out very complementary in
searching for NP to the rare charm decays and the high-pT
dilepton invariant mass tails [21].
Despite the growing efforts above, few can probe the

cLFV processes induced by the c → ulτ transitions (with
l ¼ e, μ). Start with the rare charm decays. The largest
accessible phase space for semileptonic D-meson decays is
given by mDþ −mπ0 ≃ 1.735 GeV, which is smaller than
the τ-lepton mass, rendering the semitauonic D-meson
decays kinematically forbidden; the same conclusion also
holds for the charmed-baryon decays. Meanwhile, due to
mD0 < mτ þmμ, the purely tauonic D-meson decay
D0 → τμ is kinematically forbidden, too.1 Although the
decay D0 → τe is kinematically allowed, it has not been
detected in experiments partially because of its very narrow
phase space. Given that the new proposed low-energy
scattering process involves only the leptons e and μ [21],
analyzing the high-pT dilepton invariant mass tails
becomes the only way to explore the cLFV processes
induced by the c → ulτ transitions for the moment. In the
framework of a general low-energy effective Lagrangian
[denoted by Leff as introduced in Eq. (1)], since the high-pT
dilepton invariant mass tails cannot pinpoint all the possible
NP Dirac structures [19], clearly other new processes and
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1Note that τ → D0μ is also kinematically forbidden due to
mτ < mD0 þmμ.
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observables, particularly the low-energy ones, are badly
needed; this is still true even if the decay D0 → τe is
measured in the future, since the purely leptonic D-meson
decays are known to be only sensitive to the axial and
pseudoscalar four-fermion operators of the Leff [22–25].
In this paper, we will propose the quasielastic (QE)

scattering process e−p → τ−Λc mediated by the quark-
level e−u → τ−c transition. This process is free from the
kinematic problem that the semitauonic charmed-hadron
decays encounter and covers all the effective operators of
the Leff . Unfortunately, even with the purely tauonic D-
meson decays and the high-pT dilepton invariant mass
analyses, there are still not enough observables to fully
pinpoint all the NP Dirac structures and determine the
corresponding Wilson coefficients (WCs). We will thus
also consider the polarization of the produced τ lepton,
which involve all the effective operators of the Leff , and can
fill the gap (at least partially), though they are more difficult
to measure than the cross sections.
Since the τ lepton is very short-lived and decays weakly,

its polarization is revealed through its ensuing decay
distributions. As analyzing modes for the τ polarization,
we shall make use of its four dominant decays, τ− → π−ντ,
τ− → ρ−ντ, and τ− → l−ν̄lντ (with l ¼ e, μ), which
together account for more than 70% of the total τ decay
width [26]. Since the decay products of these modes
contain at least one undetected neutrino, we shall focus
on the visible final-state kinematics and integrate out all the
variables that cannot be directly measured. We will show
that the three polarization components of the τ can be
extracted from the analyses of the kinematics of the visible
decay product (i.e., π−, ρ−, and l−).
The QE scattering process we propose can be explored

through a fixed target experiment. Thanks to the advances
in technologies of electron beams and proton targets—note
the ongoing scientific program of 12 GeV Continuous
Electron Beam Accelerator Facility (CEBAF) at Jefferson
Lab (JLab) and its potential upgrades [27]—promising
event rates can be expected for the scattering process in
various NP scenarios, if it is measured with a properly
selected experimental setup, together with the constraints
from the high-pT dilepton invariant mass tails as input. On
the other hand, even in the worst-case scenario—no signals
are observed at all—the QE scattering process can still
provide competitive constraints with respect to those
obtained from the high-pT dilepton invariant mass tails.
We conclude this section by outlining the content of our

paper. We start, in Sec. II, with a brief introduction of our
theoretical framework, including the most general low-
energy effective Lagrangian, cross section, spin density
matrices, as well as the kinematics and form factors. In such
a framework, we show in Sec. II C how to extract the
polarization components of the τ in the QE scattering
process. In Sec. III, we perform comprehensive phenom-
enology analyses of the polarization components in various

NP scenarios and explore possible impacts from the form
factors. Based on the currently available experimental
constraints, we evaluate in Sec. IV the prospect for
discovering NP through the low-energy QE scattering
experiment in various aspects. Finally, we collect our main
conclusions in Sec. V, and relegate further details on the
spin density matrices and explicit expressions of the various
observables to the appendixes.

II. THEORETICAL FRAMEWORK

A. Low-energy effective Lagrangian

The idea of using effective Lagrangian for studying
lepton-flavor-violation processes, such as the lepton-flavor
changing decays, lepton-flavor conversion, and neutrino-
less double beta decay, at the quark and hadronic level has
been well developed in Refs. [28–45] and widely used in a
series of papers (see, e.g., Refs. [46–53]). For the scattering
process e−p → τ−Λc (or e−u → τ−c at the quark level) in
this work, the general low-energy effective Lagrangian can
be written as (see, e.g., Refs. [19,51,53,54])

Leff ¼
X
α

gα
v2

Oα; ð1Þ

where v ¼ ð ffiffiffi
2

p
GFÞ−1=2 is the electroweak vacuum expect-

ation value, Oα is the semileptonic operator listed in
Table I, and gα is the corresponding effective WC.2 Note
that the tensor operators with mixed quark and lepton
chiralities vanish due to Lorentz invariance. In addition, the
operators OLR

S and ORL
S are neither generated in the

Standard Model effective field theory due to gauge invari-
ance [54], nor in certain ultraviolet models, such as the
leptoquark models [55,56]. Finally, this framework is only
applicable up to an energy scale of OðmbÞ, with mb being
the bottom-quark mass, above which new degrees of
freedom would appear.

B. Spin density matrices and polarization vector

The cascade processes considered in this work can be
broken down into the QE scattering (e−p → Λcτ

−) and
successive decays of the τ lepton (τ− → π−ντ; ρ−ντ;l−ν̄lντ).
The fully differential cross section can bewritten as (see, e.g.,
Refs. [57,58]),

dσd ¼ 1

4F
1

ðk02−m2
τÞ2þm2

τΓ2
τ
ρPλλ0ρ

D
λ0λdΦðk;p;p0;pd;pνÞ

¼
�
1

4F
ρPλλ0dΦðk;p;p0;k0Þ

��
1

2mτΓτ
ρDλ0λdΦðk0;pd;pνÞ

�
;

ð2Þ

2If the effective hadronic-level Lagrangian is also evoked, its
WCs can be connected to those at the quark level through the on-
mass-shell matching condition [33,34,39–44,53].
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where dΦðki;…;pj;…Þ≡Q
j

d3pj
2Ejð2πÞ3ð2πÞ

4δ4ðPiki−
P

jpjÞ
is Lorentz invariant. To account for the spin average of the
initial electron and proton, we have introduced a prefactor
1=4. And to obtain the second equation in Eq. (2), we have
applied the narrow-width approximation,

lim
Γ→0þ

1

π

mΓ
ðp2 −m2Þ2 þm2Γ2

¼ δðp2 −m2Þ; ð3Þ

to the τ propagator 1=½ðk02 −m2
τÞ2 þm2

τΓ2
τ �, which is valid

due to the much smaller decay width of τ than its mass [26].
Finally, we always bear in mind that for the τ− → l−ν̄lντ
mode, pν̄l , momentum of the outgoing l-antineutrino, must
be taken into account in both the dΦðk; p;p0; pd; pνÞ
and dΦðk0;pd; pνÞ.
Now several necessary explanations of the various

symbols in Eq. (2) are in order. First, the indices λ; λ0 ¼
f1=2;−1=2g characterize the helicity of the τ. Second, the
flux factor F is 4ððp · kÞ2 −m2

em2
pÞ1=2 with k and p

denoting the four momenta of the initial electron and
proton, respectively. Third, the four-momenta of Λc and
ντ are correspondingly represented by p0 and pν, while pd
refers to momentum of the visible decay product of the τ,
with d ¼ π; ρ;l corresponding to the four decay channels
of the τ. Finally, ρD is the spin density decay matrix of the τ,
whereas its spin density production matrix is denoted by ρP.
Their explicit expressions and details of the calculation
procedures can be found in Appendixes A 1 and A 2,
respectively.
The density matrix ρP can be expanded in terms of Pauli

matrices σa with the first (second) row and column
corresponding to the helicity λ ¼ 1=2ð−1=2Þ,

ρPλλ0 ¼ δλλ0Cþ
X
a

σaλλ0Σ
a
P

¼ C

�
δλλ0 þ

X
a

σaλλ0Pa

�
; ð4Þ

where Pa ¼ Σa
P=C denote the three components of the τ

polarization vector Pμ ≡P
a Pas

μ
a [59]. The explicit

expressions of C and Σa
P can be determined by matching

the ρPλλ0 in Eq. (4) with that in Eq. (A29).

C. Extraction of the τ polarization components

Since the spin density matrices ρP;D and dΦ are Lorentz
invariant, they can be calculated in any frame of reference.
We pick the laboratory (Lab) frame—i.e., the initial proton
is set to static—to evaluate the terms in the first square
bracket in Eq. (2), and denote the result as

dσPλ;λ0 ¼
Cðq2Þ

64πFEmp

�
δλλ0 þ

X
a

σaλλ0Paðq2Þ
�
dq2

¼ 1

2

dσs
dq2

�
δλλ0 þ

X
a

σaλλ0Paðq2Þ
�
dq2; ð5Þ

where q ¼ k − k0 and E denotes the electron beam energy.
Note that dσs=dq2 is the unpolarized differential cross
section of the scattering process e−p → Λcτ

− in the Lab
frame, given by

dσs
dq2

¼ C
32πFEmp

: ð6Þ

We choose the rest frame of the τ lepton, on the other
hand, to deduce the terms in the second square bracket in
Eq. (2), and get

dσDλ0;λ ¼ Bd
d3pd
Ed

½ηdδλ0λ − χdðpd · sbÞσbλ0λ�; ð7Þ

where Bd¼π;ρ;l denote the corresponding branching frac-
tions of τ− → π−ντ, τ− → ρ−ντ, and τ− → l−ν̄lντ decays.
The scalar functions ηd and χd read, respectively,

ηd¼π;ρ ¼
m2

τ

m2
τ −m2

d

δðmτ −Ed − jpdjÞ
2πjpdj

;

ηd¼l ¼
2θð1þ y2 − xÞθðx− 2yÞ

m2
τfðyÞπ

½xð3− 2xÞ− y2ð4− 3xÞ�;

χd¼π;ρ ¼ αd
2m3

τ

ðm2
τ −m2

dÞ2
δðmτ −Ed − jpdjÞ

2πjpdj
;

χd¼l ¼
4θð1þ y2 − xÞθðx− 2yÞ

m3
τfðyÞπ

½1þ 3y2 − 2x�; ð8Þ

where θð…Þ denotes the step function, αd¼π;ρ ¼ f1;
ðm2

τ − 2m2
ρÞ=ðm2

τ þ 2m2
ρÞg, and x ¼ 2ðpl · k0Þ=m2

τ , y ¼
ml=mτ in the d ¼ l case. For some details of the
calculations, we refer the reader to Appendix A 3.
With the dσP and dσD given respectively in Eqs. (5) and

(7), we write the fully differential cross section as

TABLE I. Operator Oα of Leff in Eq. (1), where PR;L ¼ ð1�
γ5Þ=2 denote the right- and left-handed projectors, and σμν ¼
i½γμ; γν�=2 is the antisymmetric tensor. And coeff is short for
coefficient.

Coeff. Operator Coeff. Operator

gLLV ðτ̄γμPLeÞðc̄γμPLuÞ gRRV ðτ̄γμPReÞðc̄γμPRuÞ
gLRV ðτ̄γμPLeÞðc̄γμPRuÞ gRLV ðτ̄γμPReÞðc̄γμPLuÞ
gLLS ðτ̄PLeÞðc̄PLuÞ gRRS ðτ̄PReÞðc̄PRuÞ
gLRS ðτ̄PLeÞðc̄PRuÞ gRLS ðτ̄PReÞðc̄PLuÞ
gLLT ðτ̄σμνPLeÞðc̄σμνPLuÞ gRRT ðτ̄σμνPReÞðc̄σμνPRuÞ
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dσd
dq2

¼ Bd
dσs
dq2

Z
d3pd
Ed

�
ηd − χd

X
a

ðpd · saÞPa

�
: ð9Þ

To discuss the polarization components Pa, we must
specify the spin vectors sa. To this end, we first define
three orthogonal unit vectors as follows:

nL ¼ k0

jk0j ; nP ¼ k0 × k
jk0 × kj ; nT ¼ nP × nL; ð10Þ

where k and k0 are the three-momenta of the electron and
the τ in the Lab frame. We then define the longitudinal (L),
perpendicular (P), and transverse (T) spin four-vectors of
the τ in its rest frame as

sμL ¼ ð0; nLÞ; sμP ¼ ð0; nPÞ; sμT ¼ ð0; nTÞ: ð11Þ

Finally, a Lorentz boost from the τ rest frame to the Lab
frame leads to

sμL ¼
�jk0j
mτ

;
Eτk0

mτjk0j
�
; ð12Þ

but leaves the perpendicular (sμP) and transverse (sμT) spin
four-vectors unchanged. These transformed sμa can be used
to compute the polarization components Pa in the Lab
frame, as shown in Appendix C.
Taking the three unit vectors (nT , nP, nL) as the Cartesian

basis (nx, ny, nz) in the τ rest frame, we write
P

aðpd ·
saÞPa in Eq. (9) as

X
a

ðpd · saÞPa ¼ −jpdjðPT sin θd cosϕd

þ PP sin θd sinϕd þ PL cos θdÞ; ð13Þ

where θd and ϕd denote the polar and azimuthal angles of
pd in this frame. Now integrating over jpdj in Eq. (9), we
obtain

d3σd
dq2dΩd

¼ Bd

4π

dσs
dq2

½gd þ gdDðPTðq2Þ sin θd cosϕd

þ PPðq2Þ sin θd sinϕd þ PLðq2Þ cos θdÞ�; ð14Þ

where

gπ;ρ ¼ 1; gπ;ρD ¼ απ;ρ; ð15Þ

and

gl ¼ 2

fðyÞ
Z

1þy2

2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4y2

q
½xð3 − 2xÞ − y2ð4 − 3xÞ�dx;

glD ¼ 2

fðyÞ
Z

1þy2

2y
ðx2 − 4y2Þ½1þ 3y2 − 2x�dx: ð16Þ

One can easily verify gl ¼ 1 for l ¼ e, μ.
From Eq. (14), it is easy to extract the Pa in terms of the

polar θd and azimuthal ϕd asymmetries. For instance, upon
integration on ϕd, one obtains

d2σd
dq2d cos θd

¼ Bd

2

dσs
dq2

½gd þ gdDPLðq2Þ cos θd�; ð17Þ

based on which PL is given by

PL¼
2gd

gdD

R
1
0 dcosθd

d2σ
dq2dcosθd

−
R
0
−1dcosθd

d2σ
dq2dcosθdR

1
0 dcosθd

d2σ
dq2dcosθd

þR
0
−1dcosθd

d2σ
dq2dcosθd

: ð18Þ

Similarly, integrating over cos θd yields

d2σd
dq2dϕd

¼ Bd

2π

dσs
dq2

�
gd þ π

4
gdDðPTðq2Þ cosϕd

þ PPðq2Þ sinϕdÞ
�
: ð19Þ

One can then extract the PP and PT , respectively, as

PP ¼ 2gd

gdD

R
π
0 dϕd

d2σ
dq2dϕd

−
R
2π
π dϕd

d2σ
dq2dϕdR

π
0 dϕd

d2σ
dq2dϕd

þ R
2π
π dϕd

d2σ
dq2dϕd

; ð20Þ

PT ¼ 2gd

gdD

R π
2

−π
2
dϕd

d2σ
dq2dϕd

−
R 3π

2
π
2
dϕd

d2σ
dq2dϕdR π

2

−π
2
dϕd

d2σ
dq2dϕd

þ R 3π
2

π
2
dϕd

d2σ
dq2dϕd

: ð21Þ

Clearly such an extraction scheme relies on the
reconstruction of the τ rest frame, which in turn depends
on detection of the τ momentum. For the QE scattering in
this work, we expect that the τ three-momentum can be
determined by detecting the Λc momentum, contrary to the
B-hadron semitauonic decays [60–76], the (anti-)neutrino-
nucleus inclusive scattering (ντðν̄τÞAZ → τ∓X) [77,78], or
the electron-ion inclusive collision (ep → τX) [79,80],
in which the τ three-momentum cannot be determined
precisely.
Finally, for the convenience of later discussions, we also

integrate over Ωd in Eq. (14) and get

dσd
dq2

¼ Bd
dσs
dq2

¼ BdC
32πFEmp

; ð22Þ

where the factor gd has been removed due to gd ¼ 1.
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D. Form factors and kinematics
of the scattering process

The spin density matrix ρD is constructed out of the
leptonic and hadronic matrix elements, i.e., LL;R

a and HL;R
a

with α ¼ S, V, T, as shown in Eq. (A29). The former can be
calculated straightforwardly, while the latter shall turn to its
complex conjugate [21,59,81,82], which are parametrized
by the Λc → N transition form factors [83–85]. Since a
scattering process generally occupies a different kinematic
range (q2 < 0) from that of a decay (q2 > 0), theoretical
analyses of the scattering process require an extrapolation
of the form factors to negative q2. Thus, the form-factor
parametrizations suitable for our purpose must be analytic
in the proper q2 range.
In our previous analyses of the τ polarizations in the

ντn → τ−Λc scattering process [59], we considered several
schemes that meet the selection criterion and have been
utilized to parametrize the Λc → N form factors by various
models. For instance, the dipole parametrization scheme,
employed within the MIT bag model (MBM) [86,87] and
the nonrelativistic quark model (NRQM) [88], and the
double-pole scheme in the relativistic constituent quark
model (RCQM) [89,90]. However, only the form factors
associated with the matrix element hNjūγμPLcjΛci were
calculated in these models. The primary scheme we took
was initially proposed to parametrize the B → π vector
form factor [91], and has been used in the LQCD
calculation of the Λc → N transition form factors [84].
Contrary to other model evaluations, the LQCD calculation
not only covers all the form factors, but also provides an
error estimation. Thus, we will adopt the latest LQCD
results [84] throughout this work, too. For more details
about the form factors in these different models, we refer
the reader to Refs. [21,59,81].
Extrapolating the form factors to positive q2 raises

ambiguity about the form factors, which in turn induces
theoretical uncertainties in predictions. Indeed, model
calculations of the N → Λc form factors can significantly
affect the predictions ofΛc weak production in neutrino QE
scattering processes [81,92] and of the τ polarizations in the
scattering ντn → τ−Λc [59]. Worse, the uncertainties
induced by using the different schemes even dwarf that
from the error propagation of the form factors [59,81].
Thus, we will also analyze the τ polarizations in the e−p →
τ−Λc scattering process in terms of the form factors
calculated within the models MBM, NRQM, RCQM,
and LQCD in various NP scenarios, and examine if the
same observation also applies to this process.
Let us now turn to the kinematics of the scattering

process e−p → Λcτ
−, in which the q2 is bounded by [21]

α − E
ffiffiffi
λ

p

mp þ 2E
≤ q2 ≤

αþ E
ffiffiffi
λ

p

mp þ 2E
; ð23Þ

where

α≡ Eðm2
Λc

−m2
p þm2

τ − 2mpEÞ þmpm2
τ ;

λ≡m4
Λc

þ ðm2
p þ 2mpE −m2

τÞ2
− 2m2

Λc
ðm2

p þ 2mpEþm2
τÞ:

Note that the electron mass has been ignored due to
me=E ≪ 1. The condition of Eq. (23) indicates that the
electron beam energy E determines the maximal and
minimal values of Q2 (Q2 ¼ −q2), which, in turn, implies
that any constraints on Q2

max and Q2
min restrict the E

selection. For instance, condition Q2
max ¼ Q2

min indicates
a minimal requirement for E (E≳ 8.33 GeV); this can also
be visualized in Fig. 1 by noting the intersection point of
the red and green curves that represent the E −Q2

max and
E −Q2

min relations, respectively. Besides these constraints,
we also consider the one from our theoretical framework.
Since our analyses are carried out in the framework of Leff
given by Eq. (1), to ensure the validity of our results, we
require Q2

max to not exceed Q2
b ¼ 16 GeV2 ≈m2

b. Such a
requirement, depicted by the blue line in Fig. 1, results in an
upper bound E≲ 13.41 GeV, provided that the observ-
ables one is interested in, such as the total cross section,
involve Q2

max. Otherwise, E is not bounded from above,
since one can always focus on the lower Q2 range, even
though a high Q2

max is available due to a high E.

III. PHENOMENOLOGY ANALYSES

A. Observable analyses

The factor C in Eq. (4) is connected to the unpolarized
differential cross section dσs of the scattering process
e−p → Λcτ

− [cf. Eq. (6)] through the following relation

6 8 10 12 14
0

5

10

15

20

FIG. 1. Criteria for selecting the electron beam energy E, where
the red (green) curve denotes the E-Q2

maxðminÞ relation given by

Eq. (23), and the blue line represents the condition Q2 ≤
16 GeV2 required by our theoretical framework. The yellow
range indicates the eligible E.
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2C ¼ jMj2 ¼ 1

v4
X

gαg�βAα−β; ð24Þ

where jMj2 is the amplitude squared without spin average
of the initial particles, and Aα−β with a subscript, e.g.,
VLL − VLR, represents the reduced amplitude squared that
is induced by the interference between the operators OLL

V
andOLR

V . Since all of the operators in Table I can contribute
to the scattering process, gα and g�β go through all the WCs.
We list in Table II all the non-zero Aα−β. Already, some

patterns emerge. First, Aα−β vanishes if induced by inter-
ference between two operators with their lepton currents of
opposite chiral properties, equivalently LL

α ðλÞLR�
β ðλÞ ¼ 0,

because the electron mass has been ignored due to
me=E ≪ 1. Second, all of the A are real, leading to
Aα−β ¼ Aβ−α. Third, ASLL−SLL is equal to ASLR−SLR .

Finally, simultaneously flipping the chiral properties of
the lepton and quark currents of two operators Oα and Oβ

yields the same reduced amplitude squared Aα−β, e.g.,
AVRR−VRL

¼ AVLL−VLR
. The latter two patterns arise due to

the chiral structures of the lepton and quark currents and the
form-factor paramertrization of the hadronic matrix ele-
ments. Based on these patterns, we only present one Aα−β
in Table II, if its duplicates appear.
Similar to C, Σa

P can be written as

2Σa
P ¼ 1

v4
X

gαg�βA
τ
α−β; ð25Þ

where the reduced amplitude squared Aτ
α−β contains the

polarization information of the τ, and shares the same
subscript with theAα−β. We list in Table III all the non-zero

TABLE II. Non-zero reduced amplitude squaredAα−β that contributes to the cross section of the scattering process
e−p → Λcτ

−. The subscript α − β, e.g., VLL − VLR, indicates AVLL−VLR
is induced by the interference between the

operators OLL
V and OLR

V .

ðgLLV Þ� ðgLRV Þ� ðgLLS Þ� ðgLRS Þ� ðgLLT Þ�

gLLV AVLL−VLL
AVLL−VLR

AVLL−SLL AVLL−SLR AVLL−TLL

gLRV AVLL−VLR
AVLR−VLR

AVLL−SLR AVLL−SLL AVLR−TLL

gLLS AVLL−SLL AVLL−SLR ASLL−SLL ASLL−SLR ASLL−TLL

gLRS AVLL−SLR AVLL−SLL ASLL−SLR ASLL−SLL ASLR−TLL

gLLT AVLL−TLL
AVLR−TLL

ASLL−TLL
ASLR−TLL

ATLL−TLL

ðgRRV Þ� ðgRLV Þ� ðgRRS Þ� ðgRLS Þ� ðgRRT Þ�

gRRV AVLL−VLL
AVLL−VLR

AVLL−SLL AVLL−SLR AVLL−TLL

gRLV AVLL−VLR
AVLR−VLR

AVLL−SLR AVLL−SLL AVLR−TLL

gRRS AVLL−SLL AVLL−SLR ASLL−SLL ASLL−SLR ASLL−TLL

gRLS AVLL−SLR AVLL−SLL ASLL−SLR ASLL−SLL ASLR−TLL

gRRT AVLL−TLL
AVLR−TLL

ASLL−TLL
ASLR−TLL

ATLL−TLL

TABLE III. Nonzero reduced amplitude squared Aτ
α−β that contains the polarization information of the lepton τ.

Note that it has the same subscript with the Aα−β.

ðgLLV Þ� ðgLRV Þ� ðgLLS Þ� ðgLRS Þ� ðgLLT Þ�

gLLV Aτ
VLL−VLL

Aτ
VLL−VLR

Aτ
VLL−SLL Aτ

VLL−SLR Aτ
VLL−TLL

gLRV Aτ
VLL−VLR

Aτ
VLR−VLR

Aτ
VLL−SLR Aτ

VLL−SLL Aτ
VLR−TLL

gLLS Aτ�
VLL−SLL Aτ�

VLL−SLR Aτ
SLL−SLL Aτ

SLL−SLR Aτ
SLL−TLL

gLRS Aτ�
VLL−SLR Aτ�

VLL−SLL Aτ
SLL−SLR Aτ

SLL−SLL Aτ
SLR−TLL

gLLT Aτ�
VLL−TLL

Aτ�
VLR−TLL

Aτ�
SLL−TLL

Aτ�
SLR−TLL

Aτ
TLL−TLL

ðgRRV Þ� ðgRLV Þ� ðgRRS Þ� ðgRLS Þ� ðgRRT Þ�

gRRV −Aτ
VLL−VLL

−Aτ
VLL−VLR

−Aτ�
VLL−SLL −Aτ�

VLL−SLR −Aτ�
VLL−TLL

gRLV −Aτ
VLL−VLR

−Aτ
VLR−VLR

−Aτ�
VLL−SLR −Aτ�

VLL−SLL −Aτ�
VLR−TLL

gRRS −Aτ
VLL−SLL −Aτ

VLL−SLR −Aτ
SLL−SLL −Aτ

SLL−SLR −Aτ�
SLL−TLL

gRLS −Aτ
VLL−SLR −Aτ

VLL−SLL −Aτ
SLL−SLR −Aτ

SLL−SLL −Aτ�
SLR−TLL

gRRT −Aτ
VLL−TLL

−Aτ
VLR−TLL

−Aτ
SLL−TLL

−Aτ
SLR−TLL

−Aτ
TLL−TLL
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Aτ
α−β. One can see that certain patterns emerging from the

Aα−β in Table II can apply to Aτ
α−β, too. For instance,A

τ
α−β

also vanishes if induced by interference between two
operators with their lepton currents of opposite chiral
properties, equivalently LL

α ðλÞLR�
β ðλ0Þ ¼ 0, due to the same

reason. Another example is that the relation Aτ
SLL−SLL ¼

Aτ
SLR−SLR also holds in this case.
Of course, distinct differences exist between the two

cases. First, instead of Aτ
α−β ¼ Aτ

β−α, Aτ
α−β ¼ Aτ�

β−α in
general for α ≠ β (one exception is when both the α and
β denote the vector operators). Such a difference arises
from the appearance of εfkgfk0gfsagfpg, which is always
accompanied by the imaginary unit i. Interestingly enough,
the very same term generates a non-zero PP provided that
all the WCs are complex. For α ¼ β, on the other hand,
Aτ

α−α remains real due to missing the εfkgfk0gfsagfpg. Based
on these arguments, one can see that PP vanishes in a pure-
vector scenario, i.e., only the vector operators OV are
activated. And it also vanishes if only one WC is turned on
in the Leff , i.e., all other WCs are set to zero. The second
difference is that, contrary to theAα−β case, simultaneously
flipping the chiral properties of the lepton and quark
currents of two operators Oα and Oβ now yields −Aτ

α−β,
e.g., Aτ

VRR−VRL
¼ −Aτ

VLL−VLR
.

With C and Σa
P given respectively in Eqs. (24) and (25),

the polarization components Pa are now formulated in
terms of the Aα−β and Aτ

α−β as well as the WCs. Since the
WCs have not been determined yet, it will be difficult to
explore the behavior of Pa in general with respect to the
kinematics Q2, the beam energy E, etc. However, if only
one operator Oα in Eq. (1) is activated at a time, the Pa
become independent of the WC gα. Immediately, PP in
these NP scenarios vanishes, as indicated by the patterns
arising in Tables II and III. In addition, PL;T in the NPs gLLV
and gRRV differ only by a minus sign; the same conclusion
also holds for the NP pairs (gLRV , gRLV ), (gLLS , gRRS ), (gLRS ,
gRLS ), and (gLLT , gRRT ). Besides the simple case above, the Pa

can also be independent of the WCs, if only OLL
S and OLR

S
(ORR

S andORL
S ) are activated simultaneously. To justify this

one can check the explicit expressions of the corresponding
Aα−β and Aτ

α−β in Appendixes B and C.
The behavior of Pa predicted above in the two simple

cases can also be justified graphically. Let us focus on the
first one and explore in Fig. 2 how the PL;T vary with
respect to the Q2 in various NP scenarios (note PP ¼ 0).
For a simple demonstration, we consider the beam energy
E ¼ 12 GeV as a benchmark. And since the PL;T induced
by the OLL

S and OLR
S (ORR

S and ORL
S ) are identical, only the

former are presented, as already argued in the second
simple case. Now one can clearly see that the sign of PL;T

indeed flips as one simultaneously flips the chiral proper-
ties of the lepton and quark currents of an operator—check
the solid and dashed curves in the same color. In addition,

the lepton τ produced in the NP gLRV (gRLV ) is almost fully
polarized along the longitudinal direction, as indicated by
the blue (dashed) curves. In the NP gLLS (gRRS ) denoted by
the red (dashed) curves, on the other hand, the τ is fully
polarized in the longitudinal direction only at the maximal
and minimal Q2; in the middle Q2 regions, say
Q2 ∈ ð5; 9Þ GeV2, it prefers being polarized transversely.
Finally, the PL;T in the NPs gLLV and gLLT (gRRV and gRRT )
display a roughly opposite pattern and, interestingly, the PL

in both scenarios becomes zero at Q2 ≃ 12 GeV2.
Finally, we explore the dependence of PL;T on the

electron beam energy E. Based on the observations made
in Fig. 2, we shall focus on the NPs gLLV , gLRV , gLLS , and gLLT .
As shown in Fig. 3, the PL (PT) in the NP gLRV remains þ1

(0) to a very good approximation in the whole allowed Q2

regions. Meanwhile, the PL (PT) in the NP gLLS at the
corresponding Q2

min and Q2
max remains þ1 (0) for E ¼ 9,

12 GeV; this pattern would also apply to the case of E ¼
15 GeV if its correspondingQ2

max were not excluded by our
theoretical framework. On the other hand, the PT in the
middle Q2 regions becomes more favorite than the PL for
the τ as E increases (note PL ¼ 0 and PT ¼ −1 atQ2 ≃ 7.5,
12.5 GeV2 for E ¼ 15 GeV). As for the NPs gLLV and gLLT ,

FIG. 2. Variations of the polarization PL and PT with respect to
Q2 in different NP scenarios, where we have set the electron beam
energy at E ¼ 12 GeV.
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both the minimal and maximal values of the PL and the
minimum of the PT change vastly as E increases, but
the roughly opposite pattern between the two NP cases
remains.

B. NP model identification

We considered in Ref. [82] the low-energy polarized
scattering process e−p → e−Λc, and demonstrated in a
model-independent way that 15 NP scenarios constructed
only with the vector operators OV can be effectively
disentangled from each other by measuring 4 spin asym-
metries Ae

L, A
p
L, A

ep
L3, and Aep

L6. The key ingredients are the
longitudinal polarized electron beam and proton target. In
this subsection, we will also define 15 NP scenarios in a
similar way, and show that they can be distinguished from
each other by using the longitudinal polarized electron
beam and by measuring the PT of the τ.
To begin with, let us introduce the new 15 NP scenarios,

which are constructed with the 4 vector operators OLL
V ,

OLR
V ,ORL

V , andORR
V , as well as their possible combinations:

(1) cases with one vector operator: (I) OLL
V , (II) OLR

V ,
(III) ORL

V , and (IV) ORR
V ;

(2) cases with two vector operators: (V) OLL
V and OLR

V ,
(VI) OLL

V and ORL
V , (VII) OLL

V and ORR
V , (VIII) OLR

V
andORL

V , (IX)OLR
V andORR

V , and (X)ORL
V andORR

V ;
(3) cases with three vector operators: (XI) OLL

V , OLR
V ,

and ORL
V , (XII) OLL

V , OLR
V , and ORR

V , (XIII) OLL
V ,

ORL
V , and ORR

V , and (XIV) OLR
V , ORL

V , and ORR
V ;

(4) cases with four vector operators: (XV) OLL
V , OLR

V ,
ORL

V , and ORR
V .

And we assume no scalar and tensor operators are
activated.

For a simple demonstration, we once again consider the
benchmark beam energy E ¼ 12 GeV. Supposing the
scattering experiment is run twice with the electron beam
left- (eL) and right-handed (eR) polarized accordingly, we
collect the complete results for the cases I–XV in Table IV.
And for the sake of simplicity, we focus on Q2 ≃ 6 GeV2,
so that PT ≃ 0.5ð0Þ for the NP scenario gLLV (gLRV ), as shown
in Fig. 2. The constant c, depending on jgLLV j2, jgLRV j2, and
Re½gLLV gLR�V �, is expected to be away from 0 and 0.5 in
general. Now based on their results of PT with eL and eR,
those NP scenarios can be divided into nine groups: {II, III,
VIII}, {I, VI}, {V, XI}, {IV, IX}, {X, XIV}, {VII}, {XII},
{XIII}, and {XV}. Already, the 4 NP scenarios listed
accordingly in the last 4 groups can be distinguished from

FIG. 3. The polarization PL;T in various NP scenarios with three different electron beam energies. Note that the NP scenarios with
right-handed lepton current are not presented and neither is the NP gLRS . Also only the PL;T within the kinematic range
Q2 ∈ ½Q2

min; 16 GeV2� are presented for E ¼ 15 GeV.

TABLE IV. The PT predicated in the cases I–XV with the
electron beam left- (eL) and right-handed (eR) polarized, where c
is expected to be away from 0 and 0.5 in general; see text for
details.

I II III IV V

PTðeLÞ 0.5 0 0 0 c
PTðeRÞ 0 0 0 −0.5 0

VI VII VIII IX X

PTðeLÞ 0.5 0.5 0 0 0
PTðeRÞ 0 −0.5 0 −0.5 −c

XI XII XIII XIV XV

PTðeLÞ c c 0.5 0 c
PTðeRÞ 0 −0.5 −c −c −c
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each other and the rest of the NP models. To further
disentangle the remaining 11 cases, one can simply check
the events of the scattering process for the two experiments.
Take the first group {II, III, VIII} for an illustration. If one
observes events with the eL beam, while none with the eR
beam, the NP scenario is the case II; if the observation is
completely opposite, it belongs to the case III; if one
observe events in both times, it shall be the case VIII. In this
way, the NP scenarios II, III, and VIII are disentangled.
Following the same procedure, one can also disentangle the
rest 8 cases.
Let us conclude this subsection by making the following

comment. In Ref. [82], seven LQ models S1, R2, S3, U3,
Ṽ2, Ũ1 and V2 were disentangled by using the polarized
scattering process e−p → e−Λc; additional processes are
needed to further distinguish S3 from U3, since they yield
the same effective operator OLL

V . To achieve this goal, the
scalar and tensor contributions in the LQ models S1 and R2

were ignored, which was a reasonable assumption, since
the WCs of the scalar and tensor operators are closed
related in the two LQ models and the former are stringently
constrained by the leptonic D-meson decays [21,93]. For
the WCs of the Leff in Eq. (1), on the other hand, none of
them has been constrained more stringently than the others,
as to be shown in Sec. IV. Thus it will be more involved to
fully disentangle the LQ models. Nonetheless, the LQ
models U3 (S3), Ṽ2, Ũ1 and V2 are already distinguished
through the identification mechanism, since they corre-
spond to the cases I, II, IV, and III, respectively. Moreover,
the scalar LQ models S1 and R2 can be disentangled from
the others, because they generate a nonzero PP—induced

by the interference among the vector, scalar, and tensor
operators—whereas the others do not.

C. Impacts from the form factors

As mentioned in Sec. II D, the primary results of the
form factors we adopt are from the LQCD calculations,
since they provide us with an error estimation [84]. Yet our
calculation has only involved the central values of these
inputs so far. Given that the uncertainties of the form factors
can affect the theoretical predictions significantly [59,81],
they should be taken into account in the analyses of thiswork,
too. In addition, the ambiguity arising in extrapolating the
form factors to positive q2 with different parametrization
schemes can have a huge impact on theoretical predictions
[59,81,92]; this impact can even dwarf the one induced by the
error propagation of the form-factor uncertainties. Since our
analysis is based on the same extrapolation, we should also
examine if the same observation applies to the Pa in various
NP scenarios in this work.
As a simple illustration, let us focus again on the first

simple case, i.e., only one WC is activated at a time. We
evaluate in Fig. 4 the PL;T with the form factors calculated
in LQCD (red), NRQM (blue), and RCQM (green),
respectively.3 And we also take account of the 1σ-level
statistical uncertainties of the form factors in the LQCD
case. Following the same argument made in Fig. 2, we only

FIG. 4. The polarization PL;T as a function of Q2, predicted with the form factors calculated in LQCD (red), NRQM (blue), and
RCQM (green), respectively. Note that the 1σ-level statistical uncertainties of the form factors in LQCD have been propagated to all the
observables, as denoted by the outer red regions. In addition, the PL;T denoted by the three colors overlap perfectly for the NP gLLS , while
for the NP gLLT only the LQCD results are presented.

3We do not present the results with the form factors calculated
in MBM, because both MBM and NRQM employ the dipole
form for the q2 dependence of the form factors [94,95] (see also
Refs. [59,81] for details).
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present the NP scenarios gLLV , gLRV , gLLS , and gLLT in this
figure. It can be seen that in the case of gLLV , the LQCD
always predicts the largest PL but the smallest PT , whereas
the situation is completely opposite in the RCQM. For the
NP gLRV , on the other hand, the RCQM predicts compatible
PL;T with the LQCD at the 1σ level, while the NRQM
produces the smallest PL but the largest PT . Contrary to the
two NP scenarios above, situation in the NP gLLS is much
simpler. Since both the PL and PT are independent of the
WC gLLS , all of the three models generate the same PL;T ; for
details of the PL;T in this case we refer the reader to
Appendix C. Finally, for the NP gLLT , only the LQCD results
are presented, since the relevant form factors have not been
calculated in other two models.
Despite the complicated behaviors of the PL;T calculated

with various form-factor parametrization schemes in the NP
scenarios, two overall observations can be made easily. The
first one is that the uncertainties of the PL;T from the error
propagation of the statistical uncertainties of the form
factors in the LQCD increase along with the Q2—these
uncertainties of the PL;T would become even larger if the
systematical ones were taken into account, too. Such a
pattern is closely related to the behaviors of the form factors
with respect to theQ2 [59]. The other observation is that the
uncertainties of the PL;T due to the different schemes
overwhelm the ones induced by the error propagation of the
form-factor uncertainties. Clearly, these two observations
are consist with the results of Ref. [59].
The uncertainties of the PL;T will certainly affect the

model identification in Sec. III B. We have shown that a
distinct difference between the predicted PT in the NPs gLLV
and gLRV at a certain Q2 is one of the key ingredients in the
success of NP model identification. Clearly, such a differ-
ence will be blurred when the uncertainties discussed above
are taken into account, as shown in Fig. 4. We note that the
largest possible PT in the NP gLRV (denoted by the blue
curve) exceeds the smallest one in the NP gLLV (denoted by
the lower, red dashed curve) at Q2 ≃ 5 GeV2, indicating
that the identification mechanism will fail in the Q2 >
5 GeV2 regions. Even if one focuses only on the LQCD
results, the mechanism will also fail at Q2 ≥ 10 GeV2,
since the largest possible PT in the NP gLRV (denoted by the
upper, red dashed curve) exceeds the smallest one in the NP
gLLV (denoted by the lower, red dashed curve) in this
regions. The situation will certainly becomes even tougher

for this mechanism if the systematical uncertainties of the
form factors are considered, too.

IV. PROSPECT AND CONSTRAINTS

We now evaluate the prospect for observing the process
e−p → Λcτ

−ð→ π−ντ; ρ−ντ;l−ν̄lντÞ in the framework of
the Leff . As mentioned in Sec. II B, this cascade process can
be broken down into the QE scattering e−p → Λcτ

− and the
successive decays τ− → π−ντ; ρ−ντ;l−ν̄lντ. Given that the
former is a cLFVprocess, the cascadeprocesswouldcertainly
suffer from low experimental statistics. To alleviate this
problem, we consider all the successive decays of the lepton
τ in this process and integrate over all thevariables inEq. (14);
in other words, we shall consider the total cross section.
We propose searching for the cascade process through a

fixed-target experiment, whose event rate is given by

dN
dt

¼ Lσ: ð26Þ

The luminosity L reads L ¼ ILρT , with I being the beam
intensity, and L and ρT denoting the length and the number
density of the proton target, respectively. The total cross
section σ is related to the σs, the unpolarized one of the QE
scattering process, through the relation σ ¼ P

d Bdσs, as
indicated by Eq. (22).
From Eq. (26), it is clear that to perform a concrete event-

rate estimation for the scattering experiment, we have to
choose a suitable experimental setup and assign proper
values to the WCs. For the former, we prefer the 12 GeV
CEBAF at JLab [27]—specifically, the proposed Solenoidal
Large Intensity Device (SoLID) [96], which is feasible to
study subthreshold J=ψ production from liquid hydrogen
[97] or deuteron [98] (all proton targets). We note that the
produced J=ψ is reconstructed through its decay into a lepton
pair (eþe−) in these experiments [97,98]. By analogy, we
expect (or assume) the produced Λc of the cascade process
can also be reconstructed through its decay products and the
visible decay products (ρ; π;l) of the τ can bedetected. Thus,
we choose the same experimental setup as Ref. [98], i.e., the
12 GeVelectron beam with intensity up to 1.25 μA and the
liquid deuteron target, which together make up the overall
luminosity L ¼ 1.2 × 1037 cm−2 s−1. With the beam energy
E ¼ 12 GeV, the σ can be now written as

σ ¼
P

dBdG2
F

32πFEmp
f1.86ðjgLLV j2 þ jgRRV j2Þ þ 1.20ðjgLRV j2 þ jgRLV j2Þ þ 13.60ðjgLLT j2 þ jgRRT j2Þ

þ 0.51ðjgLLS j2 þ jgRRS j2 þ jgLRS j2 þ jgRLS j2Þ þ 1.01Re½gLLV gLL�S þ gRRV gRR�S þ gLRV gLR�S þ gRLV gRL�S �
þ 0.56Re½gLLV gLR�S þ gRRV gRL�S þ gLRV gLL�S þ gRLV gRR�S � þ 0.65Re½gLLS gLR�S þ gRRS gRL�S �
þ 0.90Re½gLLV gLR�V þ gRRV gRL�V � − 4.39Re½gLLV gLL�T þ gRRV gRR�T � þ 0.36Re½gLRV gLL�T þ gRLV gRR�T �
− 1.98Re½gLLS gLL�T þ gRRS gRR�T � þ 0.38Re½gLRS gLL�T þ gRLS gRR�T �g × 103 GeV6: ð27Þ
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For the general expression of the dσ=dq2, we refer the reader
to Appendix B.
We now turn to the values of theWCs. Thus far, available

constraints on the WCs are solely set by the analyses of
high-pT dilepton invariant mass tails in pp → τ�e∓ [19].
Taking account of the renormalization group (RG) running
effects neglected in Ref. [19],4 and assuming only one WC
contributes to the process at a time, we list in Table V the
upper bounds at the 90% confidence level (CL). For an
optimistic event-rate estimation, we take those upper
bounds for the WCs. Note that since OLR

S and ORL
S were

not included in the Leff in Ref. [19], no constraints on their
WCs gLRS and gRLS has been set yet.
Supposing a run time of 1 year (yr) and 100% detecting

efficiency of the visible final particles, we evaluate the
expected event rates in units of number per year (N/yr) for
the first simple case discussed in Sec. III A. The final
results are listed in Table VI. It can be seen that comparable
event rates can be expected for the NP gLL;RRV , gLL;RRS , and
gLL;RRT . Compared with the NP gLL;RRV , the predicted event
rate for the NP gLR;RLV , on the other hand, is slightly smaller,
though its WC takes the same value as the gLL;RRV . The
underlying reason is their different reduced amplitude
squared A, as explicitly shown in Eq. (27) and in
Eq. (B1) for general cases. In fact, this is an unique
character of the QE scattering process mediated by lu →
lð0Þc in our framework; one can see that the constraints on
theWCs gLL;RRV and gLR;RLV set by the charmed-hadron weak

decays and the high-pT dilepton invariant mass tails are
always the same (see, e.g., Refs. [21,82]).
The expected event rates in Table VI, though nonzero,

are still not big enough to extract the Pa of the τ with good
statistics. One way out is to consider the facilities with
higher luminosity. We note that even higher luminosity
(1038 to 1039 cm−2 s−1) can be achieved in Hall C at JLab in
the upcoming era [27]. On top of that, both liquid hydrogen
and deuterium targets and polarized electron beams are
available. If our proposed experiment can be conducted in
this hall, not only can the expected event rate be further
enhanced, extraction of the Pa and NP model identification
may become promising, too.
The event rates in Table VI are what one can expect in the

best scenario, because they are carried out with the upper
limits of theWCs. Therefore, it is still possible that no event
of the cascade process will be observed with our preferred
experimental setup in future. If such a worst-case scenario
indeed happens, our proposed scattering experiment can
still set competitive constraints on the WCs, as shown in
Table V, where we have also assumed a run time of 1 yr and
100% detecting efficiency of the visible final particles.
Surely more stringent constraints can be obtained if the
experiment can be conducted in the Hall C at JLab in the
future.
However, to fully pinpoint the WCs of the Leff in Eq. (1),

clearly more observables are needed. Recall that we had to
make the assumption, i.e., only one WC contributes at a
time, to get the constraints listed in Table V. Even if the
purely tauonic D-meson decays were measured in the
future, they would be still not enough, since they are only
sensitive to the axial and pseudo-scalar four-fermion
operators of the Leff . Since the polarization components
Pa of the τ involve all the effective operators of the Leff (see
Appendix C), they can partially fill the gap, though they are
more difficult to measure than the cross section, as already
indicated in Table VI. One may also consider the QE
scattering with both the electron beam and proton target
polarized, since polarized QE scattering processes can also
shed light on the NP Dirac structures [82].
Finally we would like point out that our predictions in

Tables V and VI can be weakened by the non-100%
detecting efficiency of the produced particles, such as the
Λc baryon, since it may be hard to keep track of all its
decay products. Thus a sophisticated detecting system for
these particles is crucial. Our results can also be affected
significantly by the uncertainties of the form factors. As
demonstrated in Sec. III C, they can exert huge influence
on the predictions of PL;T , which in turn affect the
efficiency of the NP model identification. By analogy,
they will certainly have a huge impact on the event-rate
estimation and the constraints on the WCs. All this calls
for a more concrete form factor parametrization scheme
and better control of the uncertainties in future LQCD
calculations.

TABLE V. Summary of the upper bounds on the WCs g from
the high-pT dilepton invariant mass tails (at 90% CL) and the
e−p → Λcτ

−ð→ π−ντ; ρ−ντ;l−ν̄lντÞ scattering processes in the
framework of the Leff by Eq. (1). Note that a common factor 10−3

has been factored out, and constraints on gLRS and gRLS have not
been set by the high-pT dilepton invariant mass tails [19].

Processes jgLL;RRV j jgLR;RLV j jgLL;RRS j jgLL;RRT j
pp → τ�e∓ [19] 5.27 5.27 11.1 2.11
e−p → Λcτ

−ð→ dντÞ 1.40 1.74 2.67 0.52

TABLE VI. Summary of the event-rate estimations for the
e−p → Λcτ

−ð→ π−ντ; ρ−ντ;l−ν̄lντÞ processes in the first simple
case discussed in Sec. III A. Note that we have set

P
d Bd ¼ 70%

and assumed no event is observed after 1 year’s running of the
experiment. And the event rate is given in units of N=yr.

gLL;RRV gLR;RLV gLL;RRS gLL;RRT

14.16 9.13 17.22 16.59

4Detailed discussion about the RG effects for the lu → l0c
process in the framework of the Leff can be found in Ref. [21].
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V. CONCLUSION

We have proposed searching for NP through the polari-
zation of the τ lepton in the QE scattering process
e−p → Λcτ

−. As analyzing modes for the τ polarization,
we have considered its four dominant decays τ− → π−ντ,
τ− → ρ−ντ, and τ− → l−ν̄lντ, and demonstrated that its
three polarization components Pa can be extracted from the
analyses of the kinematics of its visible decay products.
Working in the framework of a general low-energy

effective Lagrangian given by Eq. (1), we have first
performed a detailed analysis of the Pa and discovered
some interesting patterns. First, the Pa in a NP scenario
with only left-handed lepton currents differ by a minus sign
to that in another NP scenario with only right-handed
lepton currents, as shown in Tables II and III. Second, due
to missing the εfkgfk0gfsagfpg, the perpendicular component
PP vanishes in the simplest NP scenario, i.e., only one WC
is activated at a time, and in the pure-vector case, i.e., only
the vector operators OV are activated. Third, the Pa can be
independent of the WCs in certain NP scenarios, e.g., when
only OLL

S and OLR
S (ORR

S and ORL
S ) are activated simulta-

neously. Based on these patterns, we have then shown that
15 NP models constructed with only vector operators can
be distinguished from each other by using the longitudinal
polarized electron beam and measuring the transverse
component PT of the τ. We have also explored the impacts
of the form factors in various aspects and observed that
large uncertainties of the polarization observables arise
from using the different schemes and dwarf that from the
error propagation of the form factors, which is consist with
our previous result in Ref. [59], though it was focused on
the neutrino QE scattering process ντn → Λcτ

−.
We have finally performed a simple event-rate estimation

for the cascade process e−p → Λcτ
−ð→ π−ντ; ρ−ντ;

l−ν̄lντÞ in the simplest NP scenarios with our preferred
experimental setup and the upper boundary of the WCs
from the analyses of high-PT dilepton invariant mass tails.
Although promising event rate can be expected for this
process, it remains challenging to extract the Pa of the τ
with good statistics, which thus calls for an experimental
setup of even higher luminosity. Nonetheless, even in the
worst-case scenario—no signals is observed at all—we
have shown in a model-independent way that the low-
energy scattering process can provide competitive con-
straints, in comparison with the high-PT dilepton invariant
mass tails.
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APPENDIX A: CALCULATION OF THE SPIN
DENSITY MATRICES

1. τ decay density matrix

The helicity amplitude for the τ− → π−ντ decay is
given by

Mλðτ− → π−ντÞ ¼ i
ffiffiffi
2

p
GFV�

udfπp
μ
πūντ γμPLuτðλÞ; ðA1Þ

where fπ is the π decay constant and λ ¼ f1=2;−1=2g
characterizes the helicity of the τ. With the amplitude
above, we compute the spin density decay matrix of the τ in
this decay process [58],

ðρDπ Þλλ0 ¼ MλM�
λ0

¼ jGj2
4

½2m2
τðm2

τ −m2
πÞδλλ0 − 4m3

τðpπ · saÞσaλλ0 �;
ðA2Þ

where G ¼ i
ffiffiffi
2

p
GFV�

udfπ , σ
a (a ¼ 1, 2, 3) are the Pauli

matrices, and the subscript π in ρDπ indicates the τ− → π−ντ
decay channel. The spacelike four-vector saμ are the spin
vectors of the τ, which together with the k0=mτ form an
orthonormal set [58],

k0

mτ
· sa ¼ 0; sa · sa0 ¼ −δaa0 ;

X
a

saμ · saν ¼ −gμν þ
k0μk0ν
m2

τ
: ðA3Þ

Note that in computing the density matrix ρDπ in Eq (A2), as
well as the rest of density matrices for production and decay
of the τ, we always employ the Bouchiat-Michel formulas
[58,99,100]:

uλ0 ðpÞūλðpÞ ¼
1

2

�
δλλ0 þ

X
a

γ5saσaλλ0

�
ð=pþmÞ: ðA4Þ

The helicity amplitude for the τ− → ρ−ντ decay is
written as

M
λρ
λ ðτ− → ρ−ντÞ ¼ i

ffiffiffi
2

p
GFV�

udfρmρε
μ�
ρ ðλρÞūντ γμPLuτðλÞ;

ðA5Þ

where fρ and εμρðλρÞ represent the decay constant and
polarization vectors of the ρ meson. Similar to the previous
case, we also compute the spin density decay matrix of τ in
this case,

YAN, ZHANG, CHANG, and YANG PHYS. REV. D 109, 075025 (2024)

075025-12



ðρDρ Þλλ0 ¼
jGρj2
2

�
ðm2

τ −m2
ρÞðm2

τ þ 2m2
ρÞδλλ0

−
X
a

2ðm2
τ − 2m2

ρÞmτðpρ · saÞσaλλ0
�
; ðA6Þ

with Gρ ¼ i
ffiffiffi
2

p
GFV�

udfρ.
From Eqs. (A2) and (A6), one can easily obtain the decay

rates for these two channels, which read respectively as

Γπ
τ ¼ Γðτ− → π−ντÞ ¼

1

2

1

2mτ

jpπj
4mτπ

Tr½ρDπ �

¼ G2
Ff

2
πjVudj2m3

τ

16π

�
1 −

m2
π

m2
τ

�
2

; ðA7Þ

Γρ
τ ¼ Γðτ− → ρ−ντÞ ¼

1

2

1

2mτ

jpρj
4mτπ

Tr½ρDρ �

¼ G2
Ff

2
ρjVudj2mτ

16π
ðm2

τ þ 2m2
ρÞ
�
1 −

m2
ρ

m2
τ

�
2

: ðA8Þ

Based on these two decay rates, we can rewrite ρDπ;ρ
universally as

ðρDd Þλλ0 ¼ 16πmτΓd
τ

�
ηdδλλ0 −

X
a

χdðpd · saÞσaλλ0
�
; ðA9Þ

where

ηd ¼
m2

τ

m2
τ −m2

d

; χd ¼ αd
2m3

τ

ðm2
τ −m2

dÞ2
; ðA10Þ

with

αd¼π ¼ 1; αd¼ρ ¼
m2

τ − 2m2
ρ

m2
τ þ 2m2

ρ
; ðA11Þ

The helicity amplitude for the τ− → l−ν̄lντ decays are
given by

Mλðτ− → l−ν̄lντÞ ¼ i2
ffiffiffi
2

p
GFūνγμPLuτðλÞūlγμPLvν̄;

ðA12Þ

which leads to the spin density decay matrix of the τ

ðρDl Þλλ0 ¼ 64G2
F

�
ðpl · pντÞðk0 · pν̄Þδλλ0

−
X
a

mτσ
a
λλ0 ðpl · pντÞðsa · pν̄Þ

�
: ðA13Þ

After integrating over the phase space, we can get the decay
rate as

Γl
τ ¼ Γðτ− → l−ν̄lντÞ

¼ G2
Fm

5
τ

192π3
ð1 − 8y2 þ 8y6 − y8 − 24y4 ln yÞ

¼ G2
Fm

5
τ

192π3
fðyÞ; ðA14Þ

where y ¼ ml=mτ. Following the same procedure in the
previous two cases, we rewrite the ρDl as

ðρDl Þλλ0 ¼
64 × 192π3Γl

τ

m5
τfðyÞ

�
ðpl · pντÞðk0 · pν̄Þδλλ0

−
X
a

mτσ
a
λλ0 ðpl · pντÞðsa · pν̄Þ

�
: ðA15Þ

2. τ production density matrix

The amplitude M of the QE scattering process e−p →
Λcτ can be generically written as

M ¼ 1

v2
X
α

ðHL
αLL

α þHR
αLR

α Þ; ðA16Þ

with α ¼ S, V, T. The hadronic matrix elements HL;R
a are

defined, respectively, as

HL
S ¼ 1

2
hΛcðp0; s0Þj½ðgLLS þ gLRS Þc̄uþ ðgLRS − gLLS Þc̄γ5u�jpðp; sÞi; ðA17Þ

HR
S ¼ 1

2
hΛcðp0; s0Þj½ðgRRS þ gRLS Þc̄uþ ðgRRS − gRLS Þc̄γ5u�jpðp; sÞi; ðA18Þ

HLμ
V ¼ 1

2
hΛcðp0; s0Þj½ðgLLV þ gLRV Þc̄γμuþ ðgLRV − gLLV Þc̄γμγ5u�jpðp; sÞi; ðA19Þ

HRμ
V ¼ 1

2
hΛcðp0; s0Þj½ðgRRV þ gRLV Þc̄γμuþ ðgRRV − gRLV Þc̄γμγ5u�jpðp; sÞi; ðA20Þ
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HLμν
T ¼ gLLT hΛcðp0; s0Þjc̄σμνujpðp; sÞi; ðA21Þ

HRμν
T ¼ gRRT hΛcðp0; s0Þjc̄σμνujpðp; sÞi; ðA22Þ

which can be evaluated by using the form factors discussed
in Refs. [21,59,82]. Meanwhile, the leptonic matrix
element LL;R

a are correspondingly given by

LL
S ¼ ūðk0; λÞPLuðk; rÞ; ðA23Þ

LR
S ¼ ūðk0; λÞPRuðk; rÞ; ðA24Þ

LL
Vμ ¼ ūðk0; λÞγμPLuðk; rÞ; ðA25Þ

LR
Vμ ¼ ūðk0; λÞγμPRuðk; rÞ; ðA26Þ

LL
Tμν ¼ ūðk0; λÞσμνPLuðk; rÞ; ðA27Þ

LR
Tμν ¼ ūðk0; λÞσμνPRuðk; rÞ; ðA28Þ

where r and s (r0 and s0) denote the helicities of initial
(final) lepton and baryon, respectively. Based on the
amplitude M in Eq. (A16), we can write the τ production
spin density matrix as

ρPλ;λ0 ¼
X
r;s;s0

MðλÞM�ðλ0Þ

¼ 1

v4
X
r;s;s0

X
α;β

fHL
αHL�

β LL
α ðλÞLL�

β ðλ0Þ

þHR
αHR�

β LR
α ðλÞLR�

β ðλ0Þg: ðA29Þ

Note that in deriving the second equation in Eq. (A29), we
have used the following relation,

LL
α ðλÞLR�

β ðλ0Þ ¼ 0; ðA30Þ

which is valid due to the negligible electron mass in this
process. To obtain the concrete expression of ρPλ;λ0 , one has

to deal with LL;R
α ðλÞLL;R�

β ðλ0Þ, which can be accomplished
by using the Bouchiat-Michel formulas in Eq. (A4).
Finally, the density matrix ρP, as discussed in Sec. II B,

can be expanded in terms of Pauli matrices σa:

ρPλλ0 ¼ C
�
δλλ0 þ

X
a

σaλλ0Pa

�
; ðA31Þ

where Pa represent the three components of the τ polari-
zation vector P [59].

3. Phase space integration

We here provide some useful results and formulas to get
the dσP and dσD in Eqs. (5) and (7), respectively.

First, for the dσP the relevant phase space integration in
the Lab frame is given by [21]

Z
dΦðk; p;p0; k0Þ ¼

Z
d3p0

2EΛc
ð2πÞ3

d3k0

2E0ð2πÞ3
× ð2πÞ4δ4ðkþ p − p0 − k0Þ

¼
Z

1

ð2πÞ2
d3k0

2E0 δðp02 −m2
Λc
Þ

¼ dq2

16πEmp
; ðA32Þ

where q≡ k − k0 ¼ p0 − p, and the δ function in the
second step has been used to get rid of the angular
integration of k0.
Second, for the dσD with d ¼ π, ρ, the involved phase

space integration in the τ rest frame can be written as

Z
dΦðk0;pd; pνÞ ¼

Z
d3pd

2Edð2πÞ3
d3pν

2Eνð2πÞ3
× ð2πÞ4δ4ðk0 − pd − pνÞ

¼ 1

ð2πÞ2
Z

d3pd
2Ed

δðmτ − Ed − jpdjÞ
2jpdj

:

ðA33Þ

For the dσD with d ¼ l, on the other hand, the following
equation helps [74],

Z
d3pν
2jpνj

d3pν̄l
2jpν̄l j

δ4ðq0 − pν − pν̄lÞpα
νp

β
ν̄l

¼ πq02

24

�
gαβ þ 2

q0αq0β

q02

�
θðq02Þ; ðA34Þ

where q0 ¼ k0 − pl and θð…Þ denotes the step function.
Given x ¼ 2ðpl · k0Þ=m2

τ and y ¼ ml=mτ (see Sec. II C),
the step function θðq02Þ can be written as θð1þ y2 − xÞ. It
is also important to note that x ¼ 2mτEl=m2

τ ≥ 2ml=mτ ¼
2y in the τ rest frame; hence the second step function in the
scalar functions ηd¼l and χd¼l in Eq. (8).

APPENDIX B: AMPLITUDE SQUARED OF THE
QE SCATTERING PROCESS

The amplitude squared jMj2 of the QE scattering
process e−p → τ−Λc mediated by the Leff is connected
to the diagonal element of the density matrix ρP through the
relation jMj2 ¼ 2C, or equivalently jMj2 ¼ Tr½ρP� as it
should be. With all the operators ofLeff in Eq. (1) taken into
account, we here write the jMj2 as
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v4jMj2 ¼ ðjgLLV j2 þ jgRRV j2ÞAVLL−VLL
þ ðjgLRV j2 þ jgRLV j2ÞAVLR−VLR

þ ðjgLLT j2 þ jgRRT j2ÞATLL−TLL

þ ðjgLLS j2 þ jgRRS j2 þ jgLRS j2 þ jgRLS j2ÞASLL−SLL þ 2Re½gLLS gLR�S þ gRRS gRL�S �ASLL−SLR

þ 2Re½gLLV gLR�V þ gRRV gRL�V �AVLL−VLR
þ 2Re½gLLV gLL�S þ gRRV gRR�S þ gLRV gLR�S þ gRLV gRL�S �AVLL−SLL

þ 2Re½gLLV gLR�S þ gRRV gRL�S þ gLRV gLL�S þ gRLV gRR�S �AVLL−SLR þ 2Re½gLLV gLL�T þ gRRV gRR�T �AVLL−TLL

þ 2Re½gLRV gLL�T þ gRLV gRR�T �AVLR−TLL
þ 2Re½gLLS gLL�T þ gRRS gRR�T �ASLL−TLL

þ 2Re½gLRS gLL�T þ gRLS gRR�T �ASLR−TLL
; ðB1Þ

where the various patterns discovered in Table II have been taken into account. For the convenience of interested readers and
future discussions, we provide the explicit expressions of the A on the right-hand side of Eq. (B1) as

AVLL−VLL
¼ m2

τðm2
τ − q2Þ
2q4

½f20ðmΛc
−mpÞ2sþ þ g20ðmΛc

þmpÞ2s−� −
m2

τðm2
Λc

−m2
pÞ

q4

× ðf0fþ þ g0gþÞ½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ� þ
�
f2þðmΛc

þmpÞ2
2q4sþ

þ g2þðmΛc
−mpÞ2

2q4s−

�
f4m2

pq4ð4E2 −m2
τ þ q2Þ þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ

× ½8Empq2 þm2
τðm2

Λc
−m2

p − q2Þ�g þ
�
f2⊥
sþ

þ g2⊥
s−

�
f8E2m2

pq2 þ ðm2
τ − q2Þ

× ½2m2
Λc
q2 − 4Empðm2

p −m2
Λc

þ q2Þ − ðm2
Λc

−m2
pÞ2 þ 2m2

pm2
τ − q4�g

− 2f⊥g⊥½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ�; ðB2Þ

AVLR−VLR
¼ m2

τðm2
τ − q2Þ
2q4

½f20ðmΛc
−mpÞ2sþ þ g20ðmΛc

þmpÞ2s−� −
m2

τðm2
Λc

−m2
pÞ

q4

× ðf0fþ þ g0gþÞ½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ� þ
�
f2þðmΛc

þmpÞ2
2q4sþ

þ g2þðmΛc
−mpÞ2

2q4s−

�
f4m2

pq4ð4E2 −m2
τ þ q2Þ þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ

× ½8Empq2 þm2
τðm2

Λc
−m2

p − q2Þ�
	
þ
�
f2⊥
sþ

þ g2⊥
s−

�
f8E2m2

pq2 þ ðm2
τ − q2Þ

× ½2m2
Λc
q2 − 4Empðm2

p −m2
Λc

þ q2Þ − ðm2
Λc

−m2
pÞ2 þ 2m2

pm2
τ − q4�g

þ 2f⊥g⊥½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ�; ðB3Þ

ASLL−SLL ¼ m2
τ − q2

2m2
c

½f20ðmΛc
−mpÞ2sþ þ g20ðmΛc

þmpÞ2s−�; ðB4Þ
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ATLL−TLL
¼ −8

�
h2þ
sþ

þ h̃2þ
s−

�
f4m4

τm2
p þm4

Λc
ðq2 −m2

τÞ þ 2m2
Λc
ðm2

τ − q2Þð4Emp þm2
p

þ q2Þ þ q2ð4Emp þm2
p þ q2Þ2 −m2

τ ½m4
p þ 6m2

pq2 þ q4 þ 8Empðm2
p þ q2Þ�g

þ 16

�
h2⊥ðmΛc

þmpÞ2
sþq4

þ h̃2⊥ðmΛc
−mpÞ2

s−q4

�
f2mpð2EþmpÞq4ð2Emp þ q2Þ

−m2
τq2ðm2

p þ q2Þð4Emp þm2
p þ q2Þ þm4

Λc
m2

τðm2
τ − q2Þ þm4

τðm4
p þ q4Þ

− 2m2
Λc
ðm2

τ − q2Þ½m2
τðm2

p þ q2Þ − 2Empq2�g −
32m2

τðm2
Λc

−m2
pÞ

q4

× ½m2
Λc
ðm2

τ − q2Þ −m2
τðm2

p þ q2Þ þ q2ð4Emp þm2
p þ q2Þ�h⊥h̃⊥; ðB5Þ

AVLL−VLR
¼ m2

τðm2
τ − q2Þ
2q4

½f20ðmΛc
−mpÞ2sþ − g20ðmΛc

þmpÞ2s−� −
m2

τðm2
Λc

−m2
pÞ

q4

× ðf0fþ − g0gþÞ½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ� þ
�
f2þðmΛc

þmpÞ2
2q4sþ

−
g2þðmΛc

−mpÞ2
2q4s−

�
f4m2

pq4ð4E2 −m2
τ þ q2Þ þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ

× ½8Empq2 þm2
τðm2

Λc
−m2

p − q2Þ�g þ
�
f2⊥
sþ

−
g2⊥
s−

�
f8E2m2

pq2 þ ðm2
τ − q2Þ

× ½2m2
Λc
q2 − 4Empðm2

p −m2
Λc

þ q2Þ − ðm2
Λc

−m2
pÞ2 þ 2m2

pm2
τ − q4�g; ðB6Þ

AVLL−SLL ¼ mτðq2 −m2
τÞ

2mcq2
½f20ðmΛc

−mpÞ2sþ þ g20ðmΛc
þmpÞ2s−� þ

mτðm2
Λc

−m2
pÞ

2mcq2

× ðf0fþ þ g0gþÞ½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ�; ðB7Þ

AVLL−SLR ¼ mτðq2 −m2
τÞ

2mcq2
½f20ðmΛc

−mpÞ2sþ − g20ðmΛc
þmpÞ2s−� þ

mτðm2
Λc

−m2
pÞ

2mcq2

× ðf0fþ − g0gþÞ½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ�; ðB8Þ

AVLL−TLL
¼ −

2mτ

q2
f½m2

Λc
ðm2

τ − q2Þ −m2
τðm2

p þ q2Þ þ q2ð4Emp þm2
p þ q2Þ�½ðmΛc

−mpÞ

× ðf0hþ þ 2f⊥h̃⊥Þ þ ðmΛc
þmpÞðg0h̃þ þ 2g⊥h⊥Þ� − ðm2

τ − q2Þ½ðmΛc
þmpÞ

× s−ðfþhþ þ 2f⊥h⊥Þ þ ðmΛc
−mpÞsþðgþh̃þ þ 2g⊥h̃⊥Þ�g; ðB9Þ

AVLR−TLL
¼ −

2mτ

q2
f½m2

Λc
ðm2

τ − q2Þ −m2
τðm2

p þ q2Þ þ q2ð4Emp þm2
p þ q2Þ�½ðmΛc

−mpÞ

× ðf0hþ þ 2f⊥h̃⊥Þ − ðmΛc
þmpÞðg0h̃þ þ 2g⊥h⊥Þ� − ðm2

τ − q2Þ½ðmΛc
þmpÞ

× s−ðfþhþ þ 2f⊥h⊥Þ − ðmΛc
−mpÞsþðgþh̃þ þ 2g⊥h̃⊥Þ�g; ðB10Þ

ASLL−TLL
¼ 2

mc
½4Empq2 þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ�½f0hþðmΛc

−mpÞ þ g0h̃þðmΛc
þmpÞ�; ðB11Þ

ASLR−TLL
¼ 2

mc
½4Empq2 þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ�½f0hþðmΛc

−mpÞ − g0h̃þðmΛc
þmpÞ�; ðB12Þ

ASLL−SLR ¼ m2
τ − q2

2m2
c

½f20ðmΛc
−mpÞ2sþ − g20ðmΛc

þmpÞ2s−�: ðB13Þ
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where the various f, g, and h denote the form factors used to parametrize the hadronic matrix elements of the Λc → p
transition [83–85]. Note that s� ¼ ðmΛc

�mpÞ2 − q2, and mc denotes the c-quark running mass.

APPENDIX C: DETAILS OF THE POLARIZATION COMPONENTS OF THE τ

The components of the polarization vector P are defined in Sec. II B as

Pa ¼ −ðP · saÞ ¼
Σa
P

C
¼ 2Σa

P

jMj2 ; ðC1Þ

where sa denote the spin four-vectors in the Lab frame. Note that the denominator C has been replaced in the last step by
jMj2=2, whose explicit expression is given by Eq. (B1). In addition, the explicit expression of Σa

P read

2v4Σa
P ¼ ðjgLLV j2 − jgRRV j2ÞAτ

VLL−VLL
þ ðjgLRV j2 − jgRLV j2ÞAτ

VLR−VLR
þ ðjgLLT j2 − jgRRT j2ÞAτ

TLL−TLL

þ ðjgLLS j2 þ jgLRS j2 − jgRRS j2 − jgRLS j2ÞAτ
SLL−SLL þ 2Re½ðgLLV gLR�V − gRR�V gRLV Þ�Aτ

VLL−VLR

þ 2Re½ðgLLV gLL�S − gRR�V gRRS þ gLRV gLR�S − gRL�V gRLS ÞAτ
VLL−SLL �

þ 2Re½ðgLLV gLR�S þ gLRV gLL�S − gRR�V gRLS − gRL�V gRRS ÞAτ
VLL−SLR �

þ 2Re½ðgLLV gLL�T − gRR�V gRRT ÞAτ
VLL−TLL

� þ 2Re½ðgLRV gLL�T − gRL�V gRRT ÞAτ
VLR−TLL

�
þ 2Re½ðgLLS gLR�S − gRR�S gRLS ÞAτ

SLL−SLR � þ 2Re½ðgLLS gLL�T − gRR�S gRRT ÞAτ
SLL−TLL

�
þ 2Re½ðgLRS gLL�T − gRL�S gRRT ÞAτ

SLR−TLL
�; ðC2Þ

where the various patterns discovered in Table III have been also taken into account. The explicit expressions of all the Aτ

on the right-hand side of Eq. (C2) are presented as follows:

Aτ
VLL−VLL

¼ m3
τðsa · kÞ
q4

½f20ðmΛc
−mpÞ2sþ þ g20ðmΛc

þmpÞ2s−� −
mτðm2

Λc
−m2

pÞ
q4

× ðf0fþ þ g0gþÞfðsa · kÞ½4Empq2 þ ðm2
τ − q2Þð2m2

Λc
− 2m2

p − q2Þ�

−q2ðm2
τ − q2Þðsa · pþ sa · p0Þg þmτ

�
f2þðmΛc

þmpÞ2
q4sþ

þ g2þðmΛc
−mpÞ2

q4s−

�

× fðsa · kÞ½ðm2
Λc

−m2
pÞðm2

τðm2
Λc

−m2
p − q2Þ − q2ð2m2

Λc
− 4mpE − 2m2

p þ q2ÞÞ
þq4ð4m2

Λc
− q2Þ� − q2ðsa · pþ sa · p0Þ½4Empq2 þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ�g

− 4mτf⊥g⊥½ðsa · pÞðm2
τ − q2 − 2EmpÞ þ 2Empðsa · p0Þ�

þ 2mτ

�
f2⊥
sþ

þ g2⊥
s−

�
fðsa · pÞ½2Empðm2

Λc
−m2

p þ q2Þ þ ðm2
τ − q2Þðm2

Λc
þm2

p − q2Þ�

þ 2mpðsa · p0Þ½Eðm2
p −m2

Λc
þ q2Þ þmpðq2 −m2

τÞ�g; ðC3Þ
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Aτ
VLR−VLR

¼ m3
τðsa · kÞ
q4

½f20ðmΛc
−mpÞ2sþ þ g20ðmΛc

þmpÞ2s−� −
mτðm2

Λc
−m2

pÞ
q4

× ðf0fþ þ g0gþÞfðsa · kÞ½4Empq2 þ ðm2
τ − q2Þð2m2

Λc
− 2m2

p − q2Þ�

−q2ðm2
τ − q2Þðsa · pþ sa · p0Þg þmτ

�
f2þðmΛc

þmpÞ2
q4sþ

þ g2þðmΛc
−mpÞ2

q4s−

�

× fðsa · kÞ½ðm2
Λc

−m2
pÞðm2

τðm2
Λc

−m2
p − q2Þ − q2ð2m2

Λc
− 4mpE − 2m2

p þ q2ÞÞ
þq4ð4m2

Λc
− q2Þ� − q2ðsa · pþ sa · p0Þ½4Empq2 þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ�g

þ 4mτf⊥g⊥½ðsa · pÞðm2
τ − q2 − 2EmpÞ þ 2Empðsa · p0Þ�

þ 2mτ

�
f2⊥
sþ

þ g2⊥
s−

�
fðsa · pÞ½2Empðm2

Λc
−m2

p þ q2Þ þ ðm2
τ − q2Þðm2

Λc
þm2

p − q2Þ�

þ 2mpðsa · p0Þ½Eðm2
p −m2

Λc
þ q2Þ þmpðq2 −m2

τÞ�g; ðC4Þ

Aτ
SLL−SLL ¼ ASLL−SLL

2mτðk · saÞ
m2

τ − q2
; ðC5Þ

Aτ
TLL−TLL

¼ −16mτ

�
h2þ
sþ

þ h̃2þ
s−

�
f2ðsa · pÞ½2Empðm2

Λc
−m2

p þ q2Þ þ ðm2
τ − q2Þðm2

Λc
þm2

p − q2Þ�

þ 4mpðsa · p0Þ½Eðm2
p −m2

Λc
þ q2Þ þmpðq2 −m2

τÞ� þ ðsa · kÞsþs−g
− 16mτfðsa · kÞðm2

τ − q2Þs−sþ − ½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ�

× ½ðsa · pÞðm2
Λc

−m2
p þ q2Þ þ ðsa · p0Þðm2

p −m2
Λc

þ q2Þ�g
�ðmΛc

−mpÞ2h̃2⊥
q4s−

þ ðmΛc
þmpÞ2h2⊥
q4sþ

�
−
64mτðm2

Λc
−m2

pÞh⊥h̃⊥
q4

fðsa · pÞ½2Empq2 þ ðm2
Λc

−m2
pÞðm2

τ − q2Þ�

− ðsa · p0Þ½2Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ�g; ðC6Þ

Aτ
VLL−VLR

¼ m3
τðsa · kÞ
q4

½f20ðmΛc
−mpÞ2sþ − g20ðmΛc

þmpÞ2s−� −
mτðm2

Λc
−m2

pÞ
q4

× ðf0fþ − g0gþÞfðsa · kÞ½4Empq2 þ ðm2
τ − q2Þð2m2

Λc
− 2m2

p − q2Þ�

−q2ðm2
τ − q2Þðsa · pþ sa · p0Þg þmτ

�
f2þðmΛc

þmpÞ2
q4sþ

−
g2þðmΛc

−mpÞ2
q4s−

�

× fðsa · kÞ½ðm2
Λc

−m2
pÞðm2

τðm2
Λc

−m2
p − q2Þ − q2ð2m2

Λc
− 4mpE − 2m2

p þ q2ÞÞ
þq4ð4m2

Λc
− q2Þ� − q2ðsa · pþ sa · p0Þ½4Empq2 þ ðm2

τ − q2Þðm2
Λc

−m2
p − q2Þ�g

þ 2mτ

�
f2⊥
sþ

−
g2⊥
s−

�
fðsa · pÞ½2Empðm2

Λc
−m2

p þ q2Þ þ ðm2
τ − q2Þ

×ðm2
Λc

þm2
p − q2Þ� þ 2mpðsa · p0Þ½Eðm2

p −m2
Λc

þ q2Þ þmpðq2 −m2
τÞ�g; ðC7Þ

Aτ
VLL−SLL ¼ −

m2
τðsa · kÞ
mcq2

ff20ðmΛc
−mpÞ2sþ − g20ðmΛc

þmpÞ2s−g −
ðm2

Λc
−m2

pÞ
mcq2

× ðf0fþ þ g0gþÞfq2ðm2
τ − q2Þðsa · p0Þ þ ðsa · p − sa · p0Þ

× ½2Empq2 þ ðm2
Λc

−m2
pÞðm2

τ − q2Þ� þ 2iq2εfkg;fk0g;fsag;fpgg; ðC8Þ
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Aτ
VLL−SLR ¼ −

m2
τðsa · kÞ
mcq2

ff20ðmΛc
−mpÞ2sþ − g20ðmΛc

þmpÞ2s−g −
ðm2

Λc
−m2

pÞ
mcq2

× ðf0fþ − g0gþÞfq2ðm2
τ − q2Þðsa · p0Þ þ ðsa · p − sa · p0Þ

× ½2Empq2 þ ðm2
Λc

−m2
pÞðm2

τ − q2Þ� þ 2iq2εfkg;fk0g;fsag;fpgg; ðC9Þ

Aτ
VLL−TLL

¼ −4m2
τ

�ðmΛc
−mpÞf0hþ
q2

þ ðmΛc
þmpÞg0h̃þ
q2

�
½ðsa · pÞð2Emp −m2

τ þ q2Þ

−2ðEmpðsa · p0Þ − iεfkgfk0gfsagfpgÞ� þ ½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ�
× ½−2iεfkgfk0gfsagfpg þ ðsa · pÞðm2

Λc
−m2

p þm2
τ − 2EmpÞ þ ðsa · p0Þð2Emp −m2

Λc
þm2

p þ q2Þ�

×

�
4ðmΛc

þmpÞf⊥h⊥
sþq2

þ 4ðmΛc
−mpÞg⊥h̃⊥
s−q2

�
þ 4ðq2 −m2

τÞ

×

�ðmΛc
−mpÞf⊥h̃⊥
q2

þ ðmΛc
þmpÞg⊥h⊥
q2

�
½−2iεfkgfk0gfsagfpg þ ðsa · pÞðm2

Λc
−m2

p þm2
τ − 2EmpÞ

þðsa · p0Þð2Emp −m2
Λc

þm2
p þ q2Þ� þ 4f½4m2

pq2ðm2
τ − 2E2Þ

þ2Empðm2
τ − 3q2Þðm2

p −m2
Λc

þ q2Þ − q2s−sþ�ðsa · pþ sa · p0Þ − ðm2
τ þ q2Þ

× ½ðm2
τ − q2Þðm2

p −m2
Λc

þ q2Þ − 4Empq2�ðsa · pÞ þ 2i½4Empq2 þ ðm2
τ − q2Þ

× ðm2
Λc

−m2
p − q2Þ�εfkgfk0gfsagfpgg

�ðmΛc
þmpÞfþhþ
sþq2

þ ðmΛc
−mpÞgþh̃þ
s−q2

�
; ðC10Þ

Aτ
VLR−TLL

¼ −4m2
τ

�ðmΛc
−mpÞf0hþ
q2

−
ðmΛc

þmpÞg0h̃þ
q2

�
½ðsa · pÞð2Emp −m2

τ þ q2Þ

−2ðEmpðsa · p0Þ − iεfkgfk0gfsagfpgÞ� þ ½4Empq2 þ ðm2
τ − q2Þðm2

Λc
−m2

p − q2Þ�
× ½−2iεfkgfk0gfsagfpg þ ðsa · pÞðm2

Λc
−m2

p þm2
τ − 2EmpÞ þ ðsa · p0Þð2Emp −m2

Λc

þm2
p þ q2Þ�

�
4ðmΛc

þmpÞf⊥h⊥
sþq2

−
4ðmΛc

−mpÞg⊥h̃⊥
s−q2

�
þ 4ðq2 −m2

τÞ

×

�ðmΛc
−mpÞf⊥h̃⊥
q2

−
ðmΛc

þmpÞg⊥h⊥
q2

�
½−2iεfkgfk0gfsagfpg þ ðsa · pÞðm2

Λc
−m2

p

þm2
τ − 2EmpÞ þ ðsa · p0Þð2Emp −m2

Λc
þm2

p þ q2Þ� þ 4f½4m2
pq2ðm2

τ − 2E2Þ
þ2Empðm2

τ − 3q2Þðm2
p −m2

Λc
þ q2Þ − q2s−sþ�ðsa · pþ sa · p0Þ − ðm2

τ þ q2Þ
× ½ðm2

τ − q2Þðm2
p −m2

Λc
þ q2Þ − 4Empq2�ðsa · pÞ þ 2i½4Empq2 þ ðm2

τ − q2Þ

× ðm2
Λc

−m2
p − q2Þ�εfkgfk0gfsagfpgg

�ðmΛc
þmpÞfþhþ
sþq2

−
ðmΛc

−mpÞgþh̃þ
s−q2

�
; ðC11Þ

Aτ
SLL−TLL

¼ 4mτ

mc
½−2iεfkg;fk0g;fpg;fsag þ ðsa · pÞð2Emp −m2

τ þ q2Þ − 2Empðsa · p0Þ�

× ½f0hþðmΛc
−mpÞ þ g0h̃þðmΛc

þmpÞ�; ðC12Þ

Aτ
SLR−TLL

¼ 4mτ

mc
½−2iεfkg;fk0g;fpg;fsag þ ðsa · pÞð2Emp −m2

τ þ q2Þ − 2Empðsa · p0Þ�

× ½f0hþðmΛc
−mpÞ − g0h̃þðmΛc

þmpÞ�; ðC13Þ
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Aτ
SLL−SLR ¼ ASLL−SLR

2mτðk · saÞ
m2

τ − q2
; ðC14Þ

where εfkgfk0gfsagfpg ≡ εμναβkμk0νsαapβ, with ε being a
totally antisymmetric tensor. From the equations above,
it is clear that Aτ

VLL−VLR
does not contain the εfkgfk0gfsagfpg,

resulting in a vanishing PP. Interestingly enough, if only
gLLS and gLRS are activated simultaneously, the Pa are
independent of those two WCs, due to the relations
presented in Eqs. (C5) and (C14). Due to the same reason
[cf. Eq. (C2)], the same conclusion also holds, if only the
gRRS and gRLS are activated at the same time.
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