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The second Mellin moments hxi of the nucleon’s unpolarized, polarized, and transversity parton
distribution functions are computed. Two lattice QCD ensembles at the physical pion mass are used: these
were generated using a tree-level Symanzik-improved gauge action and 2þ 1 flavor tree-level improved
Wilson Clover fermions coupling via 2-level HEX-smearing. The moments are extracted from forward
matrix elements of local leading twist operators. We determine renomalization factors in RI-(S)MOM and
match to MS at scale 2 GeV. Our findings show that operators that exhibit vanishing kinematics at zero
momentum can have significantly reduced excited-state contamination. The resulting polarized moment is
used to quantify the longitudinal contribution to the quark spin-orbit correlation. All our results agree
within two sigma with previous lattice results.
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I. INTRODUCTION

The distribution of the momentum and spin within a
hadron is encoded by parton distribution functions (PDFs).
Determining the PDFs is thus an indispensable ingredient
to our understanding of the structure of hadrons [1–3].
There have been various efforts of extracting the PDFs from
global fits; for a recent summary see [4]. The Lattice QCD
community has also achieved remarkable strides in the
computation of PDFs over the recent years [5–7].
In this study,1 our focus centers on the evaluation of the

second Mellin moment, denoted as hxi [5,9–11], of unpo-
larized, polarized, and transversity PDFs. We achieve this
through the examination of matrix elements of local twist-
two operators [10,12–17]. This method does not require

high momenta to suppress higher-twist contributions, as is
needed in calculations that use nonlocal operators, for
example the widely used quasi-PDF method [3, 6]. One
of our objectives is to gain insights into the contamination
stemming from excited states for different matrix elements
and constraining the resulting uncertainty. To attain this
objective, a comprehensive investigation of matrix elements
at finite but modest momenta becomes imperative, as certain
operators have nonvanishing matrix elements exclusively at
nonzero momentum. Although the exploration of forward
matrix elements of local operators at nonzero momentum is
somewhat unconventional, references [18–20] have previ-
ously ventured into this territory.
This paper is organized as follows. In Sec. II we explain

our analysis chain and discuss in detail which operators are
considered. The different steps of the analysis to extract the
matrix elements are shown in Sec. III. We continue the
computation of moments in Sec. IV where they become
renormalized and averaged over the different results.
Further, our findings are put in relation to other lattice
QCD results and global fits. In Sec. V we utilize the
moment of the polarized PDF to compute the quark
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1Preliminary results were reported in [8].
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spin-orbit correlation. Last, in Sec. VI we summarize our
findings. There are three appendices: AppendixA shows the
extraction of the matrix element for each operator, which are
summarized in Appendix B. Finally, the calculation of
renormalization factors is discussed in Appendix C.

II. METHOD

Moments of PDFs can be obtained by calculating
forward matrix elements of local leading-twist operators
[13,21–23]

OX ≡OX
fα;μg ¼ q̄ΓX

fαD
↔

μgq: ð1Þ

Here, the symbol X denotes either V, A, or T, correspond-
ing to the vector, axial, or tensor channels, respectively, and
in the tensor case Γα ¼ σβγ so that α is a compound index.
These channels are associated with unpolarized, polarized,
or transversity PDFs. Symmetrizing the indices and
subtracting traces is indicated by braces, fα; μg. We
specifically focus on the isovector channel, which involves
the difference between OX for up and down quarks,
OXðq ¼ uÞ −OXðq ¼ dÞ, to avoid calculating discon-
nected diagrams. The left-right acting covariant derivative

D
↔ ¼ ½ðD⃗ − D⃖Þ is constructed on the Euclidean lattice
using central finite differences between neighboring lattice
points, connected by appropriate gauge links.
It is well understood that these forward matrix elements

are proportional to the desired moment hxi [10,12,13]. The
matrix element is given by

hNðpÞjOX
fα;μgjNðpÞi ¼ hxiūNðpÞΓX

fαipμguNðpÞ: ð2Þ

In this equation, p represents the 4-momentum of the
nucleon.
In the continuum, the operators described in Eq. (1) form

irreducible representations of the Lorentz group. However,
in the context of Euclidean space, the Lorentz group is
replaced by the orthogonal group [23]. When we transition
to the lattice, the orthogonal group further reduces to the
hypercubic groupHð4Þ. This reduced symmetry can lead to
certain operators mixing with lower-dimensional ones.
Fortunately, for the specific one-derivative operator stud-
ied, such mixing does not occur [24].
Nevertheless, it is important to note that the Euclidean

irreducible representations to which our operators belong
are divided into multiple hypercubic irreducible represen-
tations. In our work, we adopt the common notation, where

τðbÞa represents the ath irreducible representation of dimen-
sion b. Each of these hypercubic irreducible representations
necessitates a distinct renormalization factor. To keep
renormalization diagonal, we construct operators with
well-defined hypercubic irreducible representations, as
suggested by Göckeler et al. [23].

In practical terms, this implies that for each τðbÞa , we must
compute the corresponding renormalization factor Z

τðbÞa
.

This factor is subsequently applied to the matrix elements
of an operator that transforms irreducibly under the given
representation. As a result, we denote the renormalization
factor for the operator OX as ZOX , equivalent to Z

τðbÞa
.

The matrix element described in Eq. (2) can be deter-
mined on the lattice by considering the ratios of three-point
and two-point correlation functions, as previously dis-
cussed in the literature, e.g. [12,13]. The two-point corre-
lation function, denoted as

C2ptðτÞ ¼
Z

d3ye−ip⃗ y⃗Tr
�
Γpolhχðy⃗; τÞχ̄ð0⃗; 0Þi

�
; ð3Þ

quantifies the correlation between a nucleon source and a
nucleon sink separated by a time interval τ. Here we use2

Γpol ¼ Pþ½1 − iγ1γ2� with Pþ ¼ ð1þ γ4Þ=2 and a nucleon
interpolating operator of the form

χα ¼ ϵabcðũTaCγ5Pþd̃bÞũc;α ð4Þ

with smeared quark fields q̃.
The three-point correlation function, denoted as

COX

3ptðT; τÞ ¼
Z

d3yd3z
�
e−ip⃗

0y⃗eiðp⃗0−p⃗Þz⃗

× Tr
�
Γpolhχðy⃗; TÞOXðy⃗; τÞχ̄ð0⃗; 0Þi��; ð5Þ

separates the source and sink nucleons by a time interval T
while incorporating the operator of interest, OX, at time τ.
From here on we let p⃗0 ¼ p⃗ as indicated in (2). A visual
representation is given by Fig. 1. The matrix element is
extracted in the limit where

M≡ lim
T−τ;τ→∞

RðT; τÞ ð6Þ

≡ lim
T−τ;τ→∞

COX

3ptðT; τÞ
C2ptðTÞ

: ð7Þ

Once the matrix element is obtained, we can compute
the moment by simply dividing the kinematic factor,
hxiK ¼ M, with

K ¼ 1

2ENðpÞ

×
TrfΓpolð−iγμpμ þmNÞ½aα;μΓX

αpμ�ð−iγμpμ þmNÞg
TrfΓpolð−iγμpμ þmNÞg

;

ð8Þ

2The same results can also be obtained using Pþ by itself as the
spin projector in C2pt.
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where the aα;μ ∈R are appropriate factors to express the
symmetrization and removal of traces discussed above.
This analysis involves a spectral decomposition of the

ratio, which allows us to isolate the matrix element of the
ground state:

RðT; τÞ ¼ Mþ excited states: ð9Þ

To account for the influence of the first excited state, we
expand the expression, obtaining the leading contribution
from excited states

M
1þ R1e−

T
2
ΔE cosh ½ðT=2 − τÞΔE� þ R2e−TΔE

1þ R3e−TΔE
; ð10Þ

whereΔE represents the energy difference between the first
excited state and the ground state (ΔE ¼ E1 − E0). In
principle, one would aim to consider large values of T and τ
to approach the limit defined in Eq. (7). However, it is
important to note that as T increases, so does the stat-
istical noise.
The constants in the numerator, R1, R2, are dependent on

the specific operator OX, and their values influence the
extent of excited-state contamination in the matrix element.
Smaller values of these constants or the presence of certain
symmetries can lead to reduced excited-state contamination
in the final result.
In the sum of ratios

SðT; τskipÞ ¼ a
XT−τskip
τ¼τskip

RðT; τÞ

¼ MðT − τskipÞ þ excited states; ð11Þ

excited-state contamination is exponentially suppressed
with T compared to T=2 for the ratios themselves
[25,26]. Increasing τskip reduces excited-state contamina-
tion. Following the proportionality relation of the ratios and
desired matrix element (2), we can extract the latter by use
of a finite difference. Neglecting excited states, one finds

M ¼ SðT þ δ; τskipÞ − SðT; τskipÞ
δ

: ð12Þ

Due to the available data we use a combination of
δ=a∈ f1; 2; 3g depending on whether a neighbor T þ δ
is available.
The analysis is outlined as follows:
Estimation of ratios: First, we calculate the ratios RðT; τÞ

and ratio sums SðT; τskipÞ for each operator. For the
unpolarized (V) PDF we use three operators

1. τð3Þ1
1
2
½OV

11
þOV

22
þOV

33

3
−OV

44�,
2. τð3Þ1

1ffiffi
2

p ½OV
33 −OV

44�,
3. τð6Þ3

1ffiffi
2

p ½OV
14 þOV

41�,

further, for the polarized (A) case two operators are
analyzed,

1. τð6Þ4

1ffiffi
2

p ½OA
13 þOA

31�,
2. τð6Þ4

1ffiffi
2

p ½OA
34 þOA

43�,

and finally for the transitivity (T) case the four operators

1. τð8Þ1
OT

211 −OT
244,

2. τð8Þ1
OT

233 −OT
244,

3. τð8Þ2
OT

124 −OT
241,

4. τð8Þ2
OT

142 þOT
421 − 2OT

214.

are used. These have been carefully chosen to have nonzero
kinematic factors, compared to Eq. (2), and to be linearly
independent.
Matrix element extraction: In the next step we extract

matrix elementsM using two different methods.Method 1:
We extract the slope via finite differences at a specific
source-sink separation T ¼ T 0 and compare (12). Method
2: We obtain the matrix element from a simultaneous (over
all source-sink separations) and fully correlated fit to the
2-state form, Eq. (10). A matrix element obtained through
either method is denoted as MjT 0;m, where m represents
the extraction method. For the second method the T 0 index
can be ignored.
From fitting the C2ptðτÞ we can obtain the ground-state

energy E0 which is used to calculate the kinematic factor.
After this, we calculate the unrenormalized moment as

XOX;p;mðT 0Þ ¼ MjT 0;m

ūNðpÞΓX
fαipμguNðpÞ

: ð13Þ

To simplify the following equations, we define a compound
index j ¼ ðOX; p;mÞ that runs over all operators and
momenta with nonzero kinematic factors as well as the
different methods to obtain the matrix element.

FIG. 1. Graphical representation of COX

3pt ðT; τÞ: a source nucleon
inserted at time t ¼ 0 and a sink nucleon removed at time t ¼ T.
A local leading twist operator (1) is inserted on a given time slice
τ. The nucleons on the lattice are represented by interpolating
operators χ (4) while OX is determined by finite differences
connected with gauge links.
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Renormalization factors: We determine the renormaliza-
tion factors in RI-(S)MOM and match them toMSð2 GeVÞ;
for details see Appendix C. This allows us to express the
renormalized moment as Xren

j ðT 0Þ ¼ ZOX ·XjðT 0Þ.
Moment of PDF: To obtain the second moments of

PDFs, we define the central value as the weighted average
of the different results:

hxiren ¼
X

j;T 0≥Tj
plat

WjðT 0ÞXren
j ðT 0Þ: ð14Þ

Here Tj
plat denotes the smallest source-sink separation such

that XjðT 0Þ agree for all T 0 ≥ Tj
plat. Naturally, the sum over

T 0 does not apply for the second method, where we fit the
2-state function, as there is no T 0 to consider. The weights
WjðT 0Þ ∝ 1=σ2jðT 0Þ are normalized in such a way that
weights associated to sum ratios sum to ½ as do the weights
for the 2-state fit. The used variances are estimated via
bootstrap over XjðT 0Þ and the errors of the renormalization
constants are propagated.
Systematic error estimation: Finally, we estimate a

systematic error, constraining the uncertainty from
excited-state contamination, by calculating the weighted
standard deviation over the different results:

σ2syst ¼
X

j;T 0≥Tj
plat

WjðT 0Þ½Xren
j ðT 0Þ − hxiren�2: ð15Þ

Again the sum over T 0 is not applied for the 2-state fit.
Relation to quark spin-orbit correlations: The longi-

tudinal quark spin-orbit correlation Lq
lS

q
l in the proton

(where the subscript l denotes alignment with the direction
of motion of the proton) is related to the generalized
transverse momentum-dependent parton distribution
(GTMD) Gq

11 [27] as in Eq. (16), which in turn can be
related to the generalized parton distributions (GPDs) H̃q,
Hq, Eq

T , and H̃q
T [28,29] as in Eq. (17),

2Lq
lS

q
l ¼

Z
1

−1
dx

Z
d2kT

k2T
m2

N
Gq

11 ð16Þ

¼ 1

2

Z
1

−1
dxxH̃q −

1

2

Z
1

−1
dxHq

þ mq

2mN

Z
1

−1
dxðEq

T þ 2H̃q
TÞ; ð17Þ

where all distribution functions are quoted according to the
nomenclature of [30] and are taken in the forward limit; kT
denotes the quark transverse momentum. H̃q is the standard
chiral-even helicity GPD andHq is the standard chiral-even
unpolarized GPD; Eq

T and H̃q
T are chiral-odd GPDs. The

longitudinal quark spin-orbit correlation has been evaluated
according to Eq. (16) in Ref. [31]; on the other hand, the
results of the present work can be used complementarily to
access the correlation via Eq. (17), which can be viewed as
the axial analogue of Ji’s sum rule for orbital angular
momentum: at the physical pion mass, the term propor-
tional to mq=mN is negligible. In the forward limit,

R
dxHq

corresponds to the number of valence quarks, i.e. unity in
the isovector, u − d quark case considered here. Therefore,
to an excellent approximation, one has

2Lq
lS

q
l ¼ 1

2
ðhxirenA − 1Þ; ð18Þ

where
R
dx xH̃q ¼ hxiA in the forward limit has been

identified. The results obtained in the following section
will be used to quantify the longitudinal quark spin-orbit
correlation and will also be confronted with the results
of Ref. [31].
Simulation parameters: We use a tree-level Symanzik-

improved gauge action with 2þ 1 flavor tree-level
improved Wilson Clover fermions coupling via 2-level
HEX-smearing. Detailed information about the simulation
setup can be found in Refs. [32–34]. Key simulation
parameters are summarized in Table I. Two ensembles,
coarse and fine, at the physical pion mass are used. These
ensembles correspond to lattice spacings of 0.1163(4) fm
and 0.0926(6) fm, respectively. As described in [34],
the smearing is done using Wuppertal smearing [35]
—q̃ ∝ ð1þ αHÞNq with H being the nearest-neighbor
gauge-covariant hopping matrix—at α ¼ 3 and N ¼ 60,
100 for the coarse and fine ensemble, respectively. For each
ensemble, two-point and three-point correlation functions

TABLE I. Details of the used ensembles. The ensembles are at the physical pion mass, mπ ≈mphys
π . A larger and a smaller lattice

spacing, labeled as “Coarse” and “Fine” respectively, are available. The ensembles were generated with a tree-level Symanzik-improved
gauge action with 2þ 1 flavor tree-level improved Wilson Clover fermions coupled via 2-level HEX-smearing [32–34]. Furthermore,
the available source-sink separations (T) and momenta (px) which are used in the calculation of the ratios, Eq. (7), are displayed.

Ensemble Size β a [fm] mπ [MeV] mπL T=a px½2π=L� Ncfg

Coarse 484 3.31 0.1163(4) 136(2) 3.9 3,4,5,6,7,8,10,12 0;−2 212
Fine 644 3.5 0.0926(6) 133(1) 4.0 10,13,16 0;−1 427
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are calculated. These calculations involve source-sink
separations ranging from approximately 0.3 fm to 1.4 fm
for the coarse ensemble and approximately 0.9 fm to 1.5 fm
for the fine ensemble. Furthermore, we consider two
different momenta: p⃗ ¼ ðpx; 0; 0Þ with px ¼ 0;−2½2π=L�
for the coarse ensemble, and with px ¼ 0;−1½2=πL� for the
fine ensemble.

III. ESTIMATION OF MATRIX ELEMENTS

In Fig. 2, we present results obtained from the coarse
ensemble, using two different operators OX per channel, as
shown in the upper and lower rows. Each column is
dedicated to a particular channel: from top to bottom we
display the operators 2. and 3. (unpolarized), 1. and 2.
(polarized), and 2. and 3. (transversity). Different source-
sink separations are represented by various colors, while
momenta are distinguished using filled circles for zero
momentum and unfilled squares for finite momentum; this
is kept consistent throughout all figures. A plateau in these
plots corresponds to the matrix element of the shown
operator. To simplify comparison we directly translate this
to the bare moment, by multiplying with the kinematic
factor R̄ðT; τÞ ¼ 1=K · RðT; τÞ. It is worth noting that we

exclude the largest source-sink separation from these plots
due to its substantial statistical uncertainty.
These operator choices are intentionally selected to

illustrate the extreme variability of the excited-state con-
tamination. While the upper row has a clearly visible cosh
behavior—as expected from the 2-state function (10)—the
lower row remains perfectly flat within statistics. Moreover,
we observe that the convergence in source-sink separation
is much faster for the lower row. For instance, in the lower
row the plateau already converges after T=a ¼ 3 while the
upper row requires T=a ≥ 8 in these particular examples.
This rapid convergence in the lower row is noteworthy, but
it also comes with a drawback: operators that exhibit such
flat behavior at small source-sink separations have a
vanishing kinematic factor at zero momentum, making
them computationally more challenging to handle. This
behaviour appears in all examples, compare summary plots
in Appendix A.
In Fig. 3, we present sum ratios, using the same operators

as in Fig. 2 but put into one subplot. The upper and lower
row represent the coarse and fine ensemble, respectively.
The value of τskip ¼ 1 is fixed as the slope of the summed
ratios did not change for larger values. The presence of
excited-state contamination is subtly hinted at by the slight

FIG. 2. Ratios, cf. Eq. (7), for the coarse ensemble. Various source-sink separations T are represented by different colors, while the two
momenta are distinguished using filled circles and unfilled squares. Each subplot corresponds to a different operator from the different
channels organized by column. For the unpolarized (V) case we display operators 2. and 3. for the polarized (A) case we display
operators 1. and 2. and for the transversity (T) case we display operators 3. and 1. for the upper and lower panel, respectively.
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curvature observed in the data, although it is considerably
less pronounced compared to the ratios.
In Fig. 4, we present the result of the matrix element

extraction for the same operators as displayed in Fig. 2.
Similar plots for all used operators can be found in
Appendix A. We plot horizontal lines to represent the
average (over T 0 ≥ Tj

plat) slope of the summed ratios,
divided by the kinematic factor. These slopes are extracted
with the finite difference approach (12). As the matrix
element is given by a plateau of the ratios, the expectation is
that the plotted slope agrees at least with the central points
τ ∼ 0 of large source-sink separations, which can be
verified for all operators within uncertainty. Again, those
operators which are already flat match this expectation for
more points and at smaller source-sink separation.
Following the axolotl-like shape of the ratios, the solid,

i.e. zero momentum, and dashed, i.e. finite momentum,
lines indicate the central value 2-state fit result, using the
form (10). The area around these indicate statistical uncer-
tainty obtained via fitting on each bootstrap sample. We use
all data points that are covered by the best fit plot in a ðT; τÞ-
simultaneous fit. This presents a fit interval in τ=awhich has

been chosen by minimizing a χ2=dof. The smaller source-
sink separations for the coarse ensemble are excluded by this
condition, as no points were left in the fit interval.
Considering all fits, values of χ2=dof range from 0.4 to

2.7. Correlations which go into these were estimated over
the bootstrap samples of the included points and then kept
fixed for the central value fit as well as the fits per bootstrap
sample.
Notably, the values of the matrix element obtained from

summed ratios and 2-state fits always agree within sta-
tistics. The latter has reduced statistical uncertainty.

IV. MOMENTS OF PDFS

In Fig. 5, we illustrate the results for the renormalized
moments, which are extracted from the summed ratios
[shown in gray, defined in Eq. (11)] and the 2-state fits
[displayed in red, as defined in Eq. (10)].3 The final average

FIG. 3. Ratio sums S̄ðT; τskipÞ on the coarse and fine lattice, employing the same operators as in 2. Each S̄ðT; τskipÞ is plotted at fixed
τskip ¼ 1. As in Fig. 2, different momenta are displayed with hollow and filled markers.

3Summary plots, showing these results separated and labeled
by their corresponding operators, momenta, methods, and source-
sink separations can be found in Appendix B.
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FIG. 4. Extraction result for the matrix elements, cf. Eq. (13), plotted on top of the original ratio data. The same operators and layout as
in Fig. 2 are used. Coarse and fine ensemble results are displayed in the first two and second two rows, respectively. Dot-dashed and
dotted horizontal lines represent the average slope of the summed ratios divided by the kinematic factor. Solid and dashed lines represent
the simultaneous and fully correlated central value fit to the ratios using the 2-state form (10). Surrounding colored areas represent
bootstrap uncertainties.
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FIG. 5. Renormalized moments calculated from the summed ratio (1-state) (gray) (11), and 2-state fit (red) (10). The final average is
displayed as a blue solid line while its statistical uncertainty is indicated via the blue dot-dashed line. The blue band represents the
statistical and systematic uncertainty, cf. Eq. (15), added in quadrature. The light gray points are not included in the average as per the
Tj
plat constraint, compare (14), to reduce excited-state effects. The ordinate limit is cut at 4σ around the final average to increase

resolution of the relevant points.

FIG. 6. Continuum extrapolation using a Bayesian fit with the model described in Eq. (19). The limited amount of data makes this
extrapolation strongly dependent on the chosen priors for the coefficientsmi. Coming from a power counting these are expected to be of
Oð1Þ, reflected in Gaussian priors of mean zero and variance 2. Resulting estimates are listed in Table II.
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is denoted by the blue solid line, while its statistical
uncertainty is indicated by the blue dot-dashed lines.
The blue band represents the combined statistical and
systematic uncertainty, as outlined in Eq. (15), added in
quadrature. The light gray points are not included in the
average, in accordance with the Tj

plat constraint. To enhance
the resolution of the relevant data points, the ordinate limit
is truncated at 4σ and centered around the final average.
The numerical values of the final averages can be found in
Table II.
Comparing the two ensembles we find agreement within

statistics indicating a flat continuum extrapolation. With
only two points a reliable extrapolation is not possible. The
best we can do is to interpret the data points as Gaussian
distributions, with mean equaling the central value and
width given by the uncertainties added in quadrature, and
perform a Bayesian fit. The relevant scale of discretization
effects [24,36] is aΛQCD resulting in a term proportional to
αsaΛQCD. The operators themselves have tree-level quad-
ratic discretization effects, resulting in the extrapolation

hxirenðaÞ ¼ hxirencont · ð1þm1αsaΛQCD þm2ðaΛQCDÞ2Þ:
ð19Þ

We use Gaussian priors for the coefficients, pmi
¼ N ð0; 2Þ

and no prior on the continuum value hxirencont. We approxi-
mate αs ≈ 0.3 which is sufficient due the fact that the
coefficients mi are mainly constrained by the prior. The

continuum-extrapolated results are likewise given in
Table II.
Our results are in good agreement, at the level of one to

two standard deviations, with moments previously com-
puted by other lattice QCD collaborations [14–17,37,38].
Moreover, confronting our moments with phenomeno-
logical extractions, the comparison is quite favorable in
the case of the axial moment, with Ref. [39] giving
hxiA ¼ 0.190� 0.008. On the other hand, in the unpolar-
ized case, a certain tension between lattice and phenom-
enological results remains, with the recent determination in
Ref. [4], hxiV ¼ 0.143ð5Þ, differing from our result by about
three standard deviations.

V. QUARK SPIN-ORBIT CORRELATION

With the results from Table II we can calculate the
longitudinal quark spin-orbit correlation in the proton
according to Eq. (18). The obtained values can be found
in Table III, along with the result obtained using the GTMD
approach, Eq. (16), in Ref. [31]. The results are in good
agreement. As discussed in more detail in Ref. [31], the
magnitude of this direct correlation between the spin and
the orbital angular momentum of a quark significantly
exceeds the correlation induced by the quark being
embedded in a polarized proton environment. There is,
therefore, a strong direct dynamical coupling between
quark orbital angular momentum and spin, reminiscent
of the jj coupling scheme in atomic physics, rather than the
Russell-Saunders coupling scheme.

VI. SUMMARY

In this study, we compute the second Mellin moment hxi
of the unpolarized, polarized, and transversity parton
distribution functions using two lattice QCD ensembles
at the physical pion mass. Our approach involves extracting
forward nucleon matrix elements at both zero and finite
momentum, boosted in the x-direction. Through the finite
momentum data, we identify operators that exhibit remark-
ably small excited-state contamination. Given the two
ensembles a reliable continuum extrapolation is not acces-
sible. Regardless, we apply a Bayesian fit, accepting a
strong dependence on the choice of priors, to provide a
continuum estimate. The resulting values are in agreement

TABLE II. Final averages for the second moments of PDFs in
the unpolarized, polarized, and transversity channels, compare
Fig. 5. For the coarse and fine ensemble results, the central value
is obtained as a weighted average over the different operators,
momenta, and extraction methods, cf. Eq. (14). Further, the
statistical uncertainty (first uncertainty) comes from a bootstrap
over the original ensemble, while the systematic uncertainty
(second uncertainty) is computed using the weighted standard
deviation over the same set of results, cf. Eq. (15). We
extrapolated the two points to the continuum limit using a
Bayesian fit approach assuming them to be independent and
Gaussian distributed with mean equaling the central value and
standard deviation coming from the combined statistical and
systematical uncertainty, compare Fig. 6.

Ensemble hxiren
Unpolarized (V) Coarse 0.192(08)(20)

Fine 0.203(09)(12)
Continuum 0.200(17)

Polarized (A) Coarse 0.212(05)(21)
Fine 0.213(09)(07)
Continuum 0.213(16)

Transversity (T) Coarse 0.235(06)(25)
Fine 0.210(10)(18)
Continuum 0.219(21)

TABLE III. Deduced isovector longitudinal quark spin-orbit
correlation, estimated using the results for the polarized (A) mo-
ment shown in Table II and relation (18).

Ensemble 2Lq
lS

q
lðσstatÞðσsystÞ

Coarse −0.394ð02Þð10Þ
Fine −0.393ð05Þð0Þ
Continuum −0.393ð08Þ
GTMDja¼0.114 fm [31] −0.40ð2Þ
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with both individual ensembles: hxiuþ−dþ ¼ 0.200ð17Þ,
hxiΔu−−Δd− ¼ 0.213ð16Þ, and hxiδuþ−δdþ ¼ 0.219ð21Þ.
Furthermore, we extract the isovector longitudinal quark
spin-orbit correlation in the proton using the moment of the
polarized PDF, 2Lq

lS
q
l ¼ −0.393ð08Þ. We find good agree-

ment with earlier calculations based on GTMDs [31].
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APPENDIX A: RESULTS PER OPERATOR

In this appendix we show the analysis summary resolved
per operator. As before, coarse and fine ensemble results
are displayed in the first and second row, respectively.
Different colors represent different source-sink separations
and the horizontal dash-dotted, i.e. zero momentum, and
dotted, i.e. finite momentum, lines represent the average
(over T 0 ≥ Tj

plat) slope of the summed ratios, divided by the
kinematic factor. These slopes are extracted with the finite
difference approach (12). The solid and dashed curves are
the best-fit result of the 2-state fit to (10), the surrounding
band corresponds to the bootstrap uncertainty of the fit.
Figure 7 displays the analysis of the operators correspond-
ing to the unpolarized (vector) PDFs. Figure 8 displays the
analysis of the operators corresponding to the polarized

FIG. 7. Analysis results of the ratios (points), slope of summed ratios (horizontal lines), and 2-state fit results (curves) for the operators
1., 2., and 3. corresponding to the unpolarized (vector) PDF.
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FIG. 8. Analysis results of the ratios (points), slope of summed ratios (horizontal lines), and 2-state fit results (curves) for the operators
1. and 2. corresponding to the polarized (axial) PDF.

FIG. 9. Analysis results of the ratios (points), slope of summed ratios (horizontal lines), and 2-state fit results (curves) for the operators
1. and 2. corresponding to the transversity (tensor) PDF.
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(axial) PDFs. Figures 9 and 10 display the analysis of the
operators corresponding to the transversity (tensor) PDFs.
As mentioned in Sec. III, agreement of the slope
of summed ratios with the plateau region expected around
τ ¼ 0 is given for all operators within one sigma.
Corresponding best 2-state fit lines are in perfect agreement
with the data points.

APPENDIX B: SUMMARY PLOTS

We present summary plots of the moments for the coarse
11 and fine 12 ensembles. The three channels, unpolarized
(V), polarized (A), and transversity (T), are shown in the
columns. Each result, i.e. the different operators and
momenta, is displayed in the panels separated by the
dotted and dashed lines. The solid black line separates
the sum-ratio method, points in purple, and the 2-state fit
method, points in red. For the sum-ratio method the
different T 0 are spread across the abscissa. As a point of
reference, the average over the points, as described in
Eq. (14), is shown by the horizontal blue line, with the
statistical uncertainty shown by the dotted dashed line and
the combined uncertainty by the blue band. This corre-
sponds to the blue line in Fig. 5. A (strong) dependence on
the source-sink separation can be seen in the sum-ratio
related points.

APPENDIX C: NONPERTURBATIVE
RENORMALIZATION

We determine renormalization factors for isovector
vector, axial, and tensor one-derivative twist-two
operators using the nonperturbative Rome-Southampton
approach [46], in both RI0-MOM [46,47] and RI-SMOM
schemes [48], and convert and evolve to the MS scheme at
scale 2 GeV using perturbation theory. We label these
renormalization factors Zρ

DV , Z
ρ
DA, and Zρ

DT for the one-
derivative vector, axial, and tensor operators, respectively,
with ρ denoting the irreducible representation of the hyper-
cubic group that takes on two possible values in each case.
We largely follow our earlier work that used operators

with no derivatives [34]. Our primary data are the Landau-
gauge quark propagator,

SðpÞ ¼
Z

d4x e−ip·xhuðxÞūð0Þi; ðC1Þ

and the Landau-gauge Green’s functions for operator O,

GOðp0;pÞ¼
Z

d4x0d4xe−ip0·x0eip·xhuðx0ÞOð0ÞūðxÞi: ðC2Þ

Here O is an isovector quark bilinear with one derivative,
yielding one Wick contraction: a connected diagram. We

FIG. 10. Analysis results of the ratios (points), slope of summed ratios (horizontal lines), and 2-state fit results (curves) for the
operators 3. and 4. corresponding to the transversity (tensor) PDF.
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evaluate these objects using four-dimensional volume plane
wave sources, yielding an effectively large sample size
from the volume average. From these, we construct our
main objects, the amputated Green’s functions,

ΛOðp0; pÞ ¼ S−1ðp0ÞGOðp0; pÞS−1ðpÞ: ðC3Þ

Provided that O belongs to a definite irreducible repre-
sentation of the hypercubic group, these renormalize
diagonally: ΛR

O ¼ ðZO=Zψ ÞΛO. To avoid determining Zψ

directly, we will form ratios to determine ZO=ZV and take
ZV computed from pion three-point functions in Ref. [34].

1. Conditions and matching

The RI0-MOM scheme uses kinematics p0 ¼ p, whereas
RI-SMOM uses p2 ¼ ðp0Þ2 ¼ q2 with q ¼ p0 − p. In both
cases, the scale is defined as μ2 ¼ p2. For the vector
current, we impose the conditions listed in Ref. [34] on ΛR

Vμ

to determine ZV=Zψ .

For the one-derivative operators, we start with the
continuum decomposition of the amputated Green’s func-
tion ΛOμν…

ðp0; pÞ into a sum of products of Oð4Þ-invariant
functions ΣðiÞ

O ðp2Þ and simple kinematic tensors

ΛðiÞ
Oμν…

ðp0; pÞ. We then decompose the operator and its

kinematic tensors into irreducible representations ρ, replac-
ing μν… with ρn, where n ranges from 1 to the dimension
of ρ. Tracing the amputated Green’s function with each of
the tensors within each irrep, we getX
n

Tr½ΛðiÞ
O;ρnðp0; pÞΛO;ρnðp0; pÞ� ¼ Mij

ρ ðp0; pÞΣðjÞ
O;ρðp2Þ;

ðC4Þ
where

Mij
ρ ðp0; pÞ ¼

X
n

Tr½ΛðiÞ
O;ρnðp0; pÞΛðjÞ

O;ρnðp0; pÞ� ðC5Þ

is a known kinematic matrix. Inverting M, we obtain the
Oð4Þ-invariant functions computed within each irrep ρ,

FIG. 11. Summary plot of the renormalized moment of PDF of the coarse ensemble resolved for each operatorOX, represented by the
corresponding ID and irrep, and momentum px. The purple points correspond to results obtained by the sum-ratio method evaluated at a
source-sink separation T 0. The red points are obtained using the two-state fit. The blue solid line corresponds to the overall average as
described by Eq. (14) with the dashed line indicating statistical uncertainty and the blue area indicating statistical and systematic
uncertainty added in quadrature.
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ΣðiÞ
O;ρðp2Þ. Our choice of decomposition, given below, is

such that at tree level, ΣðiÞ
O ðp2Þ ¼ δi1, and our renormaliza-

tion conditions will all be of the form Σð1Þ
OR;ρðμ2Þ ¼ 1.

Basing this condition on a Oð4Þ-invariant function com-
puted within each irrep ensures that the ratio of renorm-
alization factors for two different lattice irreps of the same
continuum operator is scale and scheme invariant.
The one-derivative vector operator is

OV
μν ¼ Sψ̄τ3γμD

↔

νψ ; ðC6Þ
where S takes the symmetric traceless part of the tensor:

STμν ¼
1

2
ðTμν þ TνμÞ −

1

4
δμνTαα: ðC7Þ

Our decomposition for the RI0-MOM scheme is a scaled
version of the one used by Gracey [49]:

Λð1Þ
OV

μν
ðp; pÞ ¼ Sγμpν; ðC8Þ

Λð2Þ
OV

μν
ðp; pÞ ¼ S

pμpν

p2
=p; ðC9Þ

where here and below we neglect tensors of opposite
chirality. For RI-SMOM, the derivative in the operators
basis used by Gracey [50] did not yield a definite

C-symmetry, unlike our operator containingD
↔
. This allows

us to use half as many tensors as Gracey; see also [51,52].
Defining p̄ ¼ ðp0 þ pÞ=2, our tensors and their relation to
Gracey’s tensors PW2

ðiÞ are the following:

ΛSð1Þ
OV

μν
ðp0; pÞ ¼ Sp̄μγν ¼

1

4
ðPW2

ð2Þ − PW2

ð1ÞÞ; ðC10Þ

ΛSð2Þ
OV

μν
ðp0; pÞ ¼ S

p̄μp̄ν

p̄2
=̄p ¼ −

1

6

X8
i¼3

ð−1ÞiPW2

ðiÞ ; ðC11Þ

ΛSð3Þ
OV

μν
ðp0; pÞ ¼ S

p̄μqν
q2

=q ¼ 1

2
ðPW2

ð3Þ − PW2

ð5Þ þ PW2

ð6Þ − PW2

ð8ÞÞ;

ðC12Þ

ΛSð4Þ
OV

μν
ðp0;pÞ¼S

q̄μqν
q2

=̄p¼1

2

�X5
i¼3

PW2

ðiÞ −
X8
i¼6

PW2

ðiÞ

�
; ðC13Þ

FIG. 12. Summary plot of the renormalized moment of PDF of the fine ensemble, similar to Fig. 11.
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ΛSð5Þ
OV

μν
ðp0; pÞ ¼ S

p̄αqβ
q2

γ½μγαγβ�p̄ν ¼
1

2
ðPW2

ð10Þ − PW2

ð9ÞÞ;

ðC14Þ

where p̄2 ¼ 3
4
μ2 and the square brackets denote antisym-

metrization. The one-derivative axial operator,

OA
μν ¼ Sψ̄τ3γμγ5D

↔

νψ ; ðC15Þ

is related to the vector operator by chiral symmetry and its
tensor structures correspond to those of the vector operator,
multiplied by γ5. We use the four-loop anomalous dimen-
sion [53–55]4 and three-loop matching to MS [50,52].
The one-derivative tensor operator is

OT
μνρ ¼ Sψ̄τ3σμνD

↔

ρψ ; ðC16Þ

where the symmetrization and trace subtraction has the
form [49]

STμνρ ¼
1

2
ðT̃μνρ þ T̃μρνÞ −

1

3
δνρT̃μαα

þ 1

6
ðδμνT̃ραα þ δμρT̃νααÞ ðC17Þ

with T̃μνρ ¼ 1
2
ðTμνρ − TνμρÞ. Choosing to start by antisym-

metrizing μν leaves us with only two tensor structures in the
RI0-MOM scheme, compared with Gracey’s three:

Λð1Þ
OT

μνρ
ðp; pÞ ¼ Sσμνpρ; ðC18Þ

Λð2Þ
OT

μνρ
ðp; pÞ ¼ S

1

p2
σμαpαpνpρ: ðC19Þ

For RI-SMOM, the supplementary data of Ref. [57] lists 30
structures. First antisymmetrizing μν reduces this to 16 and
charge conjugation further reduces the number to 8. We
write the first six as

ΛSð1Þ
OT

μνρ
ðp0; pÞ ¼ Sσμνp̄ρ; ðC20Þ

ΛSð2Þ
OT

μνρ
ðp0; pÞ ¼ S

1

p̄2
σμαp̄αp̄νp̄ρ; ðC21Þ

ΛSð3Þ
OT

μνρ
ðp0; pÞ ¼ S

1

q2
σμαqαqνp̄ρ; ðC22Þ

ΛSð4Þ
OT

μνρ
ðp0; pÞ ¼ S

1

q2
σμαqαp̄νqρ; ðC23Þ

ΛSð5Þ
OT

μνρ
ðp0; pÞ ¼ S

1

q2
σμαp̄αqνqρ; ðC24Þ

ΛSð6Þ
OT

μνρ
ðp0; pÞ ¼ S

1

q2p̄2
σαβp̄αqβp̄μqνp̄ρ: ðC25Þ

The last two tensors involve γ5 or the identity, and they
have vanishing trace with each of the first six, so they can
be neglected. We use the three-loop anomalous dimension
[49], the three-loop matching from RI0-MOM [49], and the
two-loop matching from RI-SMOM [57].

2. Calculation

Our numerical setup follows Ref. [34], extended to
include both sets of momenta on both ensembles.
We use partially twisted boundary conditions, namely
periodic in time for the valence quarks. The plane wave
sources are given momenta either along the four-
dimensional diagonal pð0Þ ¼ 2π

L ðk; k; k;�kÞ or along
the two-dimensional diagonal p; p0 ∈ f2πL ðk; k; 0; 0Þ; 2πL ðk;
0; k; 0Þg, with k ¼ 2; 3;…; L

4a. By contracting them in
different combinations, we get data for both RI0-MOM
kinematics, p0 − p ¼ 0, and RI-SMOM kinematics,
p0 − p ¼ 2π

L ð0; 0; 0;�2kÞ or � 2π
L ð0; k;−k; 0Þ. We used

54 gauge configurations from each ensemble; however,
on one configuration of the coarse ensemble the valence
twisted boundary condition yielded a near-singular Dirac
operator and the multigrid solver was unable to converge.
We omitted this configuration, using only 53 on the coarse
ensemble.
Perturbatively matching from RI0-MOM or RI-SMOM

to the MS scheme and evolving to scale 2 GeV does not
eliminate dependence on the initial scale μ: there are
remaining effects from lattice artifacts, truncation of the
perturbative series, and nonperturbative contributions. To
control these artifacts, we perform fits including terms
polynomial in μ2 and also a pole term, following Ref. [58].
These fits have the form Aþ Bμ2 þ Cμ4 þD=μ2, where
the constant term A serves as our estimate of the
renormalization factor ratio ZO=ZV . Results for this ratio,
choosing one irrep for each of the three operator types, are
shown in Fig. 13. For each operator and scheme, we
perform three fits: using the 4D data with two different fit
ranges μ2 ∈ ½4; 20� and ½10; 30� GeV2 and using the 2D
data with μ2 ∈ ½4; 15� GeV2. In some cases (particularly
using the very precise RI-SMOM data), the fit quality is
very poor and thus we scale the statistical uncertainty byffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=dof

p
whenever this is greater than one. Following the

same prescription as in Ref. [34], we combine the results
first within each scheme and then for our final result using
both schemes, estimating the systematic uncertainty
(which is dominant) from the scatter of results and
conservatively taking the maximum statistical uncertainty.4Ref. [56] reports that Ref. [54] contains a misprint.
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FIG. 13. Ratios of renormalization factors Z
τð3Þ
1

DV=ZV , Z
τð3Þ
4

DA=ZV , and Z
τð8Þ
1

DT=ZV on the coarse (left) and fine (right) ensembles, determined
using the RI0-MOM (green circles) and RI-SMOM (orange squares) intermediate schemes together with momenta along the four-
dimensional diagonal (filled symbols) and two-dimensional diagonal (open symbols) and then matched to MS at scale 2 GeV. For most
points, the statistical uncertainty is smaller than the plotted symbol. The solid curves are fits to the 4D data in the μ2 range from 4 to
20 GeV2, the dashed curves in the range from 10 to 30 GeV2, and the dotted curves are fits to the 2D data in the range from 4 to
15 GeV2. The fit curves without the pole term are also plotted in the range 0 < μ2 < 6 GeV2. To reduce clutter, uncertainties on the fits
are not shown. The symbols filled with black near μ2 ¼ 0 provide the final estimate for each intermediate scheme; their outer (without
end cap) and inner (with end cap) error bars show the total and statistical uncertainties. The filled dark gray diamonds are the final
estimates that combine both schemes.
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FIG. 14. Scale and scheme-invariant ratios of renormalization factors Z
τð6Þ
3

DV=Z
τð3Þ
1

DV , Z
τð6Þ
4

DA=Z
τð3Þ
4

DA, and Z
τð8Þ
2

DT=Z
τð8Þ
1

DT , determined using the RI0-
MOM (green circles) and RI-SMOM (orange squares) intermediate schemes together with momenta along the four-dimensional
diagonal (filled symbols) and two-dimensional diagonal (open symbols) and then matched to MS at scale 2 GeV. For most points, the
statistical uncertainty is smaller than the plotted symbol. The solid curves are fits to the 4D data in the μ2 range from 1 to 8 GeV2 and the
dotted curves are fits to the 2D data in the range from 1 to 5 GeV2. To reduce clutter, uncertainties on the fits are not shown. The symbols
filled with black near μ2 ¼ 0 provide the final estimate for each intermediate scheme; their outer (without end cap) and inner (with end
cap) error bars show the total and statistical uncertainties. The filled dark gray diamonds are the final estimates that combine both
schemes.
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In all cases, there is good agreement between the two
schemes.
Renomalization-group-invariant ratios of renormaliza-

tion factors in different irreps Zρ0
O=Z

ρ
O are shown in

Fig. 14. Note that it is not possible to isolate the chosen

Oð4Þ-invariant function for the tensor operator in irrep τð8Þ2

in the RI-SMOM scheme using the 4D kinematics. Because
in the continuum and infinite volume these ratios are
independent of μ2, we can fit using much lower momenta
and only avoid the region μ2 < 1 GeV2 due to finite-
volume effects. We also omit the pole term, i.e. set D ¼ 0.
In all cases, we obtain results within a few percent of unity.
Our final values for the ratios of renormalization factors

are given in Table IV.
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