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High-order behavior of the perturbative expansion for short-distance observables in QCD is intimately
related to the contributions of small momenta in the corresponding Feynman diagrams and this
correspondence provides one with a useful tool to investigate power-suppressed nonperturbative
corrections. We use this technique to study the structure of power corrections to parton quasi- and
pseudo-GPDs which are used in lattice calculations of generalized parton distributions. As the main result,
we predict the functional dependence of the leading power corrections to quasi(pseudo)-GPDs on x
variable for nonzero skewedness parameter ξ. The kinematic point x ¼ �ξ turns out to be special. We find
that the nonperturbative corrections to quasi-GPDs at this point are suppressed by the first power of the
hard scale only. These contributions come from soft momenta and have nothing to do with the known UV
renormalon in the Wilson line. We also show that power corrections can be strongly suppressed by the
normalization procedure.
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I. INTRODUCTION

Generalized parton distributions (GPDs) [1–4] have
emerged as an important research object which incorpo-
rates the information on the transverse distance separation
of quark and gluons in the hadron, in dependence on their
momentum fractions. Their determination is a major part
of ambitious research program at JLAB [5] and the
planned Electron Ion Collider (EIC) [6] aiming to under-
stand the proton structure in three dimensions, sometimes
referred to as “nucleon tomography.” Advances in detector
technologies and a very high luminosity of these machines
will allow one to study hard exclusive and semi-inclusive
reactions with identified particles in the final state with
unprecedented precision and are expected to make such
studies fully quantitative. The deeply-virtual Compton
scattering (DVCS) [7,8] is universally accepted as the
theoretically cleanest reaction that would have the highest
potential impact for the transverse distance imaging. It
will be aided by the input from timelike DVCS [9], hard
exclusive meson production [10] and more sophisticated
2 → 3 exclusive processes [11–21]. The main challenge of
these studies is that GPDs are functions of three variables
(not counting the scale dependence). Their extraction

requires massive amount of data and very high precision
for both experimental and theory inputs.
By this reason, any additional information on GPDs

from first-principles lattice calculations would be extre-
mely important and used in global fits in combination with
the experimental data, see e.g. [22] for an exploratory
study. Lattice calculations of the lowest moments of GPDs
defined through matrix elements of local composite
operators have been performed for a long time already
and are gaining maturity [23–25]. These calculations are
mostly restricted at present to the second moments that are
related to the gravitational form factors of the proton and
are receiving a lot of attention, see [26] for a recent review.
An alternative approach, originally suggested in [27], is to
calculate on the lattice nucleon (hadron) matrix elements
of gauge-invariant nonlocal operators, usually referred to
as “quasi” or “pseudo” distributions, qGPDs and pGPDs,
respectively. For large hadron momenta they can be related
to GPDs in the framework of collinear factorization in
continuum, see [28,29] for a review and further references.
The specific application of this approach to GPDs was
worked out in [30–33] and the first proof-of-the-principle
lattice calculations of qGPDs have been performed
recently [34–39]. Once the main methodical issues for
these new methods are established and the lattice simu-
lations start moving from exploratory stage toward pre-
cision calculations, the question of possible size and the
structure of the higher-twist (power suppressed) correc-
tions to qGPDs and pGPDs has to be addressed.
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On the one hand, there exist “kinematic” power correc-
tions to p(q)GPDs that are conceptually similar but more
complicated as compared to the well-known Wandzura-
Wilczek [40] contributions to the structure functions in
polarized deep-inelastic scattering. Their role is in particu-
lar to ensure that GPD extractions from qPDFs and pPDFs
do not depend on the chosen quark and antiquark positions,
the problem noticed in Ref. [38]. Kinematic twist-three
contributions to qPDFs and pPDFs have been scrutinized
recently [41] (see also [42]) and kinematic twist-four
contributions for the moments of pPDFs and qPDFs can
be inferred from [43].
On the other hand, there exist “genuine” higher-twist

contributions that are due to quark and gluon correlations in
the hadron and involve new nontrivial nonperturbative input.
The purpose of this work is study the structure and possible
kinematic enhancements of such genuine nonperturbative
contributions using the concept of renormalons [44,45]. This
technique exploits the fact that operators of different twist
mix with each other under renormalization, due to the
violation of QCD scale invariance through the running of
the coupling constant. This mixing is explicit in cutoff
schemes, whereas in dimensional regularization, it manifests
itself in factorial growth of the coefficients in the perturba-
tive series at high orders. Independence of a physical
observable on the factorization scale implies intricate can-
cellations between different twists—the cancellation of
renormalon ambiguities. In turn, the existence of these
ambiguities in the leading-twist expressions can be used
to estimate the size of power-suppressed corrections.
Conceptually, it is similar to the conventional estimation
of the accuracy of fixed-order perturbative results by the
logarithmic scale dependence.
Renormalons and power corrections to meson pseudo-

distribution amplitudes, pseudo- and quasi-PDFs have been
considered already in Refs. [46–48]. The present case is
more complicated because of the off-forward kinematics. In
particular the point x ¼ ξ on the boundary of the DGLAP
and ERBL regions requires special treatment and is not
directly accessible by the twist expansion. In order to avoid
proliferation of Lorentz and Dirac structures in this work
we consider qGPDs=pGPDs for the spin-zero targets only,
however, the conclusions are expected to be valid for the
spin-1=2 targets (nucleon) as well.
The presentation is organized as follows. The forth-

coming Sec. II and Sec. III are introductory, we collect
there the necessary definitions and explain our notation. In
Sec. IV we present our results for the Borel transform of the
relevant matrix element and the leading renormalon ambi-
guities in different representations. The corresponding
numerical study employing a simple GPD model is carried
out in Sec. V. Renormalon singularities for qGPDs at the
kinematic point x ¼ ξ require special treatment and are
discussed in Sec. VI. The final Sec. VII is reserved for a
summary and conclusions.

II. PSEUDO-GPDS AND QUASI-GPDS

The GPD of a spin-zero particle is defined as an off-
forward matrix element of the renormalized leading-twist
light-ray operator

hp0jq̄
�
z
2
n

�
=nq

�
−
z
2
n

�
jpi ¼ 2ðPnÞIðτ;ξ;Δ2;μÞ;

Iðτ;ξ;Δ2;μÞ ¼
Z

1

−1
dxeiτxHðx;ξ;Δ2;μÞ; ð1Þ

where z∈R, μ is the renormalization scale and nμ is an
auxiliary lightlike vector, n2 ¼ 0. The Wilson line between
the quarks is implied. The relevant kinematic variables are

P ¼ 1

2
ðpþ p0Þ; Δ ¼ ðp0 − pÞ; τ ¼ zðPnÞ ð2Þ

and the “skewedness” parameter ξ is defined as

ξ ¼ ðnpÞ − ðnp0Þ
ðnpÞ þ ðnp0Þ ¼ −

ðnΔÞ
2ðnPÞ : ð3Þ

We will assume that the normalization is chosen such that
Iðτ ¼ 0; ξ ¼ 0;Δ2 ¼ 0Þ ¼ 1 (number of quarks), and will
not show the dependence on the momentum transferΔ2 and
the renormalization scale μ in what follows.
GPDs can be determined, at least in principle, from the

lattice calculations of Euclidean correlation functions
obtained from (1) by a replacement of the lightlike vector
nμ by a spacelike vector vμ, under the condition that

z2jv2jΛ2
QCD ≪ 1; zðvPÞ ¼ Oð1Þ; ð4Þ

which requires that the hadron momentum must be large
[27,49]. For definiteness, we assume that ðvPÞ > 0. For
scalar targets there exist three Lorentz structures which can
be chosen, e.g., as

hp0jq̄
�
z
2
v

�
γμq

�
−
z
2
v

�
jpi¼2ðvPÞv

μ

v2
Ikðτ̃; ξ̃;z2Þ

þ2

�
Pμ−ðvPÞv

μ

v2

�
I⊥ðτ̃; ξ̃;z2Þ

þΔμ
⊥J ðτ̃; ξ̃;z2Þ ð5Þ

where

τ̃ ¼ zðvPÞ; ξ̃ ¼ ðvpÞ − ðvp0Þ
ðvpÞ þ ðvp0Þ ; ð6Þ

and

Δμ
⊥ ¼ Δμ þ 2ξ̃Pμ; ðvΔ⊥Þ ¼ 0: ð7Þ

BRAUN, KOLLER, and SCHOENLEBER PHYS. REV. D 109, 074510 (2024)

074510-2



The difference between τ and τ̃, and also between ξ and ξ̃ is
power suppressed and can be neglected for our purposes.
The three invariant functions in Eq. (5) can be separated

by applying suitable projection operators. Let

γμk ¼
vμ=v
v2

; γμ⊥ ¼ γμ −
vμ=v

v2
: ð8Þ

Then obviously

hp0jq̄
�
z
2
v

�
γμkq

�
−
z
2
v

�
jpi¼2ðvPÞv

μ

v2
Ik

hp0jq̄
�
z
2
v

�
γμ⊥q

�
−
z
2
v

�
jpi¼2

�
Pμ−ðvPÞv

μ

v2

�
I⊥þΔμ

⊥J :

ð9Þ

We will present the results for the both “longitudinal”
and “transverse” invariant functions, Ikðτ̃; ξ̃; z2Þ and
I⊥ðτ̃; ξ̃; z2Þ. The invariant function J can be expressed
in terms of certain integrals involving the leading twist
GPD (the so-called Wandzura-Wilczek contribution) and
the contributions of twist-three quark-antiquark-gluon
light-cone correlation functions [41,42,50]. The renorma-
lon contributions to J correspond to factorial divergences
in the coefficient functions of quark-antiquark-gluon con-
tributions and are beyond our accuracy. Thus for present
purposes J can be omitted.
The off-light-cone matrix elements (5) can be related

to light-cone distributions (GPDs) using collinear factori-
zation,

Iðτ; ξ; z2Þ ¼
Z

1

0

duTIðu; τ; ξ; z2; μ2FÞIðuτ; ξ; μ2FÞ; ð10Þ

where the coefficient function TI can be calculated in
perturbation theory; μF is the factorization scale. At tree
level TI ¼ δð1 − uÞ so that I coincides identically with
the position space GPD,

Iðτ; ξ; z2Þ ¼ Iðτ; ξ; μ2 ∼ 1=z2jv2jÞ ð11Þ

with τ ¼ τ̃, ξ ¼ ξ̃ (up to power corrections).
Information on the GPDs can be harvested from the

measured matrix element (5) in several ways. Two common
approaches are to consider quasi- and -pseudo generalized
parton distributions (qGPDs and pGPDs) defined as

Qðx; ξ̃; ðvPÞÞ ¼ ðvPÞ
Z

∞

−∞

dz
2π

e−ixzðvPÞIðzðvPÞ; ξ̃; z2Þ;

Pðx; ξ̃; z2Þ ¼
Z

∞

−∞

dτ
2π

e−iτxIðτ; ξ̃; z2Þ; ð12Þ

respectively. qPDFs and pPDFs can be related to the GPD
by similar factorization theorems that follow directly from

factorization in position space (10) and do not need
additional argumentation.
Note that position-space matrix elements (5) and hence

also pGPDs and qPDFs must be renormalized, we do not
show the dependence on the renormalization scale for
brevity. The usual logarithmic UV divergences related to
multiplicative quark field renormalization (in axial gauge)
are known to three-loop accuracy [51]. In addition, in
renormalization schemes with an explicit regularization
scale, the off-light cone Wilson line in Eq. (5) suffers from
an additional linear UV divergence that has to be removed.
To this end one can consider a suitable ratio of matrix
elements involving the Wilson line of the same length, e.g.,
by normalizing to the same matrix element with ðvPÞ ¼ 0
and zero skewedness [33]. In this way also the logarithmic
UV divergences are removed. We denote the corresponding
normalized matrix element by

Îðτ; ξ̃; z2Þ ¼ Iðτ; ξ̃; z2Þ
Ið0; 0; z2Þ : ð13Þ

This “ratio method” is, however, only feasible for “trans-
verse” p(q)GPDs since Ikð0; 0; z2Þ is related to the
corresponding matrix element by a vanishing prefactor
and can only be determined via a limiting procedure
ðvPÞ → 0, which is impractical. For completeness we
will, nevertheless, present the results for the both cases.
The normalized pGPD and qGPD are defined accord-

ingly as

Q̂ðx; ξ̃; ðvPÞÞ ¼ ðvPÞ
Z

∞

−∞

dz
2π

e−ixzðvPÞÎðzðvPÞ; ξ̃; z2Þ;

P̂ðx; ξ̃; z2Þ ¼
Z

∞

−∞

dτ
2π

e−iτxÎðτ; ξ̃; z2Þ: ð14Þ

It should be noted that in the existing lattice calculations
of quasidistributions the “ratio method” is not used and the
uncertainty due to the linear UV divergence of the off-
lightcone Wilson line is eliminated using different tech-
niques, see [52] for the most recent development. The
question that we want to address in this work is whether
the redefinition in Eq. (14) can simultaneously suppress
the power corrections coming from the IR region.

III. BOREL TRANSFORM AND RENORMALONS

The coefficient function TI in Eq. (10) and the corre-
sponding coefficient functions for qGPDs and pGPDs in
the MS scheme have the perturbative expansion

T ¼ δð1 − uÞ þ
X∞
k¼0

tkakþ1
s ; as ¼

αsðμÞ
4π

; ð15Þ

with factorially growing coefficients tk ∼ k!.
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The standard way to handle such a series is to define the
Borel transform

B½T�ðwÞ ¼
X∞
k¼0

tk
k!

�
w
β0

�
k

ð16Þ

where powers of β0 ¼ 11=3Nc − 2=3nf are inserted for
convenience. The Borel transform can be viewed as a
generating function for the fixed-order coefficients

tk ¼ βk0

�
d
dw

�
k
B½T�ðwÞjw¼0; ð17Þ

and the sum of the series can formally be obtained as the
integral

T ¼ δð1 − uÞ þ 1

β0

Z
∞

0

dw e−w=ðβ0asÞB½T�ðwÞ: ð18Þ

Note that for one-loop running coupling e−w=ðβ0asÞ ¼
ðΛ2=μ2Þw where Λ≡ ΛMS

QCD. As it stands, the integral is
usually not defined because the Borel transform has
singularities on the integration path. One can adopt a
definition of the integral deforming the contour above or
below the real axis, or as the principle value. These
definitions are arbitrary, and their difference, which is
exponentially small in the coupling, must be viewed as an
intrinsic uncertainty of perturbation theory that has to be
removed by adding power-suppressed nonperturbative
corrections. In this sense, the factorial divergences are
not a problem by themselves, but rather a messenger of a
problem: existence of nonperturbative contributions to
correlation functions that are missed by perturbation theory.
Studying the factorial divergences we can, therefore, reveal
useful information on the missing nonperturbative effects.
Naturally, a full all-order calculation cannot be per-

formed. It can be argued [44,45] that the most important
(closest to the origin) singularities of the Borel transform of
QCD correlation functions can be traced by computing
the diagrams with the insertion of multiple fermion loops
in the one-loop diagram and replacing − 2

3
nf ↦ β0 ¼

11
3
Nc − 2

3
nf. Such singularities are intuitively related to

the running-coupling effects and are usually referred to as
“renormalons” [53].
For the case at hand, one expects the structure of

singularities of the Borel transform of the coefficient
functions as illustrated in Fig. 1: There is an UV

renormalon singularity at w ¼ 1=2 related to the linear
UV divergence of the Wilson line, and a series of IR
renormalons at positive integer w ¼ 1; 2;… that must be
matched by power-suppressed (higher-twist) nonperturba-
tive corrections. In the single bubble chain approximation
all singularities are usually simple poles.
the special kinematic point x ¼ ξ the situation proves to

be somewhat more complicated.
In sufficiently simple cases a Borel transform can be

calculated directly. Evaluation of diagrams with multiple
fermion bubble insertions in Landau gauge corresponds to
the evaluation of the lowest-order diagram with the effective
gluon propagator, Fig. 2,

DAB
μν ¼ iδAB

−k2 − iϵ

�
gμν −

kμkν
k2

�
1

1þ Πðk2Þ ; ð19Þ

where in the MS scheme

Πðk2Þ ¼ β0as ln

�
−
k2

μ2
e−5=3

�
: ð20Þ

For the diagrams with only one bubble chain the Borel
transformation effectively applies to the expansion in αs of
the propagator in Eq. (19) rather than to the diagrams as a
whole. The effective Borel-transformed propagator is [54]

B½asDABðkÞ�ðwÞ ¼ iδABðe5=3μ2Þw gμν −
kμkν
k2

ð−k2 − iϵÞ1þw : ð21Þ

It is easy to see that using this expression is equivalent to
replacing the (one-loop) running coupling constant in the
lowest-order diagram by an effective coupling

β0asð−k2Þ ¼
Z

∞

0

dw e
5
3
w

�
Λ2

−k2

�
w

: ð22Þ

This replacement leads to the modified form of the gluon
propagator

1

−k2 − iϵ
↦

Λ2w

ð−k2 − iϵÞ1þw ; ð23Þ

which is familiar from analytic regularization [55]. Note
that for gauge-invariant quantities the requirement of using
Landau gauge is immaterial, Feynman gauge can be used
instead.FIG. 1. Typical singularity structure of the Borel transform.

FIG. 2. Bubble-chain contribution to the gluon propagator.
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Alternatively, the desired information on the high-order
behavior can be obtained from the lowest-order diagrams,
calculated with a finite gluon mass [56,57]. A formal
equivalence of these two methods can be established by the
(inverse) Mellin transform

1

k2 − λ2
¼ 1

2πi
1

k2

Z−1
2
þi∞

−1
2
−i∞

dwΓð−wÞΓð1þ wÞ
�
−
λ2

k2

�
w

: ð24Þ

The renormalon singularities correspond in this approach to
nonanalytic terms in the expansion of the amplitude in
powers of the gluon mass, e.g., terms ∼λ2 ln λ2 or

ffiffiffiffiffi
λ2

p
. The

advantage of this technique is that it allows one to get a

simple integral representation for the contribution of k
bubbles and the bubble sum (e.g., with principal value
prescription), which is not easy starting from the Borel
transform. We have used both methods for a cross-check of
the results.

IV. RENORMALON AMBIGUITIES

In this section we present analytic expressions for the
renormalon ambiguities in the matrix element (5) in
position space, and the corresponding pGPD=qGPD.
Replacing the gluon propagator in the one-loop diagrams
in Fig. 3 by the Borel transform of the bubble chain (21)
one obtains

B½Iðτ; ξ; z2Þ�ðwÞ ¼ 2CFe5=3w
�
−z2v2μ2

4
þ i0

�
w Γð−wÞ
Γðwþ 1Þ

×

�
2

1þ w

Z
1

0

dα α1þw
2F1ð1; 2 − w; 2þ w; αÞ½cosðᾱξτÞIðατ; ξ; μÞ − Iðτ; ξ; μÞ�

−
1

1þ w
Iðτ; ξ; μÞ − 1

1 − 2w
Iðτ; ξ; μÞ þ ½1 ∓ w�

Z
1

0

dα αw
sinðᾱξτÞ

τξ
Iðατ; ξ; μÞ

�
; ð25Þ

where in the last term the “minus” sign corresponds to Ik
and the “plus” sign to I⊥, respectively. Here and below we
use the notation

ᾱ ¼ 1 − α: ð26Þ

The calculation is straightforward and follows closely
Ref. [46] so that we omit the details. Note that the
expression in Eq. (25) corresponds to the calculation with
the chain of renormalized bubbles, but the overall sub-
traction of the logarithmic divergence in the one-loop
diagram is not yet done. The singularity of the Borel
transform in Eq. (25) at w ¼ 0 is removed by this
subtraction. (The coefficient of the 1=w pole is nothing
but the evolution kernel for the GPDs in position space
representation.) Importantly, the overall subtraction in
minimal subtraction schemes does not affect [44,58]
renormalon singularities located further to the right in

the Borel plane, which are subject of this study. Thus we
do not need to perform this subtraction explicitly.
The closest to the origin singularity at w ¼ 1=2 is

generated by the contribution of large momenta in the
self-energy insertions in the Wilson line, diagram Fig. 3d,
and is part of the UV renormalization factor. This singu-
larity is well-known and has to be removed by a suitable
renormalization procedure, see, e.g., Ref. [52]. It will not be
considered further in this work.
The leading IR renormalon singularity is at w ¼ 1. An

ambiguity in the sum of a fixed-sign factorially-divergent
series is usually estimated by the imaginary part (divided
by π) of the corresponding Borel integral (18). This
ambiguity is canceled exactly by the UV renormalon in
the matrix elements of the contributing twist-four oper-
ators, see e.g. [46]. Following the standard logic [44,45]
we assume that the “true” nonperturbative correction that
is left after the renormalon cancellation, is of the same
order of magnitude.

(a) (b) (c) (d)

FIG. 3. Bubble-chain contribution to pGPDs=qGPDs. The Wilson line connecting the quark fields is shown by double dots.
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A. Position space

From Eq. (25) we obtain

Iðτ; ξ; z2Þ ¼ Iðτ; ξÞ �N ðΛ2z2jv2jÞδRIðτ; ξÞ;
Îðτ; ξ; z2Þ ¼ Iðτ; ξÞ �N ðΛ2z2jv2jÞδRÎðτ; ξÞ; ð27Þ

with

δRIkðτ; ξÞ ¼
Z

1

0

dα Iðατ; ξÞΦðαÞ cosðᾱτξÞ;

δRÎ
kðτ; ξÞ ¼

Z
1

0

dα Iðατ; ξÞ½ΦðαÞ�þ cosðᾱτξÞ

¼ δRI⊥ðτ; ξÞ − 1

4
Iðτ; ξÞ; ð28Þ

and

δRI⊥ðτ; ξÞ ¼ δRIkðτ; ξÞ þ
Z

1

0

dα Iðατ; ξÞα sinðᾱτξÞ
ξτ

;

δRÎ
⊥ðτ; ξÞ ¼ δRÎ

kðτ; ξÞ þ
Z

1

0

dα Iðατ; ξÞ½αᾱ�þ
sinðᾱτξÞ
ᾱξτ

¼ δRI⊥ðτ; ξÞ − 5

12
Iðτ; ξÞ: ð29Þ

where

ΦðαÞ ¼ αþ ᾱ ln ᾱ; N ¼
�
CFe5=3

β0

�
≃ 0.76 ð30Þ

and the “plus” distribution is defined as

½fðαÞ�þ ¼ fðαÞ − δðᾱÞ
Z

1

0

dβ fðβÞ: ð31Þ

For zero skewedness, ξ ¼ 0, these expressions coincide
with Ref. [47] apart from a different overall normalization
convention.

B. Pseudo-GPDs

The results for pGPDs follow from the above expres-
sions by the Fourier transform in τ for fixed z2. We write

Pðx; ξ; z2Þ ¼ Hðx; ξÞ �N ðΛ2z2jv2jÞδRPðx; ξÞ;
P̂ðx; ξ; z2Þ ¼ Hðx; ξÞ �N ðΛ2z2jv2jÞδRP̂ðx; ξÞ; ð32Þ

and obtain after a short calculation

2δRPkðx; ξÞ ¼ θðx > ξÞ
�Z

1

x
dy

Hðy; ξÞ
y − ξ

Φ
�
x − ξ

y − ξ

�
þ
Z

1

x
dy

Hðy; ξÞ
yþ ξ

Φ
�
xþ ξ

yþ ξ

��

þ θð−ξ < x < ξÞ
�
−
Z

x

−1
dy

Hðy; ξÞ
y − ξ

Φ
�
x − ξ

y − ξ

�
þ
Z

1

x
dy

Hðy; ξÞ
yþ ξ

Φ
�
xþ ξ

yþ ξ

��

þ θðx < −ξÞ
�
−
Z

x

−1
dy

Hðy; ξÞ
y − ξ

Φ
�
x − ξ

y − ξ

�
−
Z

x

−1
dy

Hðy; ξÞ
yþ ξ

Φ
�
xþ ξ

yþ ξ

��

2δRP⊥ðx; ξÞ ¼ 2δRPkðx; ξÞ þ 1

2ξ

�
θðx > ξÞ

Z
1

x
dy

��
xþ ξ

yþ ξ

�
2

−
�
x − ξ

y − ξ

�
2
�
Hðy; ξÞ

þ θð−ξ < x < ξÞ
�Z

1

x
dy

�
xþ ξ

yþ ξ

�
2

Hðy; ξÞ þ
Z

x

−1
dy

�
x − ξ

y − ξ

�
2

Hðy; ξÞ
�

þ θðx < −ξÞ
Z

x

−1
dy

��
x − ξ

y − ξ

�
2

−
�
xþ ξ

yþ ξ

�
2
�
Hðy; ξÞ

�
ð33Þ

and for the normalized pGPDs

δRP̂
kðx; ξÞ ¼ δRPkðx; ξÞ − 1

4
Hðx; ξÞ;

δRP̂
⊥ðx; ξÞ ¼ δRP⊥ðx; ξÞ − 5

12
Hðx; ξÞ: ð34Þ

Note that the (quark) GPDHðx; ξÞ is a continuous function of x at x ¼ ξ, but its derivatives are, generally, discontinuous.
One obtains

BRAUN, KOLLER, and SCHOENLEBER PHYS. REV. D 109, 074510 (2024)

074510-6



Z
1

x
dy

Hðy;ξÞ
y− ξ

Φ
�
x− ξ

y− ξ

�				
x→ξ>

¼
�
2−

π2

6

�
Hðξ;ξÞ;

Z
x

−1
dy

Hðy;ξÞ
y− ξ

Φ
�
x− ξ

y− ξ

�				
x→ξ<

¼−
�
2−

π2

6

�
Hðξ;ξÞ; ð35Þ

where

ξ> ¼ ξþ ϵ; ξ< ¼ ξ − ϵ; ϵ → 0; ð36Þ

and it is easy to check that the renormalon contribution to
the pGPDs is continuous at x ¼ ξ.
The limiting case ξ ¼ 1 corresponds to the kine-

matics that is relevant for (pseudo) light-cone distribution
amplitudes (LCDAs). Choosing Hðx; ξ ¼ 1Þ ¼ ϕπðxÞ ¼
3=4ð1 − x2Þ (asymptotic pion LCDA) we obtain for the
corresponding renormalon ambiguity

δRI
k
πðxÞ ¼ 1

6

�
ū½ln ū − Li2ðūÞ� þ u½ln u − Li2ðuÞ�

− uūþ π2

6

�				
u¼1

2
ð1þxÞ

; ð37Þ

in agreement with Eq. (3.8) in [46]. The sign and the overall
normalization of the corresponding nonperturbative cor-
rection can in this case be adjusted to the known twist-four
matrix element, see [46,59] for details.

C. Quasi-GPDs

It proves to be convenient to write the renormalon
ambiguity for qGPDs in terms of the derivative

H0ðx; ξÞ ¼ d
dx

Hðx; ξÞ: ð38Þ

We obtain

Qðx; ξ; ðvPÞÞ ¼ Hðx; ξÞ �N
�
Λ2jv2j
ðvPÞ2

�
δRQðx; ξÞ;

Q̂ðx; ξ; ðvPÞÞ ¼ Hðx; ξÞ �N
�
Λ2jv2j
ðvPÞ2

�
δRQ̂ðx; ξÞ; ð39Þ

with

2δRQkðx; ξÞ ¼
�
1 −

π2

6

�
δðx − ξÞ½H0ðξ>; ξÞ −H0ðξ<; ξÞ�

þ θðx > ξÞ
�
H0ðx; ξÞ
x − ξ

þ 1

ðx − ξÞ2
Z

1

x
dy

�
x − ξ

y − ξ
þ ln

�
1 −

x − ξ

y − ξ

��
H0ðy; ξÞ

�

þ θðx < ξÞ
�
H0ðx; ξÞ
x − ξ

−
1

ðx − ξÞ2
Z

x

−1
dy

�
x − ξ

y − ξ
þ ln

�
1 −

x − ξ

y − ξ

��
H0ðy; ξÞ

�

þ
�
1 −

π2

6

�
δðxþ ξÞ½H0ð−ξ<; ξÞ −H0ð−ξ>; ξÞ�

þ θðx > −ξÞ
�
H0ðx; ξÞ
xþ ξ

þ 1

ðxþ ξÞ2
Z

1

x
dy

�
xþ ξ

yþ ξ
þ ln

�
1 −

xþ ξ

yþ ξ

��
H0ðy; ξÞ

�

þ θðx < −ξÞ
�
H0ðx; ξÞ
xþ ξ

−
1

ðxþ ξÞ2
Z

x

−1
dy

�
xþ ξ

yþ ξ
þ ln

�
1 −

xþ ξ

yþ ξ

��
H0ðy; ξÞ

�
;

2δRQ⊥ðx; ξÞ ¼ 2δRQkðx; ξÞ þ 2

2ξ

�
θðx > ξÞ

Z
1

x
dy

H0ðy; ξÞ
ðy − ξÞ − θðx < ξÞ

Z
x

−1
dy

H0ðy; ξÞ
ðy − ξÞ

− θðx > −ξÞ
Z

1

x
dy

H0ðy; ξÞ
ðyþ ξÞ þ θðx < −ξÞ

Z
x

−1
dy

H0ðy; ξÞ
ðyþ ξÞ

�
: ð40Þ

Note appearance of the δðx� ξÞ contributions
proportional to the discontinuity of the derivative
H0ðx; ξÞ at x ¼ �ξ. It is easy to verify that these con-
tributions arise from large distances in the Fourier integral
so that a small-z2 expansion in position space is not

sufficient. In this special kinematics, one has to search for
renormalon singularities in qGPDs directly, after the
Fourier transformation to momentum space. We postpone
this calculation and the corresponding discussion to
Sec. VI.
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For the normalized qGPDs we obtain

δRQ̂
kðx; ξÞ ¼ δRQkðx; ξÞ þ 1

4
H00ðx; ξÞ;

δRQ̂
⊥ðx; ξÞ ¼ δRQ⊥ðx; ξÞ þ 5

12
H00ðx; ξÞ; ð41Þ

where the second derivative H00ðx; ξÞ contains delta func-
tion contributions at x� ξ where H0ðx; ξÞ is discontinuous:

H00ðx; ξÞ ¼ …þ δðx − ξÞ½H0ðξ>; ξÞ −H0ðξ<; ξÞ�
þ δðxþ ξÞ½H0ð−ξ<; ξÞ −H0ð−ξ>; ξÞ�: ð42Þ

V. NUMERICAL STUDY

A. GPD model

We will use a simple model for the valence quark GPD
based on the standard double-distribution ansatz [4,60]

Hðx; ξÞ ¼ θðx > −ξÞ 2þ λ

4ξ3

�
xþ ξ

1þ ξ

�
λ

½ξ2 − xþ λξð1 − xÞ�

− θðx > ξÞ 2þ λ

4ξ3

�
x − ξ

1 − ξ

�
λ

½ξ2 − x − λξð1 − xÞ�;

ð43Þ

with λ ¼ 3=2 corresponding to the valence quark
PDF qðxÞ ∼ ð1 − xÞ3xλ−2 ≡ ð1 − xÞ3= ffiffiffi

x
p

. This model, the
x-derivative H0ðx; ξÞ, and the real part of the corresponding
position space GPD Iðτ; ξÞ are shown in Fig. 4 for ξ ¼ 0.3
as an illustration.
Note that the valence quark GPD vanishes for x < −ξ.

For the chosen values of parameters Hðx; ξÞ ∼ ð1 − xÞ3 for
x → 1 and Hðx; ξÞ ∼ ðxþ ξÞλ ≡ ðxþ ξÞ3=2 for x → −ξ.
The derivative H0ðx; ξÞ is continuous at x ¼ ξ in the

chosen model, see Fig. 4, and has the following behavior:

H0ðx;ξÞ ¼
�
x→ ξ>∶ H0ðξ;ξÞþaðx− ξÞ1=2þ…

x→ ξ<∶ H0ðξ;ξÞþ ãðξ− xÞ1þ…
ð44Þ

where a; ã ∼ 1=ξ2 in the small-ξ limit. Only the second
derivative is discontinuous. Thus for our model the delta-
function terms in Eq. (40) for qGPDs do not contribute. The
continuity of the first derivative is reflected in the faster
falloff of the corresponding position space GPD Iðτ; ξÞ ∼
1=τ5=2 instead of a generic behavior Iðτ; ξÞ ∼ 1=τ2 at
τ → ∞, see the next section.
This feature should be viewed as a certain shortcoming

of the model: We remind that discontinuity of the first
derivative is an endemic feature of GPDs, it is generated
invariably by the evolution even if the initial condition is
continuous.
In the following subsections we show the renormalon

ambiguity that is representative for the expected size of the
nonperturbative power suppressed correction (for the
chosen GPD model) for the position space, pGPD and
qGPD, respectively. We plot the results for the transverse
distributions, cf. Eq. (9), which are the relevant ones for
lattice calculations. The renormalon ambiguity for longi-
tudinal distributions is in all cases qualitatively similar, but
is somewhat smaller in magnitude.

B. Position space

The renormalon ambiguity (27) for the un-normalized
Iðτ; ξÞ and the normalized Îðτ; ξÞ position space (Ioffe-
time) distributions for ξ ¼ 0.3 using the GPD model (43)
and the overall normalization

N ðΛ2z2jv2jÞ ↦ 1 ð45Þ

corresponding to a large quark-antiquark separation of the
order of 1 fm, is shown in Fig. 5 on the left two panels. The
shaded area corresponds to the interval spanned by
Iðτ; ξÞ � δRIðτ; ξÞ and similar for the normalized distribu-
tions. In addition, the ratio δRÎðτ; ξÞ=Îðτ; ξÞ is plotted on
the rightmost panel.
One sees that the normalization to the correlation

function at zero momentum leads to a strong reduction
of the ambiguity and the expected higher-twist correction.
The reason is that power corrections depend only weakly of
the hadron momentum as can be expected on general

FIG. 4. GPD model (43) for ξ ¼ 0.3 used in our calculations: Hðx; ξÞ and the derivative H0ðx; ξÞ as functions of x (left and middle
panels, respectively), and the real part of the corresponding position space GPD Iðτ; ξÞ a function of τ (right panel).
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grounds. The renormalon ambiguity in the bubble chain
approximation is essentially a measure of the phase space
available for soft gluon emission in one-loop diagrams,
which can be made explicit using the gluon mass technique
[56,57], cf. Eq. (24). Our calculation demonstrates that the
phase space volume for soft emission does not decrease
with the target momentum.
Note, however, that the ratio δRÎðτ; ξÞ=Îðτ; ξÞ diverges

in the regions where the GPD (43) crosses zero and
changes sign. The reason is simply that the zeroes of
δRÎðτ; ξÞ and of Îðτ; ξÞ are shifted slightly with respect to
one another. It is not known to which extent this pattern of
sign changes is specific to the chosen simple model, or
more general. We conclude that position-space distribu-
tions at large τ ≳ 10 (in general τ ≫ 1=ξ) can be affected
by large higher-twist effects and their interpretation within
the leading twist factorization approximation should be
considered with caution.

C. Pseudo-GPDs

Our estimates for the renormalon ambiguity for valence
quark pGPDs are plotted in Fig. 6 for P⊥ðx; ξÞ, P̂⊥ðx; ξÞ
and for the ratio δRP̂ðx; ξÞ=P̂ðx; ξÞ, for ξ ¼ 0.3 as a
function of x, from left to right, respectively. The similar
ratio for renormalized pGPDs δRPðx; ξÞ=Pðx; ξÞ is shifted
upward by a constant 5=12, cf. (34), so that we do not plot it
separately.

Similar to position space results, we observe a very strong
reduction of the renormalon ambiguity for the pGPD
normalized to zero momentum, cf. the left and the middle
panel. Remarkably, the residual ambiguity for the normal-
ized pGPD is small for x ≃ ξ, which is the most interesting
region for DVCS phenomenology. The ratio δRP̂ðx; ξÞ=
P̂ðx; ξÞ stays constant at the end-point regions x → 1 and
x → −ξ. This behavior is consistent with the study of
renormalons in pPDFs in Ref. [47].

D. Quasi-GPDs

Our results for qGPDs (39) are shown in Fig. 7 and Fig. 8
for the DGLAP (x > ξ) and ERBL (−ξ < x < ξ) regions,
respectively. For this calculation we set the overall nor-
malization factor to

N
�
Λ2jv2j
ðvPÞ2

�
↦ 0.02: ð46Þ

This choice, assuming Λ ≃ 200 MeV, corresponds to the
target momentum of roughly ðvPÞ ≃ 1.5 GeV, which is a
typical value accessible in present day lattice calculations.
We find the following behavior of the renormalon

ambiguity for the ratios δRQðx; ξÞ=Qðx; ξÞ in the endpoint
regions:

(i) 1=ð1 − xÞ enhancement for x → 1
(ii) 1=

ffiffiffiffiffiffiffiffiffiffi
x − ξ

p
enhancement for x → ξ from above

(iii) lnðξ − xÞ enhancement for x → ξ from below
(iv) 1=ðxþ ξÞ2 enhancement for x → −ξ from above

FIG. 6. Renormalon ambiguity for the valence quark pseudo-GPD for the model (43) and the choice (45) for the overall normalization,
corresponding to the quark-antiquark separation of the order of 1 fm.

FIG. 5. Renormalon ambiguity for the position space (Ioffe-time) valence quark distribution for the model (43) and the choice (45) for
the overall normalization, corresponding to the quark-antiquark separation of the order of 1 fm.
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The ∼1=
ffiffiffiffiffiffiffiffiffiffi
x − ξ

p
behavior of the renormalon ambiguity for

x → ξ> is specific for our model which corresponds to the
valence quark PDF qðxÞ ∼ 1=

ffiffiffi
x

p
. A generic Regge-type

small-x behavior qðxÞ ∼ 1=xp leads to the 1=ðx − ξÞp
enhancement.
Similar to pGPDs, we find that the normalization to the

position-space correlation function at zero momentum
leads to the strong reduction of the renormalon ambiguity,
δRQ̂ðx; ξÞ=Q̂ðx; ξÞ ≪ δRQðx; ξÞ=Qðx; ξÞ, apart from the

large-x region where the ambiguity is instead parametri-
cally enhanced, 1=ð1 − xÞ ↦ 1=ð1 − xÞ2. This enhance-
ment is the same as found for qPDFs=pPDFs in Ref. [47],
which is expected as GPDs and PDFs coincide for x ≫ ξ.

VI. POWER CORRECTIONS AT x → ξ

The kinematic points x ¼ �ξ correspond to vanishing
longitudinal momentum of the quark or the antiquark in the

FIG. 8. Renormalon ambiguity for the valence quark quasi-GPD in the ERBL region −ξ < x < ξ for the model (43) and the choice
(46) for the overall normalization, corresponding to the target momentum approximately 1.5 GeV.

FIG. 7. Renormalon ambiguity for the valence quark quasi-GPD in the DGLAP region x > ξ for the model (43) and the choice (46) for
the overall normalization, corresponding to the target momentum approximately 1.5 GeV.
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target and can only be included in collinear factorization by
a contour deformation as explained in [60,61] for DVCS. It
is therefore not surprising that this point requires careful
treatment.
The appearance of the delta-function contributions to

the qGPDs in Eq. (40) can be explained as follows. For
simplicity consider valence quark GPD which vanishes for
x < −ξ, as in the above model. From the definition in (1)

Iðτ; ξÞ ¼ −
1

τ2

Z
1

−ξ
dxHðx; ξÞ d2

dx2
eiτx

¼ 1

τ2
½H0ðξ<; ξÞ −H0ðξ>; ξÞ�eiτξ

−
1

τ2

�Z
ξ<

−ξ
þ
Z

1

ξ>

�
dx eiτxH00ðx; ξÞ ð47Þ

where we assumed that Hðx; ξÞ is continuous and vanishes
sufficiently fast at the endpoints, but has a cusp at x ¼ ξ.
The remaining integral is finite and decreases at τ → ∞
provided H00ðx; τÞ does not have a strong singularity
1=ðx − ξÞp with p ≥ 1, which is the case for all existing
models based on the double-distribution representation.
Therefore, in the general case, for large distances

Iðτ; ξÞ ≃ 1

τ2
eiτξ½H0ðξþ 0; ξÞ −H0ðξ − 0; ξÞ�: ð48Þ

(Extra boundary terms contributions may need to be added
if H0ðx; ξÞ does not vanish at x → 1 and x → −ξ.)
The Fourier transform of (48) in τ for fixed z and hence

the corresponding contribution to the pGPDs are well
defined. For qGPDs, however, the 1=τ2 ∼ 1=z2 suppression
[for fixed ðvPÞ] is lifted by the z2 factor in the renormalon
contribution in Eq. (27). Hence the Fourier integral in z is
dominated by large distances, giving rise to the delta-
function terms in (40). It is easy to convince oneself that
further renormalons ∼z4; z6;… lead to increasingly more
singular contributions that have to be resummed. This
situation is reminiscent of exclusive reactions in which case
contributions of higher-twist LCDAs have to be supple-
mented by taking into account the so-called endpoint
contributions coming from large distances.
In other words, the limits ðvPÞ → ∞ and x → ξ do not

commute. Our previous calculation assumed a short-distance
expansion of the renormalon ambiguity in powers of
∼z2; z4;… alias 1=ðvPÞ2; 1=ðvPÞ4… for fixed x − ξ,
whereas in this section we take the limit x → ξ first, and
only then expand in powers of the target momentum. To this
end we study the renormalons in qGPDs directly, avoiding
the expansion at small z2 at the intermediate step. It is easy to
see that the terms of interest originate from the vertex
corrections Fig. 3(a,b) only [the terms involving the hyper-
geometric function in Eq. (25)]. Omitting the remaining
terms and using the definition of a qGPD in (12) we obtain

B½Qðx; ξ; ðvPÞÞ�ðwÞ ¼ 2CFe5=3w
�

μjvj
2ðvPÞ

�
2w Γð−wÞ

Γðwþ 2Þ
Z

∞

−∞

dτ
2π

e−ixτðτ2Þw
Z

1

0

dα α1þw
2F1ð1; 2 − w; 2þ w; αÞ

×
Z

1

−1
dyHðy; ξÞ½eiτðαyþᾱξÞ þ eiτðαy−ᾱξÞ − 2eiτy� þ… ð49Þ

The Fourier integral can be taken:

Γð−wÞ
Z

∞

−∞

dτ
2π

eiqτ½τ2�w ¼ Γðwþ 1=2Þ
½q2�wþ1=2

1ffiffiffi
π

p 4w; ð50Þ

so that one gets

B½Qðx; ξ; ðvPÞÞ�ðwÞ ¼ 2CFffiffiffi
π

p e5=3w
�
μjvj
ðvPÞ

�
2w Γðwþ 1=2Þ

Γðwþ 2Þ
Z

1

0

dα α1þw
2F1ð1; 2 − w; 2þ w; αÞ

×
Z

1

−1
dyHðy; ξÞ

��
1

½ðx − αy − ᾱξÞ2�wþ1=2 −
1

½ðx − yÞ2�wþ1=2

�
þ ðξ ↔ −ξÞ

�
þ… ð51Þ

One can show that for x=¼� ξ the leading renormalon singularity in this expression is located at w ¼ 1 and reproduces the
expression in Eq. (40). For x ¼ �ξ the result is different. At this special point the remaining integrals factorize. Using

Z
1

0

dα α1þw
2F1ð1; 2 − w; 2þ w; αÞ

�
1

α2wþ1
− 1

�
¼ 1

1 − w
ð52Þ

we obtain
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B½Qðξ;ξ;ðvPÞÞ�ðwÞ ¼ 2CFffiffiffi
π

p e5=3w
�
μjvj
ðvPÞ

�
2wΓðwþ 1=2Þ

Γðwþ 2Þ
1

1−w

Z
1

−1
dyHðy;ξÞ

�
1

½ðy− ξÞ2�wþ1=2þ
1

½ðyþ ξÞ2�wþ1=2

�
þ… ð53Þ

Singularities in the Borel plane, apart from the prefactor, can arise from vanishing of the denominator in the remaining
integral. We write

Hðy; ξÞ ¼ Hðξ; ξÞ þ ðy − ξÞH0ðξ>ð<Þ; ξÞ þ δHðy; ξÞ ð54Þ

where δH ¼ oðy − ξÞ (i.e., vanishes faster than y − ξ). Then

Z
1

−1
dy

Hðy; ξÞ
½ðy − ξÞ2�wþ1=2 ¼ −

1

2w
Hðξ; ξÞ

h
ð1 − ξÞ−2w þ ð1þ ξÞ−2w

i
þ 1

1 − 2w

h
H0ðξ>; ξÞð1 − ξÞ1−2w −H0ðξ<; ξÞð1þ ξÞ1−2w

i

þ
Z

1

−1
dy

δHðy; ξÞ
½ðy − ξÞ2�wþ1=2 : ð55Þ

The first term ∼1=w in this expression is removed by the
overall renormalization, and the leading renormalon ambi-
guity stems from a new singularity at w ¼ 1=2 correspond-
ing to a power correction 1=ðvPÞ1, i.e., suppressed by only
one power of the large momentum. Note that this contri-
bution is proportional to the discontinuity in the first
derivative, which, as already mentioned above, is an
endemic feature of quark GPDs.
The remainder δHðy; ξÞ is generally ∼ðξ − yÞ2 in the

ERBL region y < ξ, whereas its behavior in the DGLAP
region appears to be related to the small-x behavior of the

corresponding PDF. For the model (43) δHðy; ξÞ ∼y→ξ>

ðy − ξÞλ corresponding to qðxÞ ∼ xλ−2. In this case

Z
1

−1
dy

δHðy; ξÞ
½ðy − ξÞ2�wþ1=2 ∼

c1
λ=2 − w

þ c2
1 − w

ð56Þ

where the first term with c1 ∼ 1=ξ2 originates from the
DGLAP region only. Taking into account an overall 1=ð1 −
wÞ prefactor in Eq. (53), the second contribution gives rise
to a double pole 1=ð1 − wÞ2 corresponding to a power
correction ∼ lnðvPÞ=ðvPÞ2, whereas the first contribution
indicates existence of a fractional power correction
∼1=ðvPÞλ with, for realistic models, 1 < λ < 2. The pos-
sibility of fractional power corrections was previously
discussed by Manohar and Wise [62] in connection with
event shape variables in eþe− annihilation.
To summarize, qGPDs at the kinematic point x ¼ ξ (and

x ¼ −ξ for nonvalence GPDs) in the single bubble chain
approximation have the following singularities in the
Borel plane:
(1) A pole at w ¼ 1=2 corresponding to a power

correction 1=ðvPÞ1;
(2) A pole at w ¼ λ=2, 1 < λ < 2 corresponding to a

power correction 1=ðvPÞλ;

(3) A double pole at w ¼ 1, corresponding to a power
correction 1=ðvPÞ2, enhanced by an additional
logarithm.

Note also that B½Qðξ; ξ; ðvPÞÞ�ðwÞ contains an UV renor-
malon singularity at w ¼ −1=2 corresponding to a
Borel-summable (sign-alternating) perturbative series.
This singularity does not imply any additional nonpertur-
bative corrections, but signals existence of large perturba-
tive contributions to the qGPD coefficient function at
x ¼ ξ at high orders.
The appearance of new singularities in the Borel plane for

qGPDs at x → ξ can also be understood in a different
language. Note that the 1=ðPvÞ2 power correction
(= renormalon ambiguity) to the qGPD in Eq. (40) is a
distribution in mathematical sense, and it also contains a
divergent at x → ξ contribution ∼1=

ffiffiffiffiffiffiffiffiffiffi
x − ξ

p
from the

DGLAP region, cf. Sec. V D and Fig. 7. In order to
understand the impact of these corrections one has to
consider their action on suitable test functions. To this
end, consider a qPDF smeared over a narrow interval
x − ξ ∼ Λ=P,

Q̃ðx;ξÞ¼
Z

dx0Θðx0−xÞQðx0;ξÞ;
Z

dxΘðxÞ¼ 1: ð57Þ

For definiteness, one can use Gaussian smearing

ΘðxÞ ¼ 1ffiffiffi
π

p ðPvÞ
Λ

expð−ðPvÞ2x2=Λ2Þ: ð58Þ

It is easy to see that if this smearing is applied to Eq. (39),
the term with a δ-function in Eq. (40) gets promoted to a
1=ðvPÞ correction with the coefficient consistent with
Eq. (55), and the term ∼1=

ffiffiffiffiffiffiffiffiffiffi
x − ξ

p
from the asymptotic

expansion of the integral at x → ξ (for our GPD model)
produces a 1=ðPvÞ3=2 contribution, in exact correspondence
to the findings in this section.
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The lesson to be learned from this comparison is that
qPDF approach remains viable in the x → ξ region despite
the apparently divergent contributions in this limit in the
1=ðPvÞ2 expansion. The nonperturbative corrections
remain finite with only the power suppression changing
from 1=ðPvÞ2 at x − ξ ¼ Oð1Þ to 1=ðPvÞ at x − ξ≲
OðΛ=ðPvÞÞ. This situation is much better compared to
what happens in qPDFs at small Bjorken x, in which case
the nonperturbative corrections explode and the qPDF
approach is not applicable.
A final remark is that a similar “transmutation” of the

power of the power correction 1=Q2 → 1=Q was found
previously in single inclusive particle production in eþe−
annihilation for the longitudinal and transverse cross
sections integrated over the small momenta region, see
Refs. [63–65].

VII. CONCLUSIONS

We have calculated the renormalon ambiguity in qGPDs
and pGPDs in the single bubble-chain approximation,
which is a generalization and extension of the previous
results on qPDFs=pPDFs from Ref. [47] and pion pseudo-
LCDAs from Ref. [46] to a more general kinematics. Our
results are collected in analytic form in Sec. IV, comple-
mented by a numerical study for a simple GPD model in
Sec. V. We find that the normalization to the position-space
correlation function at zero momentum leads to a strong
reduction of the renormalon ambiguity for both pPDFs and
qGPDs, apart from the large-x region where the ambiguity
is instead parametrically enhanced, ð1 − xÞ1 ↦ ð1 − xÞ0
and 1=ð1 − xÞ ↦ 1=ð1 − xÞ2 for pGPDs and qGPDs,
respectively. The same enhancement was found in
Ref. [47] for qPDFs=pPDFs.
The most interesting difference between pGPDs and

qGPDs appears to be the behavior of the renormalon

ambiguity in the kinematic region x → ξ which corresponds
to zero longitudinal momentum carried by one of the
partons and is most relevant for DVCS phenomenology.
The renormalon ambiguity for pGPDs in the x ≃ ξ region
proves to be small, see Fig. 6, whereas for qGPD it is large
and depends on the direction in which the limit x → ξ (from
above or from below) is taken. Moreover, for qGPDs, the
limits x → ξ and the target momentum ðvPÞ → ∞ do not
commute. Expanding first in 1=ðvPÞ produces a series of
renormalons involving the δ-function δðx − ξÞ and its
derivatives (40), whereas setting x → ξ and then expanding
in powers of 1=ðvPÞ reveals instead two new IR renormalon
singularities: The first one (leading) corresponds to a power
correction suppressed by the first power 1=ðvPÞ1, and the
second one indicates the existence of a correction with
noninteger power suppression 1=ðvPÞ2−p for the assumed
small-x quark PDF behavior qðxÞ ∼ x−p, with 0 < p < 1.
Note that the 1=ðvPÞ1 power correction in qGPDs at x ¼ ξ
is unrelated to the UV renormalon ambiguity in the off-light
cone Wilson line which is assumed to be eliminated by a
proper renormalization/normalization procedure. Instead, it
is generated by the discontinuity if the x-derivative of the
quark GPD at x ¼ ξ that is necessitated by the evolution
equation.
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J. Hořejši, Fortschr. Phys. 42, 101 (1994).

[2] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997).
[3] M. Diehl, Phys. Rep. 388, 41 (2003).
[4] A. V. Belitsky and A. V. Radyushkin, Phys. Rep. 418, 1

(2005).
[5] J. Dudek et al., Eur. Phys. J. A 48, 187 (2012).
[6] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016).
[7] X.-D. Ji, Phys. Rev. D 55, 7114 (1997).
[8] A. V. Radyushkin, Phys. Lett. B 380, 417 (1996).
[9] E. R. Berger, M. Diehl, and B. Pire, Eur. Phys. J. C 23, 675

(2002).
[10] S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller, and

M. Strikman, Phys. Rev. D 50, 3134 (1994).

[11] M. El Beiyad, B. Pire, M. Segond, L. Szymanowski, and
S. Wallon, Phys. Lett. B 688, 154 (2010).

[12] R. Boussarie, B. Pire, L. Szymanowski, and S. Wallon,
J. High Energy Phys. 02 (2017) 054; 10 (2018) 29.

[13] A. Pedrak, B. Pire, L. Szymanowski, and J. Wagner, Phys.
Rev. D 96, 074008 (2017); 100, 039901(E) (2019).

[14] A. Pedrak, B. Pire, L. Szymanowski, and J. Wagner, Phys.
Rev. D 101, 114027 (2020).

[15] O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, and
J. Wagner, Phys. Rev. D 104, 114006 (2021).

[16] O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, and
J. Wagner, Phys. Rev. D 105, 094025 (2022).

[17] G. Duplančić, K. Passek-Kumerički, B. Pire, L. Szymanowski,
and S. Wallon, J. High Energy Phys. 11 (2018) 179.

RENORMALONS AND POWER CORRECTIONS IN PSEUDO- AND … PHYS. REV. D 109, 074510 (2024)

074510-13

https://doi.org/10.1002/prop.2190420202
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1016/j.physrep.2003.08.002
https://doi.org/10.1016/j.physrep.2005.06.002
https://doi.org/10.1016/j.physrep.2005.06.002
https://doi.org/10.1140/epja/i2012-12187-1
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1103/PhysRevD.55.7114
https://doi.org/10.1016/0370-2693(96)00528-X
https://doi.org/10.1007/s100520200917
https://doi.org/10.1007/s100520200917
https://doi.org/10.1103/PhysRevD.50.3134
https://doi.org/10.1016/j.physletb.2010.02.086
https://doi.org/10.1007/JHEP02(2017)054
https://doi.org/10.1007/JHEP10(2018)029
https://doi.org/10.1103/PhysRevD.96.074008
https://doi.org/10.1103/PhysRevD.96.074008
https://doi.org/10.1103/PhysRevD.100.039901
https://doi.org/10.1103/PhysRevD.101.114027
https://doi.org/10.1103/PhysRevD.101.114027
https://doi.org/10.1103/PhysRevD.104.114006
https://doi.org/10.1103/PhysRevD.105.094025
https://doi.org/10.1007/JHEP11(2018)179


[18] G. Duplančić, S. Nabeebaccus, K. Passek-Kumerički, B.
Pire, L. Szymanowski, and S. Wallon, J. High Energy Phys.
03 (2023) 241.

[19] J.-W. Qiu and Z. Yu, J. High Energy Phys. 08 (2022) 103.
[20] J.-W. Qiu and Z. Yu, Phys. Rev. D 107, 014007 (2023).
[21] G. Duplančić, S. Nabeebaccus, K. Passek-Kumerički, B.

Pire, L. Szymanowski, and S. Wallon, Phys. Rev. D 107,
094023 (2023).

[22] M. J. Riberdy, H. Dutrieux, C. Mezrag, and P. Sznajder, Eur.
Phys. J. C 84, 201 (2024).

[23] G. S. Bali, S. Collins, M. Göckeler, R. Rödl, A. Schäfer, and
A. Sternbeck, Phys. Rev. D 100, 014507 (2019).

[24] C. Alexandrou et al., Phys. Rev. D 101, 034519 (2020).
[25] C. Alexandrou et al., Phys. Rev. D 107, 054504 (2023).
[26] V. D. Burkert, L. Elouadrhiri, F. X. Girod, C. Lorcé, P.
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