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We assess proton decay signatures in the simplest viable SUð5Þ model with regard to constraints
on parameters governing the Standard Model fermion mass spectrum. Experimental signals for all eight
two-body proton decay processes result from exchange of two gauge bosons, a single scalar leptoquark, or
their combination. Consequently, it enables us to delve into an in-depth anatomy of proton decay modes
and anticipate future signatures. Our findings dictate that observing a proton decay into p → π0eþ indicates
gauge boson mediation, with the potential for observation of p → η0eþ mode. Alternatively, if decay is
through the p → Kþν̄ process, it is mediated by a scalar leptoquark, possibly allowing the observation of
p → π0μþ. Detection of both p → π0eþ and p → Kþν̄ could enhance p → π0μþ through constructive
interference. The model predicts inaccessibility of p → πþν̄, p → η0μþ, p → K0eþ, and p → K0μþ,
regardless of the dominant mediation type, in the coming decades. In summary, through a comprehensive
analysis of proton decay signals, gauge coupling unification, and fermion masses and mixing, we both
accurately and precisely constrain the parameter space of the SUð5Þ model in question.
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I. INTRODUCTION

Grand unified theories [1–6] (GUTs) are theoretical
frameworks that seek to unify three fundamental forces of
the Standard Model (SM) of elementary particle physics—
the electromagnetic, weak, and strong interactions—into a
single one. Within these frameworks, the fundamental
constituents of matter, namely quarks and leptons, are also
partially or completely unified. One of the hallmark pre-
dictions of GUTs is thus that protons are not absolutely
stable. Proton decay is, therefore, a crucial signature of
GUTs that offers a potential avenue to test these theories,

even though the relevant energy scales are far beyond
the direct reach with current or any foreseeable experi-
mental capabilities.
The discovery of proton decay would be a groundbreak-

ing shift in the field of particle physics and an important
development in our understanding of the Universe. The
search for proton decay has consequently motivated develop-
ment of humongous detectors of unprecedented sensitivity,
such as Super-Kamiokande and its successor, Hyper-
Kamiokande (Hyper-K). It is worthwhile to point out that
other forthcoming large-volume neutrino experiments, spe-
cifically JUNO and DUNE, are expected to probe proton
decay lifetimes with an efficacy nearing that of the maximum
achievable Hyper-K reach.
Hyper-K is the next-generation neutrino observatory and

is scheduled to start observation in 2027. Remarkably, due
to its enhanced sensitivity and a larger detection volume,
Hyper-K will significantly improve the chances of observ-
ing proton decay with partial lifetimes as high as 1035 years
within a decade of operation. Owing to these advancements
on the experimental side, it is timely to conduct an in-depth
evaluation of the potential for observing proton decay in
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predictive and simple unified theories, which is the prime
objective of the current manuscript.
The Georgi-Glashow model [3] played a pivotal role in

the early development of GUTs. However, this model,
consisting of only an adjoint Higgs to break the GUT
symmetry and a fundamental Higgs to break the electro-
weak symmetry, is not compatible with experimental data
due to its simplicity. More precisely, within this model
(i) gauge couplings do not unify, (ii) one cannot accom-
modate neutrino masses, and (iii) there is a degeneracy
between the down-type quark and charged lepton masses
that contradicts the data.
It is, therefore, essential to extend the Georgi-Glashow

model to overcome the limitations listed above. While
making such an extension, it is desirable to keep the
model as simple as possible and, more importantly,
predictive. In light of this, one of the simplest and
realistic GUTs, based on SUð5Þ gauge symmetry, was
recently proposed in Ref. [7]. This minimal realization
utilizes only the first five lowest-lying representations of
dimensions 5, 10, 15, 24, and 35. It has a limited number
of model parameters that makes it a highly predictive
setup. Intriguingly, apart from two superheavy gauge
bosons, only a single scalar leptoquark participates in
proton decay mediation. This specific feature, coupled
with the intricate interplay of model parameters necessary
to replicate the experimentally observed masses and
mixings of charged fermions and neutrinos, yields pre-
dictions regarding both the unification scale and the rates
of various proton decay modes. The aim of this manu-
script is to thoroughly examine the relationship between
these decay modes and to arrive at robust predictions
poised for potential observation in the forthcoming
Hyper-K experiment.

To concisely highlight our findings, we present the
following summary. Our study infers that the decay of a
proton into p → π0eþ indicates gauge boson mediation,
which also opens a possibility of observing the p → η0eþ
decay. Conversely, a proton decay that follows the p →
Kþν̄ route suggests an exchange of a scalar leptoquark,
raising a potential to detect the p → π0μþ decay. The
concurrent observation of p → π0eþ and p → Kþν̄ decays
might amplify the chances of seeing the p → π0μþ decay
due to an interference effect. Our model forecasts that
decay modes p → πþν̄, p → η0μþ, p → K0eþ, and p →
K0μþ will remain out of reach in the coming decades,
regardless of the dominant decay mechanism.
Our manuscript is organized as follows. We present main

features of the model, such as the particle content inter-
actions and symmetry breaking intricacies, in Sec. II. Since
the SM fermion mass generation relies on three different
mechanisms for its viability, we discuss relevant subtleties
of these mechanisms in Sec. III. The proton decay
predictions, for both the gauge boson and scalar leptoquark
mediations, are discussed at length in Sec. IV. Predictions
of our model, with regard to gauge coupling unification and
proton decay signatures for all eight two-body decay
processes and both types of mediations, are presented in
Sec. V. We briefly conclude in Sec. VI.

II. MODEL

The model under consideration contains scalars (5H,
24H, and 35H), fermions (5̄Fi, 10Fi, and 15F þ 15F), and
gauge fields (24G), where i ¼ 1, 2, 3. The full scalar and
fermionic content of this SUð5Þ model, including its
decomposition under the SM gauge group, is summarized
in Table I.

TABLE I. Particle content of the model, its decomposition under the SM gauge group, and associated β-function
coefficients. i ¼ 1, 2, 3 represents a generation index.

Scalars Fermions

SUð5Þ Standard Model ðb3; b2; b1Þ SUð5Þ Standard Model ðb3; b2; b1Þ
Λ ¼ 5H Λ1ð1; 2;þ 1

2
Þ ð0; 1

6
; 1
10
Þ Fi ¼ 5̄Fi Lið1; 2;− 1

2
Þ ð0; 1; 3

5
Þ

Λ3ð3; 1;− 1
3
Þ ð1

6
; 0; 1

15
Þ dci ð3̄; 1;þ 1

3
Þ ð1; 0; 2

5
Þ

ϕ ¼ 24H ϕ0ð1; 1; 0Þ (0, 0, 0) Ti ¼ 10Fi Qið3; 2;þ 1
6
Þ ð2; 3; 1

5
Þ

ϕ1ð1; 3; 0Þ ð0; 1
3
; 0Þ uci ð3̄; 1;− 2

3
Þ ð1; 0; 8

5
Þ

ϕ3ð3; 2;− 5
6
Þ ð1

6
; 1
4
; 5
12
Þ eci ð1; 1;þ1Þ ð0; 0; 6

5
Þ

ϕ3̄ð3̄; 2;þ 5
6
Þ ð1

6
; 1
4
; 5
12
Þ Σ ¼ 15F Σ1ð1; 3;þ1Þ ð0; 4

3
; 6
5
Þ

ϕ8ð8; 1; 0Þ ð1
2
; 0; 0Þ Σ3ð3; 2;þ 1

6
Þ ð2

3
; 1; 1

15
Þ

Φ ¼ 35H Φ1ð1; 4;− 3
2
Þ ð0; 5

3
; 9
5
Þ Σ6ð6; 1;− 2

3
Þ ð5

3
; 0; 16

15
Þ

Φ3ð3̄; 3;− 2
3
Þ ð1

2
; 2; 4

5
Þ Σ̄ ¼ 15F Σ̄1ð1; 3;−1Þ ð0; 4

3
; 6
5
Þ

Φ6ð6̄; 2;þ 1
6
Þ ð5

3
; 1; 1

15
Þ Σ̄3ð3̄; 2;− 1

6
Þ ð2

3
; 1; 1

15
Þ

Φ10ð10; 1;þ1Þ ð5
2
; 0; 2Þ Σ̄6ð6̄; 1;þ 2

3
Þ ð5

3
; 0; 16

15
Þ
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The scalar potential of the model reads

LV ¼ −μ2ΛðΛ�
αΛαÞ þ λΛ0 ðΛ�

αΛαÞ2 þ μ1Λ�
αΛβϕα

β þ λΛ1 ðΛ�
αΛαÞðϕβ

γϕ
γ
βÞ þ λΛ2Λ�

αΛβϕγ
βϕ

α
γ

− μ2ϕðϕβ
γϕ

γ
βÞ þ μ2ϕ

α
βϕ

β
γϕ

γ
α þ λϕ0 ðϕβ

γϕ
γ
βÞ2 þ λϕ1ϕ

α
βϕ

β
γϕ

γ
δϕ

δ
α þ μ2ΦðΦ�αβγΦαβγÞ

þ λΦ0 ðΦ�αβγΦαβγÞ2 þ λΦ1 Φ�αβγΦαβδΦ�δρσΦρσγ þ λ0ðΦ�αβγΦαβγÞðϕδ
ρϕ

ρ
δÞ

þ λ00ðΦ�αβγΦαβγÞðΛ�
ρΛρÞ þ λ000Φ�αβγΦβγδΛδΛ�

α þ μ3Φ�αβγΦβγδϕ
δ
α

þ λ1Φ�αβγΦαδρϕ
δ
βϕ

ρ
γ þ λ2Φ�αβρΦαβδϕ

γ
ρϕδ

γ þ fλ0ΛαΛβΛγΦαβγ þ H:c:g; ð2:1Þ

where, again, Λ ¼ 5H, ϕ ¼ 24H, Φ ¼ 35H, and α, β, γ, δ, σ, ρ ¼ 1, 2, 3, 4, 5 are used to denote associated SUð5Þ indices.
The complete Yukawa part of the Lagrangian reads

LY ¼ fYu
ijT

αβ
i Tγδ

j Λρϵαβγδρ þ Yd
ijT

αβ
i FαjΛ�

β þ Ya
i ΣαβFαiΛ�

β þ Yb
i Σ̄βγFαiΦ�αβγ

þ Yc
i T

αβ
i Σ̄βγϕ

γ
α þ H:c:g þMΣΣ̄αβΣαβ þ yΣ̄αβΣβγϕα

γ ; ð2:2Þ

where we specify contractions in both the SUð5Þ and flavor
spaces. Yu and Yd are, in general, arbitrary 3 × 3 complex
Yukawa coupling matrices, Ya, Yb, and Yc are complex
Yukawa coupling vectors of length 3, whereas y is just a
real number. The relevant matrix elements are denoted with
Yu
ij, Y

d
ij, Y

a
i , Y

b
i , Y

c
i , and y, where, again, i, j ¼ 1, 2, 3

represent generation indices.
We note that it is possible, without loss of generality, to

use unitary field rotations of representations 5̄Fi and 10Fj to
go into a specific basis where Yd is a diagonal matrix with
real and positive entries. We will use this basis for
subsequent discussion and our numerical analysis. Also,
all physical interactions at the SM level that feature Yu are
always proportional to linear combinations Yu

ij þ Yu
ji that

are manifestly symmetric in the flavor space. One can thus
either redefine Yu to be a symmetric matrix and keep track
of factors of two associated with that redefinition or
continue to treat Yu as an arbitrary 3 × 3 complex matrix.
We opt for the latter approach.
The SUð5Þ symmetry of the model is broken directly

down to the SM gauge group SUð3Þ × SUð2Þ ×Uð1Þwhen
ϕ0 ∈ 24H acquires a specific vacuum expectation value
(VEV). The SM is subsequently broken at the electroweak
scale by a VEVof Λ1 ∈ 5H down to SUð3Þ ×Uð1Þem. This
two-step process can be schematically represented as

SUð5Þ ⟶h24Hi SUð3Þ × SUð2Þ ×Uð1Þ⟶h5Hi SUð3Þ × Uð1Þem:
ð2:3Þ

The relevant VEVs, for our study, are

h24Hi ¼ v24diagð−1;−1;−1; 3=2; 3=2Þ; ð2:4Þ

h5Hi ¼ ð 0 0 0 0 v5=
ffiffiffi
2

p ÞT; ð2:5Þ

where v5 ≈ 246 GeV reproduces the masses of the SM
gauge boson fields W�

μ and Zμ. The masses of the super-

heavy gauge bosons X�4=3
μ ∈ 24G and Y�1=3

μ ∈ 24G, with the
VEV of 24H given via Eq. (2.4), turn out to be

MX ¼ MY ¼
ffiffiffiffiffi
25

8

r
gGUTv24; ð2:6Þ

where gGUT is a gauge coupling constant at the unifica-
tion scale.
One especially convenient feature of SUð5Þ is that the

gauge coupling unification scale MGUT can be identified,
for all practical purposes, with the mass of proton decay
mediating gauge bosons X�4=3

μ and Y�1=3
μ . We can thus set

MX ¼ MY ≡MGUT when we discuss proton decay signa-
tures via gauge mediation. Also, our model has only one
scalar leptoquark Λ3 ∈ 5H of mass MΛ3

that mediates
proton decay.
Note that our discussion of the symmetry breaking

procedure does not include possible VEVof an electrically
neutral component of ϕ1 ∈ 24H that, if present, contributes
to masses of W�

μ gauge boson fields [8]. We also omit a
VEV of an electrically neutral component of Φ1 ∈ 35H in
our symmetry breaking discussion. These VEVs are
expected to be much smaller than the electroweak scale
and can thus be safely neglected from our symmetry
breaking discussion.
If SUð5Þ symmetry is exact, all the SM multiplets within

a given SUð5Þ representation are degenerate in mass.
This, of course, is no longer true after we spontaneously
break it. We accordingly find two particular relations
between the masses of the SM multiplets residing in
35H and 15F þ 15F that are especially relevant for the
gauge coupling unification study. Namely, an analysis of
the potential in Eq. (2.1), after the first stage of symmetry
breaking, stipulates that
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M2
Φ10

¼ M2
Φ1

− 3M2
Φ3

þ 3M2
Φ6
; ð2:7Þ

whereas the last two terms in Eq. (2.2) yield

MΣ6
¼ 2MΣ3

−MΣ1
: ð2:8Þ

Our one-loop level gauge coupling unification analysis
reveals that fields Φ10 and Φ1 need to be degenerate in
mass and heavy, i.e., of the order of 1011 GeV, whereas Φ3

and Φ6 also need to be degenerate in mass but light, i.e.,
of the order of 10 TeVor less, ifMGUT is to be at, or exceed,
existing experimental limits on partial proton decay life-
times. The mass spectrum of fields in Φ ¼ 35H that yields
the highest possible value of MGUT is thus MΦ3

¼ MΦ6
≪

MΦ10
¼ MΦ1

.
Also, under the assumption that parameters MΣ6

, MΣ3
,

and MΣ1
are all positive, our gauge coupling unifica-

tion study shows that fields Σ6, Σ3, and Σ1 want to be
almost perfectly mass-degenerate. This happens for the
following two reasons. First, Eq. (2.8) shows thatMΣ3

is an
arithmetic mean of MΣ1

and MΣ6
. Second, the only field

that has the correct β-function coefficients to increase
MGUT is Σ3, whereas Σ1 and Σ6 can only decrease it, if
they reside below MGUT. So, there are only two possible
nondegenerate scenarios in agreement with Eq. (2.8) that
one needs to consider to fully understand this issue. One
scenario is when MΣ1

≪ MΣ3
∼MΣ6

and the other is when
MΣ6

≪ MΣ3
∼MΣ1

. It is clear that in both instances the
GUT scale would be smaller that in the case when MΣ6

∼
MΣ3

∼MΣ1
since the lightest state, i.e., either Σ1 or Σ6,

would reduce the maximal allowed value of the GUT scale,
whereas the other two states cannot subsequently affect
MGUT since they would enter the gauge coupling running at
practically the same threshold, at some higher scale, and
would thus, together with the lightest state, form a full
SUð5Þmultiplet. A preferred scenario that yields the largest
MGUT value and generates unification of gauge coupling
constants turns out to be a scenario when MΣ6

is at most a
factor of 10 below MΣ3

, while MΣ3
is a factor 1=2 below

MΣ1
, all in accordance with Eq. (2.8).

The fact that Σ6, Σ3, and Σ1 want to be almost perfectly
mass-degenerate implies that their common mass scale, in
that regime, is not constrained by the gauge coupling
unification requirement, at all. It turns out, however, that
phenomenological viability of neutrino masses requires
MΣ1

to be of the order of MΦ1
, as we demonstrate later on.

We implement one-loop level gauge coupling unification
analysis in order to find the largest possible value of
unification scale MGUT and associated value of αGUT ¼
g2GUT=ð4πÞ for fixed values of MΦ1

and MΣ1
. Again, since

MΦ1
¼ MΦ10

and MΣ1
∼MΣ3

∼MΣ6
, the only parameters

we need to vary within our unification analysis are the
masses of Φ3;Φ6 ∈ 35H, ϕ1;ϕ8 ∈ 24H, and Λ3 ∈ 5H, while
the relevant SM input parameters are MZ ¼ 91.1876 GeV,

αSðMZÞ ¼ 0.1193� 0.0016, α−1ðMZÞ ¼ 127.906� 0.019,
and sin2 θWðMZÞ ¼ 0.23126� 0.00005 [9]. Since we also
require MΛ3

to be at, or above, 3 × 1011 GeV due to the
scalar mediated proton decay requirements [10], the only
masses one actually needs to vary in our approach areMΦ3

,
MΦ6

, Mϕ1
, and Mϕ8

.
The procedure we perform is as follows. First we

specify a lower limit on the masses of the new
physics states to establish a connection between the most
accessible scale of new physics and MGUT. This lower
limit is simply denoted with M ¼ minðMJÞ, where
Jð¼ Φ1;Φ3;Φ6;Φ10;Σ1;Σ3;Σ6;ϕ1;ϕ8;Λ3) is set at
1 TeV and 10 TeV. For example, the M ≥ 1 TeV scenario
simply means that the new physics states J cannot reside
below 1 TeV scale. Again, this lower limit, in practice,
only affects masses of Φ3, Φ6, ϕ1, and ϕ8 as all other fields
need to be much more massive.
We, next, produce a discrete set of values for MΦ1

and
MΣ1

, where we take log10ðMΦ1
=1 GeVÞ∈ ½10.2; 12.9� and

log10ðMΣ1
=1 GeVÞ∈ ½8.4; 14.2� with the lattice spacing of

0.1 in these log units in both directions within MΦ1
-MΣ1

plane. The particular choice of ranges for MΦ1
and MΣ1

is
dictated by a need to generate high enough MGUT to avoid
rapid proton decay and to simultaneously obtain viable
neutrino mass scale. For each of these ðMΦ1

;MΣ1
Þ points

we freely vary remainingMJ masses until we find maximal
possible MGUT. Note that our procedure, at every point in
MΦ1

-MΣ1
plane, generates αGUT, MGUT, and associated

mass spectrum. We also account for conditions given with
Eqs. (2.7) and (2.8) when generating MGUT, where we
discard all those points with MGUT ≤ 6 × 1015 GeV due to
gauge mediated proton decay requirements to save on
computing time in subsequent steps. We show in Fig. 2
contours of constant value of αGUT (blue dot-dashed lines)
andMGUT=ð1015 GeVÞ (red solid lines) that we obtain with
this procedure forM ≥ 1 TeV andM ≥ 10 TeV scenarios.
One thing to note is that the value of MGUT is indepen-

dent ofMΣ1
due to almost perfect mass-degeneracy of fields

in 15F þ 15F, in agreement with our previous discussion.
Also, to produce MGUT values, as given in Fig. 2, we need
to have four multiplets to be exactly at M scale. These
multiplets are Φ3;Φ6 ∈ 35H and ϕ1;ϕ8 ∈ 24H. If the mass
of any of these four multiplets is simply shifted up, the
unification scaleMGUT would go down. This means that we
are discussing the most conservative scenario with regard to
the proton decay signatures via gauge boson exchange.
Also, one can treat scale M, for all practical purposes, as a
geometric mean of masses MΦ3

, MΦ6
, Mϕ1

, and Mϕ8
when

one studies impact of its change on MGUT.
The second step of the numerical analysis is to run the

masses and mixing parameters of the SM charged fermions
from MZ to MGUT using the factual new physics mass
spectrum associated with every unification point that was
obtained in the previous step. The charged fermion mass
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renormalization group running is performed at the one-
loop level [11]. We separate the gauge coupling unification
study from the running of the SM charged fermion
parameters since the latter provides feedback to the
former only at the two-loop level, whereas the former
impacts the latter already at the one-loop level. A
summary of experimentally measured observables with
the associated 1σ uncertainties of both the charged and
neutral fermion sectors at low-energy scale is provided in
Table II. Due to a minimal impact of the running of
neutrino observables from MZ to MGUT, we opt to always
use corresponding low-energy scale values in our numeri-
cal analysis.

III. FERMION MASSES

The SM fermion mass generation, in our model, relies on
three different mechanisms for its viability. We discuss
relevant subtleties of these mechanisms in what follows.

A. Charged fermion sector

We first revisit the charged fermion mass generation
without inclusion of the vector-like fermion corrections
for clarity of exposition. Recall, ith generation of the
SM fermions, in the Georgi-Glashow SUð5Þ, is entirely
embedded in 5̄Fi and 10Fi [3]. For example, the first
generation is

5̄F1¼

0
BBBBBB@

dC1
dC2
dC3
e

−νe

1
CCCCCCA
; 10F1¼

1ffiffiffi
2

p

0
BBBBBB@

0 uC3 −uC2 u1 d1
−uC3 0 uC1 u2 d2
uC2 −uC1 0 u3 d3
−u1 −u2 −u3 0 eC

−d1 −d2 −d3 −eC 0

1
CCCCCCA
;

ð3:1Þ

where all the fields are left-handed.
Once the electroweak symmetry is broken via VEV of

Eq. (2.5), the first two terms in Eq. (2.2) generate the

following mass matrices for the up-type quarks, charged
leptons, and down-type quarks:

MU ¼
ffiffiffi
2

p
v5ðYu þ YuTÞ; ð3:2Þ

ME ¼ v5
2
YdT; ð3:3Þ

MD ¼ v5
2
Yd: ð3:4Þ

We again note that we work in a basis where Yd is a real
diagonal matrix. Clearly, Eqs. (3.3) and (3.4) predict that
me ¼ md, mμ ¼ ms, and mτ ¼ mb, where these mass
relations hold at the unification scale MGUT.
To generate experimentally observed mismatch between

the masses of the down-type quarks and charged leptons we
clearly need to introduce corrections to eitherME orMD, or
both. Required corrections, in our model, stem from
interactions of the SM charged fermions in 5̄Fi and 10Fj
with the vector-like fermions in 15F þ 15F [7,14–19].
Namely, once both the SUð5Þ and electroweak symmetries
are broken, fermion submultiplets with the same trans-
formation properties under the SUð3Þ ×Uð1Þem gauge
group that reside in 5̄Fi, 10Fj, 15F, and 15F will mix.
The mixing terms of interest arise from the third, fourth,
and fifth contractions of Eq. (2.2) and read

LY ⊃ −Ya
i

�
Σ0νi

h0ffiffiffi
2

p þ ΣeCe−i
v5ffiffiffi
2

p þ ΣddCi
v5ffiffiffi
2

p
�

− Yb
i Σ̄0νi

Φ0
Reffiffiffi
2

p −
5v24
4

Yc
i ðdiΣ̄d þ uiΣ̄uÞ; ð3:5Þ

where we introduce the electric charge eigenstate fields
Σ0;ΣeC ∈Σ1ð1; 3; 1Þ and Σu;Σd ∈Σ3ð3; 2; 1=6Þ. More-
over, Φ0

Re denotes the real part of Φ1 ∈ 35H, whereas
h0 ∈Λ1 ∈ 5H denotes what will primarily be the SM
Higgs boson. We stress that Φ0

Re and h0, strictly speaking,
are not exact mass eigenstates as these two states mix, as we

TABLE II. Experimental measurements related to charged fermions [12] and neutrinos for normal ordering [13]
with 1σ uncertainties.

mðMZÞ (GeV) Fit input θCKM;PMNS
ij & δCKM & Δm2

ij (eV
2) Fit input

mu=10−3 1.158� 0.392 sin θCKM12
0.2254� 0.00072

mc 0.627� 0.019 sin θCKM23 =10−2 4.207� 0.064
mt 171.675� 1.506 sin θCKM13 =10−3 3.640� 0.130
md=10−3 2.864� 0.286 δCKM 1.208� 0.054
ms=10−3 54.407� 2.873 Δm2

21=10
−5 7.425� 0.205

mb 2.854� 0.026 Δm2
3l=10

−3 2.515� 0.028
me=10−3 0.486576 sin2 θPMNS

12 =10−1 3.045� 0.125
mμ 0.102719 sin2 θPMNS

23
0.554� 0.021

mτ 1.74618 sin2 θPMNS
13 =10−2 2.224� 0.065
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discuss later. The masses of associated linear combinations
of Φ0

Re and h0 will subsequently be denoted with MΦ1
and

Mh, where MΦ1
≫ Mh. Also, since MΣ1

needs to be of the
order of MΦ1

that is heavy and MΣ1
≈MΣ3

≈MΣ6
, we can

safely neglect any mass splitting between fermions Σ0 and
ΣeC or Σu and Σd that is induced through the mixing with
the SM fermions.
Finally, Eqs. (3.2)–(3.5), when put together, yield 4 × 4

mass matrices for the charged fermions that read

LY ⊃ ð ui Σu Þ
 ffiffiffi

2
p

v5ðYu
ij þ Yu

jiÞ − 5v24
4
Yc
i

0 MΣ3

! 
uCj

Σ̄u

!

þ ð di Σd Þ
 

1
2
v5Yd

ij − 5v24
4
Yc
i

1ffiffi
2

p v5Ya
j MΣ3

! 
dCj

Σ̄d

!

þ ð ei Σ̄eC Þ
 

1
2
v5Yd

ji
1ffiffi
2

p v5Ya
i

0 MΣ1

! 
eCj

ΣeC

!
:

ð3:6Þ

Again, we are interested in a scenario where MΣi
≫ v5.

In this particular limit, the 3 × 3 mass matrices of the
charged fermions of the SM take the form

MU ¼ ðI þ ϵ2YcYc†Þ−1
2

ffiffiffi
2

p
v5ðYu þ YuTÞ; ð3:7Þ

ME ¼ 1

2
v5YdT; ð3:8Þ

MD ¼ ðI þ ϵ2YcYc†Þ−1
2

�
MT

E þ 1ffiffiffi
2

p v5ϵYcYa

�
; ð3:9Þ

where we define

ϵ ¼ 5

4

v24
MΣ3

: ð3:10Þ

Our numerical analysis reveals that I þ ϵ2YcYc† ≈ I to a
great accuracy. This guarantees that MU ¼ MT

U and makes
transparent that a mismatch between the down-type quark
and charged lepton masses originates solely from a single
rank-one matrix with elements proportional to the product
Yc
i Y

a
j . Also, a nice feature of this setup is that the values of

charged fermion masses directly determine the entries of
diagonal matrix Yd via Eq. (3.8).

B. Neutrino sector

Neutrino masses receive contributions at both the tree-
and one-loop levels [20,21]. However, in the viable
parameter space of our model, the tree-level contribution
to the neutrino masses can be completely neglected when
compared to the latter one. We, nevertheless, quote it for
completeness. It reads

ðMNÞtreeij ¼ −
λ0v45

4MΣ1
M2

Φ1

ðYa
i Y

b
j þ Yb

i Y
a
j Þ: ð3:11Þ

Equation (3.11) implies that the need to have rather heavy
Φ1, i.e.,MΦ1

∼ 1011 GeV, in order to unify gauge coupling
constants of the SM at high enough scale MGUT, does not
allow for large enough neutrino mass scale even for
electroweak scale MΣ1

.
The leading contribution to neutrino masses is of the

one-loop level topology and is shown in Fig. 1. (For other
radiative neutrino mass models within the SUð5Þ setup, see,
for example, Refs. [22–27].) A necessary ingredient to
generate nonzero masses for the neutrinos, as can be seen
from Fig. 1, is the very last term in Eq. (2.1) that leads to a
mixing between h0 ∈ 5H and a field Φ0

Re ∈ 35H. This term
reads

LV ⊃ λ0ΛαΛβΛγΦαβγ þ H:c: ⊃ 2 × λ0
v25
4
h0Φ0

Re; ð3:12Þ

where we explicitly show the SUð5Þ origin of the relevant
SM interaction.
From the above term, the mixing angle θ between h0 and

Φ0
Re is given by

sin 2θ ¼ λ0v25
M2

Φ1
−M2

h

; ð3:13Þ

where, again,MΦ1
andMh denote physical masses of linear

combinations of h0 ∈Λ1 ∈ 5H and Φ0
Re ∈Φ1 ∈ 35H. Here,

Mh is the mass of the SM Higgs boson. If we properly take
into account all the mixing and loop factors, we derive the
following neutrino mass formula:

ðMNÞloopij ¼ λ0v25
64π2

ðYa
i Y

b
j þ Yb

i Y
a
j Þ

MΣ1

M2
Φ1

−M2
h

×
�M2

Φ1
ln

M2
Σ1

M2
Φ1

M2
Σ1
−M2

Φ1

−
M2

h ln
M2

Σ1
M2

h

M2
Σ1
−M2

h

�
: ð3:14Þ

In the limit when MΦ1
;MΣ1

≫ Mh, we find

ðMNÞloopij ¼ m0ðYa
i Y

b
j þ Yb

i Y
a
j Þ; ð3:15Þ

FIG. 1. The Feynman diagrams of the leading order contribu-
tion toward Majorana neutrino masses at the SUð5Þ (left panel)
and the SM (right panel) levels.
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where we introduce dimensionful parameter m0 that sets
the neutrino mass scale. It reads

m0 ¼
λ0v25
64π2

MΣ1

M2
Σ1
−M2

Φ1

ln
M2

Σ1

M2
Φ1

: ð3:16Þ

The mass dependence of Eq. (3.16) clearly demonstrates
that it is possible to have satisfactorily large value ofm0 for
MΦ1

∼ 1011 GeV as long as MΣ1
≫ Mh.

We note that both the tree- and one-loop level contri-
butions toward neutrino mass matrix are proportional to
Ya
i Y

b
j þ Yb

i Y
a
j combination. This ensures that the lightest of

the neutrinos is a massless particle, which is consistent with
the current neutrino oscillation data. We can thus write

ðMNÞij ¼ m0ðYa
i Y

b
j þ Yb

i Y
a
j Þ ¼ ðNdiagð0; m2; m3ÞNTÞij;

ð3:17Þ

where N is a unitary matrix and m2 and m3 are neutrino
mass eigenstates. N can actually be written as

N ¼ diagðeiγ1 ; eiγ2 ; eiγ3ÞV�
PMNS; ð3:18Þ

where VPMNS is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) unitary mixing matrix with three mixing angles,
two Majorana phases, and one CP violating Dirac phase.
We can use results of Refs. [28,29] to obtain entries of Ya

and Yb from Eq. (3.17) as a function of N, m2, and m3.
Namely, we find, for the normal neutrino mass ordering
scenario, the following expressions for YaT and YbT :

YaT ¼ 1

ρ
ffiffiffi
2

p

0
B@

ir2N12 þ r3N13

ir2N22 þ r3N23

ir2N32 þ r3N33

1
CA;

YbT ¼ ρffiffiffi
2

p

0
B@

−ir2N12 þ r3N13

−ir2N22 þ r3N23

−ir2N32 þ r3N33

1
CA; ð3:19Þ

where r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m0

p
, r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3=m0

p
, and ρ is an

unknown parameter that accounts for the fact that the
matrix elements of Ya and Yb are always featured as
products Ya

i Y
b
j in Eq. (3.17). Since VPMNS has three phases,

i.e., one CP violating Dirac phase and two Majorana
phases, unitary matrix N has, all in all, six phases.
Hence in Eq. (3.19) we have six arbitrary phases. This
is consistent with the process of trading six real parameters
and six phases from Ya and Yb for three PMNS angles,
three neutrino masses, and six phases during the inversion
procedure.
We can use experimental input from neutrino sector to

directly constrain viable parameter space of the model.
Namely, since the neutrino mass scale parameter m0

depends solely on MΦ1
, MΣ1

, and λ0, we can establish a
part of parameter space in MΦ1

-MΣ1
plane where m0 is

simply too small to accommodate experimentally observed
neutrino mass-square differences with perturbative cou-
plings. Namely, if we demand that the dimensionless
couplings do not exceed value of one, we can exclude
part of parameter space with requirement that m0 ≤ m3=2.
This naive approach excludes parameter space to the right
of a green curve labeled with 1 in both panels of Fig. 2,
where we set jλ0j ¼ 1. To be precise, green curves in both
panels of Fig. 2 are contours of constant m0 in units offfiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
=2. For example, green curve labeled 10 can be

interpreted in two different ways. If, for example, we set
jλ0j ¼ 1, the Yukawa coupling product maxðjYa

i Y
b
j jÞ, along

that curve, needs to be 10−1. Or, if we demand that the
Yukawa couplings do not exceed value of one, the value of
jλ0j is 10−1 along green curve labeled with 10.
We can do a more accurate analysis with regard to

perturbativity of the Yukawa couplings in the neutrino
sector. Namely, since Ya and Yb entries, as given via
Eq. (3.19), are completely determined via six unknown
phases and λ0, we can vary these phases and demand that
both maxðjYa

i jÞ ≤ 1 and maxðjYb
i jÞ ≤ 1, where i ¼ 1, 2, 3,

to insure perturbativity for fixed values of MΦ1
, MΣ1

, and
jλ0j ¼ 1. If we do that, we find that the parameter space to
the right of the outermost dashed black curve in both panels
of Fig. 2 is ruled out for any choice of aforementioned six
phases. In other words, it is impossible to have perturbative
Yukawa couplings in the neutrino sector for any point in
MΦ1

-MΣ1
plane to the right of outermost dashed black

curve. Similarly, for any choice of these six phases we
always find perturbative solution to the left of the innermost
dashed black curve. Clearly, green curve labeled with 1 is a
good approximation of a more accurate numerical study.
The region between two dashed black curves represents a
region where one can have satisfactory numerical fit of
neutrino masses with perturbative Yukawa couplings but
only for very specific choices of six phases that enter Ya

and Yb via Eq. (3.19).

C. Fermion mass fit

The 3 × 3 mass matrices MU, ME, MD, and MN of the
SM fermions, as given in Eqs. (3.7)–(3.9) and (3.17),
respectively, can be diagonalized via

MU ¼ ULM
diag
U U†

R; ð3:20Þ

MD ¼ DLM
diag
D D†

R; ð3:21Þ

ME ¼ ELM
diag
E E†

R; ð3:22Þ

MN ¼ NMdiag
N NT; ð3:23Þ
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where UL, UR, DL, DR, EL, ER, and N are unitary mat-
rices that implement transition from flavor to mass-
eigenstate basis.
Our numerical study yields DL, DR, and N, as we

discuss in detail later on, whereas the features of the model
stipulate that

UL ¼ DLdiagð1; eiη1 ; eiη2ÞVT
CKMdiagðeiκ1 ; eiκ2 ; eiκ3Þ

≡DLDðηÞVT
CKMDðκÞ ð3:24Þ

UR ¼ U�
Ldiagðeiξ1 ; eiξ2 ; eiξ3Þ≡ U�

LDðξÞ; ð3:25Þ

EL ¼ I; ð3:26Þ

ER ¼ I; ð3:27Þ

where VCKM is the Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix, which contains one CP violating Dirac
phase δCKM. We introduce in Eqs. (3.24) and (3.25)
convenient notation for diagonal phase matrices DðηÞ,
DðκÞ, and DðξÞ. Note, also, that it is a symmetric nature
ofMU matrix that relatesUL andUR, as given in Eq. (3.25).
To perform numerical fit, we use charged lepton masses

atMGUT as an input to determine the diagonal matrix Yd via
Yd ¼ 2diagðme;mμ; mτÞ=v5. Since the down-type quark
mass matrix of Eq. (3.9) and the neutrino mass matrix of
Eq. (3.17) share a common Yukawa coupling row matrix
Ya, a combined fit of these two sectors is necessary. Our
numerical fit accordingly minimizes a χ2 function

χ2 ¼
X8
j¼1

�
Tj −Oj

Ej

�
2

; ð3:28Þ

where Tj, Oj, and Ej represent theoretical prediction,
measured central value, and experimental 1σ error for
the observable j, respectively. The index j runs over the
down-type quark masses and all five measured observables
in the neutrino sector.
We determine the Yukawa coupling matrices Ya, Yb, and

Yc by fitting them against three down-type quark masses,
two neutrino mass-squared differences, and three mixing
angles in the neutrino sector. It is important to note that the
CP-violating Dirac phase and the two Majorana phases in
the neutrino sector have not yet been experimentally
measured. These, together with the entries of DL and
DR, are actually an output of our fit.
We conduct a comprehensive scan over all viable

unification points presented in Fig. 2, imposing the con-
dition of perturbativity for the relevant couplings, i.e.,
maxðjYa

i jÞ;maxðjYb
i jÞ;maxðjYc

i jÞ; jλ0j ≤ 1. Additionally,
we employ the criterion χ2=n ≤ 1 to deem a fit as good,
where nð¼ 8Þ represents the number of fitted observables.
It is noteworthy that not all unification points that allow for
a numerically good fit to the fermion sector successfully
pass the proton decay test.
Our comprehensive numerical fit encompassing both

the down-type quark and neutrino sectors highlights a
limitation in accommodating the inverted neutrino mass
ordering within this model. Specifically, the hierarchical

FIG. 2. Viable parameter space of the model (shaded in gray)
for the M ≥ 1 TeV and M ≥ 10 TeV scenarios with contours of
constant values for MGUT=ð1015 GeVÞ (red solid lines), αGUT
(blue dot-dashed lines), and m0=ð

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
=2Þ (green solid lines).

For additional details, see the text.
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and diagonal nature of the down-type quark mass matrix is
dictated by the charged lepton Yukawa coupling matrix Yd.
Since the matrix elements ðMDÞij depend on a linear
combination of ðYdÞij and Yc

i Y
a
j , it becomes evident that

both Ya and Yc must manifestly be hierarchical row
matrices to yield a satisfactory fit to the data. However,
achieving this hierarchical row structure is untenable when
considering the inverted ordering of neutrino masses. In the
inverted scenario, the entries in the first row and the first
column of the neutrino mass matrix MN typically possess
comparable magnitudes, while the lower 2 × 2 block is
required to be somewhat smaller. Working in the mass
eigenstate basis for the charged leptons, this necessity
imposes a constraint that all entries in Ya must be of the
same order, contradicting the hierarchical arrangement
needed in the down-type quark sector. This tension arises
directly from the simplicity of our model, leading to the
prediction that neutrinos must exhibit the normal mass
ordering.
The fitting procedure, applied under the assumption of

the normal ordering of neutrino masses, enables numerical
determination of three unitary rotation matrices DL, DR,
and N, along with the Yukawa couplings for the charged
leptons and the down-type quarks. To comprehensively
calculate partial lifetimes for various proton decay modes
arising from both gauge boson and scalar mediations, it is
essential to have knowledge of the unitary matrices UL and
UR that diagonalize the up-type quark mass matrix and its
associated Yukawa couplings. A nice feature of our
approach is the ability to express both UL and UR in terms
of DL and VCKM, as specified in Eqs. (3.24) and (3.25),
along with eight additional phases.
In summary, the model accurately accommodates

charged lepton masses, up-type quark masses, and CKM
parameters. Additionally, we conduct a combined numeri-
cal fit for the neutrino mass parameters, down-type quark
masses, and PMNS parameters, recognizing their intrinsic
interdependence. A pivotal outcome of the fit for the proton
decay considerations lies in the unitary transformationsUL,
UR, DL, and DR, with the first two matrices featuring five
and three unknown phases, respectively, and numerical
determination of all Yukawa couplings of the model. There
are, all in all, eight additional phases that our fit cannot
determine, i.e., η1, η2, κ1, κ2, κ3, ξ1, ξ2, and ξ3, where, as we
show next, only η1 and η2 are relevant for the study of
proton decay signatures. This puts us in a perfect position to
produce an in-depth anatomy of proton decay signatures of
this model.

IV. PROTON DECAY

The main idea behind our proton decay analysis is to
accurately identify the most dominant channels for both
types of mediators that are present in our model and
compare associated predictions for partial lifetimes with

current experimental limits and future expectations based
on a ten-year period of data taking at Hyper-K. A summary
of the best experimental limits for all eight two-body proton
decay channels as well as expectations for future sensitiv-
ities at Hyper-K, if and when available, is accordingly
given in Table III. (JUNO Collaboration expects to reach
a limit of 9.6 × 1033 years for p → Kþν̄ after a ten-year
period of data taking [30].) We furthermore provide, in
what follows, analytic expressions for partial decay widths
to address phase dependence of our results. We do that
separately for the gauge boson and scalar leptoquark proton
decay mediations. Recall, relevant gauge bosons are
Xþ4=3
μ ; Yþ1=3

μ ∈ ð3̄; 2;þ5=6Þ∈ 24G with a common mass
MGUT, whereas scalar leptoquark is Λ3ð3; 1;−1=3Þ∈ 5H
with mass MΛ3

.

A. Proton decay via gauge bosons

To evaluate relevant decay widths we resort to a
formalism presented in Refs. [38,39]. The d ¼ 6 level
operators of interest are

OðeCα ; dβÞ ¼ k2cðeCα ; dβÞϵijkuCi γμujeCα γμdkβ; ð4:1Þ

Oðeα; dCβ Þ ¼ k2cðeα; dCβ ÞϵijkuCi γμujdCkβγμeα; ð4:2Þ

Oðνl; dα; dCβ Þ ¼ k2cðνl; dα; dCβ ÞϵijkuCi γμdjαdCkβγμνl; ð4:3Þ

where k2 ¼ g2GUT=M
2
GUT, ðe1; e2Þ≡ ðe;μÞ, ðd1;d2Þ≡ ðd;sÞ,

and l ¼ 1, 2, 3.
We are primarily interested in derivation of explicit

expressions for dimensionless coefficients cðeCα ; dβÞ,
cðeα; dCβ Þ, and cðνl; dα; dCβ Þ. The flavor dependent coeffi-
cients relevant for proton decays into charged leptons are

cðeβ; dCÞ ¼ e−iξ1ðD†
RÞ1β; ð4:4Þ

cðeCβ ; dÞ ¼ e−iξ1 ½ðD�
LÞβ1 þ ðVCKMÞ11ðD�

LDðηÞ�V†
CKMÞβ1�;

ð4:5Þ

TABLE III. Current limits on partial proton decay lifetimes for
all two-body decay processes and future expectations for a ten-
year period of data taking at 90% C.L.

Decay channel τp current bound τp future sensitivity

p → π0eþ 2.4 × 1034 years [31] 7.8 × 1034 years [32]
p → π0μþ 1.6 × 1034 years [31] 7.7 × 1034 years [32]
p → πþν̄ 3.9 × 1032 years [33] � � �
p → η0eþ 1.0 × 1034 years [34] 4.3 × 1034 years [32]
p → η0μþ 4.7 × 1033 years [34] 4.9 × 1034 years [32]
p → K0eþ 1.1 × 1033 years [35] � � �
p → K0μþ 3.6 × 1033 years [36] � � �
p → Kþν̄ 8.0 × 1033 years [37] 3.2 × 1034 years [32]
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cðeβ; sCÞ ¼ e−iξ1ðD†
RÞ2β ð4:6Þ

cðeCβ ; sÞ ¼ e−iξ1 ½ðD�
LÞβ2þ eiη1ðVCKMÞ12ðD�

LDðηÞ�V†
CKMÞβ1�:

ð4:7Þ

Clearly, a common multiplicative phase factor e−iξ1 will
disappear once one squares the amplitude in order to
evaluate physical decay widths of interest. Also, the only
parameters that are not provided by our numerical study of
the gauge coupling unification and fermion mass fit are
phases η1 and η2 in DðηÞ≡ diagð1; eiη1 ; eiη2Þ.
To evaluate decay widths associated with p → πþν̄ and

p → Kþν̄ one needs to take into account the fact that the
neutrino flavor is not an observable in proton decay
experiments and thus needs to be summed over. We
accordingly obtain

X3
l¼1

jcðνl; d; dCÞj2 ¼ jðDðξÞ�DðκÞVCKMDðηÞÞ11j2

¼ jðVCKMÞ11j2; ð4:8Þ

X3
l¼1

jcðνl; d; sCÞj2 ¼ jðDðξÞ�DðκÞVCKMDðηÞÞ11j2

¼ jðVCKMÞ11j2; ð4:9Þ

X3
l¼1

jcðνl; s; dCÞj2 ¼ jðVCKMÞ12j2: ð4:10Þ

The outcome of summations in Eqs. (4.8)–(4.10) stipulates
that the flavor dependence of p → πþν̄ and p → Kþν̄ pro-
cesses is completely determined by the CKM entries [38].
Our analytical expressions show that the only two phases

that are featured in gauge boson mediated proton decay into
mesons and charged leptons are η1 and η2. In fact, even the
dependence on η2 can be neglected for all practical
purposes, as we show later on. We stress that these
analytical results will hold in any SUð5Þ model where
charged fermions are already in the mass eigenstate basis
while the up-type quark mass matrix is symmetric in
flavor space.
Once the coefficients cðeCα ; dβÞ, cðeα; dCβ Þ, and

cðνl; dα; dCβ Þ are determined, one can write down two-
body proton decay widths and generate predictions of the
model. For example, the most dominant decay width reads

Γðp→ π0eþÞ ¼ ðm2
p−m2

πÞ2
m3

p

π

2
A2
L
α2GUT
M4

GUT

× ðA2
SLjcðeC;dÞhπ0jðudÞLuLjpij2

þA2
SRjcðe;dCÞhπ0jðudÞRuLjpij2Þ; ð4:11Þ

where hπ0jðudÞLuLjpi ¼ 0.134 GeV2 [40] and
hπ0jðudÞRuLjpi ¼ −0.131 GeV2 [40]. These matrix ele-
ments are evaluated with an error of the order of 10%
that we do not take into account in our numerical analysis.
AL ¼ 1.2 represents a long-distance coefficient [41],
whereas ASL and ASR are short-distance coefficients. ASL
and ASR capture the running of the proton decay operators
from MGUT down to MZ and are evaluated via [42–44]

ASLðRÞ ¼
Y

i¼1;2;3

YMZ≤MI≤MGUT

I

�
αiðMIþ1Þ
αiðMIÞ

� γLðRÞiP
MZ≤MJ≤MI
J

bJ
i ;

γLðRÞi ¼ ð23ð11Þ=20; 9=4; 2Þ;
where indices I and J run through all the new physics states
that reside below the unification scale. We evaluate ASL and
ASR for every point inMΦ1

-MΣ1
plane for bothM ≥ 1 TeV

andM ≥ 10 TeV scenarios. All eight proton decay widths,
due to the gauge boson exchange, are explicitly written
down in Appendix A.

B. Proton decay via scalar leptoquark

The relevant d ¼ 6 operators for proton decay through
scalar leptoquark Λ3 are [39]

OHðdα; eβÞ ¼ M−2
Λ3
aðdα; eβÞuTLC−1dαuTLC−1eβ; ð4:12Þ

OHðdα; eCβ Þ ¼ M−2
Λ3
aðdα; eCβ ÞuTLC−1dαeC

†

β LC−1uC
�
;

ð4:13Þ
OHðdCα ; eβÞ ¼ M−2

Λ3
aðdCα ; eβÞdC†

α LC−1uC
�
uTLC−1eβ;

ð4:14Þ
OHðdCα ; eCβ Þ ¼ M−2

Λ3
aðdCα ; eCβ ÞdC

†
α LC−1uC

�
eC

†

β LC−1uC
�
;

ð4:15Þ
OHðdα; dβ; νlÞ ¼ M−2

Λ3
aðdα; dβ; νlÞuTLC−1dαdTβLC

−1νl;

ð4:16Þ
OHðdα; dCβ ; νlÞ ¼ M−2

Λ3
aðdα; dCβ ; νlÞdC

†

β LC−1uC
�
dTαLC−1νl;

ð4:17Þ

where C is a charge conjugation operator and L ¼
ð1 − γ5Þ=2. Again, it is dimensionless coefficients
aðdα; eβÞ, aðdα; eCβ Þ, aðdCα ; eβÞ, aðdCα ; eCβ Þ, aðdα; dβ; νlÞ,
and aðdα; dCβ ; νlÞ that encapsulate flavor dependence of
proton decay signatures we are interested in.
We find the following expressions [45]

aðdα; eβÞ ¼ e−iξ1
mU

1 m
E
β

v2
ðVCKMDðηÞÞ1αðV�

CKMDðηÞ�D†
LÞ1β;

ð4:18Þ
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aðdα; eCβ Þ ¼
mU

1

mE
β

aðdα; eβÞ; ð4:19Þ

aðdCα ; eβÞ ¼ e−iξ1
mE

β

v2
ðD†

RM
diag
E DLDðηÞVT

CKMÞα1
× ðV�

CKMDðηÞ�D†
LÞ1β; ð4:20Þ

aðdCα ; eCβ Þ ¼
mU

1

mE
β

aðdCα ; eβÞ; ð4:21Þ

aðdα; dβ; νlÞ ¼ e−iξ1þiκ1
mU

1

v2
ðVCKMDðηÞÞ1αðD†

LM
diag
E N�Þβl;

ð4:22Þ

aðdα; dCβ ; νlÞ ¼
e−iξ1þiκ1

v2
ðD†

RM
diag
E DLDðηÞVT

CKMÞβ1
× ðD†

LM
diag
E N�Þαl; ð4:23Þ

where v ¼ v5=
ffiffiffi
2

p
, mU

1 ≡mu, and ðmE
1 ; m

E
2 Þ≡ ðme;mμÞ.

Clearly, the overall phase factors e−iξ1 and e−iξ1þiκ1 will
not be featured in any of the decay widths. The only phases
that will leave an imprint on the partial decay lifetimes due
to the scalar leptoquark mediation are, once again, η1
and η2.
To obtain decay widths for p → πþν̄ and p → Kþν̄

processes due to scalar leptoquark exchange we need to
sum over neutrino flavors. We accordingly find these
contractions

X3
l¼1

aðdα; dβ; νlÞa�ðdγ; dδ; νlÞ

¼ mU2

1

v4
ðVCKMDðηÞÞ1αðV�

CKMDðηÞ�Þ1γðD†
LM

diag2
E DLÞβδ;

ð4:24Þ

X3
l¼1

aðdα; dCβ ; νlÞa�ðdγ; dCδ ; νlÞ

¼ 1

v4
ðD†

RM
diag
E DLDðηÞVT

CKMÞβ1
× ðDT

RM
diag
E D�

LDðηÞ�V†
CKMÞδ1ðD†

LM
diag2
E DLÞαγ; ð4:25Þ

X3
l¼1

aðdα; dβ; νlÞa�ðdγ; dCδ ; νlÞ

¼ mU
1

v4
ðD†

LM
diag2
E DLÞβγðVCKMDðηÞÞ1α

× ðDT
RM

diag
E D�

LDðηÞ�V†
CKMÞδ1: ð4:26Þ

It is clear that the parameters associated with the neutrino
sector, including the PMNS matrix, are not featured in
proton decay signatures via scalar leptoquark exchange.
Once all these coefficients are analytically determined

we can write down two-body proton decay widths due to
the scalar leptoquark mediation and generate predictions
of our model. For example, the most constraining decay
width is

Γðp → Kþν̄Þ ¼ ðm2
p −m2

KÞ2
32πm3

pM4
Λ3

A2
L

X3
i¼1

jASLðaðs; d; νiÞhKþjðusÞLdLjpi þ aðd; s; νiÞhKþjðudÞLsLjpiÞ

þ ASRðaðd; sC; νiÞhKþjðusÞRdLjpi þ aðs; dC; νiÞhKþjðudÞRsLjpiÞj2; ð4:27Þ

where the values of matrix elements hKþjðusÞL;RdLjpi and
hKþjðudÞL;RsLjpi are given in Table V. As before, AL

represents a long-distance coefficient, whereas ASL and ASR
are short-distance coefficients. The expressions of proton
decay widths for all eight two-body decay modes can be
found in Appendix B.

V. PREDICTIONS

We are finally in a position to place additional limits on
otherwise viable parameter space of the model using our
results for the gauge boson and scalar leptoquark proton
decay mediations.
The most relevant limit originates from the model

prediction for the gauge mediatated p → π0eþ process
given in Eq. (4.11). We present thus inferred proton decay
limit in both panels of Fig. 2 using a solid black line. Note

that to the left of that line it is not possible to have partial
proton decay lifetime of p → π0eþ that is in agreement
with the current experimental limit for any choice of phases
η1 and η2. In short, the shaded region between the proton
decay bound (solid black line) and the outermost neutrino
mass scale bound (dashed black curve) is viable with regard
to all experimental input. We also show in Fig. 2, using a
gray dashed line, what one expects to be excluded with
p → π0eþ nonobservation after a ten-year period of data
taking at Hyper-K [32].
Again, Fig. 2 features contours of constant values for

MGUT=ð1015 GeVÞ (red solid lines), αGUT (blue dot-dashed
lines), and m0=ð

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
=2Þ (green solid lines) inMΦ1

-MΣ1

plane for M ≥ 1 TeV and M ≥ 10 TeV scenarios, where
log10ðMΦ1

=1GeVÞ∈ ½10.2;12.9� and log10ðMΣ1
=1 GeVÞ∈

½8.4;14.2�. The lattice spacing in MΦ1
-MΣ1

plane for our
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analysis, in both directions, is 0.1 in units of
log10ðMΦ1

=1 GeVÞ and log10ðMΣ1
=1 GeVÞ, respectively.

Again, at each lattice point in MΦ1
-MΣ1

plane we evaluate
mass spectrum that leads to maximal possible value of
MGUT and determine associated αGUT, ASL, and ASR. The
mass spectrum that generates maxðMGUTÞ is always such
thatMΦ3

¼ MΦ6
¼ Mϕ1

¼ Mϕ8
¼ M. We furthermore per-

form running of the SM charged fermion parameters at each
lattice point and use associated values to perform numerical
fit of all fermion masses. The outcome of the fit are all
unitary transformations that provide transition from flavor

to mass-eigenstate basis of the SM fermions and associated
Yukawa coupling constants. Parameters that our procedure
cannot determine are phases η1, η2, κ1, κ2, κ3, ξ1, ξ2, and ξ3,
where only η1 and η2 are relevant for the study of proton
decay signatures.
In order to accomplish comparative study between

gauge boson and scalar leptoquark mediation signatures
for the partial proton decay lifetimes, we choose one par-
ticular point in Fig. 2 for M ≥ 1 TeV scenario to be our
starting point. This point, with coordinates ðMΦ1

;MΣ1
Þ ¼

ð1011.3 GeV; 109.5 GeVÞ, is denoted Q and is chosen to be

FIG. 3. Proton decay signatures via gauge boson and scalar leptoquark mediations withinM ≥ 1 TeV andM ≥ 10 TeV scenarios for
four specific points and eight channels, as indicated. Black lines are current experimental limits, blue vertical bars are predictions for
gauge boson mediation signatures, red vertical bars are predictions for the scalar leptoquark mediations, and gray dashed lines represent
future experimental sensitivities after a ten-year period of data taking at 90% C.L.
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near the current proton decay bound rendered with solid
black line in the upper panel of Fig. 2. We subsequently
evaluate α2GUT=M

4
GUT at this point and find all other points

in Fig. 2 that satisfy criteria that the associated value of
α2GUT=M

4
GUT at those points is within �2% with respect to

the value extracted for point Q. This procedure yields ten
points of interest forM ≥ 1 TeV scenario that are presented
in the upper panel of Fig. 2.
Once these ten points in MΦ1

-MΣ1
plane are known, we

choose among them one point with large value of αGUT
[Qð1011.3 GeV; 109.5 GeVÞ] and another one with small
value of αGUT [Rð1011.0 GeV; 1012.7 GeVÞ], where R is
singled out because it has value of α2GUT=M

4
GUT that is

numerically almost identical to α2GUT=M
4
GUT evaluated at

point Q. We subsequently evaluate at both of these points
gauge boson mediated proton decay widths for all eight
channels, where we also vary η1 and η2 phases to find
maximal and minimal values for these decay widths. We
furthermore evaluate scalar leptoquark mediated proton
decay widths for all eight channels at both Q and R, where,
once again, we vary η1 and η2 to capture phase dependence.
To find decay widths associated with scalar leptoquark
mediation, we fix the mass of Λ3 to have a partial lifetime
for p → Kþν̄ as close as possible to the current exper-
imental limit. We take MΛ3

¼ 2.7 × 1012 GeV for M ≥
1 TeV scenario. Again, this choice ensures that the scalar
mediated proton decay signatures will be observed with
certainty at future proton decay experiments.
We preform the same procedure of selecting two particular

points for M ≥ 10 TeV scenario of Fig. 2, where we label
these points Q0ð1012.1 GeV;1011.5 GeVÞ andR0ð1012.0 GeV;
1012.7 GeVÞ. To evaluate scalar mediated proton decay sig-
natures for points Q0 and R0 we set MΛ3

¼2.3×1012GeV.
Again, this choice of MΛ3

places prediction at point Q0 for
p → Kþν̄ within an imminent reach of Hyper-K.
We show signatures for both types of mediation side by

side in Fig. 3 for all four points of interest, where blue bars
are used for the gauge boson mediation partial lifetime
predictions, red bars are used for predictions associated

with scalar leptoquark mediation, current experimental
limits are represented by thin black lines, and gray dashed
lines stand for future expectations after a ten-year period of
data taking at 90% C.L., if and where available.
Upper panels in Fig. 3 are for proton decay signatures

for points Q and R, whereas lower panels correspond to
predictions for points Q0 and R0. Note that the uncertainties
in proton decay widths associated with scalar leptoquark
mediation are much larger than those associated with gauge
boson mediation. Again, in both cases these uncertainties
originate solely from variation of two phases η1 and η2.
We quantify these flavor uncertainties in Table IV, wherewe
evaluateΔ ¼ ðmaxðτpÞ −minðτpÞÞ=minðτpÞ in % at points
Q, R, Q0, and R0 for each process and for both types of
mediation.
One can see from Fig. 3 and Table IV that gauge

mediated proton decays p → πþν̄ and p → Kþν̄ do not
exhibit any dependence on η1 and η2. Also, the prediction
uncertainty is usually smaller for points with smaller value
of αGUT for both types of mediation. One can furthermore
observe that even though points Q and R have practically
the same value of α2GUT=M

4
GUT, the prediction for the p →

π0eþ lifetime for point Q is closer to the experimental limit
than for point R. This is due to the fact that the short-
distance coefficients ASL and ASR are larger in the region
where αGUT is larger. This effect can also be observed in the
scalar leptoquark mediation signatures. For example, we
find that ASL ¼ 3.41 and ASR ¼ 3.14 at point Q, whereas
ASL ¼ 3.08 and ASR ¼ 2.86 at point R.
We have already stipulated that variation of η2 does not

affect gauge mediated proton decay signatures at all. To
that end, we present in Fig. 4 contours of constant decay
width for p → π0μþ for both the gauge (blue) and scalar
leptoquark (red) mediation in η1 − η2 plane for points Q
(upper panels) and Q0 (lower panels). It is clear from Fig. 4
that the impact of η2 on gauge boson mediated proton decay
signatures is marginal, at best.
Side by side comparison of two types of proton decay

mediation, as shown in Fig. 3, leaves us with the following
conclusions. If this model is realized in nature, and if proton

TABLE IV. Phase uncertainty Δ ¼ ðmaxðτpÞ −minðτpÞÞ=minðτpÞ in % at points Q, R, Q0, and R0 for all eight
channels and for both types of proton decay mediation.

Δ (%) Gauge Scalar Gauge Scalar

Decay channel Δ(Q) Δ(R) Δ(Q) Δ(R) ΔðQ0Þ ΔðR0Þ ΔðQ0Þ ΔðR0Þ
p → π0eþ 2 1 339 85 1 1 142 96
p → π0μþ 54 6 1147 132 19 9 214 166
p → πþν̄ 0 0 363 87 0 0 145 99
p → η0eþ 3 1 358 90 1 1 146 97
p → η0μþ 810 59 2743 382 70 81 513 313
p → K0eþ 2 1 386 103 1 1 90 102
p → K0μþ 5 1 1304 152 1 1 146 171
p → Kþν̄ 0 0 361 87 0 0 145 99
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is observed to decay to π0 and eþ, the decay is certainly due
to the gauge boson exchange. If the dominant mode is
indeed the gauge mediated proton decay, the next channel
that is closest to being detected is p → η0eþ, even though it
is predicted to be outside of the projected sensitivity after a
ten-year period of data taking at Hyper-K. All other gauge
mediated proton decay signatures exceed any reasonable
improvement in proton decay bounds to allow for potential
discovery in decades to come.
If, on the other hand, proton is observed to decay to Kþ

and ν̄, the decay is mediated by scalar leptoquark. The
channel that is then closest to the ten-year sensitivity
projection is p → π0μþ. All other channels have predicted
lifetimes that vastly exceed what can be probed with current
detector technologies.
If both p → π0eþ and p → Kþν̄ are observed, we would

have scenariowhereboth gauge bosons and scalar leptoquark

simultaneously contribute toward proton decay signatures.
It would then be possible to have an enhancement of the
p → π0μþ decay width, as can be seen from Figs. 3 and 4, if
the interference between the gauge and scalar leptoquark
contributions at the amplitude level is constructive. Except
for potential observation of p → η0eþ, the remaining four
channels will be experimentally inaccessible for all practical
purposes within this particular scenario.
The very last points in the parameter space of M ≥

1 TeV andM ≥ 10 TeV scenarios in Fig. 2 that could be, at
least in principle, probed by proton decay experiments
are points A and A0, respectively, with common coordi-
nates ðMΦ1

;MΣ1
Þ ¼ ð1012.8 GeV; 1012.9 GeVÞ. The model

yields τpðp→π0eþÞ¼1.1×1036 years and τpðp→π0eþÞ¼
1.5×1035 years at points A and A0, respectively. M is thus
inversely proportional to predicted lifetime τpðp → π0eþÞ at
point ðMΦ1

;MΣ1
Þ ¼ ð1012.8 GeV; 1012.9 GeVÞ. We can

FIG. 4. Contours of constant Γðp → π0μþÞ for the gauge boson (blue) and scalar leptoquark (red) mediation for points Q and Q0,
as indicated.
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accordingly infer that the current experimental limit on
τpðp → π0eþÞ implies that M ≤ 65 TeV, where M can be
identified, for all practical purposes, with geometric mean of
the masses ofΦ3,Φ6, ϕ1, and ϕ8. Viable parameter space of
our model is nicely bounded from one side by the exper-
imental limit on p → π0eþ and from the other side by the
neutrino mass scale perturbativity requirement. The M ¼
65 TeV scenario is where these two bounds meet.
We can also place an accurate limit on MΛ3

within M ≥
1 TeV and M ≥ 10 TeV scenarios for any lattice point in
MΦ1

-MΣ1
plane with the data on p → Kþν̄. For example,

we find thatMΛ3
≥ 1.8× 1012 GeV,MΛ3

≥ 1.9×1012 GeV,
MΛ3

≥ 1.8 × 1012 GeV, and MΛ3
≥ 1.7 × 1012 GeV for

points Q, R, Q0, R0, respectively.
Our predictions, up to this point, have been based on

the one-loop level gauge coupling unification analysis.
We can, in principle, perform the same analysis at the
two-loop level. To that end we present the two-loop level
prediction for the unification scale at point A with coor-
dinates ðMΦ1

;MΣ1
Þ ¼ ð1012.8 GeV; 1012.9 GeVÞ for the

M ≥ 1 TeV scenario presented in the upper panel of
Fig. 2. The one-loop level analysis at point A yields
MGUT ¼ 1.97 × 1016 GeV and αGUT ¼ 0.0457, whereas
the two-loop level maximization of MGUT at the same
point yields MGUT ¼ 5.94× 1016 GeV and αGUT ¼ 0.0610.
The mass spectrum that generates this two-loop level
unification scenario is MΦ3

¼MΦ6
¼Mϕ1

¼Mϕ8
¼1TeV,

MΣ6
¼ 4.75 × 1011 GeV, MΔ3

¼ 1012 GeV, MΣ3
¼ 3.97×

1012 GeV, MΦ1
¼ MΦ10

¼ 1012.8 GeV, and MΣ1
¼

1012.9 GeV, where we use the two-loop β-function coef-
ficients given in Appendix C. We accordingly note that the
ratio α2GUT=M

4
GUT at point A changes by a multiplicative

factor of 46 when we go from the one-loop to two-loop
level result. If we assume that the short-distance coeffi-
cients will be enhanced by a factor of 1.1 due to increase of
the gauge coupling value in the case of the two-loop level
analysis, we can see that the proton decay lifetimes will be
scaled by, at most, a factor of 40 for point A. What is
important, though, is that the pattern of proton decay
signatures shown in Fig. 3 will not be changed if one goes
from the one-loop to two-loop level analysis.
Final comments are in order.

(a) We find an additional multiplicative factor of 4 in
denominator of m0 parameter with respect to our
previous works [7,17]. This has accordingly reduced
available parameter space of the model.

(b) The matrix elements that we use carry around 10%
uncertainty, each, that we do not include in our study
of proton decay signatures. These errors would trans-
late to an additional 20% uncertainty for all eight
proton decay widths. Again, the uncertainties pre-
sented in Table IV capture flavor dependence only.

(c) We remark that, in principle, the fermionic sub-
multiplet Σ3 does not need to be almost perfectly
degenerate in mass with Σ6 and Σ1 if one does not

require MΣ3
;MΣ6

;MΣ1
> 0. This might be problem-

atic for our study since, as shown in Ref. [19], a lower
mass of Σ3, by itself, can significantly increase the
unification scale. One might then expect that taking its
mass close to the TeV scale would drastically increase
MGUT. This, however, does not happen in our model
due to the presence of additional colored light states.
For example, if one sets Σ3 to be very light, the
maximal unification scaleMGUT is only a factor of 1.5
larger than what we show in Fig. 2. Setting Σ3 light,
however, opens up another issue. To explain it, let us,
for example, focus on the third-generation mass. We
get, from Eq. (3.9), that mb ∼mτ þ Δm, where
Δm ∼ ð5=4Þð174 GeVÞðYcYaÞðv24=MΣ3

Þ. To repro-
duce correct bottommass, using the data from Table II,
one requires Δm ∼ 1 GeV. Assuming that Σ3 state
indeed resides at the TeV scale and v24 ∼ 2×
1016 GeV, we obtain Yc ∼ 10−17, where Ya ∼ 1 is
used to maximize the neutrino mass scale. We present,
in this manuscript, scenario with mass-degenerate Σ1,
Σ6, and Σ3 states, which dictates Yc coupling to be of
the order of the usual electron Yukawa coupling and
leave thorough discussion of the light Σ3 scenario for
potential future publication.

(d) We find that the lower bound on MΛ3
is around

1012 GeV that somewhat exceeds a value of 3 ×
1011 GeV [10] found in a simple nonrenormalizable
SUð5Þ setting. We attribute this change to (i) use of
short-distance coefficientsASL and ASR, (ii) implemen-
tation of matrix elements instead of more traditional
parameters F and D extracted from form factors in
semileptonic hyperon decays and nucleon axial charge
[46,47], and (iii) proper derivation of scalar leptoquark
couplings in SUð5Þ [45].

VI. CONCLUSION

There are only two possible types of mediators of proton
decay within the SUð5Þ model in question. The anticipated
experimental signal of these decay processes can, hence,
originate solely from exchange of two gauge bosons, or
entirely from a single scalar leptoquark exchange, or from
combination of the two. In the following, we highlight the
most notable features of the proton decay signals of
our model.

(i) Our analysis stipulates that we can conclude, with
certainty, that if a proton is experimentally observed
to decay to π0 and eþ, the decay is mediated by the
gauge bosons. If gauge mediation indeed dominates,
the only other channel that might potentially be
observed is p → η0eþ, even though it is predicted to
be outside of the projected sensitivity after a ten-year
period of data taking at Hyper-K.

(ii) If, on the other hand, a proton is observed to decay
to Kþ and ν̄, the decay is certainly mediated by a
scalar leptoquark. One might then hope to observe
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p → π0μþ, even though it is also predicted to be
outside of the projected sensitivity after a ten-year
period of data taking.

(iii) If both p → π0eþ and p → Kþν̄ are observed, the
decay width for the process p → π0μþ might be
enhanced through fortuitous interference between
the gauge and scalar leptoquark contributions at the
amplitude level.

(iv) The model thus predicts that p → πþν̄, p → η0μþ,
p → K0eþ, and p → K0μþ will be experimentally
inaccessible in decades to come regardless of the
type of proton decay mediation dominance.

Other prominent features of the model are as follows.
The lightest neutrino is massless and the neutrino mass
hierarchy is of the normal ordering. There are four scalar
multiplets, i.e.,Φ3;Φ6 ∈ 35H and ϕ1;ϕ8 ∈ 24H, that need to
be light if MGUT is to attain maximal possible value, where
the geometric mean of the masses of these fields can be
identified with parameter M for all practical purposes.
Current experimental limit on τpðp → π0eþÞ implies that
M ≤ 65 TeV, where M and τpðp → π0eþÞ are inversely
proportional. Any future experimental improvement on
τpðp → π0eþÞ will thus lower allowed value of M and
accordingly help to further reduce available parameter
space of the model.

ACKNOWLEDGMENTS

I. D. acknowledges the financial support from the
Slovenian Research Agency (research core funding
No. P1-0035). S. F. acknowledges the financial support
from the Slovenian Research Agency (research core

funding No. P1-0035 and No. N1-0321). S. S. would like
to thank Kevin Hinze for discussion.

APPENDIX A: GAUGE MEDIATED PROTON
DECAY WIDTHS

We show below explicit expressions for all eight two-
body proton decay widths due to the gauge boson exchange
for completeness of exposition. The gauge bosons in
question are Xþ4=3

μ ; Yþ1=3
μ ∈ ð3̄; 2;þ5=6Þ with a common

mass MGUT.

Γðp → π0eþβ Þ ¼
ðm2

p −m2
πÞ2

m3
p

π

2
A2
L
α2GUT
M4

GUT
fjASRhπ0jðudÞRuLjpicðeβ; dCÞj2 þ jASLhπ0jðudÞLuLjpicðeCβ ; dÞj2g: ðA1Þ

Γðp → πþν̄Þ ¼ ðm2
p −m2

πÞ2
m3

p

π

2
A2
L
α2GUT
M4

GUT
A2
SRjhπþjðudÞRdLjpij2

X3
i¼1

jcðνi; d; dCÞj2: ðA2Þ

Γðp → ηeþβ Þ ¼
ðm2

p −m2
ηÞ2

m3
p

π

2
A2
L
α2GUT
M4

GUT
fjASRhηjðudÞRuLjpicðeβ; dCÞj2 þ jASLhηjðudÞLuLjpicðeCβ ; dÞj2g: ðA3Þ

Γðp → K0eþβ Þ ¼
ðm2

p −m2
KÞ2

m3
p

π

2
A2
L
α2GUT
M4

GUT
fjASRhK0jðusÞRuLjpicðeβ; sCÞj2 þ jASLhK0jðusÞLuLjpicðeCβ ; sÞj2g: ðA4Þ

Γðp → Kþν̄Þ ¼ ðm2
p −m2

KÞ2
m3

p

π

2
A2
L
α2GUT
M4

GUT

×

�
A2
SRjhKþjðusÞRdLjpij2

X3
i¼1

jcðνi; d; sCÞj2 þ A2
SLjhKþjðudÞRsLjpij2

X3
i¼1

jcðνi; s; dCÞj2
�
: ðA5Þ

We usemp ¼ 0.9383 GeV,mπ ¼ 0.134 GeV,mη ¼ 0.548 GeV, andmK ¼ 0.493677 GeV to generate all our numerical
results. The central values of relevant matrix elements [40] are specified in Table V.

TABLE V. Central values of matrix elements entering the
proton decay computation at 2 GeV scale [40]. For uncertainties
associated with each of the elements, see Ref. [40].

Matrix element Form factor (GeV2)

hπ0jðudÞRuLjpi −0.131
hπ0jðudÞLuLjpi 0.134

hπþjðduÞRdLjpi −0.186
hπþjðduÞLdLjpi 0.189

hK0jðusÞRuLjpi 0.103
hK0jðusÞLuLjpi 0.057

hKþjðusÞRdLjpi −0.049
hKþjðudÞRsLjpi −0.134

hKþjðusÞLdLjpi 0.041
hKþjðudÞLsLjpi 0.139

hηjðudÞRuLjpi 0.006
hηjðudÞLuLjpi 0.113
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APPENDIX B: SCALAR MEDIATED PROTON DECAY WIDTHS

We show below explicit expressions for all eight two-body proton decay widths due to the exchange of a scalar
leptoquark Λ3ð3; 1;−1=3Þ of mass MΛ3

.

Γðp → π0eþβ Þ ¼
ðm2

p −m2
πÞ2

32πm3
pM4

Λ3

A2
LfjASRaðdC; eβÞhπ0jðduÞRuLjpi þ ASLaðd; eβÞhπ0jðduÞLuLjpij2

þ jASLaðd; eCβ Þhπ0jðduÞLuLjpi þ ASRaðdC; eCβ Þhπ0jðduÞRuLjpij2g: ðB1Þ

Γðp → πþν̄Þ ¼ ðm2
p −m2

πÞ2
32πm3

pM4
Λ3

A2
L

X3
i¼1

jASRaðd; dC; νiÞhπþjðduÞRdLjpi þ ASLaðd; d; νiÞhπþjðduÞLdLjpij2: ðB2Þ

Γðp → η0eþβ Þ ¼
ðm2

p −m2
ηÞ2

32πm3
pM4

Λ3

A2
LfjASLaðd; eβÞhηjðudÞLuLjpi þ ASRaðdC; eβÞhηjðudÞRuLjpij2

þ jASLaðdC; eCβ ÞhηjðudÞLuLjpi þ ASRaðd; eCβ ÞhηjðudÞRuLjpij2g: ðB3Þ

Γðp → K0eþβ Þ ¼
ðm2

p −m2
KÞ2

64πm3
pM4

Λ3

A2
LfjASRaðsC; eβÞhK0jðusÞRuLjpi þ ASLaðs; eβÞhK0jðusÞLuLjpi

− ASRaðs; eCβ ÞhK0jðusÞRuLjpi − ASLaðsC; eCβ ÞhK0jðusÞLuLjpij2
þ jASRaðsC; eβÞhK0jðusÞRuLjpi þ ASLaðs; eβÞhK0jðusÞLuLjpi
þ ASRaðs; eCβ ÞhK0jðusÞRuLjpi þ ASLaðs; eCβ ÞhK0jðusÞLuLjpij2g: ðB4Þ

Γðp → Kþν̄Þ ¼ ðm2
p −m2

KÞ2
32πm3

pM4
Λ3

A2
L

X3
i¼1

jASLðaðs; d; νiÞhKþjðusÞLdLjpi þ aðd; s; νiÞhKþjðudÞLsLjpiÞ

þ ASRðaðd; sC; νiÞhKþjðusÞRdLjpi þ aðs; dC; νiÞhKþjðudÞRsLjpiÞj2: ðB5Þ

APPENDIX C: RENORMALIZATION GROUP β-FUNCTION COEFFICIENTS

The one-loop coefficients of the renormalization group β-functions relevant for our model are provided in Table I. In this
appendix, following Ref. [48], we derive the relevant two-loop coefficients. The two-loop coefficients for the SM read

bSMik ¼

0
BB@

199
50

27
10

44
5

9
10

35
6

12

11
10

9
2

−26

1
CCA; ðC1Þ

while the contributions from the new physics states are

ΔbΛ3

ik ¼

0
BB@

4
75

0 16
15

0 0 0
2
15

0 11
3

1
CCA; Δbϕ1

ik ¼

0
BB@

0 0 0

0 28
3

0

0 0 0

1
CCA; Δbϕ8

ik ¼

0
BB@

0 0 0

0 0 0

0 0 21

1
CCA; ðC2Þ

ΔbΦ1

ik ¼

0
BB@

729
25

81 0

27 245
3

0

0 0 0

1
CCA; ΔbΦ3

ik ¼

0
BB@

64
25

96
5

64
5

32
5

56 32

8
5

12 11

1
CCA; ðC3Þ
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ΔbΦ6

ik ¼

0
BB@

1
75

3
5

8
3

1
5

13 40

1
3

15 230
3

1
CCA; ΔbΦ10

ik ¼

0
BB@

72
5

0 144

0 0 0

18 0 195

1
CCA; ðC4Þ

ΔbΣ1

ik ¼

0
BB@

54
25

36
5

0

12
5

64
3

0

0 0 0

1
CCA; ΔbΣ3

ik ¼

0
BB@

1
300

3
20

4
15

1
20

49
4

4

1
30

3
2

38
3

1
CCA; ΔbΣ6

ik ¼

0
BB@

64
75

0 32
3

0 0 0

4
3

0 125
3

1
CCA: ðC5Þ

Note that multiplets in Σ̄ have the same two-loop coefficients as multiplets in Σ.
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