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In this work we investigate the relation between higher-dimensional gauge theories and stochastic
gravitational wave (GW) spectrums caused by their potential. It is known that the higher-dimensional
gauge theories can induce the spontaneous symmetry breaking of the gauge symmetry. If the spontaneous
symmetry breaking induces the first-order phase transition, the stochastic GW can be observed in future
interferometers. Through our numerical calculations, we reveal that distinctive parameters in the theories,
like the compact scale, can change the GW spectrums dynamically. We also discuss the verifiability of the
theories through the GW observations.
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I. INTRODUCTION

The Standard Model (SM) has succeeded in explaining
phenomena related to particle physics. However, the
SM has some problems, hence some extension to the
beyond the Standard Model (BSM) in the ultraviolet scale
would be needed. As a candidate for the BSM, higher-
dimensional field theories have been studied [1–7]. In
higher-dimensional theories, the spontaneous symmetry
breaking (SSB) of the gauge symmetry occurs because of
the dynamics of theWilson line phases, called the Hosotani
mechanism [5,6]. Higher-dimensional gauge theory (for
example, gauge-Higgs unification, GHU [8–13]) also can
solve the gauge hierarchy problem. Therefore, we can
calculate the finite Higgs mass without invoking super-
symmetry in higher-dimensional gauge theory [7,11,12]. In
the framework of higher-dimensional gauge theory at finite
temperature, the scalar fields can possibly induce first-order
phase transitions in SSB [14–18].
If the first-order phase transition occurs, it yields

the stochastic gravitational wave (GW). The GW spec-
trums can be observed by the future space-based inter-
ferometers like the approved Laser Interferometer Space
Antenna (LISA) [19–21], the Deci-Hertz Interferometer

Gravitational Wave Observatory (DECIGO) [22–24], and
the ground-based interferometer, Einstein Telescope
(ET) [25]. The GW peak frequency relates to a scale for
the first-order phase transition. Hence, the measurement for
the wide GW frequency (by combining) observations is
important to find the signatures of the BSM.
In this paper, we investigate relations between param-

eters in the higher-dimensional gauge theories and the
GW spectrums from the first-order phase transitions. The
first-order phase transition occurs by a temperature
change of a potential for the extradimensional component
of a gauge field. Through our numerical calculations in
simple setups, we reveal that a four-dimensional gauge
coupling in the higher-dimensional gauge theory can
control the GW energy density. Besides, we also confirm
that a compact scale of the theory changes the GW
frequency, while is unrelated to the shape of the GW
spectrum as properties of GW spectrum from phase
transitions. Regions of the above parameters, which
can be investigated in future interferometers, are also
shown. It may help one to consider the verifiability of
the higher-dimensional gauge theory through the GW
observations.
The outline of this paper is as follows. We briefly review

the five-dimensional theory in Sec. II and give the thermal
effective potential. In Sec. III, we introduce calculations
for the GW spectrum from three sources when the SSB
induces the first-order phase transition. Section IV is
devoted to showing numerical results. We reveal the
relations between the distinctive parameters in the higher-
dimensional gauge theories and the GW spectrums. Lastly,
we give a conclusion in Sec. V.
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II. FIVE-DIMENSIONAL GAUGE THEORY

In this section, we will review a five-dimensional SUð3Þ
gauge theory on M4 × S1=Z2 [10], where M4 is a
Minkowski spacetime and the orbifold S1=Z2 is a circle
imposed Z2 parity. The radius of the circle is written as R,
which is called the compact scale. We denote xμ (μ ¼ 0, 1,
2, 3) as the coordinates in Minkowski spacetime and y as
the fifth-dimensional coordinate. Because of the Z2 parity,
two fixed points (y ¼ 0 and y ¼ πR) appear. Under the Z2

transformation at y ¼ 0, the bulk gauge fields AMðxμ; yÞ,
with the spacetime index M ¼ μ, y, transform as

Aμðxμ;−yÞ ¼ P0Aμðxμ; yÞP−1
0 ; ð2:1Þ

Ayðxμ;−yÞ ¼ −P0Ayðxμ; yÞP−1
0 ; ð2:2Þ

where P0 ¼ P−1
0 ¼ P†

0 denotes the operation of Z2 trans-
formation at y ¼ 0. Under the Z2 transformation at y ¼ πR,
the bulk gauge fields transform as

Aμðxμ; πR − yÞ ¼ P1Aμðxμ; πRþ yÞP†
1; ð2:3Þ

Ayðxμ; πR − yÞ ¼ −P1Ayðxμ; πRþ yÞP†
1; ð2:4Þ

whereP1 ¼ P−1
1 ¼ P†

1 is the operation of Z2 transformation
at y ¼ πR. On the other hand, we must impose the periodic
boundary condition on the bulk gauge fields as

AMðxμ; yþ 2πRÞ ¼ UAMðxμ; yÞU†; ð2:5Þ

where U is a unitary matrix. Note that Eq. (2.3) can be
derived using Eqs. (2.1) and (2.5), and then we can obtain
the relation U ¼ P1P0.
Due to the orbifold boundary conditions P0 and P1, the

gauge symmetry is explicitly broken. In this paper, we
consider a SUð3Þ gauge group with the orbifold boundary
conditions,

P0 ¼ P1 ¼ diagð1; 1;−1Þ: ð2:6Þ

Denoting ð�;�Þ as the Z2 charges at y ¼ 0 (left) and y ¼
πR (right), Aμ and Ay are decomposed as

Aμ ¼

0
BB@

ðþ;þÞ ðþ;þÞ ð−;−Þ
ðþ;þÞ ðþ;þÞ ð−;−Þ
ð−;−Þ ð−;−Þ ðþ;þÞ

1
CCA; ð2:7Þ

Ay ¼

0
BB@

ð−;−Þ ð−;−Þ ðþ;þÞ
ð−;−Þ ð−;−Þ ðþ;þÞ
ðþ;þÞ ðþ;þÞ ð−;−Þ

1
CCA: ð2:8Þ

The bulk gauge field components Aμ and Ay with ðþ;þÞ
parity have a four-dimensional massless zero mode. Hence
we can read that the SUð3Þ gauge symmetry is broken into
SUð2Þ × Uð1Þ from Eq. (2.7). While Ay has a ðþ;þÞ parity
in the nondiagonal part (in terms of the SUð3Þ generators,
λ4;5;6;7), this part is identified with a scalar doublet.
We suppose that the vacuum expectation value (VEV) of

Ay is taken as

hAyi ¼
a
g4R

λ6

2
; ð2:9Þ

with a dimensionless real parameter a and a four-
dimensional coupling g4 ≡ g=

ffiffiffiffiffiffiffiffiffi
2πR

p
. The coupling g is

a six-dimensional gauge coupling. From the potential
analysis in a later section, Eq. (2.9) leads to the relation,

a0
g4R

¼ v; ð2:10Þ

where a0 is a constant determined by the minimum of the
potential, and v is a field vacuum expectation value. The
parameter a is related to the Wilson line phase W and
determines the pattern of gauge symmetry breaking. The
Wilson line is written as

W ¼ P exp

�
ig
I
S1
dyAy

�
¼

0
B@

1 0 0

0 cosðπaÞ i sinðπaÞ
0 i sinðπaÞ cosðπaÞ

1
CA:

ð2:11Þ
In the a ¼ 0 case, the Wilson line phase has a unit matrix,
therefore the gauge symmetry SUð2Þ × Uð1Þ remains
unbroken. In the a ¼ 1 case, the Wilson line phase has a
matrix diagð1;−1;−1Þ since cosðπaÞ¼−1 and sinðπaÞ¼ 0.
It represents the SSB of the gauge symmetry, SUð2Þ×
Uð1Þ → U0ð1Þ ×Uð1Þ. In the a ≠ 1 case, the gauge sym-
metry SUð2Þ ×Uð1Þ is broken into Uð1Þ. This symmetry
breaking pattern can be applied to electroweak symmetry
breaking SUð2ÞL ×Uð1ÞY → Uð1ÞEM.
Using periodic boundary condition (2.5) and Z2 trans-

formation at y ¼ 0 and y ¼ πR, we can expand Aμ in terms
of Kaluza-Klein (KK) modes as

Aμðxμ;yÞðþ;þÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πR

p Að0Þ
μ ðxμÞðþ;þÞ

þ 1ffiffiffiffiffiffi
πR

p
X∞
n¼1

AðnÞ
μ ðxμÞðþ;þÞ cos

�
ny
R

�
; ð2:12Þ

Aμðxμ; yÞð−;−Þ ¼
1ffiffiffiffiffiffi
πR

p
X∞
n¼1

AðnÞ
μ ðxμÞð−;−Þ sin

�
ny
R

�
: ð2:13Þ

The expansion of the extradimensional components
Ayðxμ; yÞðþ;þÞ and Ayðxμ; yÞð−;−Þ are the same expansion
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of Eqs. (2.12) and (2.13), respectively, since the Z2

assignments are the same. From the KK expansions
and the VEV of Ay, the KK mass eigenvalues of Aμ are
derived as

n2

R2
× 2;

ðn� aÞ2
R2

;
ðn� a=2Þ2

R2
× 2: ð2:14Þ

Based on the information of KK mass in Eq. (2.14), we can
calculate the four-dimensional effective potential of Ay at
zero temperature as [8,10]

Vg
effðaÞ ¼ −3C

X∞
n¼1

1

n5
ðcosð2πnaÞ þ 2 cosðπnaÞÞ; ð2:15Þ

where C ¼ 3=ð64π6R4Þ.
Considering extra matter fields, their contributions to the

effective potential can change the gauge symmetry break-
ing pattern. Let us introduce the extra matter fields, which
are Nf fermions ψ in the fundamental representation, Nad
fermions ψa in the adjoint representation, and Ns

f scalars ϕ
in the fundamental representation. The Z2 transformations
of these extra fields are given by

ϕðx;−yÞ ¼ ηP0ϕðx; yÞ; ϕðx; πR − yÞ ¼ η0P1ϕðx; πRþ yÞ; ð2:16Þ

ψðx;−yÞ ¼ ηP0γ
5ψðx; yÞ; ψðx; πR − yÞ ¼ η0P1γ

5ψðx; πRþ yÞ; ð2:17Þ

ψaðx;−yÞ ¼ ηP0γ
5ψaðx; yÞP†

0; ψaðx; πR − yÞ ¼ η0P1γ
5ψaðx; πRþ yÞP†

1; ð2:18Þ

with η; η0 ¼ �. The KK expansions of extra fields are different from the sign of ηη0. The fields with ηη0 ¼ þ are the same
expansion of Eqs. (2.12) and (2.13). On the other hand, we can expand the fields with ηη0 being negative as

Φðxμ; yÞðþ;−Þ ¼
1ffiffiffiffiffiffi
πR

p
X∞
n¼1

ΦðnÞðxμÞðþ;−Þ cos
�ðnþ 1

2
Þy

R

�
; ð2:19Þ

Φðxμ; yÞð−;þÞ ¼
1ffiffiffiffiffiffi
πR

p
X∞
n¼1

ΦðnÞðxμÞð−;þÞ sin
�ðnþ 1

2
Þy

R

�
; ð2:20Þ

whereΦ can be replaced for ϕ, ψ , and ψa. As in the derivation of Eq. (2.14), we can obtain the KK masses of the fields with
ηη0 ¼ þ or ηη0 ¼ − in the fundamental (adjoint) representation. The effective potential of the contributions from matter
fields is given by

Vm
effðaÞ ¼ ð4NðþÞ

f − 2NsðþÞ
f ÞC

X∞
n¼1

1

n5
cosðπnaÞ þ ð4Nð−Þ

f − 2Nsð−Þ
f ÞC

X∞
n¼1

1

n5
cosðπnða − 1ÞÞ þ 4NðþÞ

ad C
X∞
n¼1

1

n5

�
cosð2πnaÞ

þ 2 cosðπnaÞ
�
þ 4Nð−Þ

ad C
X∞
n¼1

1

n5

�
cosð2πnða − 1=2ÞÞ þ 2 cosðπnða − 1ÞÞ

�
; ð2:21Þ

where, Nf, Nad, and Ns
f are decomposed into Nf ¼ NðþÞ

f þ Nð−Þ
f , Nad¼NðþÞ

ad þNð−Þ
ad , and Ns

f ¼ NsðþÞ
f þ Nsð−Þ

f . We define
the total effective potential of Ay at zero temperature as the combination of the contributions,

VT¼0
eff ðaÞ≡ Vg

effðaÞ þ Vm
effðaÞ: ð2:22Þ

We derive the effective potential at finite temperature. In the finite temperature field theories, the time direction is
compactified on a circle S1. Through a radius of the circle S1, we introduce a temperature T and express the radius as T−1.
Following Refs. [15,26], the four-dimensional thermal effective potential can be obtained as

VT≠0
eff ða; TÞ ¼ 2Γð5=2Þ

π5=2

X∞
l¼1

X∞
n¼1

1

½ð2πRnÞ2 þ ðl=TÞ2�5=2
h�

−3þ 4ð−1ÞlNðþÞ
ad

��
cosð2πnaÞ þ 2 cosðπnaÞ

�

þ 4ð−1ÞlNð−Þ
ad

�
cosð2πnða − 1=2ÞÞ þ 2 cosðπnða − 1ÞÞ

�

þ
�
4ð−1ÞlNðþÞ

f − 2NsðþÞ
f

�
cosðπnaÞ þ

�
4ð−1ÞlNð−Þ

f − 2Nsð−Þ
f

�
cosðπnða − 1ÞÞ

i
: ð2:23Þ
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The factor ð−1Þl comes from the antiperiodicity of fermions. We can rewrite Eq. (2.23) as

VT≠0
eff ða; TÞ ¼ 2C

X∞
l¼1

X∞
n¼1

1

½n2 þ l2=ð2πRTÞ2�5=2
h�

−3þ 4ð−1ÞlNðþÞ
ad

��
cosð2πnaÞ þ 2 cosðπnaÞ

�

þ 4ð−1ÞlNð−Þ
ad

�
cosð2πnða − 1=2ÞÞ þ 2 cosðπnða − 1ÞÞ

�

þ
�
4ð−1ÞlNðþÞ

f − 2NsðþÞ
f

�
cosðπnaÞ þ

�
4ð−1ÞlNð−Þ

f − 2Nsð−Þ
f

�
cosðπnða − 1ÞÞ

i
: ð2:24Þ

Finally, the total effective potential involving the temper-
ature is given by

Veffða; TÞ ¼ VT¼0
eff ðaÞ þ VT≠0

eff ða; TÞ: ð2:25Þ

In our numerical calculation, we use Veffða; TÞ − Veffð0; TÞ
to take the potential value at a ¼ 0 as the origin.
Meanwhile, we can change the parameter a in the potential
to the scalar field value ϕ by a ¼ g4Rϕ, as
Veffða; TÞ → Veffðϕ; TÞ.

III. GRAVITATIONAL WAVES FROM
FIRST-ORDER PHASE TRANSITIONS

In this section we will review GW spectrums from first-
order phase transitions. When the first-order phase tran-
sition occurs, bubbles appear in the Universe and expand
until colliding into each other. The nucleation temperature
Tnuc, where a bubble nucleates in one Hubble radius, is
defined by S3=T ∼ 140 [27–29]. We can calculate the three-
dimensional Euclidean action S3 as

S3 ¼
Z

d3x

�
1

2
ð∂μϕÞ2 þ VðϕÞ

�
; ð3:1Þ

with the scalar field ϕ and the potential V. The shape of ϕ
as a function of the bubble radius coordinate r can be
derived from the bounce solution. The solution has the
Oð3Þ symmetry at very high temperature [30]; hence, we
can obtain the solution from the Euclidean equation of
motion,

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ dV
dϕ

; ð3:2Þ

where the boundary conditions are

lim
r→∞

ϕðrÞ ¼ 0;
dϕ
dr

				
r¼0

¼ 0: ð3:3Þ

The GWs from the first-order phase transition arise from
three sources. Those are the collision of bubbles [31–36],
the sound waves in the plasma surrounding the bubble
walls [37,38], and magnetichydrodynamic (MHD) turbu-
lence in the plasma [39–44]. Each contribution to the GW

spectrum can be written by parameters like α and β̃. The
phase transition strength α is

α≡ ϵðTnucÞ
ρradðTnucÞ

; ð3:4Þ

with ϵðTnucÞ≡ ðΔV − ð1=4ÞTð∂ΔV=∂TÞÞjT¼Tnuc
and the

radiation density ρradðTÞ≡ π2g�T4=30.1 The index ΔV
denotes the potential difference between the two minima
for the first-order transition. The effective relativistic
degrees of freedom g� is 106.75 in the SM before the
SSB. The β̃ is defined by β=HðTnucÞ with the inverse
duration of the phase transition β and the Hubble rate at
the nucleation temperature HðTnucÞ. We can write the
parameter β̃ as

β̃ ¼ T
d
dT

�
S3
T

�				
T¼Tnuc

: ð3:5Þ

From numerical simulations and analytic estimations,
the GW spectrum for each source can be written as
[36,38,43,44],

Ωφh2 ¼ 1.67 × 10−5β̃−2
�

κφα

1þ α

�
2
�
100

g�

�1
3

×

�
0.11v3w

0.42þ v2w

�
3.8ðf=fφÞ2.8

1þ 2.8ðf=fφÞ3.8
; ð3:6Þ

Ωswh2 ¼ 2.65 × 10−6β̃−1
�
κswα

1þ α

�
2
�
100

g�

�1
3

vwðf=fswÞ3

×

�
7

4þ 3ðf=fswÞ2
�7

2

; ð3:7Þ

Ωturbh2 ¼ 3.35 × 10−4β̃−1
�
κturbα

1þ α

�3
2

�
100

g�

�1
3

vw

×
ðf=fturbÞ3

½1þ ðf=fturbÞ�113 ð1þ 8πf=hnÞ
; ð3:8Þ

1Conventionally, the phase transition strength was defined by
using the difference of the enthalpy. Currently, the standard way
is to apply the pseudotrace to ϵ of the phase transition strength
instead of the difference of the enthalpy. See Refs. [45,46].
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with bubble wall velocity vw and frequency f. The value
of the inverse Hubble time at Tnuc redshifted today hn is
given by

hn ¼ 1.65 × 10−5 Hz

�
Tnuc

100 GeV

��
g�
100

�
1=6

: ð3:9Þ

We denote the fraction of vacuum energy into each source
as κφ, κsw, and κturb, which are estimated as [34,38,47]

κφ ≈
1

1þ 0.715α

0
@0.715αþ 4

27

ffiffiffiffiffiffi
3α

2

r 1
A; ð3:10Þ

κsw ≈
α

0.73þ 0.083
ffiffiffi
α

p þ α
; ð3:11Þ

κturb ≈ 0.1κsw: ð3:12Þ

The peak frequency for each GW contribution is respec-
tively obtained as [36,38,43,44]

fφ ¼ 1.65 × 10−5 Hzβ̃

�
0.62

1.8 − 0.1vw þ v2w

�

×

�
Tnuc

100 GeV

��
g�
100

�1
6

; ð3:13Þ

fsw ¼ 1.9 × 10−5 Hzv−1w β̃

�
Tnuc

100 GeV

��
g�
100

�1
6

; ð3:14Þ

fturb ¼ 2.7 × 10−5 Hzv−1w β̃

�
Tnuc

100 GeV

��
g�
100

�1
6

: ð3:15Þ

In the following, we calculate the GW spectrum as the
combination of the three contributions,

ΩGWh2 ¼ Ωφh2 þ Ωswh2 þΩturbh2: ð3:16Þ

IV. NUMERICAL RESULTS

In this section we show relations between higher-dimen-
sional gauge theories and GW spectrums yielded from
them. Following Refs. [10,15], we investigate two cases.

A. Case 1

Case 1 is simply chosen as

NðþÞ
f ¼ 3; ðotherwiseÞ ¼ 0: ð4:1Þ

The effective potential at zero temperature is minimized at
a ¼ a0 ¼ 1, and the gauge symmetry is broken into
SUð2Þ × Uð1Þ → U0ð1Þ × Uð1Þ. Figure 1 shows shapes
of the effective potential in case 1 for RT ¼ 0 (solid),
0.093 (dashed), and 0.15 (dotted). The local minima locate

at a ¼ 0 and 1 for all temperatures. Beginning from large
RT like one to the low value, the potential goes bottom as
the temperature decrease, and two minima at a ¼ 0 and
1 degenerate at RT ≃ 0.15. We denote the temperature as
the critical temperature Tc, which can be calculated as

Tc ≃
1

R
× 0.15: ð4:2Þ

After the degeneration, the minimum at a ¼ 1 becomes the
global minimum for RT < 0.15. We can obtain the bubble
nucleation temperature as e.g., RTnuc ≃ 0.093 for ðR; g4Þ ¼
ð10−3 GeV−1; 3Þ from the condition S3=T ∼ 140 in Sec. III.
In that case, Tc ≃ 150 GeV and Tnuc ≃ 93 GeV.
To see the dependence of g4 on the phase transition, we

show the action S3=T as a function of the temperature for
different values of g4 in Fig. 2. To demonstrate specifically,
we start from R ¼ 10−3 GeV−1 as a example. We calculate
the action using CosmoTransitions [48] and confirmed the
result by FindBounce [49]. The solid, dashed, and dotted lines
in Fig. 2 represent results with g4 ¼ 3, 4.5, and 6,
respectively. We take g4 ≳ 2.8 because we numerically
find that S3=T does not reach under 140 for g4 ≲ 2.8.

FIG. 1. Shapes of the effective potential in case 1 for RT ¼ 0
(solid), 0.093 (dashed), and 0.15 (dotted).

FIG. 2. Action S3=T as a function of the temperature T in case 1
with R ¼ 10−3 GeV−1. The solid, dashed, and dotted lines
correspond to g4 ¼ 3, 4.5, and 6, respectively.

RELATION BETWEEN HIGHER-DIMENSIONAL GAUGE … PHYS. REV. D 109, 075013 (2024)

075013-5



If S3=T is always larger than 140, the SSB would not occur,
and the vacuum would be trapped at the origin even at zero
temperature. In Fig. 2, the action S3=T for g4 ¼ 3 reaches
140 at Tnuc ≃ 92.9 GeV when starting from high temper-
ature. For T < 70 GeV, S3=T starts to increase until zero
temperature. It is because the potential barrier between two
minima remains at zero temperature. We can also see the
nucleation temperature Tnuc increases and approaches Tc as
g4 becomes larger like Tnuc ≃ 92.9, 126, and 137 GeV for
g4 ¼ 3, 4.5, and 6, respectively. Note that since we fix R as
10−3, Tc is also constant as Tc ≃ 150 GeV. For the larger
g4, the phase transition becomes easy to occur because it
makes the field distance v between the two minima smaller,
while the height of the potential barrier and the depth of the
global minimum ΔV remain. We can see the relation
between g4 and v from Eq. (2.10).
From now on, we show the GW spectrum from the first-

order phase transition occurring in the higher-dimensional
gauge theory. The left panel of Fig. 3 represents the
GW spectrums for the same values of g4 and R as in Fig 2.
The colored regions indicate observable areas in future
space-based interferometers, which are LISA [19–21],
DECIGO [22–24], Big Bang Observer (BBO) [50],
Ultimate DECIGO (U-DECIGO) [51], and the ground-
based interferometer, ET [25]. We can see that the peak of
the spectrum moves to the bottom right as g4 increases.
Moving the high frequency implies that Tnuc becomes
higher, and the temperature derivative of S3=T becomes
larger. We can see the features in Fig. 2. The reduction of
the GW energy density comes from the decrease of the
strength of the phase transition α. It is because Tnuc
approaches Tc as g4 increases as shown in Fig. 2. In this
case, the higher Tnuc reduces the difference of the potential
ΔV when the phase transition occurs. The small ΔV leads
to the small latent heat ϵ, and high Tnuc indicates high
radiation density ρrad; They lead to small α. Hence, the
energy density of the GW spectrum decreases as g4 rises.
Since we numerically find that GW spectrum for g4 ≃ 4
cannot be detected by LISA and S3=T does not reach
under 140 for g4 ≲ 2.8, LISA can observe the region

2.8≲ g4 ≲ 4 with R ¼ 10−3 GeV−1, while BBO and
U-DECIGO can investigate g4 ≳ 2.8 for the SSB.
Until now, we consider the phase transitions with the

compact scaleR ¼ 10−3 GeV−1. However, scales of higher-
dimensional theories 1=R can be higher. In the right panel of
Fig. 3, we show the GW spectrums when changing R with
the fixed coupling g4 ¼ 3. We can see that the peaks of
spectrums slide right side as R decreases while keeping the
spectrum shapes. It is because the GW parameters, α and β̃,
do not depend on R. The values for α and β̃ are stable since
the potential shape changes by similarity for changing R.
For example, the latent heat ϵ and the radiation density ρrad
alter at the same rate for changing R, hence the ratio α
between them remains the same value. As a result of the
stability of α and β̃, the changes of GW spectrums depend
only on Tnuc. The nucleation temperature Tnuc increases
with the scale 1=R, and the higher Tnuc makes the GW
frequency peak larger as in the right panel of Fig. 3.
Observable regions of R and the VEV v of the extradimen-
sional gauge component for each interferometer are shown
in Table I. The compact scale R is inversely proportional to
the scalar VEV v as in Eq. (2.10). Through the combination
of the interferometers, the scale of the higher-dimensional
gauge theory can be investigated up to Oð107Þ GeV.

B. Case 2

Case 2 is chosen as

NðþÞ
ad ¼ 2; Nð−Þ

ad ¼ 0; NðþÞ
f ¼ 0; Nð−Þ

f ¼ 8;

NsðþÞ
f ¼ 4; Nsð−Þ

f ¼ 2; ð4:3Þ

FIG. 3. GW spectrums in case 1 for g4 ¼ 3, 4.5, 6, with R ¼ 10−3 GeV−1 (left), and R ¼ 10−3; 10−5, and 10−7 GeV−1, with g4 ¼ 3
(right). The colored regions indicate observed areas by future interferometers.

TABLE I. Observable scales of the compact scale R and the
VEV v by the future interferometers.

R [GeV−1] v [GeV]

LISA 10−4–10−1 101–103

DECIGO 10−6–10−3 103–105

ET 10−7–10−6 105–107
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following Refs. [10,15]. The effective potential at zero
temperature is minimized at a0 ≃ 0.058, and the gauge
symmetry is broken into SUð2Þ ×Uð1Þ → Uð1Þ. Figure 4
shows shapes of the effective potential in case 2 for RT ¼ 0
(solid), 0.0246 (dashed), and 0.0254 (dotted). The critical
temperature is numerically given by

Tc ≃
1

R
× 0.0254; ð4:4Þ

from the dotted line in Fig. 4. We can see the potential
barrier at Tc is tiny compared to that for case 1 in Fig. 1. It
would be because the scale of a at the minimum for a ≠ 0 is
much smaller than that in case 1. The potential barrier
disappears at zero temperature, while it remains in case 1.
To see g4 dependence on the phase transition as in case 1,

we show the action S3=T as the function of T for case 2 in
Fig. 5. Similar to case 1, we take R ¼ 10−3 GeV−1 for
an example. The solid, dashed, and dotted line indicates
results for g4 ¼ 0.5, 1, and 5. We can see the same feature,
which is that the nucleation temperature Tnuc becomes
larger and approaches Tc as g4 increases. The values of Tnuc
are 24.6 GeV, 25.2 GeV, and 25.4 GeV for g4 ¼ 0.5, 1,

and 5, respectively. The shift of Tnuc for changing g4 is slight
because the potential barrier is much smaller than the scale
of Veff as shown in Fig. 4 and the barrier change signifi-
cantly by the slight shift of T. Besides, contrary to case 1,
S3=T reaches zero and remains until zero temperature
because there is no potential barrier anymore. Since the
potential vanishes, S3=T always reaches 140 for an arbitrary
value of g4.
The left panel of Fig. 6 represents the GW spectrums for

the same values of g4 as in Fig. 5. We can see the same
feature for changing g4 as in the left panel of Fig. 3, while
the GWenergy density is smaller. Since the potential barrier
is tiny, the potential difference ΔV at Tnuc becomes small. It
leads to the small α and GW energy density. The interfer-
ometer U-DECIGO is possible to investigate the region
g4 < 1. In the right panel of Fig. 6 shows the GW spectrums
for R ¼ 10−1; 10−3, and 10−5 GeV−1 with g4 ¼ 0.5. As the
same as in case 1, the spectrum slides for changing R while
keeping the shape. The observable regions by U-DECIGO
are 10−4 GeV−1<R≲10−2 GeV−1 and 101 GeV≲ v <
102 GeV.

FIG. 4. Shapes of the effective potential in case 2 for RT ¼ 0
(solid), 0.0246 (dashed), and 0.0254 (dotted). FIG. 5. Action S3=T as a function of the temperature T in case 2

with R ¼ 10−3 GeV−1. The dashed, solid, and dotted lines
correspond to g4 ¼ 0.5, 1, and 5, respectively.

FIG. 6. GW spectrums in case 2 for g4 ¼ 0.5, 1, and 5 with R ¼ 10−3 GeV−1 (left), and R ¼ 10−1; 10−3, and 10−5 GeV−1 with
g4 ¼ 0.5 (right).
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V. CONCLUSION

In this paper, we considered the five-dimensional SUð3Þ
gauge theories with the orbifold S1=Z2 and discuss its
verifiability in future GW observations. At first, we for-
mulated the thermal effective potential, which is possible to
cause the SSB. We perform numerical calculations in the
two cases of field choices where the first-order phase
transitions can occur. In case 1, we introduced fermions
in fundamental representation. The symmetry breaking
pattern is SUð2Þ ×Uð1Þ → U0ð1Þ ×Uð1Þ. The character-
istic point is that the potential barrier remains at zero
temperature. In case 2, where the potential barrier vanishes
at a certain temperature, we introduced matter fields such as
Eq. (4.3). The symmetry breaking pattern is SUð2Þ×
Uð1Þ → Uð1Þ. This case is similar to the electroweak
symmetry breaking pattern.
Through our numerical calculation, we revealed the

relations between the GW spectrums and the distinctive
parameters, which are the four-dimensional gauge coupling
g4 and the compact scale R for the orbifold. The main results
in case 1 are shown in Fig. 3. Since S3=T does not reach
under 140 for g4 ≲ 2.8 in Fig. 2, we found that LISA can
observe the region 2.8≲ g4 ≲ 4withR ¼ 10−3 GeV−1. The
main results in case 2 are also shown in Fig. 6. In this case,
the interferometer U-DECIGO is possible to investigate the
region g4 < 1. In addition, we found that the observable
regions by U-DECIGO are 10−4 GeV−1 <R≲10−2 GeV−1.
In both cases, larger g4 makes the GW peak frequency

higher and the GW energy density smaller. The phenome-
non can be explained by the change of the behavior of S3=T
for changing g4. On the other hand, R is irrelevant to the
shape of the GW spectrum, while it controls the GW peak
frequency. These features are general properties of GW
spectrum from phase transitions. To be more specific, in
higher-dimensional gauge theories, the independence of R

on the shape of the GW spectrums comes from the similarity
of the potential change for shifting R. Regarding the
difference between the two cases, the important factors
are the scale of the potential barrier between the two minima
and the disappearance of the barrier. If the potential barrier
at the phase transition is large enough, the produced GW
energy density would be huge. In that case, the verifiability
in the GW observations would be hopeful, and we can
investigate wide ranges of the parameters by the combina-
tion of the observations. Meanwhile, if the potential barrier
remains even at zero temperature, the SSB would occur only
for large enough g4. The coupling g4 also controls the GW
energy density; hence, the value of g4 would be essential for
discussing the verifiability of the GW observations.
As an application of our results, we can consider the

gauge-Higgs unification (GHU), where the zero-mode of
the scalar field induced from extra components of a higher-
dimensional gauge field is identified with the Higgs boson.
To apply our results to gauge-Higgs unification, we must
identify the zero-modes of extra components of higher-
dimensional gauge fields as Higgs fields and realize the
masses of theW gauge boson and the Higgs boson. In order
to realize these masses, the GHU with matter fields in
higher representations, e.g., 10 and 15 representations, has
been studied (see Refs. [9,13]). In the future, we will come
back to the relation between the GHU (or higher-dimen-
sional gauge theories with the matter fields in higher
representation) and the GW spectrum from the first-order
phase transitions.
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