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We propose a modified Wasserstein generative adversarial network (M-WGAN) to study the distribution
of the topological charge in lattice QCD based on Monte Carlo simulations. We construct new generator
and discriminator in M-WGAN to support the generation of high-quality distribution. Our results show that
the M-WGAN scheme of machine learning should be helpful for us to calculate efficiently the 1D
distribution of topological charge compared with the method by the Monte Carlo simulation alone.
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I. INTRODUCTION

Machine learning (ML) has improved the state-of-the-
art technology in many domains [1–3]. Especially it has
had many applications in lattice QCD. Kim A. Nicoli et al.
exerted the deep generative models to estimate the absolute
value of the free energy in lattice field theories [4]. Ankur
Singha et al. developed a conditional normalizing flow-
based sampling method for scalar lattice ϕ4 theory to
improve the problem of critical slowing down [5]. Yuki
Nagai et al. developed the self-learning Monte Carlo (MC)
simulations to resolve the autocorrelation problem [6].
Matteo Favoni and Andreas Ipp et al. propose lattice gauge
equivariant convolutional neural networks to study appli-
cations of generic machine learning in lattice gauge theory
[7]. These works have shown the great impact of ML in
lattice QCD, including the calculation of physical quan-
tities, the improvement of research methods, the reduction
in autocorrelation, and the study of gauge invariant
quantities, etc. The conventional computation of topologi-
cal charge in lattice QCD based on the MC method
consumes a lot of computation time [8,9], and ML could
be explored as a potential method for generating topo-
logical quantities efficiently. Our research focuses on
constructing new generator and discriminator of
Wasserstein generative adversarial network (M-WGAN)
to facilitate the exploration of the topological quantities in
lattice QCD. It is committed to generating corresponding
topological charge data based on a small amount of MC

data to calculate the topological susceptibility. In the
following, we begin our studies with a brief introduction
to the lattice QCD and ML.
In QCD, it is difficult to use perturbation methods like

quantum electrodynamics in the low-energy region since the
coupling constant of QCD becomes large [10]. Therefore,
lattice QCD was introduced to study the QCD in the low-
energy region [8], where Euclidean spacetime instead of
Minkowski spacetime is used, and this simplifies the
computations (as real numbers rather than complex numbers
are involved). Furthermore, the action used here is that of
the Wilson gauge action [9]

SG½U� ¼ β

3

X
n∈Λ

X
μ<ν

ReTr½1 −UμνðnÞ�; ð1Þ

where β is the inverse coupling and UμνðnÞ is the plaquette.
The topological charge density discussed in this article is

defined by

qðnÞ ¼ 1

32π2
εμνρσReTr½Fclov

μν ðnÞFclov
ρσ ðnÞ�; ð2Þ

related to the nonconserved axial vector current [11].
Fclov
μν ðnÞ is the clover improved lattice discretization of

the field strength tensor FμνðxÞ and can be noted as

Fclov
μν ðnÞ ¼ −

i
8a2

�
ðCμνðnÞ − C†

μνðnÞÞ

−
TrðCμνðnÞ − C†

μνðnÞÞ
3

�
; ð3Þ

where the clover is given as

CμνðnÞ ¼Uμ;νðnÞþUν;−μðnÞþU−μ;−νðnÞþU−ν;μðnÞ: ð4Þ
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The topological charge is further introduced as

Qtop ¼ a4
X
n∈Λ

qðnÞ; ð5Þ

which converges to an integer in the continuum limit [12].
The above nonconserved axial vector current is related to a
symmetry breaking, which is called the Uð1ÞA anomaly.
From a physical point of view, a possible explanation is that
an instanton can be introduced to obtain the conserved
charge [13]. Furthermore, the topological susceptibility χt
is defined as

χt ¼
1

V
hQtop

2i; ð6Þ

where V is the 4D volume. The χt is related to the Witten-
Veneziano relation, which indicates that χt is proportional
to the mass squared of η0 meson for massless quarks [14]. In
our investigations, when computing the topological sus-
ceptibility from the initial configurations, we incorporate
theWilson flow as a technique to smooth the configurations
and alleviate ultraviolet divergences [15–17].
On the other hand, ML can be classified into supervised

learning, unsupervised learning, semisupervised learning,
transfer learning, and reinforcement learning. Supervised
learning in machine learning typically demands millions of
training examples to attain optimal results [3]. However, it
proves impractical when dealing with scenarios involving
just a few hundred training data points. Generative adver-
sarial networks (GANs) were proposed in 2014 [2], which
would gradually improve the capabilities of generator and
discriminator through their mutual adversarial game. It
is often necessary to know the probability distribution of a
set of data, such as the age distribution of a biological
population or the distribution of pixels in an image.
Compared with the method of maximum likelihood
estimation, which directly estimates the parameters of
the probability density, GANs are implicit models that
can infer the probability distribution p(x) without explic-
itly expressing the probability density function [3]. For
simple distribution like the age distribution of a biological
population, one can guess a probability density function
and then use the data to estimate the parameters of the
probability density function. However, the probability
density function may have millions or even billions of
parameters for complicated distribution, and it will be
difficult to guess a probability density function in this case.
In contrast, the implicit models GANs have a good
performance in data generation for the complex distribu-
tion. The topological charge that we are going to discuss
obeys a certain distribution, so GANs can be used to
generate data of the topological charge. After GANs were
proposed, there have been many variants, one of which is

Wasserstein generative adversarial network (WGAN) [18].
The WGAN introduces the Wasserstein distance

Ex∼Pr
½DðxÞ� − Ex∼PG

½DðxÞ�; ð7Þ

where Pr is the distribution of real data, PG is the
distribution generated by the generator and the discrimi-
nator DðxÞ is required to be a 1-Lipschitz function. As a
result, WGAN greatly improves the stability of GAN
training and the quality of results.

II. MODEL AND DATA PREPARATIONS

For our purpose, the suitable ML model should be
constructed to explore the characteristics of the topological
charge in lattice QCD. We checked that the results will be
poor if the neural networks of generator and discriminator
are too simple inWGAN through testing. For example, if we
use a simple neural network to generate the distribution of
the topological charge, we will find that the symmetry of the
distribution is not good or many bars of the distribution
histogram stick together instead of being discrete. Therefore,
the new generator and discriminator are constructed to study
the distribution of the topological charge.
The overall structure of M-WGAN is shown in Fig. 1.

The real distribution in Fig. 1 refers to the distribution
generated by the MC method, and the fake distribution
refers to the distribution generated by machine learning at
a certain epoch in the training process. These two
distribution histograms are only used to help illustrate
the outline of M-WGAN in the training process. The
training process of M-WGAN is similar to that of

FIG. 1. The overall structure of M-WGAN.
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WGAN [3,18]. The differences are mainly in the sampling
method of training data and the structure of the generator
and the discriminator.
The structure of the generator for M-WGAN is

explained in Table I. The fully connected layers are
applied to reshape the input random latent variable with
normal distribution. The batch normalization is exerted to
improve generation. The structure of the discriminator for
M-WGAN is described in Table II. Three fully connected
layers are used. LeakyReLU activation is implemented in
all layers except for the output layer.
The input of generator for M-WGAN is a random latent

variable tensor with shape ½−1; 1�, and the output is a tensor
with shape ½−1; 1�, where −1 is an undetermined parameter.
For example, we need to generate 1600 topological charge
values, the input shape is [1600, 1], and the output shape is
also [1600, 1]. Finally, the output needs to be reshaped into
an 1600-dimensional vector. These 1600 data can form a
distribution.

We update the parameters to maximize the Wasserstein
distance and the optimizer is RMSProp [18]. These settings
are the same as those of the original WGAN.
As a result, the M-WGAN can generate the distribution

of the topological charge directly to be applied to calculate
the topological charge susceptibilities after training. The
M-WGAN realize unsupervised generation without labels.
In addition, some programs are based on Pytorch [19].
The next part is the preparation of original data. The

software Chroma [20] is used to generate configurations of
pure gauge field on individual workstation. In order to
obtain the topological charge density data, the configura-
tions are simulated first with the pseudo heat bath algorithm
and smoothed by Wilson flow [9], then topological charge
density data can be calculated from such configurations. In
detail, the periodic boundary conditions and hot start have
been applied and the updating steps are repeated 10 times
for the visited link variable because the computation of sum
of staples is costly.
TheWilson flow step time εf ¼ 0.01 and total number of

stepsNflow ¼ 600 are chosen. The reason why we use these
two parameters are as follows.

ffiffiffiffiffiffiffi
8tf

p
is used to characterize

the smoothing range [16,21]. In the Sec. 6.2.1 of [21], the
author says that when the flow smearing exceeds the lattice
spacing, such that

ffiffiffiffiffiffiffi
8tf

p
=a ≫ 1, the discretization effects

will be less visible. In this paper, we use the parameters
Nflow ¼ 600 and εf ¼ 0.01, so that

ffiffiffiffiffiffiffi
8tf

p
=a ≈ 6.93 ≫ 1.

Therefore, the degree of smearing is sufficient and Nflow ¼
600 is enough to remove the ultraviolet divergences. In
addition, referring to Appendix C of Ref. [16], we discover
that the error of the Runge-Kutta scheme is small enough
when εf ¼ 0.01.
The demonstration that the sampled configurations has

reached thermalization is as follows. To detect whether the
system has reached thermalization, it is possible to check a
physical quantity starting from cold start and hot start is
consistent after a certain number of MC steps. The average
of the plaquette with β ¼ 6.0 was chosen to study the
thermalization and the mean value of plaquette is defined as
h1
3
ReTrUplaqi. It is found from Fig. 2 that the system has

reached thermalization after about 200 sweeps because the
mean value of plaquette has evolved to a similar value
starting from either cold or hot start.
Furthermore, it is necessary to calculate the integrated

autocorrelation time which is computed by the topological
charge in this article. For a Markov sequence of field
configurations generated by MC simulations, Xi is a
random variable and we could introduce the autocorrelation
function

CXðXi; XiþtÞ ¼ hðXi − hXiiÞðXiþt − hXiþtiÞ;
¼ hXiXiþti − hXiihXiþti: ð8Þ

TABLE I. The structure of the generator for M-WGAN.

Layer (type) Output shape Parameter number

Linear-1 ½−1; 6400� 6,400
BatchNorm1d-2 ½−1; 6400� 12,800
LeakyReLU-3 ½−1; 6400� 0
Linear-4 ½−1; 100� 640,000
BatchNorm1d-5 ½−1; 100� 200
LeakyReLU-6 ½−1; 100� 0
Linear-7 ½−1; 4� 400
BatchNorm1d-8 ½−1; 4� 8
LeakyReLU-9 ½−1; 4� 0
Linear-10 ½−1; 100� 400
BatchNorm1d-11 ½−1; 100� 200
LeakyReLU-12 ½−1; 100� 0
Linear-13 ½−1; 4� 400
BatchNorm1d-14 ½−1; 4� 8
LeakyReLU-15 ½−1; 4� 0
Linear-16 ½−1; 100� 400
BatchNorm1d-17 ½−1; 100� 200
LeakyReLU-18 ½−1; 100� 0
Linear-19 ½−1; 6400� 640,000
BatchNorm1d-20 ½−1; 6400� 12,800
LeakyReLU-21 ½−1; 6400� 0
Linear-22 ½−1; 1� 6,400

TABLE II. The structure of the discriminator for M-WGAN.

Layer (type) Output shape Parameter number

Linear-1 ½−1; 64� 128
LeakyReLU-2 ½−1; 64� 0
Linear-3 ½−1; 3200� 208,000
LeakyReLU-4 ½−1; 3200� 0
Linear-5 ½−1; 1� 3,201
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We define CXðtÞ ¼ CXðXi; XiþtÞ at thermalization and the

normalized autocorrelation function ΓXðtÞ ¼ CXðtÞ
CXð0Þ. We

introduce the integral autocorrelation time as

τX;int ¼
1

2
þ
XN
t¼1

ΓXðtÞ: ð9Þ

It is calculated that the integrated autocorrelation time is
0.416. This result indicates that each of data can be regarded
as independent because of N=2τX;int > N [9], where a total
of 1000 configurations are sampled with intervals of 200
sweeps.
In addition, the static QCD potential is applied to set the

scale and can be parametrized by [9]

VðrÞ ¼ Aþ B
r
þ σr: ð10Þ

The Sommer parameter r0 is defined as

�
r2
dVðrÞ
dr

�
r¼r0

¼ 1.65; ð11Þ

and the Sommer parameter r0 ¼ 0.49fm is used [22].
The scales are summarized in Table III.

III. NUMERICAL RESULTS

First, we show our results of 100 and 300 topological
charge data simulated by the MC simulations with Wilson
flow. It is found from Fig. 3 that the topological chargeQ is
approximately concentrated on the integer positions being
consistent with the conclusion that the topological charge
converges to an integer in the continuum limit mentioned
above. It is calculated from Fig. 3 (right) that the fourth root
of topological susceptibility χt

1=4 ¼ 191.8� 3.9 MeV
whenNflow ¼ 600. Therefore, aχt1=4 is approximately equal
to 0.09, which is consistent with Ref. [23]. Moreover, the
distribution of the topological charge should be symmetrical
about the origin. However, we can find that the symmetry of
distribution is poor in Fig. 3 (left) due to the poor statistics
of data. Therefore, it is important to improve the distribution
from the data of increased statistics. In MC simulations,
increasing data may result in a rapid increase in computation
time and storage usage, but these problems can be almost
avoided with an appropriate ML model. Once the ML
model is trained, it can immediately generate a correspond-
ing data to improve the accuracy of the results. Next, wewill
discuss the details of two methods, the MC simulations with
Wilson flow and ML with the M-WGAN scheme, as well as
combine two methods to generate configurations more
efficiently.
For the MC method, we have simulated a total of 1600

configurations and calculated the topological charge from
the configurations. Then the fourth root of the topological
susceptibility χt

1=4 ¼ 190.9� 1.7 MeV was calculated
from 1600 topological charge data when 25 CPU cores
were used in our calculations.
For ML, we concern to apply M-WGAN to generate the

topological charge data based on the original MC training
data. At first, we need to determine how much training data

TABLE III. The parameters used for the production of con-
figurations and the associated value of r0.

Volume β a½fm� Ncnfg r0=a L½fm�
24 × 123 6.0 0.093(3) 1000 5.30(15) 1.11(3)

FIG. 3. The distribution of topological charge based on the MC
simulations with Wilson flow. A total number of Wilson flow
time steps Nflow ¼ 600 are chosen. The numbers of topological
charge are 100 for the left plot and 300 for the right plot.

FIG. 2. The evolution of the average of plaquette under
different initial conditions.

FIG. 4. Comparison of models with 100, 200, 300 training data.
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to be suitable. We tested the training processes with total
training data volumes of 100, 200, and 300 and randomly
select three-quarters of data volumes each iteration to train
the model. The distribution of topological charge generated
by the model trained using different data volumes is shown
in the Fig. 4. It can be observed that the distribution of
Fig. 4 (middle) is mainly concentrated at the integers
compared with Fig. 4 (left), but its peak does not align
with the origin. Furthermore, the distribution of Fig. 4
(right) is mainly concentrated at the integers and roughly
symmetrical about the origin. Therefore, it is found that the
model trains better as the amount of training data increases.
By the test experiences, we choose to use 300 MC data as
the ML training data sample and randomly pick out three-
quarters of the 300 data in a training step to perform our
ML train scheme. The total amount of training data we use
is 300, and we randomly select three-quarters of 300 data,
that is 225 data, to train the machine learning model each
iteration. In other words, the batch size is 225. Compared
with fixed selection, random selection can increase the
diversity of data, which is more conducive to the training
of machine learning model. In addition, three-quarters of
the 300 data are selected each time because such a large
amount of data is more beneficial in training a better
distribution.
For our study, we should notice the accuracy of the

physical results obtained with the MC and ML methods.
It can be found from Table IV and Fig. 5 that the data error

gradually decreases as size of data increases for both
MC and ML, where 300 training data were used to train
M-WGAN and then 1600 output data were obtained. We
apply the jack knife to analysis the error of data in
calculations [9].
As shown in Table V, the results from both methods are

consistent within the statistical errors. But it is much faster
to generate the same amount of data with the ML method,
which also takes up less storage space than the MCmethod.
Therefore, we can apply ML to generate suitable data based
on MC data to deal with the error more efficiently.
Furthermore, the distributions of topological charge

generated by the MC and ML methods are shown in
Fig. 6. We can conclude that both the distributions have
good symmetry, and their data are discretely distributed at
integers. These characteristics are consistent with the
nature of the topological charge. In addition, the integrated
autocorrelation time of 1600 data for ML is 0.41, which
indicates that these data are independent.

IV. CONCLUSION

In this paper, we have studied the topological quantities
of lattice QCD by using MC simulations combined with the
M-WGAN. Especially we have applied the M-WGAN to
generate the distribution of topological charge to show the
potential for applications of ML technique in a study of
lattice QCD.
By our experience, the conclusions are as follows.

Compared with the MC by the pseudo heat bath algo-
rithm and the Wilson flow, the M-WGAN shows its
efficiency for the MC simulations in terms of time cost
and storage as shown in Tables IV and V. The data
generated by the M-WGAN trained with 300 data are
more accurate than the corresponding data by the MC
simulation as the topological susceptibility is concerned.

TABLE IV. The fourth root of the topological susceptibility
χt

1=4 for MC and ML.

Data volume χt
1=4ðMCÞ=MeV χt

1=4ðMLÞ=MeV

400 191.2� 3.5 191.7� 3.3
600 189.4� 2.9 190.7� 2.6
800 190.6� 2.4 191.5� 2.3
1000 191.4� 2.1 190.7� 2.1
1200 191.2� 2.0 191.7� 1.9
1400 191.6� 1.8 191.7� 1.8
1600 190.9� 1.7 191.0� 1.6

TABLE V. The time consumption and hard disk storage usage
for MC and ML methods. The time and storage of M-WGAN
incorporate the effects of training data.

Method Time=h Storage=MB χt
1=4=MeV

MC 136 18230 190.9� 1.7
ML 26 3423 191.0� 1.6

FIG. 6. The distributions of topological charge for MC and ML
methods.

FIG. 5. The fourth root of the topological susceptibility χt1=4 for
MC and ML methods under different data size.
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The pseudodistribution generated by this model after a
necessary training can be applied to calculate the correct
topological susceptibility in the SU(3) lattice QCD.
For future studies, we hope that the M-WGAN can be

applied to tackle other physics problems in lattice QCD and
provide an alternative approach to simulating some interest-
ing and important quantities in a much more efficient way.
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