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We perform a lattice calculation on the radiative decay ofD�
s using the (2þ 1)-flavorWilson-clover gauge

ensembles generated by CLQCD collaboration. A method allowing us to calculate the form factor with
zero transfer momentum is proposed and applied to the radiative transition D�

s → Dsγ and the Dalitz
decay D�

s → Dseþe−. After a continuum extrapolation using three lattice spacings, we obtain
ΓðD�

s → DsγÞ ¼ 0.0549ð54Þ keV, where the error is purely statistical. The result is consistent with previous
lattice calculations but with a error reduced to only a fifth of the before. The Dalitz decay rate is also
calculated for the first time and the ratio with the radiative transition is found to beRee ¼ 0.624ð3Þ%. A total
decaywidth ofD�

s can then be determined as 0.0587(54) keV taking into account the experimental branching
fraction. Combining with the most recent experimental measurement on the branching fraction of the purely
leptonic decay Dþ;�

s → eþνe, we obtain the quantity fD�
s
jVcsj ¼ ð190.5þ55.1

−41:7stat � 12.6systÞ MeV, where the

stat. is only the statistical error from the experiment, and syst. results from the experimental systematic
uncertainty and the lattice statistical error. Our result leads to an improved systematic uncertainty compared
to 42.7syst obtained using previous lattice prediction of total decay width 0.070(28) keV as the input.

DOI: 10.1103/PhysRevD.109.074511

I. INTRODUCTION

Testing the standard model precisely and searching for
signals or even hints for new physics beyond the standard
model is one of the major goals of contemporary particle
physics. Various flavor-changing weak decay processes can
be used to extract relevant Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements and then test them under 3 flavor
unitarity, which has become a well-known and extremely
important direction in flavor physics [1]. For the electro-
magnetic decays without involving the CKM matrix

elements, the decay rate can be measured experimentally
and also be calculated theoretically, hence providing an
alternative and even more direct way to test the standard
model. In recent works on ηc → 2γ [2,3], for example, the
decay rate has been calculated precisely and it appears to
differ significantly from the Particle Data Group’s reported
value. It therefore leaves some interesting physics in this
channel.
In this work, we focus on the radiative decay of the

excited strange charm meson, the vector meson D�
s with

quark content cs̄. Though the particle mass and the
branching fraction of the known decay channels have been
measured, the total decay width of D�

s is not determined
experimentally. A possible way to extract the total decay
width is to combine the calculated partial decay width, such
as D�

s → Dsγ and its experimental branching fraction. On
the theoretical side, an impressive achievement comes from
the lattice calculation [4], in which the authors obtained the
radiative decay width as ΓðD�

s → DsγÞ ¼ 0.066ð26Þ keV.
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It thereby determines the total decay width Γtotal
D�

s
¼

0.070ð28Þ keV. A most recent experimental measurement
on the branching fraction of the purely leptonic decay
D�;þ

s → eþνe gives BrðD�;þ
s → eþνeÞ ¼ ð2.1þ1.2

−0.9stat �
0.2systÞ × 10−5 [5]. Combining this branching fraction and
the total decay width, it obtains fD�

s
jVcsj ¼ ð207.9þ59.4

−44:6stat�
42.7systÞ MeV. The systematic uncertainty comes from the
uncertainties in the experimental measurement and the
total decay width. Since the precision of the theoretical
total decay width is about 40%, significantly larger than
the experimental 10%, it is therefore urgent to reduce the
theoretical uncertainty for a more precise extraction of the
quantity fD�

s
jVcsj.

The aim of this work is to further improve upon the
previous lattice study of this radiative decay. Several
improvements are made to obtain a more accurate result.
(i) We adopt a novel method to extract the on-shell
transition factor. The new method allows a calculation of
an off-shell transition factor with zero transfer momentum.
When the continuous momentum extrapolation is per-
formed, the accuracy of the on-shell factor is well con-
trolled by this point; (ii) We consider a large number of time
separations between the initial and final particles in our
calculation. A correlated fit to a constant at large time
separation is performed and the excited-state contamination
is well removed; (iii) We utilize three gauge ensembles with
different lattice spacings, the finest of which is 0.052 fm,
leading to a well-controlled continuous limit a2 → 0. These
efforts finally enable us to obtain the decay width with a
statistical precision of about 9.8%.
The rest of this paper is organized as follows. In Sec. II,

we introduce the methodology utilized in this work for
calculating the radiative decay width. This section is
divided into three parts: in Sec. II A the theoretical
framework is given; in Sec. II B the hadronic function is
extracted from the lattice data; in Sec. II C the decay widths
of D�

s → D�
sγ and D�

s → Dseþe− are obtained using the
form factors calculated on the lattice. In Sec. III we give
details of the simulations and show the main results. This
section is further divided into three parts: in Sec. III A the
numerical values of D�

s and Ds masses, together with the
dispersion relation ofDs particle are presented; in Sec. III B
the results of D�

s → Dsγ are obtained, a continuum
extrapolation under three lattice spacings is performed;
in Sec. III C the results of D�

s → Dseþe− are summarized;
Finally, we conclude in Sec. IV.

II. METHODOLOGY

The lattice study on the radiative transition process is
quite mature, either for the traditional momentum extra-
polation, or the latter twisted boundary condition [6,7]. We
will not go into these details in this paper. Instead, wewould
proceed in another way, which is called the scalar function
method in recent years. Such a method has been widely

applied to various physical processes [2,8–15] and achieved
great successes. For more detailed derivations in this paper,
we refer to the supplementary materials in our previous
study on the charmonium two-photon decay [2], where the
same parameterization of the form factor is utilized.

A. Scalar function method

We start with a Euclidean hadronic function in the
infinite volume

Hμνðx⃗; tÞ ¼ h0jODs
ðx⃗; tÞJemν ð0ÞjD�

s;μðp0Þi; t > 0; ð1Þ

where Jemν ¼ P
q eqq̄γνq (eq ¼ 2=3;−1=3;−1=3; 2=3 for

q ¼ u, d, s, c. The jD�
s;μðp0Þi is a D�

s state with momentum

p0 ¼ ðimD�
s
; 0⃗Þ and ODs

is the interpolating operator of Ds.
At large time t, the hadronic function is saturated by the
single Ds state

HμνðxÞ ≐ HDs
μν ðxÞ ¼

Z
d3p⃗
ð2πÞ3

1

2EDs

e−EDs tþip⃗·x⃗

× h0jODs
ð0ÞjDsðp⃗ÞihDsðp⃗ÞjJνð0ÞjD�

s;μðp0Þi ð2Þ
Considering the following parametrizations

h0jODs
ð0ÞjDsðp⃗Þi ¼ ZDs

hDsðpÞjJemν ð0ÞjD�
s;μðp0Þi ¼ 2Veffðq2Þ

mDs
þmD�

s

ϵμναβpαp0
β ð3Þ

where an effective transition factor Veffðq2Þ is introduced
and the square of transfer momentum q2 is determined by
q2 ¼ ðmD�

s
− EDs

Þ2 − jp⃗j2 asD�
s is at rest. Then, the spatial

Fourier transform of Hμνðx⃗; tÞ yields

H̃μνðp⃗; tÞ ≐ H̃Ds
μν ðp⃗; tÞ ¼ 1

mDs
þmD�

s

ZDs

EDs

e−EDs t

× ϵμναβpαp0
βVeffðq2Þ ð4Þ

The conventional way to extract the form factor Veffðq2Þ
is to utilize the above equation at a series of nonzero lattice
momentum p⃗ ¼ 2πn⃗=L; n⃗ ≠ 0. The on-shell transition
factor Veffð0Þ is obtained by a momentum extrapolation
with these data at discrete q2 as inputs. We remark that the
specific momentum point p⃗ ¼ 0 closest to the on-shell
condition q2 ¼ 0 is missed in such a way. It is easy to check
that H̃μνðp⃗; tÞ ¼ 0 if the Ds and D�

s are both stationary, and
hence the p⃗ ¼ 0 data cannot be incorporated into the
analysis via this quantity. Therefore, an extrapolation
including this point will improve the precision and, more
importantly, the reliability of the momentum extrapolation.
To achieve this, we construct a scalar function given below

Iðt; jp⃗jÞ ¼ 1

mD�
s
jp⃗j2 ϵμναβpαp0

βH̃μνðp⃗; tÞ ð5Þ
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This quantity, on the one hand, is related to the transition
factor Veffðq2Þ via

Iðt; jp⃗jÞ ¼ −2ZDs
mD�

s

mDs
þmD�

s

Veffðq2Þ
e−EDs t

EDs

; ð6Þ

On the other hand, it can be computed directly only using
the hadronic function Hμνðx⃗; tÞ defined in Eq. (1) as an
input,

Iðt; jp⃗jÞ ¼
Z

d3x⃗
j1ðjp⃗jjx⃗jÞ
jp⃗jjx⃗j ϵμνα0xαHμνðx⃗; tÞ ð7Þ

where jnðxÞ are the spherical Bessel functions. Finally, it
arrives at

Veffðq2Þ ¼
−ðmDs

þmD�
s
ÞEDs

2ZDs
mD�

s

eEDs t

×
Z

d3x⃗
j1ðjp⃗jjx⃗jÞ
jp⃗jjx⃗j ϵμνα0xαHμνðx⃗; tÞ ð8Þ

It is easy to verify the momentum jp⃗j ¼ 0 is immediately
accessible since j1ðxÞ=x tends to a finite value as x → 0.
The on-shell transition factor Veffð0Þ can be determined by
a general polynomial extrapolation,

Veffðq2Þ ¼ d0 þ d1 ·
q2

m2
D�

s

þ d2 ·
q4

m4
D�

s

þOðq6=m6
D�

s
Þ ð9Þ

where the coefficients di are introduced and Veffð0Þ≡ d0.
Since q2 ¼ ðmD�

s
−mDs

Þ2 ≡ ðδmÞ2 as p⃗ ¼ 0, the differ-
ence of Veffð0Þ and VeffððδmÞ2Þ is thereby a very small
quantity with the consideration of ðδmÞ2=m2

D�
s
∼ 0.46%. It

is therefore expected that the extrapolation precision with
p⃗ ¼ 0 included can be significantly improved.

B. Hadronic function Hμνðx⃗; tÞ
The hadronic function Hμνðx⃗; tÞ can be extracted from a

three-point function Cð3Þ
μν ðx⃗; tÞ

Cð3Þ
μν ðx⃗; tÞ ¼ hODþ

s
ðx⃗; tÞJemν ð0ÞO†

Dþ;�
s;μ
ð−tÞi ð10Þ

where interpolating operators are chosen as O†
Dþ;�

s;μ
¼ −c̄γμs

and ODþ
s
¼ s̄γ5c. In this work, we only consider the

connected contribution. Then, it has the following con-
tractions:

Cð3Þ
μν ðx⃗; tÞ ¼ −echγ5γμS†sðx⃗; t;−tÞScðx⃗; t; 0ÞγνScð0;−tÞi

þ eshγ5γμS†sð0;−tÞγνS†sðx⃗; t; 0ÞScðx⃗; t;−tÞi
ð11Þ

Thus, the hadronic function HμνðxÞ is given by

Hμνðx⃗; tÞ ¼
2mDs

ZDs

emDs tCð3Þ
μν ðx⃗; tÞ ð12Þ

where mDs
and ZDs

are extracted from the two-point

function Cð2Þðp⃗; tÞ ¼ P
x⃗ cosðp⃗ · x⃗ÞhOhðx⃗; tÞO†

hð0Þi by a
single-state fit

Cð2Þðp⃗; tÞ ¼ Z2
h

2Eh
ðe−Eht þ e−EhðT−tÞÞ ð13Þ

with mh ¼ Ehðp⃗ ¼ 0Þ the ground-state energy and
Zh ¼ hhjO†

hj0i is the overlap amplitude for the ground
state. The symbol h denotes the hadron, for example, Ds or
D�

s in this paper. For the computation of the three-point

function Cð3Þ
μν ðx⃗; tÞ, we place the point source propagator on

the current and wall source propagator on the initial hadron.
All the propagators are produced on a large number of time
slices by average to increase the statistics based on time
translation invariance.

C. Decay width of D�
s → Dsγ and D�

s → Dse + e −
The amplitude of Dþ;�

s → γDþ
s can be written as

iMðλ0; λÞ ¼ ieϵμD�
s
ðp0; λ0Þϵνγðq; λÞhDsðpÞjJemν ð0ÞjD�

s;μðp0Þi
ð14Þ

where ϵμD�
s
ðp0; λ0Þ is the polarization vector of the D�

s

particle and ϵνγðq; λÞ is the photon polarization with the
four-vector momentum q ¼ p0 − p. These polarizations
satisfy the following identities:

X
λ

ϵμD�
s
ðp0; λÞϵνD�

s
ðp0; λÞ ¼ −gμν þ

p0
μp0

ν

m2
D�

s

ð15Þ
X
λ

ϵμγ ðp; λÞϵνγðp; λÞ ¼ −gμν ð16Þ

Combining the parametrization in Eq. (3), it immediately
leads to the following decay width

ΓðD�
s → γDsÞ ¼

1

2mD�
s

Z
d3q⃗

ð2πÞ32jq⃗j
Z

d3p⃗
ð2πÞ32EDs

× ð2πÞ4δð4Þðp0 − p − qÞ

×
1

3

X
λ0

X
λ

jMðλ0; λÞj2

¼ 4

3

αðδmÞ3
ðmDs

þmD�
s
Þ2 jVeffð0Þj2 ð17Þ

where α≡ e2=4π. The factor 1=3 in the third line denotes
the average over three polarizations of D�

s in its rest frame
and the final photon polarization has been summed up.
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The amplitude of the Dalitz decay D�
s → Dseþe− has

additionally photon propagator −igνν0=q2 and leptonic
current ūeγν0ue compared with the amplitude of the
radiative decay D�

s → Dsγ in Eq. (14). A direct calculation
similar to the above gives the Dalitz decay widths normal-
ized to the corresponding radiative decay as follows [16]

Ree ¼
ΓðD�

s → Dseþe−Þ
ΓðD�

s → DsγÞ

¼ α

3π

Z
dq2

q2

����Veffðq2Þ
Veffð0Þ

����
2
�
1 −

4m2
e

q2

�1
2

�
1þ 2m2

e

q2

�

×

��
1þ q2

m2
D�

s
−m2

Ds

�
2

−
4m2

D�
s
q2

ðm2
D�

s
−m2

Ds
Þ2
�3

2

ð18Þ

III. SIMULATIONS AND RESULTS

We employ three (2þ 1)-flavor Wilson-clover gauge
ensembles generated by the CLQCD collaboration with
lattice spacings a ≈ 0.1053, 0.0775, 0.0519 fm, the para-
meters of which are shown in Table I. For more details,
we refer to Ref. [17]. A very fine lattice spacing with
0.03 fm has been produced by MILC collaboration using
the tadpole-improved symanzik gauge action [18].
Therefore, a similar setup with lattice spacing 0.052 fm
should be quite conservative to avoid the topology freezing
effect. All the ensembles have similar volumes and pion
masses in physical units and are expected to provide a fully
well-controlled continuous extrapolation. The bare valence
charm quark mass has not been presented in the original
paper, so we determine its value by demanding the lattice
result of J=ψ mass to reproduce its physical value. This is

due to the fact that the annihilation effect of J=ψ particle is
verified to be much smaller than the ηc meson [19]. The
latter is expected to cause a 1–4 MeV mass shift.

A. Mass spectrum

The ground-state energies of the particle Ds and D�
s are

extracted from the two-point functions which are calcu-
lated by the wall source propagators. It is found in our
study that the uncertainty is reduced by 30%–60% by
using a wall propagator compared to that using the point
source propagator. For the determination of energy levels
especially with nonzero momenta, we calculated them
directly by the point source propagators. A single-state
correlated fit with the formula Eq. (13) is utilized and the
numerical fitting results of the spectra are summarized
in the Table II and Table III. The effective levels of the
particle Ds and D�

s are both shown in Fig. 1 for all the
ensembles and the horizontal gray bands therein denote
the fitting center values and statistical errors estimated by
the jackknife method. The ground state masses are shown
by the upper panels in Fig. 1 and the energy levels with a
series of momenta are illustrated in the lower panels.
We also check the dispersion relation ofDs particle using

the energy levels summarized in Table III. This verification
is crucial since the energy of Ds at nonzero momenta,
namely, EDs

, directly enters our calculation of the transition
factor in Eq. (8). It is found that the discrete dispersion
relation

TABLE I. Parameters of gauge ensembles used in this work.
From top to bottom, we list the ensemble name, the lattice
spacing a, the bare quark mass including the strange quark aμs
and valence charm quark aμc, the spatial and temporal lattice size
L and T, the number of the measurements of the correlation
function for each ensemble Ncfg × Nsrc, the pion mass mπ , the
J=ψ mass mJ=ψ , the range of the time separation t between the
initial hadron and the electromagnetic current, and the vector
normalization constant ZV . Here, L, T, and t are given in lattice
units.

Ensemble C24P29 C32P30 C48P32

aðfmÞ 0.10530(18) 0.07746(18) 0.05187(26)
aμs −0.2400 −0.2050 −0.1700
aμc 0.4479 0.2079 0.0581
L3 × T 243 × 72 323 × 96 483 × 144
Ncfg × Nsrc 450 × 72 377 × 96 306 × 72

mπðMeVÞ 292.7(1.2) 303.2(1.3) 317.2(0.9)
mJ=ψ ðMeVÞ 3098.6(0.3) 3094.9(0.4) 3096.5(0.3)
t 3–18 2–22 8–30
ZV 0.79814(23) 0.83548(12) 0.86855(04)

TABLE II. Mass spectra mD�
s =Ds

and overlap function ZD�
s =Ds

for D�
s and Ds particles, which are extracted from the two-point

function calculated by the wall source propagators. δm≡mD�
s
−

mDs
is the hyperfine splitting.

Ensemble C24P29 C32P30 C48P32

mD�
s
ðMeVÞ 2086.5(1.2) 2098.1(1.2) 2117.1(2.5)

mDs
ðMeVÞ 1998.2(0.5) 1989.4(0.5) 1983.8(0.6)

ZD�
s

0.1474(9) 0.0858(5) 0.0414(7)
ZDs

0.2175(5) 0.1388(3) 0.0722(2)

TABLE III. Numerical results EDs
ðp⃗Þ with p⃗ ¼ 2πn⃗=L,

jn⃗j2 ¼ 0, 1, 2, 3, 4. The coefficient ZDs
latt is defined by the discrete

dispersion relation. All the results are extracted from the two-
point function calculated by the point source propagators.

Ensemble C24P29 C32P30 C48P32

aEDs
ðjn⃗j2 ¼ 0Þ 1.0657(4) 0.7811(3) 0.5214(2)

aEDs
ðjn⃗j2 ¼ 1Þ 1.0926(5) 0.8035(3) 0.5370(3)

aEDs
ðjn⃗j2 ¼ 2Þ 1.1187(6) 0.8251(5) 0.5523(5)

aEDs
ðjn⃗j2 ¼ 3Þ 1.1441(9) 0.8461(8) 0.5672(9)

aEDs
ðjn⃗j2 ¼ 4Þ 1.1671(14) 0.8656(12) 0.5821(18)

ZDs
latt

1.0305(89) 1.0230(90) 1.0182(130)
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4sinh2
EDs

2
¼ 4sinh2

mDs

2
þ ZDs

latt · 4
X
i

sin2
p⃗i

2
ð19Þ

describes the energies and momenta well and a nice linear
behavior between 4sinh2ðEDs

=2Þ and 4
P

i sin
2ðp⃗i=2Þ is

obtained as illustrated in Fig. 2. The numerical values of the
slope are well consistent with one, leading to a well-
satisfying discrete dispersion relation in our simulations.

B. D�
s → Dsγ

There is a total of two contributions for the effective
transition factor Veffðq2Þ, one is that the photon is radiated
from the charm quark, and the other is from a strange
quark. This can also be read directly from the Wick
contraction in Eq. (11). In the following, we divide the
effective transition factor into two parts, Vcðq2Þ and
Vsðq2Þ. The former denotes the photon has escaped from
the charm quark, and the latter from the strange quark.
Specifically, it has

Veffðq2Þ ¼
1

3
Vsðq2Þ −

2

3
Vcðq2Þ: ð20Þ

Since these two parts come from different Wick con-
tractions, each of them can be calculated separately. The
lattice results of Vcðq2Þ and Vsðq2Þ as a function of the time
separation t are shown in Fig. 3, together with a series of
momenta p⃗ ¼ 2πn⃗=L, jn⃗j2 ¼ 0, 1, 2, 3, 4. Here we present
all the results from the three ensembles, i.e. C24P29,
C32P30, and C48P32 from top to bottom, respectively.
It shows that Vcðq2Þ and Vsðq2Þ have obvious t dependence
in the small time region, indicating sizable excited-state
effects associated with the initial and final hadrons. With
enough time intervals utilized in this work, we could
observe obvious plateaus in a large enough time region.

FIG. 1. For the ensembles of C24P29, C32P30, and C48P32 from left to right, the mass spectra of D�
s and Ds particles extracted from

the two-point functions calculated using wall source propagators (top) and the energy levels of Ds particle with different momentum
p⃗ ¼ 2πn⃗=L, jn⃗j2 ¼ 0, 1, 2, 3, 4 extracted from two-point functions calculated using point source propagators (bottom). The horizontal
gray bands denote the fitting ranges.

FIG. 2. The dispersion relation of Ds meson for the ensembles
C24P29, C32P30, and C48P32, respectively.
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Therefore, excited-state effects are well controlled in our
calculations. All results of Vcðq2Þ and Vsðq2Þ are obtained
by a correlated fit of the lattice data to a constant at a
suitable time region, which is denoted bands in the figure.
The fitting values are summarized in Table IV.

Combining the transition factors Vcðq2Þ and Vsðq2Þ,
the effective transition factor Veffðq2Þ can be calculated
immediately, the numerical values of which are summa-
rized in Tab. IV. The on-shell factor Veffð0Þ is then
extracted by a momentum extrapolation in q2 → 0 with
the five momentum modes taken into account. The numeri-
cal results of the coefficients d0, d1, and d2 are summarized
in Table V. In this work, it is found that the polynomial
formula in Eq. (9) can describe the lattice data very well, as
shown in Fig. 4. It is seen that due to similar masses of the
initial and final particles, i.e., D�

s and Ds, the on-shell
transition factor is very close to that with zero momentum.
Therefore, the statistical error of the on-shell transition
factor is almost dominated by the error of the off-shell
transition factor with zero momentum.
The lattice results for the on-shell effective transition

factor at different lattice spacings are shown in Fig. 5,
together with an extrapolation that is linear in a2. This
linear behavior is expected since the ensembles used in the
work have adopted the tadpole-improved tree-level
Symanzik gauge action and the tadpole-improved tree-
level Clover fermion action. It is also seen that the fitting
curves describe the lattice data well. After the continuous
extrapolation, we obtain

FIG. 3. The transition factors Vc=sðq2Þ with different momen-
tum p⃗ ¼ 2πn⃗=L, jn⃗j2 ¼ 0, 1, 2, 3, 4. The horizontal gray bands
denote the fitting results.

TABLE IV. Numerical results of Vcðq2Þ, Vsðq2Þ, and Veffðq2Þ
with p⃗ ¼ 2πn⃗=L, jn⃗j2 ¼ 0, 1, 2, 3, 4.

Ensemble C24P29 C32P30 C48P32

Vcðjn⃗j2 ¼ 0Þ 0.6406(35) 0.7675(78) 0.9898(106)
Vcðjn⃗j2 ¼ 1Þ 0.6170(37) 0.7445(78) 0.9547(106)
Vcðjn⃗j2 ¼ 2Þ 0.5945(36) 0.7197(79) 0.9192(107)
Vcðjn⃗j2 ¼ 3Þ 0.5738(38) 0.6945(80) 0.8825(118)
Vcðjn⃗j2 ¼ 4Þ 0.5464(43) 0.6655(82) 0.8361(149)

Vsðjn⃗j2 ¼ 0Þ 2.8381(123) 2.6166(183) 2.8021(246)
Vsðjn⃗j2 ¼ 1Þ 2.2767(90) 2.1297(142) 2.3074(190)
Vsðjn⃗j2 ¼ 2Þ 1.8327(72) 1.7270(115) 1.8928(156)
Vsðjn⃗j2 ¼ 3Þ 1.4789(69) 1.4039(95) 1.5519(144)
Vsðjn⃗j2 ¼ 4Þ 1.1724(69) 1.1411(82) 1.2703(154)

Veffðjn⃗j2 ¼ 0Þ 0.5190(41) 0.3605(58) 0.2742(79)
Veffðjn⃗j2 ¼ 1Þ 0.3476(32) 0.2136(50) 0.1327(68)
Veffðjn⃗j2 ¼ 2Þ 0.2146(28) 0.0959(47) 0.0182(64)
Veffðjn⃗j2 ¼ 3Þ 0.1104(28) 0.0050(47) −0.0711ð67Þ
Veffðjn⃗j2 ¼ 4Þ 0.0265(31) −0.0633ð48Þ −0.1340ð86Þ

TABLE V. Numerical results of di with i ¼ 0, 1, 2 are extracted
by the momentum extrapolation in Eq. (9).

Ensemble C24P29 C32P30 C48P32

d0 0.512(4) 0.353(6) 0.264(8)
d1 3.177(30) 2.682(34) 2.638(58)
d2 4.419(103) 3.693(88) 3.746(242)
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Veffð0Þ ¼ 0.178ð9Þ ð21Þ

Compared to the previous lattice calculation given by
HPQCD [4], the charm quark in our simulation still
contains a relatively large discretization error. However,
with several improvements in our calculation, for example,
the scalar function methodology, the especially finer
lattice spacings, and many time separation utilized, we
finally obtain Veffð0Þ with a significantly improved pre-
cision, where the statistical error is more than 4 times
smaller than before. Using the physical transition factor
Veffð0Þ ¼ 0.178ð9Þ as input, and considering the physical
masses of D�

s and Ds, i.e., mD�
s
¼ 2112.2ð4Þ MeV, mDs

¼
1968.35ð7Þ MeV [20], the decay width of the radiative
decay D�

s → γDs appears to be

ΓðD�
s → γDsÞ ¼ 0.0549ð54Þ keV ð22Þ

where the error only comes from the statistical error of the
transition form factor Veffð0Þ. For the first time, the
accuracy of lattice calculation has reached percent level.
It is seen our current result is also consistent with previous
lattice calculations except that the statistical error is only a
fifth of the previous ones.
There are of course systematic errors that have not been

seriously considered in this work. These include the effects
from the neglected disconnected diagrams, the quenching
of the charm quark, nonphysical light quark masses and
finite volume effects. These effects could be studied in
future systematic lattice studies using, e.g., the gauge
ensembles with physical pion mass, with charm sea quarks,
and with more lattice spacings and volumes. In particular,
the method proposed in this work has the potential to
address the challenging contribution from the disconnected
diagrams in the future.
With the input of the branching fraction BrðD�

s →
DsγÞ ¼ 93.5ð7Þ%, it immediately obtains the total decay
width Γtotal

D�
s

¼ 0.0587ð54Þ keV. Recently, the BESIII has
reported the first experimental study of the purely leptonic
decay Dþ;�

s → eþνe, and gives the branching fraction of
this decay as ð2.1þ1.2

−0.9stat � 0.2systÞ × 10−5 [5]. Combining
this branching fraction with our lattice calculation on the
total decay width, we obtain fD�

s
jVcsj ¼ ð190.5þ55.1

−41.7stat�
12.6systÞ MeV, where the stat. is only the statistical error
from the experiment, and syst. results from the experi-
mental systematic uncertainty and lattice statistical error. If
take the previous lattice QCD prediction of the total decay
width 0.070(28) keV as input, it leads to a systematic error
42.7syst for the quantity fD�

s
jVcsj. At present, the updated

systematic uncertainty is mainly from the uncertainties in
the measured BrðDþ;�

s → eþνeÞð9.5%Þ and the LQCD
updated Γtotal

D�
s
ð9.2%Þ.

C. D�
s → Dse+ e −

For the Dalitz decay ofD�
s , a virtual photon is internally

converted to a leptonic pair lþl−. Since the μmass is larger
than the mass splitting of D�

s and Ds, the only possible
decay mode is the eþe− pair. Taking into account the
transition factor Veffðq2Þ already obtained in the calcu-
lation of D�

s → Dsγ, the ratio Ree defined in Eq. (18) is
calculated straightforwardly. The results of the ratio
for all ensembles are shown in Fig. 6 and the numerical
values are presented in Table VI. A linear behavior in a2

can well describe the lattice data as expected. Finally, we
have

Ree ¼
ΓðD�

s → Dseþe−Þ
ΓðD�

s → DsγÞ
¼ 0.624ð3Þ% ð23Þ

FIG. 5. The lattice results of Veffð0Þ as a function of the lattice
spacing. The errors of lattice spacing have been included in the
continuous limit, which are presented by the horizontal error bars.
The symbols of the blue cross and black triangle indicate the
results given by HPQCD and this work, respectively.

FIG. 4. The momentum extrapolation for transition factors
Veffðq2Þ with different momentum p⃗ ¼ 2πn⃗=L, jn⃗j2 ¼ 0, 1, 2,
3, 4. The black squares denote the on-shell transition factor
Veffð0Þ.
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which is consistent with the PDG value 0.67(16)%. The
errors of the subtracting transition factors Veffðq2Þ and
Veffð0Þ almost completely cancel, eventually leading to a
per mill level calculation.
As far as we know, three main decay channels of D�

s are
listed by PDG, and they are D�

s → Dsγ, D�
s → Dsπ

0, and
D�

s → Dseþe−. Their respective branching fractions are
determined from only two relative ratios, i.e., Ree ¼
ΓðD�

s → Dseþe−Þ=ΓðD�
s → DsγÞ and RDsπ0 ¼ ΓðD�

s →
Dsπ

0Þ=ΓðD�
s → DsγÞ. By assuming the sum of the three

branching fractions is equal to 1, one has BrðD�
s → DsγÞ ¼

1=ð1þ Ree þ RDsπÞ, BrðD�
s → Dsπ

0Þ ¼ RDsπ
0=ð1þ Reeþ

RDsπÞ, and BrðD�
s → Dseþe−Þ ¼ Ree=ð1þ Ree þ RDsπÞ. It

is seen that the quantity Ree is directly measurable.
Therefore, such a physical quantity especially with ultra-
high precision serves as an excellent ground for testing the
standard model. More accurate experimental measurements
on Ree are welcome in the future.

IV. CONCLUSION

In this work, we present a lattice QCD calculation
on the radiative decay ofD�

s particle. The transition process
D�

s → Dsγ and Dalitz decay D�
s → Dseþe− are studied

respectively. Using the 2þ 1 Wilson Clover gauge ensem-
bles under three different lattice spacings, we finally obtain
ΓðD�

s → DsγÞ ¼ 0.0549ð54Þ keV, with an statistical error
significantly reduced compared to previous lattice calcu-
lation. The Dalitz decay of D�

s is also studied for the first
time, and the ratio is obtained as Ree ¼ 0.624ð3Þ%, with a
precision better than one percent.
To reach a percent level calculation, further improve-

ments in several aspects are adopted. First, we utilize a

scalar function method to calculate the effective transition
factor of D�

s → Dsγ, where the zero transfer momentum
can be projected directly without any ambiguity. As the
mass splitting of D�

s and Ds is relatively small, the on-shell
transition factor is very close to that with zero momentum.
Therefore, the precision of the on-shell transition factor is
almost dominated by the off-shell factor with zero momen-
tum after a momentum extrapolation. Second, a large
number of time separations t have been utilized in our
calculation, the excited-state contamination caused by the
initial and final states are therefore removed and the
transition factor is obtained by a correlated fit to a constant
at large t. Third, we have used three ensembles with
different lattice spacings to perform a continuous limit,
especially including a very fine spacing with only 0.052 fm.
Taking into account of the above-mentioned improvements,
we managed to obtain a result for the decay width in
Eq. (22) with an statistical error of about 9.8%.
A precise determination of D�

s total decay width plays a
vital role in extracting the CKM matrix element Vcs.
Combining with a recent experimental measurement on
D�;þ

s → eþνe, the quantity fD�
s
jVcsj is estimated and found

to be ð190.5þ55.1
−41.7stat � 12.6systÞ MeV. The systematic error

here is significantly reduced compared to 42.7 which
is extracted using the previous lattice result Γtotal

D�
s

¼
0.070ð28Þ keV as input. A further improvement on the
measurement of D�

s purely leptonic decay, both statistically
and systematically, is expected for the next generation of
the supercollider, such as Super Tau Charm Facility [21].
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FIG. 6. The lattice results of Ree as a function of the lattice
spacing. The black triangle denotes the result in the continuous
limit a2 → 0.

TABLE VI. Numerical value of Ree from three gauge ensem-
bles, together with the physical result in a continuous limit.

Ensemble C24P29 C32P30 C48P32 Cont.Limit

Ree × 103 5.66(2) 5.93(2) 6.10(3) 6.24(3)
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