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We present an update of our determination of the isovector charges gu−dA , gu−dS and gu−dT , and the isovector
twist-2 forwardmatrix elements hxiu−d, hxiΔu−Δd and hxiδu−δd on theNf ¼ 2þ 1 gauge ensembles generated
by the Coordinated Lattice Simulations (CLS) effort. We have significantly extended our coverage of the
parameter space by adding ensembles at the physical pionmass and fine lattice spacing, at nearly physical pion
masses and very fine lattice spacings, and at very large physical lattice volumes, enabling a well-controlled
extrapolation to the physical point. Another major improvement is achieved owing to the extended range of
source-sink separations, which allows us to perform two-state fits to summed correlator ratios, leading to
a much higher level of control over excited-state effects. Systematic uncertainties from the chiral,
continuum and infinite-volume extrapolations are incorporated via model averages based on the Akaike
information criterion. Our final results at the physical point are gu−dA ¼ 1.254ð19Þstatð15Þsys½24�total,
gu−dS ¼1.203ð77Þstatð81Þsys½112�total, gu−dT ¼0.993ð15Þstatð05Þsys½16�total, hxiu−d¼0.153ð15Þstatð10Þsys½17�total,
hxiΔu−Δd ¼ 0.207ð15Þstatð06Þsys½16�total, and hxiδu−δd ¼ 0.195ð17Þstatð15Þsys½23�total.While our results for the

isovector charges are in excellent agreement with the FLAG 21 averages, we note that our error for the tensor
charge gu−dT is considerably smaller.

DOI: 10.1103/PhysRevD.109.074507

I. INTRODUCTION

The forward matrix elements of local currents, i.e. the
charges, of the nucleon are some of the most basic
structural quantities that can be defined within QCD. In
the case of isovector currents, these charges can be
determined from lattice simulations without the need to
consider quark-disconnected diagrams, which has led to a
significant effort within the lattice community to determine
these quantities. While the isovector axial charge, gu−dA ¼
1.2754ð13Þ [1], is known to high precision experimentally
and serves mostly as a benchmark for lattice QCD
calculations, the isovector scalar and tensor charges gu−dS

and gu−dT are only poorly known from phenomenology, so
that lattice QCD can provide an important first-principles
prediction with significant impact on e.g. dark matter
searches [2] and searches for beyond the Standard
Model (BSM) sources of CP-violation [3]. Lattice results

for these quantities are now being collected by the FLAG
group, which gives global lattice averages [4] for gu−dA
(based on Refs. [5–9]), gu−dS [6,9] and gu−dT [6,9]. More
recent results (not yet contained in the FLAG 2021 aver-
ages) can be found in Refs. [10–13].
Looking beyond local currents, the forward matrix

elements of twist-2 operators provide access to the average
quark momentum fraction hxi, and to the second helicity
and transversity moments. For isovector operators, these
can again be determined on the lattice without requiring the
computation of quark-disconnected contributions. Beyond
twist-2, lattice calculations quickly become infeasible due
to rapidly declining signal-to-noise ratios as well as
operator mixing. Lattice results for twist-2 matrix elements
have not been included in the FLAG report until now, and
recent results [9,14–16] are fewer than for the charges.
In this paper, we present an update over our previous

determination [9] of the isovector axial, scalar and tensor
charges of the nucleon, the isovector average quark
momentum fraction, and the second isovector helicity
and transversity moments. The main improvements over
our previous work are: firstly, the addition of several
ensembles, including one at a pion mass slightly below
the physical value, one at an almost physical pion mass at
very fine lattice spacing, and two at large physical volumes;
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secondly, additional source-sink separations and increased
statistics on almost all ensembles used; thirdly, the use of a
two-state fit to the summed ratio, which combines the
explicit treatment of excited-state effects with the para-
metric suppression of excited-state contributions inherent
to the summation method [17–20], permitting the use of a
much larger fit range while yielding a much better
description of the data; fourth, the implementation of full
OðaÞ-improvement for the local charges; and finally, the
use of the Akaike information criterion (AIC) [21] to
perform a model average incorporating different Ansätze
and cuts for the chiral, continuum and infinite-volume
extrapolation. Taken together, these improvement allow for
a significant reduction in both statistical and systematic
errors.
This paper is structured as follows: in Sec. II, we

describe our lattice setup, detailing the observables mea-
sured, the ensembles used, and the computational methods
employed. Section III details our excited-state analysis,
while Sec. IV describes the Ansätze we use for the chiral,
continuum and infinite-volume extrapolation. Our model
averaging procedure is given in Sec. V together with our
final physical results, which are compared to other deter-
minations in Sec. VI together with some brief conclusions.

II. LATTICE SETUP

The subject of this study are forward nucleon matrix
elements (NMEs) of the form

hNðpf; sfÞjOX
μ1…μnðxÞjNðpi; siÞi

¼ eiq·xūðpf; sfÞWX
μ1…μnðQ2Þuðpi; siÞ; ð1Þ

whereNðpf; sfÞ [Nðpi; siÞ] and ūðpf; sfÞ [uðpi; siÞ] denote
nucleon states and spinorswith initial (final) statemomentum
pi (pf) and spin si (sf). The operatorsOX

μ1…μnðxÞ are drawn
from the set X∈ fA; S; T; vD; aD; tDg and are defined
in Eqs (8)–(13) below. Each choice of the operator inser-
tion OX

μ1…μnðxÞ results in a distinct form factor decomposi-
tion WX

μ1…μnðQ2Þ on the right-hand side (rhs), where
Qμ ¼ ðiEf − iEi; q⃗Þ, q⃗ ¼ p⃗f − p⃗i defines the Euclidean
four-momentum transfer.
The starting point for the calculation of NMEs in lattice

QCD are spin-projected two- and three-point functions

C2ptðtf − ti; p⃗Þ ¼ Γαβ
z

X
x⃗f

eip⃗·ðx⃗f−x⃗iÞhJN;αðx⃗f; tfÞJ̄N;βðx⃗i; tiÞi;

ð2Þ

CX
μ1…μnðtop − ti; tf − ti; q⃗; p⃗fÞ
¼ Γαβ

z

X
x⃗f ;x⃗op

eip⃗f ·ðx⃗f−x⃗opÞeip⃗·ðx⃗op−x⃗iÞhJN;αðx⃗f; tfÞ

×OX
μ1…μnðx⃗op; topÞJ̄N;βðx⃗i; tiÞi: ð3Þ

where Γz ¼ 1
2
ð1þ γ0Þð1þ iγ5γ3Þ and JN;αðx⃗; tÞ denotes a

suitable interpolating field for the nucleon.
Note that in a previous study of isovector nucleon

charges and twist-2 matrix elements in Ref. [9], the
unpolarized projector Γ0 ¼ 1

2
ð1þ γ0Þ has been used in

the construction of two point functions to Γz, which leads to
a moderate decrease in the statistical error compared to Γz.
For the much larger dataset used in this study, we find that
the improved signal for the two-point functions no longer
outweighs the error reduction due to the additional corre-
lation between two- and three-point functions when using
the same projector Γz. However, the computation of the
nucleon masses as listed in Table I has still been carried out
on two-point functions projected with Γ0 for optimal signal
quality.
In this work we restrict ourselves to vanishing four-

momentum transfer Q2 ¼ 0. Furthermore, we shall assume
that initial and final state are produced at rest, i.e.,
p⃗f ¼ p⃗i ¼ 0, and drop the corresponding three-momenta
from all expressions. Introducing the usual shorthands
tsep ¼ tf − ti and t ¼ top − ti for the pertinent Euclidean
time-separations as well as performing an index shift such
that ti ¼ 0, the corresponding momentum space expres-
sions for the two- and three-point function in Eqs. (2) and
(3) read

C2ptðtsepÞ ¼ Γαβ
z hJN;αðtsepÞJ̄N;βð0Þi; ð4Þ

CX
μ1…μnðt; tsepÞ ¼ Γαβ

z hJN;αðtsepÞOX
μ1…μnðtÞJ̄N;βð0Þi: ð5Þ

The remaining dependence on the source position ti has
been dropped in these expressions as well, assuming that
results for multiple source positions are averaged to
improve the statistical precision. Note that this requires
translational invariance, which has implications for the
source placement depending on the choice of boundary
conditions, cf. subsection II C. In order to extract matrix
elements from three-point functions, unknown overlap
factors must be canceled out. At vanishing momentum
transfer this is accomplished by forming a simple ratio of
the three- and two-point function

RX
μ1…μnðt; tsepÞ ¼

CX
μ1…μnðt; tsepÞ
C2ptðtsepÞ

: ð6Þ

Ground-state dominance is achieved at asymptotically large
Euclidean time separations, i.e.

R̃X
μ1…μn ≡ lim

t→∞
lim

ðtsep−tÞ→∞
RX
μ1…μnðt; tsepÞ ¼ const: ð7Þ

However, in actual lattice calculations it cannot be guaran-
teed that the naive implementation of this limit is free from
systematic bias due to unsuppressed excited-state contribu-
tions. The reason for this is the notorious signal-to-noise
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problem in nucleon structure calculations which restricts the
accessible source-sink separations to values of tsep ≲ 1.5 fm.
Therefore, many different approaches have been developed
over the years by various groups attempting to improve the
reliability of the ground-state extraction [22]. The details of
our excited-state analysis are discussed in Sec. III.

A. Observables

We consider isovector combinations of the following set
of local, dimension-three operator insertions

OA
μ ðxÞ ¼ q̄ðxÞγμγ5qðxÞ; ð8Þ

OSðxÞ ¼ q̄ðxÞqðxÞ; ð9Þ

OT
μνðxÞ ¼ q̄ðxÞσμνqðxÞ: ð10Þ

as well as isovector combinations of three twist-2,
dimension-four operator insertions, i.e.

OvD
μν ðxÞ ¼ q̄ðxÞγfμD

↔

νgqðxÞ; ð11Þ

OaD
μν ðxÞ ¼ q̄ðxÞγfμγ5D

↔

νgqðxÞ; ð12Þ

OtD
μνρðxÞ ¼ q̄ðxÞσ½μfν�D

↔

ρgqðxÞ: ð13Þ

The second group of operators involves the symmetric

derivative D
↔

μ ¼ 1
2
ðD⃗μ − D⃖μÞ and the notation f…g and

½…� refers to symmetrization over indiceswith subtractionof
the trace and antisymmetrization, respectively. Assuming
asymptotically large Euclidean time separations as given by
Eq. (7), the form factor decompositions WA;S;T

μ1…μnðQ2Þ with
n ¼ 0, 1, 2 for the first group of operators give rise to the
local isovector nucleon charges gu−dA;S;T through

R̃A
μ ¼ iδ3μgu−dA ; ð14Þ

R̃S ¼ gu−dS ; ð15Þ

R̃T
μν ¼ ϵ03μνgu−dT : ð16Þ

Similarly, the isovector, one-derivative operator insertions
are related to the isovector average quark momentum
fraction hxiu−d ¼ Au−d

20 ð0Þ, helicity momentum hxiΔu−Δd ¼
Ãu−d
20 ð0Þ and transversity moment hxiδu−δd ¼ Au−d

T20 ð0Þ, that
are defined from the corresponding, generalized parton
distribution functions at vanishing momentum transfer,
cf. Ref. [23]. The corresponding decompositions read

R̃vD
μν ¼ m

�
δ0μδ0ν −

1

4
δμν

�
hxiu−d; ð17Þ

R̃aD
μν ¼ im

2
ðδ3μδ0ν þ δ0μδ3νÞhxiΔu−Δd; ð18Þ

R̃tD
μνρ ¼ −

im
4
ϵμνρ3ð2δ0ρ − δ0ν − δ0μÞhxiδu−δd: ð19Þ

TABLE I. Gauge ensembles used in this work. Ensembles with open and periodic boundary conditions in time are indicated by
superscripts “o” and “p”, respectively.Mπ andMN have been measured on the same set of configurations and the corresponding values
of MπL are included as well. Nconf is the number of gauge configurations measurements, and Nmax

meas refers to the number of
measurements on the largest value of tsep. The range of source-sink separations is given in physical units by tlosep and thisep, and Ntsep is the
number of source-sink separations on each ensemble, which are increased by a fixed increment (i.e., one or two units of the lattice
spacing) between tlosep and thisep.

IDBC β a=fm T
a × ðLaÞ3 L=fm MπL Mπ=MeV MN=MeV Nconf Nmax

meas tlosep=fm thisep=fm Ntsep

H102o 3.40 0.0855 96 × 323 2.74 4.99 360(3) 1116(10) 2037 32592 0.35 1.47 14
H105o 96 × 323 2.74 3.92 283(4) 1030(14) 1027 49296 14
N101o 128 × 483 4.11 5.89 283(2) 1038(10) 1593 50976 14
C101o 96 × 483 4.11 4.74 228(2) 989(08) 2000 64000 14

S400o 3.46 0.0756 128 × 323 2.42 4.33 353(3) 1132(09) 2873 45968 0.31 1.53 9
N451p 128 × 483 3.63 5.31 289(2) 1054(07) 1011 129408 9
D450p 128 × 643 4.84 5.35 218(2) 981(09) 500 64000 17

N203o 3.55 0.0636 128 × 483 3.06 5.41 349(3) 1118(09) 1543 24688 0.26 1.41 10
S201o 128 × 323 2.04 3.05 295(3) 1134(10) 2092 66944 10
N200o 128 × 483 3.06 4.36 282(2) 1061(14) 1711 20532 10
D200o 128 × 643 4.07 4.27 207(2) 976(09) 1999 63968 10
E250p 192 × 963 6.11 4.03 130(1) 942(07) 399 102144 10

N302o 3.70 0.0493 128 × 483 2.37 4.20 350(3) 1146(12) 2201 35216 0.20 1.40 13
J303o 192 × 643 3.16 4.24 265(2) 1043(08) 1073 17168 13
E300o 192 × 963 4.74 4.22 176(1) 971(09) 569 18208 13
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For operator insertions X ¼ T; vD; aD; tD with n ≥ 2

Lorentz indices the data for RX
μ1;…μnðt; tsepÞ are averaged

over all contributing index combinations, resulting in a
favorable signal-to-noise ratio compared to the use of just a
single index combination.

B. Ensembles

Our lattice calculations are performed on a set of 15
gauge ensembles listed in Table I. These ensembles have
been generated by the Coordinated Lattice Simulations
(CLS) consortium [24] with Nf ¼ 2þ 1 flavors of non-
perturbatively OðaÞ-improved Wilson fermions [25] and
the tree-level Symanzik-improved gauge action [26]. Since
the simulations have been carried out with a twisted mass
regulator in the light quark sector to suppress exceptional
configurations [27] and the rational approximation [28] for
the strange quark, the computation of physical observables
requires reweighting. For all but one ensemble (E300) we
make use of the reweighting factors that have been
computed using exact low mode deflation in Ref. [29].
The reweighting factors for E300 have been determined by
the conventional method based on a stochastic estimator as
discussed in Ref. [24]. Furthermore, we employ the
procedure introduced in Ref. [30] to deal with violations
of the positivity of the fermion determinant that occurs on a
small subset of gauge configurations on some of our
ensembles. The majority of ensembles in Table I has been
generated with open boundary conditions (oBC) in the time
direction to prevent topological freezing [27,31], however,
three ensembles (E250, D450 and N451) feature periodic
boundary conditions (pBC). Moreover, all ensembles in
Table I lie on a single chiral trajectory subject to the
constraint tr½M� ¼ 2ml þms ¼ const, where M denotes
the bare quark mass matrix.
While a subset of these ensembles had already been

analyzed in a previous study in Ref. [9], there are several
important advances, including but not limited to
(1) The addition of two fine and large boxes in the

vicinity of physical quark mass (E250 and E300), as
well as two ensembles with MπL > 5 and large
physical volume at Mπ ≈ 220 MeV (D450) and
Mπ ≈ 280 MeV (N101). These newly added ensem-
bles improve our control over the physical extrapo-
lation, particularly for the chiral extrapolation and
finite volume effects.

(2) An increased number of source-sink separations,
including values tsep < 1 fm and filling in odd
values of tsep=a for all ensembles at the coarsest
lattice spacing (β ¼ 3.40) as well as on D450. This
enables a much more fine-grained control of the
excited-state contamination.

(3) Increased statistics onvarious ensembles (e.g. roughly
doubled gauge statistics on D200, J303, S400) and
replacing the N401 ensemble (which had open boun-
dary conditions) with the newly generated N451

ensemble which features periodic boundary condi-
tions and an order of magnitude higher statistics.

In particular the inclusion of ensembles down to physical
quark masses necessitates also a change of our analysis
strategy for the treatment of excited states that is discussed
in detail in Sec. III.
The dimensionful quantities that enter our analysis are

expressed in units of the gradient flow scale t0 [32]. To this
end we employ the values for tsym0 =a2 at the symmetrical
point as given in Table III in Ref. [33]. In order to set the
scale in our simulations, we use the world average estimate
given by FLAG in Ref. [4]

ffiffiffiffiffiffiffiffiffi
tphys0

q
¼ 0.14464ð87Þ fm; ð20Þ

for the physical value of t0 with Nf ¼ 2þ 1 dynamical
quark flavors. However, the scale setting affects the final,
physical results only through the definition of the physical
point in the (light) quark mass, cf. Sec. IV, because no
explicit conversion to physical units is required for the
NMEs. Furthermore, due to this choice of the scale setting
procedure the values for a in units of fm in Table I do not
actually enter the analysis. They have been computed using
the value in Eq. (20) together with the values for tsym=a2 to
give an indication for the lattice spacing at each value of β.
The value in Eq. (20) has also been used to convert the
dimensionful quantities in Table I to physical units.

C. Computational details

The computational setup for the quark-connected two-
and three-point functions in Eqs. (2) and (3) is similar to
what we have used in various other studies of nucleon
structure published in Refs. [34–36]. The calculations are
carried out on point sources for a common choice of the
nucleon interpolating operator

JN;αðx⃗; tÞ ¼ ϵabcðũTaðxÞCγ5d̃bðxÞÞũc;αðxÞ ð21Þ

where the tilde on the quark fields denotes that Gaussian
smearing [18] with spatially APE-smeared gauge links [37]
has been applied. At every value of β, the parameters are
tuned such that the resulting smearing radius takes a value
of ∼0.5 fm [38].
The two- and three-point functions are evaluated on a

common set of point sources leading to a statistically
favorable signal for the ratio in Eq. (6). Besides, this allows
us to reuse the forward propagators from the two-point
function computation for the corresponding three-point
functions atmultiplevalues of tsep, as the three-point functions
are computed by the sequential inversion through the sink.
Furthermore, the computational cost is reduced by a factor
of ∼2 to ∼5 due to the use of the truncated solver method
[39–41] for the required inversions of the Dirac operator. The
source setup depends on the type of boundary conditions in
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time for any given ensemble in Table I. On ensembles with
pBC the sources can be randomly distributed for every
configuration over the entire volume of the lattice, subject
only to the constraint resulting from the combination of the
truncated solver method with the Schwartz alternating pro-
cedure (SAP) preconditioning [42,43]. The value Nmax

meas in
Table I refers to the number of measurements on the largest
value of tsep. For decreasing values of tsep the number of
measurements,Nmeas, is divided by two every one or two step
(s) in tsep=a. Due to this choice of downscaling the number of
measurements, the resulting signal-to-noise behavior is
much less tsep-dependent compared to the unmitigated
exponential decay expected when keeping the number of
measurements constant as a function of tsep. This prevents
giving undue statistical weight to data at small values of tsep in
fits, while the computational cost is significantly decreased at
smaller values of tsep as a side effect. On the other hand, for
ensembles with oBC the sources are always located at a
single time slice in the bulk of the lattice. In this case the
scaling of the number of measurements is only applied for
tsep ≲ 1 fm. Furthermore, the three-point function measure-
ments at tsep ≳ 1 fm have been generated on a fixed set of
source positions on most of the ensembles that had been
included in the study in Ref. [9]. However, for the newer data
on E300, N101, and H102, the spatial coordinates of the
sources have been distributed randomly on every gauge field.
The latter also holds for the spatial components of the sources
used for the measurements at tsep ≲ 1 fm on all ensembles
with oBC.
The analysis on individual ensembles is carried out using

the jackknife method with prebinning to account for
autocorrelations in the data. However, the NME data itself
is essentially unaffected by autocorrelations, it is only the
errors for Mπ and MN that exhibit relevant effects of
autocorrelations on some ensembles. Still, the contributions
from Mπ and MN to the total error of the NMEs at the
physical point is almost negligible. In particular MN only
enters the twist-2 NMEs as a linear coefficient in their
respective form factor decompositions in Eqs. (17)–(19), but
with a statistical error that is typically an order of magnitude
smaller than the error on the NME data itself. After
extracting the results for the ground-state NMEs on indi-
vidual ensembles, it is necessary to combine them in global
fits for the physical extrapolations, cf. Sec. IV. To this endwe
employ a parametric bootstrap to include the data from
different ensembles in these fits while preserving the
correlations between e.g. Mπ and the NMEs on a given
ensemble. Furthermore, the errors on tsym0 =a2 fromRef. [33],
the error on the scale itself in Eq. (20) and the errors on the
renormalization factors are propagated to the final, physical
results through the parametric bootstrap procedure. All
global fits are then carried out on NB ¼ 10000 bootstrap
samples to estimate the statistical errors on the physical
results. The final errors for the physical NMEs including

systematic effects are obtained from model averaging in the
last analysis step described in Sec. V.
As discussed previously in the context of isoscalar

observables in Refs. [35,36,44], we observe that measure-
ments on a few point sources on a very small number of
gauge configurations stand out as extreme outliers with
respect to the distribution across configurations. Including
these measurements would lead to unreasonably inflated
statistical errors and spoil the scaling with respect to the
number of measurements and the value of tsep for an affected
observable on a given ensemble. However, this only occurs
on a handful of ensembles, and the issue is generally much
less prominent than what has been observed for isoscalar
NMEs. Nevertheless, we still employ a similar procedure as
that described in the supplemental material of Ref. [35]:
First, before carrying out the actual analysis, we generate
single-elimination jackknife samples for the effective form
factors of eachNMEon every ensemble. In a second step,we
scan these samples for “outliers” that are more than ∼6σ
away from the center of the distribution. Subsequently, all
configurations that have been flagged in any observable for
any value of tsep and tins are removed from the final analysis.
In total we find seven configurations on five affected
ensemble (i.e. a single configuration on E250, D200,
N200 and S201, and three configurations of N101), which
is reflected by Nconf and Nmax

meas in Table I.

D. Renormalization

Apart from gu−dA , all NMEs considered in this study
generally require renormalization. However, as the fermion
discretization used in the generation of the CLS gauge
ensembles breaks chiral symmetry, gu−dA requires renorm-
alization at finite values of a as well. To this end we make
use of the values for ZA that have been determined for all
four values of β in Ref. [45] from the chirally rotated
Schrödinger functional, whereas for the five other operator

insertions in Eqs. (9)–(13) we use the values for ZMS
S , ZMS

T ,

ZMS
v2b, Z

MS
r2a, and ZMS

h1a that have been computed in the MS
scheme at a scale of μ ¼ 2 GeV in Ref. [9]. We remark, that
for each of the twist-2 operators only one out of two
possible irreps contributes. An important difference to
Ref. [9] is that full OðaÞ-improvement has now become
available for all three local operator insertions. While there
is no contribution from current improvement at zero
momentum transfer for this matrix elements, the renorm-
alization pattern changes to

Zimp
X ðg20; mq; m̄Þ ¼ ZXðg20Þð1þ amqbXðg20Þ þ 3am̄b̃Xðg20ÞÞ;

X ¼ A; S; T; ð22Þ

where mq ¼ 1
2a ð 1κq − 1

κcrit
Þ denotes the bare subtracted quark

mass for q ¼ l, s and m̄ ¼ 1
3
ð2ml þmsÞ is the (bare)

average quark mass. The values of κcrit have been given
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in Ref. [46], and the improvement coefficients bX and b̃X
for all three local operators have been published by the
Regensburg group in their recent study of octet baryon
isovector charges in Ref. [12]. In our previous study in
Ref. [9] only partial improvement was implemented for the

axial vector matrix element, i.e. neglecting b̃A and using an
older set of values for bA from Ref. [47], whereas for the
scalar and tensor matrix elements none of the improvement
coefficients were available at the time.

III. EXCITED-STATE ANALYSIS

The excited-state suppression in the ratio method defined
by Eqs. (6) and (7) is insufficient at the accessible values of
tsep. This is reflected by the tins and tsep-dependence of the
effective form factors that is displayed in Fig. (1) for the six
isovector NMEs on the two most chiral ensembles. In order
to improve the suppression of excited states and reduce the
residual contamination we make use of a variant of the
summation method [17,20,48] that is based on the sum of
the ratio in Eq. (6) over insertion times

FIG. 1. Example data for effective form factors of the six observables on the two most chiral ensembles including all available values
of tsep. Data for local (twist-2) operator insertions are shown for E250 (E300), respectively. Results with statistical errors for the
respective ground state NMEs are indicated by the solid blue line and band. They are obtained from the two-state truncated summation
method fit ansatz in Eq. (28) for a choice of tmin

sep ≈ 0.4 fm. Data with open symbols do not contribute to the sums that enter the fit due to
the choice of tmin

sep or the constraint tex=a ¼ 1. The fits to the summed plateau data are carried out simultaneously on any given ensemble
with a common parameter for the energy gap Δ within each of the two sets of local and twist-2 NMEs.
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SXμ1…μnðtsep; texÞ≡
Xtsep−tex
tins¼tex

RX
μ1…μnðtins; tsepÞ: ð23Þ

Plugging the expressions for the two-state truncation for the nucleon two- and three-point functions

C2ptðtsepÞ ¼ jA0j2e−m0tsep þ jA1j2e−m1tsep þ � � � ; ð24Þ

CX
μ1…μnðtins; tsepÞ ¼ jA0j2M00e−m0tsep þ A0A�

1M01e−m0ðtsep−tinsÞe−m1tins

þ A1A�
0M10e−m1ðtsep−tinsÞe−m0tins þ jA1j2M11e−m1tsep þ � � � : ð25Þ

into Eq. (6), the corresponding expression for the ratio reads

RX
μ1…μnðtins; tsepÞ ¼

M00 þM01
A�
1

A�
0

e−Δtins þM01
A1

A0
e−Δðtsep−tinsÞ þM11

jA1j2
jA0j2 e

−Δtsep

1þ jA1j2
jA0j2 e

−Δtsep
; ð26Þ

where Δ ¼ m1 −m0 denotes the energy gap between the ground state and first excited state, and we have exploited the fact
that M01 ¼ M10. The two-state truncation of the summed ratio in Eq. (23) is obtained from an expansion for small values
of e−Δtsep

SXμ1…μnðtsep; texÞ ¼ M00ðtsep − 2tex þ aÞ þ 2M̃01

e−Δtex −
�
eΔðtex−aÞ þ jA1j2

jA0j2 e
−Δtex

�
e−Δtsep

1 − e−Δa

þ M̃11e−Δtsepðtsep − 2tex þ aÞ þOðe−2ΔtsepÞ: ð27Þ

where we have defined M̃01 ¼ 2Re½A1=A0�M01 and
M̃11 ¼ jA1j2=jA0j2ðM11 −M00Þ. Neglecting all terms
∼e−Δtsep on the rhs the summation method is recovered
in its standard form without explicitly parameterizing the
contribution of the first excited state.

At our current level of precision we find that terms ∼ jA1j2
jA0j2

are not constrained by the data. Therefore, we neglect these
contributions in our final fit model

Sðtsep;tex¼aÞ¼M00ðtsep−aÞþ2M̃01

e−Δa−e−Δtsep

1−e−Δa
: ð28Þ

where we choose tex=a ¼ 1 to avoid contact terms. In
principle this expression could be fitted simultaneously in
all six observables with Δ as a common fit parameter.
However, we observe that allowing for a different gap for
the local and the twist-2 matrix elements greatly increases
the fit quality, particularly when including smaller values of
tsep in the fit. Therefore, we decided to fit the local and the
twist-2 NMEs separately. Still, exploiting the correlations
between observables and effectively reducing the number
of (nonlinear) fit parameters improves the stability and
achievable precision of the results.
We remark that the summation-based approach has

several features that make it more appropriate for our
current set of data than e.g. the two-state ratio fit model that
has been used in Ref. [9]

Rðtins;tsepÞ¼c0þc1ðe−Δtins−e−Δðtsep−tinsÞÞþc2e−Δtsep ; ð29Þ

where c0 ¼ M00 and data are fitted as a function of tsep ≥
tmin
sep and tins ∈ ½tmin

sep =2; tsep=2�. First of all, the leading

correction in this fit model behaves as Oðe−Δtmin
sep =2Þ,

whereas for the summation method it is Oðe−Δtmin
sep Þ. The

enhanced excited state suppression is an important advan-
tage of the summation method as it allows to include data at
smaller values of tsep that are more precise and/or numeri-
cally cheaper to compute. However, the weaker suppression
of excited states by the model in Eq. (29) becomes a real
issue for ensembles with Mπ ≲ 200 MeV. Imposing the
same criterion on the choice of tmin

sep for the fit ranges of tsep
and tins that has been used Ref. [9] would eliminate almost
all data on our two most chiral ensembles, effectively
preventing any meaningful fit. Besides, fit models based on
the summation method inherently involve (far) fewer
degrees of freedom, resulting in smaller covariance matri-
ces, which can improve the stability of the fits.
The fits are implemented using the VARPRO method

[49] that we find to greatly improve their robustness as it
removes any potential dependence on initial values for the
linear fit parameters. The only nonlinear fit parameter is the
energy gapΔ, which is generally treated as a free parameter
in these fits. In practice, Δ acts as an effective fit parameter
collecting residual contributions from higher states as well.
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Its statistical precision rapidly deteriorates for increasing
value of tmin

sep , while its value becomes compatible with zero
within large errors at around tmin

sep ≳ 0.8 fm even for the
ensembles with the statistically most precise data. We
remark that for the fits of the local charges on E250 a
prior for Δ is required to stabilize the fit for certain choices
of tmin

sep . To this end, we employ as a prior the value for Δ
obtained from a simultaneous fit to all six NMEs with
tmin
sep ¼ 8a (i.e. before the signal is lost in noise) with a 20%
width. We have checked that the results are independent of
the specific value of the prior within reasonable variations;
the prior itself is needed merely to prevent the fit from
drifting to obviously unphysical results in some cases. The
simultaneous fits to the twist-2 NMEs on E250 exhibit
stable convergence without a prior and no further priors are
required anywhere else in the analysis.
Fig. 2 shows examples of fits to our lattice data based on

Eq. (23). The band in each panel represents the result of a
simultaneous fit to the summed ratio data for the three
NMEs shown in the plot. A key feature observed on all our
ensembles is that the deviation from the linear behavior in
tsep becomes highly significant at small values of tsep due to
the excited state contamination. Nevertheless, the fit model
in Eq. (28) is sufficient to describe the curvature in the data

even for choices of tmin
sep ≪ 0.8 fm. In fact, while the fits in

Fig. 2 have been carried out for tmin
sep ≈ 0.4 fm, the extrapo-

lation of the fit band typically describes the data very well
even at tsep < tmin

sep , down to the smallest available values of
tsep, as can be seen in e.g. the top right panel for the twist-2
NMEs on E300. Generally, the resulting curvature of the fit
band is strongly dependent on the matrix element: For gu−dA

and gu−dS it is opposite to gu−dT as well as the twist-2 NMEs,
which all three exhibit a very similar tsep-dependence. The
latter is also reflected by rather large correlations between
data for different twist-2 operators insertions on the same
ensemble. The curvature in the summed ratio data coincides
with the behavior of the effective form factors data in Fig. 1,
i.e. the effective form factors of gu−dA and gu−dS increase as a
function of tsep, whereas for the other NMEs they show a
monotonic decrease.
The lower two panels of Fig. 2 show similar fits for the

six NMEs on the C101 ensemble, which exhibits sta-
tistically very precise data and a large number of tsep values
while still being reasonably chiral. Therefore, this ensemble
is well suited to demonstrate the efficacy of the two-state fit
ansatz. In Fig. 3 we compare results for gu−dA and hxiu−d
from the two-state Ansatz in Eq. (28) with the plain, linear

FIG. 2. Examples of simultaneous fits of the two-state truncated summation method fit model in Eq. (28). Top row: Simultaneous fits
of the isovector nucleon charges on the E250 ensemble (left panel) and simultaneous fits of twist-2 NMEs on E300 (right panel)
corresponding to the data shown in the two columns in Fig. 1. Bottom row: local and twist-2 NMEs on the C101 ensemble.
The respective fit ranges in tsep are indicated by the solid lines and dark shaded parts of the error bands, whereas the dashed lines and
light-shaded error bands represent an extrapolation without actual support of the lattice data.
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summation method as a function of tmin
sep . Clearly, the two-

state fit ansatz appears to have converged already at the
lowest available tmin

sep values in agreement with the results
from the plain summation method at around tmin

sep ≳ 0.7 fm.
However, there can be some fluctuations for different
values of tmin

sep , as can be seen in the right panel for
hxiu−d at e.g. tmin

sep ≈ 0.5 fm. In order to account for any
potential impact of such fluctuations on the final results, we
employ three sets of data based on fits corresponding to
tmin
sep ∈ f0.2 fm; 0.3 fm; 0.4 fmg across all ensembles. For
each of these three datasets we individually carry out the
various physical extrapolations described in the next
section, before combining all results for any given observ-
able in a model average, cf. Sec. V.

IV. PHYSICAL EXTRAPOLATION

The physical extrapolation of the ground-state NMEs is
carried out using fit models that are based on the NNLO
expression for the axial charge in SUð2Þ baryon chiral
perturbation theory (χPT) [50]. Our most general fit ansatz
for the chiral, continuum and finite volume (CCF) extrapo-
lation reads

OðMπ; a; LÞ ¼ AO þ BOM2
π þ

AOδO
ð2πfπÞ2

M2
π logMπ

þ COM3
π þDOanðOÞ

þ EO
M2

πffiffiffiffiffiffiffiffiffiffi
MπL

p e−MπL; ð30Þ

where AO, BO, CO, DO and EO are treated as free,
observable-dependent parameters of the fit. For the pion
decay constant we use fπ¼130.2ð1.2ÞMeV from Ref. [51].
The coefficients δO of the leading chiral logarithm are
known analytically [52–55]

δgu−dA
¼ δhxiΔu−Δd ¼ −ð1þ 2ð̊gu−dA Þ2Þ; ð31Þ

δgu−dS
¼ −

1þ 6ð̊gu−dA Þ2
2

; ð32Þ

δgu−dT
¼ δhxiδu−δd ¼ −

1þ 4ð̊gu−dA Þ2
2

; ð33Þ

δhxiu−d ¼ −ð1þ 3ð̊gu−dA Þ2Þ: ð34Þ

for all six NMEs and depend only on Agu−dA
¼ ̊gu−dA , which

we treat as an additional free parameter for O ≠ gu−dA . The
χPT-part of the fit model in Eq. (30) has been comple-
mented by a term ∼DOanðOÞ to account for the leading
scaling behavior in a, where

nðgu−dA Þ ¼ nðgu−dS Þ ¼ nðgu−dT Þ ¼ 2: ð35Þ

This is in line with the implemented OðaÞ improvement of
the renormalization factors and the fact that no operator
improvement is required for these NMEs at vanishing
momentum transfer Q2 ¼ 0. On the other hand, for the
NMEs associated with twist-2 operator insertions a linear
behavior in a is expected, i.e.

nðhxiu−dÞ ¼ nðhxiΔu−ΔdÞ ¼ nðhxiδu−δdÞ ¼ 1: ð36Þ

Finally, the purpose of the last term in Eq. (30) is to account
for finite volume effects [56].
Besides the full NNLO model in Eq. (30) we consider a

simpler model that is obtained by setting CO ¼ δO ¼ 0, i.e.
only fitting the leading light-quark mass dependence with a
term ∼M2

π

FIG. 3. Comparison of the tmin
sep dependence for the plain summation method (open, blue symbols) and two-state summation method

(filled, red symbols) fit models on the C101 ensemble. Left: gu−dA ; right: hxiu−d. The filled symbols at tmin
sep ≈ 0.4 fm in both figures are

obtained from the corresponding fits shown in the lower two panels of Fig. 2. Data for the two-state fit model are displaced horizontally
for clarity.
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OðMπ; a; LÞ ¼ AO þ BOM2
π þDOanðOÞ

þ EO
M2

πffiffiffiffiffiffiffiffiffiffi
MπL

p e−MπL: ð37Þ

This is motivated by the generally rather flat chiral behavior
of the data for any of the NMEs. In fact, attempting to fit the
full NLO expression obtained by removing only the cubic
term inMπ leads to unacceptably large values of χ2=Ndof in
almost any case. The reason for this is that the curvature
imposed by the chiral logarithm is clearly not observed in
our data. Including the prefactor of the chiral logarithm as
an independent fit parameter in the NLO expression, one
finds that the fit typically prefers the opposite sign as
predicted by χPT, which has already been observed in other
studies [9,57,58]. Fitting the full model one finds that the
cubic term competes with the chiral logarithm, canceling
(some of) its contribution to reproduce the rather flat
behavior of the lattice data.
In order to further assess the stability of the CCF fits, we

impose cuts to our lattice data in addition to fitting the full
datasets for any of the observables. First of all, we

implement a cut in the pion mass, i.e. Mπ < 300 MeV
to test the convergence of the chiral extrapolation. Second,
we apply a cut of a < 0.08 fm in the lattice spacing or a cut
removing the ensembles with MπL < 4 (i.e. H105 and
S201). However, either of these two cuts is only applied in
combination with the cut in Mπ and not directly to the full
set of data. This choice is supposed to prevent giving undue
weight to the statistically more precise data at heavier pion
masses in the final model averages in Sec. V. Finally, we
include an even more restrictive cut in the pion mass of
Mπ < 270 MeV for the second CCF fit model with CO ¼
δO ¼ 0 to further scrutinize the chiral extrapolation.
However, this cut cannot be applied in case of the full
NNLO model as it leaves only six data points, which is not
enough to constrain the six (five in case of gu−dA ) fit
parameters of this model.

A. Nucleon charges

In Figs. 4–6 results are shown for the physical extrapo-
lation of gu−dA , gu−dS and gu−dT , respectively. The chiral
extrapolation is found to be rather mild: for gu−dA and
gu−dS it is almost flat, while for gu−dT the fit prefers a positive

FIG. 4. Examples for the physical extrapolation of gu−dA using lattice data from the two-state summation fit model ansatz in Eq. (28)
with tmin

sep ≈ 0.3 fm. Upper row: chiral extrapolation as a function of M2
π fitting the full set of data to the NNLO model in Eq. (30) (left

panel) and with a cut in Mπ < 300 MeV using the simplified model in Eq. (37) (right panel). Lower row: continuum (left panel) and
infinite volume (right panel) extrapolations fitting the full set of data to the NNLO fit model in Eq. (30). The red data points are obtained
by correcting the original lattice data for the extrapolations in all variables but the one on the x-axis, using the parameters from the fit.
Therefore, the resulting point errors are highly correlated. Errors are statistical only.
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FIG. 5. Same as Fig. 4 but for gu−dS .

FIG. 6. Same as Fig. 4 but for gu−dT .
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slope in M2
π . The latter yields a correction of at most ≲5%

for ensembles at around Mπ ≈ 350 MeV toward the physi-
cal result for gu−dT . The full set of data is generally described
well by the NNLO model in Eq. (30). In particular for the
statistically most precise data for gu−dT the resulting values
of χ2=Ndof indicate an excellent description of the data by
the fit model(s). The same holds true for fits of the more
simplistic fit model in Eq. (37). A data cut of Mπ <
300 MeV as shown in the upper right panels of Figs. 4–6
may further reduce χ2=Ndof for fits to Eq. (37) compared to
fitting the full dataset to the same model. The fact that the
more sophisticated model in Eq. (30) does not necessarily
yield a better description of the data, as observed for e.g.
gu−dA , can be attributed to the aforementioned issue con-
cerning the sign of the chiral logarithm. For example, fitting
Eq. (30) without the cubic term (i.e. setting Cgu−dA

¼ 0) to
either the full dataset or the one with Mπ < 300 MeV that
have been used for the upper two panels of Fig. 4 results in
χ2=Ndof ¼ 5.072 and χ2=Ndof ¼ 3.299, respectively. Since
such fit models based on NLO χPT clearly fail to describe
the data, we do not further consider them in our final
analysis. Besides, they would carry essentially zero weight
in a model average.
Examples for the continuum extrapolation for the OðaÞ-

improved local isovector nucleon charges are displayed in
the lower left panels of Figs. 4–6. It is basically found to be
compatible with a constant for all three observables. While
fit results for DO may show some variation depending on
the choice of the fit model and data cuts, the correction due
to the continuum limit falls typically within the statistical
errors of the physical result, indicating that systematic
effects due to the continuum extrapolation are indeed well
under control.
The observed model independence of the chiral extrapo-

lation and the flat continuum extrapolation, taken together
with the fact that the chirally extrapolated values are in very
good statistical agreement with the results obtained on our
(slightly lighter than) physical pion-mass ensemble E250,
indicate that our physical results are not strongly reliant on
the validity of chiral perturbation theory or the Symanzik
effective theory.
Finally, the extrapolations to infinite volume that are

shown in the lower right panels of Figs. 4–6 exhibit a rather
peculiar pattern. On the one hand, the extrapolation in L is
found to be entirely flat for the very precise data for gu−dT
and very stable under any cuts that are applied to the data.
On the other hand, one finds large corrections for gu−dA , an
observation that was already made in Ref. [9]. On the
ensemble S201 with the smallest volume (L ≈ 2 fm), the
correction exceeds 10% and at L ¼ 3 fm it is still well
around the 5%-level. It is only for ensembles with
L > 4 fm that the finite volume correction for gu−dA starts
falling below the statistical error of the final results of the
fit. This feature remains qualitatively the same even when

applying a cut of MπL≳ 4 to the lattice data entering the
CCF fit, i.e. the fit still resolves the curvature albeit with
larger errors. At any rate, it is reassuring to observe that the
most chiral ensemble E250, which also exhibits the largest
physical volume corresponding to L ≈ 6.1 fm, clearly
confirms the result of the infinite-volume extrapolation
within the statistical accuracy.

B. Twist-2 matrix elements

Results for the physical extrapolations of the twist-2
isovector NMEs are displayed in Figs. 7–9. The most
striking feature of these extrapolations is the observed
similarity between the three different operators insertions,
i.e. their chiral behavior is always characterized by a
positive slope and a very similar curvature. Corrections
toward the physical point limit due to the chiral extrapo-
lation roughly reach the ∼10% level for ensembles at the
light quark masses corresponding to Mπ ≈ 250 MeV.
Generally, a fit of the NNLO model in Eq. (30) to the
full set of data for the twist-2 NMEs results in a more
pronounced nonlinear curvature as a function of M2

π than
for the local charges. However, the chiral behavior of the
twist-2 NMEs is also not incompatible with a linear
extrapolation inM2

π. This is particularly true when applying
a cut inMπ as shown in the upper right panels of Figs. 7–9.
Still, for the full set of data including ensembles withMπ >
300 MeV the simplified model in Eq. (37) leads to worse
p-values as compared to fitting the NNLO model in
Eq. (30), i.e. p ¼ 0.005, p ¼ 0.106 and p ¼ 0.207 for
hxiu−d, hxiΔu−Δd and hxiδu−δd, respectively. Again, the
physical results for the twist-2 NMEs are found to be in
good agreement with the results of the old analysis with
significantly reduced statistical errors. We note that for all
three twist-2 NMEs there is also broad agreement for the
ground-state NMEs data on the individual ensembles that
enter the CCF fits between the old and the new analysis for
the common subset of ensembles. The statistical error for
the NMEs on the individual ensembles is typically reduced
by a factor ∼2 to ∼10 in the present study.
The continuum extrapolation is reasonably flat for all

three NMEs. Variations due to the choice of the fit Ansatz
and data cuts are fairly mild and the results for the fit
parameter DO are typically compatible with zero within
≲2σ. We observe a preference for a positive slope as a
function of a for hxiu−d and hxiδu−δd across the various fits,
whereas for hxiΔu−Δd there is no significant trend at all. The
corrections due to the continuum limit are typically ≲10%
of the physical result and thus within 1 − 2σ of its central
value. This can be seen as a rather strong indication that
also for the twist-2 NMEs the continuum limit is not a
major source of systematic error, despite the lack of OðaÞ
improvement.
Finally, the infinite-volume extrapolation as a function of

L in the lower right panels of Figs. 7–9 is almost entirely
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FIG. 7. Same as Fig. 4 but for hxiu−d.

FIG. 8. Same as Fig. 4 but for hxiΔu−Δd.
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flat, and there is no clear preference for the sign of the fit
coefficient EO across different fit models and data cuts. In
fact, the fit coefficient EO is also found to be well
compatible with zero for the majority of fits. Finally, we
note that the individual, continuum corrected result for the
twist-2 NMEs on the E250 ensemble with the largest
physical volume are generally in very good agreement
with the trend of the infinite volume extrapolations (as well
as with the resulting physical results themselves).
As for the nucleon charges, we observe no significant

dependence of the twist-2 matrix elements on the form of
the chiral extrapolation, and the result at the physical point
agrees with the result on E250 within statistical errors.

V. MODEL AVERAGES AND FINAL RESULTS

The results from individual CCF fits for any of the
isovector NMEs and choice of tmin

sep ∈0.2 fm;0.3 fm;0.4 fm
are combined in a model average based on a variation of the
Akaike information criterion (AIC) [21,59]. To this end, we
assign weights [60–62]

wn;b ¼
e−Bn;b=2PNM
k¼1 e

−Bk;b=2
; ð38Þ

to each model with index n∈ 1;…; NM on every bootstrap
sample b∈ 1;…; NB, where

Bn;b ¼ χ2n;b þ 2Npar;n þ 2Ncut;n; ð39Þ

is the Bayesian AIC introduced in Ref. [62]. In this
expression χ2n;b refers to the minimized, correlated χ2 from
the nth fit model on the bth bootstrap sample, and Npar;n,
Ncut;n denote the numbers of fit parameters and cut data
points in the corresponding model, respectively. Note that
there are nopriors used in anyof theCCFmodels, hence there
is no need to account for them in the computation of Bn. In
order to disentangle the statistical and systematic contribu-
tion to the final errors, we employ a procedure similar to the
one introduced in Ref. [63]. However, in the definition of
the cumulative distribution function (CDF) for the model-
averaged observables

CDFðyÞ ¼ 1

NB

XNM

n¼1

XNB

b¼1

wn;bΘðy −On;bÞ; ð40Þ

wemake direct use of the actual bootstrap distributions rather
than assuming (weighted) Gaussian CDFs for the individual
models that are constructed from central values and errors as
in Ref. [63]. In this expression, Θ is the Heaviside step
function, and the outer sum runs over NM ¼ 27 different
models, whereas the inner sum encompasses bootstrap results
for every observableOn;b for any given model n. The central
value and total error of our final, physical results are given by
the median and the quantiles corresponding to 1σ errors for a

FIG. 9. Same as Fig. 4 but for hxiδu−δd.
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Gaussian distribution, respectively. Statistical and systematic
contributions to the total error are then determined in a similar
way as inRef. [63], i.e. by rescaling the statistical error, which
in our case corresponds to rescaling the width of the
individual bootstrap distributions. For this purpose we
employ the same choice of λ ¼ 2 for the rescaling factor
as in Ref. [63]. We remark that results for the errors are
virtually independent of the choice of λ when λ ≥ 2.
Results from this procedure are shown in Fig. 10 and the

final, physical results with statistical and systematic errors
from the model averaging read

gu−dA ¼ 1.254ð19Þstatð15Þsys½24�total; ð41Þ

gu−dS ¼ 1.203ð77Þstatð81Þsys½112�total; ð42Þ

gu−dT ¼ 0.993ð15Þstatð05Þsys½16�total; ð43Þ

for the isovector NMEs of local operator insertions, and

hxiu−d ¼ 0.153ð15Þstatð10Þsys½17�total; ð44Þ

FIG. 10. Cumulative distribution functions (CDFs) of the fit models for all six isovector NMEs. Results of the fit models with
statistical errors are represented by the individual data points. The color of these data points is referring to the p-value weight which is
different from the Akaike weight used in the actual CDF to allow for a visual assessment of the quality of the individual fits. The final
result from the model average is given by the solid blue line together with its symmetrized statistical and full error bands as indicated in
the plots. The dashed lines represent the (generally nonsymmetric) 1σ-quantiles of the CDF.
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hxiΔu−Δd ¼ 0.207ð15Þstatð06Þsys½16�total; ð45Þ

hxiδu−δd ¼ 0.195ð17Þstatð15Þsys½23�total; ð46Þ

for the isovector moments of twist-2 operator insertions,
respectively. The systematic error reflects the combined
uncertainties associated with the chiral, continuum and
infinite volume limits in the physical extrapolation, as well
as the uncertainty due to the choice of tmin

sep in the
determination of the ground-state NME values that enter
these final fits. Overall, our results show a good balance

between statistical and systematic errors. Furthermore, we
remark that for the local charges the residual tmin

sep depend-
ence is negligible compared to the typical model spread
obtained from variations of the physical extrapolation,
whereas for the twist-2 matrix elements the variation due
to tmin

sep can be of similar size as the remaining variations.

VI. COMPARISON AND OUTLOOK

The chiral extrapolations and physical results for the
three local charges are in broad agreement with the results

FIG. 11. Comparison of our results (red diamonds) to our 2019 paper (Mainz 19 [9]), to recent other studies (blue circles: QCDSF/
UKQCD/CSSM 23 [13], RQCD 23 [12], PNDME 23 [64], ETMC 23 [65], PNDME 20 [15], NME 20 [16], χQCD 18 [14]) and to the
FLAG 2021 [4] and PDG [1] averages (black triangles, where available) for all six isovector NMEs. Studies that entered the FLAG average
are not shown separately. Inner error bars are statistical errors only, outer error bars include systematic errors added in quadrature.
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of our earlier analysis on a subset of the ensembles with
Mπ ≳ 200 MeV in Ref. [9]. However, results for the
ground-state NMEs on the individual ensembles that enter
the CCF fits do not always agree with the corresponding
results of the older analysis on the common subset of
ensembles in Table VI of Ref. [9]. In particular, for gu−dA
there is a trend toward larger values in the present study
with differences of up to a few percent on some of the
ensembles, that are not consistently covered by the larger
statistical errors of the old study. This can be attributed to
residual excited state contamination, which generally lead
to smaller values for gu−dA , and gives an indication that the
fit Ansatz based on the NLO summation method indeed
yields superior suppression of excited states at least for gu−dA
than the two-state fits to the ratio data as defined in Eq. (29)
that were used in Ref. [9] (where the summation method
only served as a crosscheck within its significantly larger
errors at that time). For the even more precise data for gu−dT
we do not observe such a systematic trend, and similarly for
gu−dS no clear trend is seen within the much larger statistical
uncertainties of the old analysis.
The RQCD collaboration has obtained results for the

local charges of the octet baryons on a partially overlapping
set of gauge ensembles, quoting gu−dA ¼ 1.284þ28

−27 , g
u−d
S ¼

1.11þ14
16 , and gu−dT ¼ 0.984þ19

−29 for the isovector charges of
the nucleon [12]. Overall statistics of our present study are
higher, as is reflected in our smaller overall errors, while
otherwise there is good agreement to within the quoted
uncertainties.
In Fig. 11, we compare our results to other recent

determinations [12–16,64,65] of the isovector nucleon
matrix elements, as well as to the FLAG 2021 averages
[4] in the case of the local charges. For gu−dA , we also show
the PDG value [1] for comparison. We do not separately
show any of the individual results [5–9] that have entered
the FLAG averages. We note that our results are very
competitive with regard to overall accuracy, and more
precise than the FLAG average in each case where an
average exists. In particular in the case of gu−dT , our result is

more precise than any of the competing determinations,
while being entirely compatible with all of them.
We note that the use of the NLO summation method,

which we consider to be superior in suppressing excited
states both to the plain summation method and to two-state
fits to the ratios, is a crucial ingredient in the accuracy
achieved here.
Looking forward, we expect to obtain a similar improve-

ment in precision for the isoscalar charges of the nucleon, for
whichwepossess all required ingredients, givenour ability to
compute quark-disconnected loops to high precision [35,44].
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