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We present a numerical calculation of the Lee-Yang and Fisher zeros of the 2D Ising model using
multipoint Padé approximants. We perform simulations for the 2D Ising model with ferromagnetic
couplings both in the absence and in the presence of a magnetic field using a cluster spin-flip algorithm. We
show that it is possible to extract genuine signature of Lee-Yang and Fisher zeros of the theory through the
poles of magnetization and specific heat, using the multipoint Padé method. We extract the poles of
magnetization using Padé approximants and compare their scaling with known results. We verify the circle
theorem associated to the well known behavior of Lee-Yang zeros. We present our finite volume scaling
analysis of the zeros done at T ¼ Tc for a few lattice sizes, extracting to a good precision the (combination
of) critical exponents βδ. The computation at the critical temperature is performed after the latter has been
determined via the study of Fisher zeros, thus extracting both βc and the critical exponent ν. Results already
exist for extracting the critical exponents for the Ising model in two and three dimensions making use of
Fisher and Lee-Yang zeros. In this work, multipoint Padé is shown to be competitive with this respect and
thus a powerful tool to study phase transitions.
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I. INTRODUCTION

The knowledge of phase transitions is essential in
determining the equation of state of a physical system.
Phase transitions are characterized by nonanalyticities that
develop in thermodynamic functions in the limit of infinite
degrees of freedom in a system. In finite volume systems,
thermodynamic functions like the free energy are analytic
functions of system parameters and the study of the onset of
divergences becomes challenging. However, there are
remnants of these divergences (if existing) even in finite
volumes and occur as peaks in the susceptibility of the
order parameter, whose height and width scale with
volume. The conventional way to look for phase transitions
in finite systems is to study the finite size scaling of these
susceptibilities [1–6]. Although these techniques are still
used extensively in the study of phase transitions in the

fields of condensed matter and lattice gauge theories, one of
our goals in this paper is to show the power of an alternative
scheme in extracting critical exponents for certain theories
from their numerical simulations at finite volumes, namely,
the Lee-Yang (LY) zero analysis [7–11]. While results on
the numerical extraction of LY zeros from some lattice
models already exist [12–24], the novelty of our work is to
extract them using only the leading order cumulants of the
partition function, evaluated at multiple points in parameter
space, using a rational function resummation of the
cumulants called the “multipoint Padé” method.
Another motivation for this work comes from our recent

studies of the QCD phase diagram in the complex chemical
potential plane. We have shown [25] that it is possible to
gain more information from the generated Taylor coeffi-
cients, if we resum them into a rational function. In the
present paper, we aim at providing confidence in the claim
that the multipoint Padé method can extract genuine LY
zeros, illustrating it in the 2D Ising model. The Ising
model is a simple physical system displaying a phase
transition in dimension D ≥ 2. Although an exact solution
of the 2D Ising model exists due to Onsager in the
thermodynamic limit, numerical simulations usually have
to be performed for any finite size results. These have to be
a fortiori accurate if we are interested in a numerical
study of divergences arising in the thermodynamic limit.
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These simulations are based on Monte Carlo methods, and
hence are plagued by statistical errors. The presence of such
errors is one of the reasons we want to apply the multipoint
Padé analysis to study the LY zeros; we want to check
whether the tool is robust enough to live with finite
accuracy of input data. A preliminary analysis leading
up to this work can be found in [26,27].
We will begin our analysis by giving an overview of the

complex zeros of the partition function as applied to the
Ising model, putting emphasis on the well-known proper-
ties of the LY zeros in Sec. II. In Sec. III we will briefly
describe the simulation procedure used for the 2D Ising
model and outline the phase transitions we are looking for.
In Sec. IV, we will give a brief overview of the multipoint
Padé method and the error analysis procedure used. In
Sec. V we will describe results for the scaling analyses
used. In Sec. VI we will conclude with some results
and outlook.

II. COMPLEX ZEROS OF THE
PARTITION FUNCTION

We begin by explaining the origin and nature of complex
zeros of the partition function, in the context of the Ising
model in the presence of an external magnetic field H. The
zeros of the partition function in the complex H plane are
known as the Lee-Yang (or Yang-Lee) zeros [7,8]. We can
also discuss the zeros of the partition function in the
absence of an external magnetic field, called the Fisher
zeros [10], which appear in the complex inverse temper-
ature β plane. However, some of the properties shown by
these zeros, like the Circle theorem [7,8], only hold for
zeros in the complex H plane, while other properties are
common to both kinds of zeros. We will focus our attention
on LY zeros in the following. We further restrict our
study to nearest neighbor ferromagnetic interaction. The
Hamiltonian describing this theory is given by (with J > 0)

H ¼ −J
X
hiji

σiσj −H
X
i

σi; ð1Þ

where J is the coupling and σi ∈ f�1g are the spins at the
site i. The canonical partition function is given by

ZN ¼
X

σi ∈ f−1;1g
e−βH: ð2Þ

From the form of the Hamiltonian, it can be seen that, up to
an overall functional dependence on z ¼ eβH, the partition
function is a polynomial in eβH of order 2N, with N being
the number of sites on the lattice [28]. Therefore, the order
of the polynomial grows linearly with the number of sites.
This remark will become important in the discussion to
follow on the relation of LY and Fisher zeros to phase
transitions.

In order to see why the partition function is a polynomial,

consider the term eβH
P

i
σi . For N lattice sites, the partition

function will be a sum over 2N terms weighted by the factor

eβJ
P

hiji σiσj that depends on the spin configuration. Note
that this factor is invariant under the transformation of
flipping all the spins on the lattice. Additionally, there will
be a permutation factor associated with the number of spins
pointing up or down which will be the same for configu-
rations related by spin flips [29]. Taking these factors into
account, the partition function can be written as

ZNðzÞ ¼ a � zN þ b � zN−2 þ c � zN−4 þ � � �
þ c � z−Nþ4 þ b � z−Nþ2 þ a � z−N

¼ z−N � ðaþ b � z2 þ c � z4 þ � � �
þc � z2N−4 þ b � z2N−2 þ a � z2NÞ: ð3Þ

The symmetry of the partition function under z → z−1 is
the statement that the Hamiltonian in Eq. (1) is invariant
under the combined action of reversing the external
magnetic field and flipping all the spins.
A few comments can be made based on Eq. (3) above:
(I) The partition function has the functional form of an

even polynomial multiplied by a factor z−N. We
could factor the partition function this way because z
can never be zero.

(II) For real (β,H), the coefficients of the polynomial are
strictly positive. This implies that complex roots
always occur in complex conjugate pairs, in the
complex H plane, for fixed, real β, and in the
complex β plane for fixed, real H.

(III) As the lattice volume N increases, the order of the
polynomial increases, which leads to an increase in
the number of complex zeros of ZN . In the limit of
N → ∞, these zeros accumulate and coalesce into
cuts. A phase transition does not occur when the
zeros do not approach the real axis when increas-
ing N.

(IV) A phase transition is said to occur at some critical
temperature Tcrit when these zeros approach the real
axis of the external field parameter, in the thermo-
dynamic limit. The behavior of the density of (Lee-
Yang) zeros at the real axis is used to distinguish
between a first and a second order phase transition.
At a second order transition the complex conjugate
pair gets infinitesimally close to the real axis but the
density of zeros is zero on the real axis. On the other
hand, a first order transition sees a nonzero density
of zeros on the real axis.

(V) Furthermore, because of the even nature of the
polynomial, if z is a root, then so is −z.

Therefore, for a finite N, the partition function is strictly
positive when β andH are real. Hence, the only zeros of ZN
occur in the complex plane of z or on the z < 0 axis. In the
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complex H plane this translates to having only complex
zeros of ZNðzðHÞÞ. However, in the infinite volume limit,
ZN is an infinite series which can now have nontrivial zeros
on the z > 0 axis, or real zeros in H. Since real zeros of the
partition function mark the onset of phase transitions, we
have recovered the well-known result that phase transitions
cannot occur in a finite volume. The natural question to ask
now will be on how to access these complex zeros of the
partition function. This is fortunately not hard to answer
because thermal cumulants, like the average magnetization
in the case of the Ising model, are related to the derivative of
the logarithm of the partition function (see Sec. V). This
means that the zeros of ZNðHÞ will appear as poles of the
average magnetization as a function of H and the specific
heat capacity as a function of β. The aim of the next few
sections is to study in some detail these poles in the
complex plane of the external magnetic field and inverse
temperature. Arguments similar to those presented in this
section can also be found in more detail in the existing
literature [11,30], and we refer the reader to [20] for a
detailed review on the subject.

III. SIMULATING 2D ISING MODEL

The Ising model has been extensively studied in the
literature and can also be found in many textbooks [31–33]
on statistical mechanics. The model has an exact solution in
1D due to Ising [34] and does not undergo any phase
transition. However, its 2D version is one of the simplest
systems to undergo a continuous (or second order) phase
transition from a symmetry broken (ferromagnetic) phase to a
symmetric (paramagnetic) phase at Tc ¼ 2J

ln ð1þ ffiffi
2

p Þ ∼ 2.269J.

Themodel canalsobe seen toundergoadiscontinuous (or first
order) phase transition when considering the average mag-
netization [Eq. (5)], as a function of H at T ≤ Tc, across
H ¼ 0.Anexact solutionfor thismodel in the thermodynamic
limit existsdue toOnsager [35].Hence,weknowthe transition
temperature and the various critical exponents characterizing
this transitionanalytically.Becauseof this, the2DIsingmodel
serves as an ideal candidate for testing new numerical
methods. In general, extracting critical exponents from
numerical data is a nontrivial task and requires formidable
amounts of statistics.Thankfully, the2DIsingmodel is easy to
simulate and not expensive where getting large statistics is
concerned. Hence, we choose to test our multipoint Padé
method on this model.
The 2D Ising model can be simulated using both single

spin flip [36] and cluster spin flip algorithms [38,39]. It is
well known that single spin flip algorithms suffer from
critical slowing down [40], and since our goal is to extract
LY zeros close to and at the critical temperature Tc, we will
use a cluster spin flip algorithm based on [41], where a
modification to the original Swendsen-Wang algorithm
[38] was described, to add an external magnetic field
parameter in the code. We will discuss below two types

of simulations performed. Note that the ferromagnetic
coupling constant J has been set to 1 for the simulations
that follow.

A. Simulation: To extract Fisher zeros

For the first part of our analysis, we want to study the
Fisher zeros—zeros of the partition function in the com-
plex β plane. For this we compute the energy density hEi
and the specific heat capacity CH of the 2D Ising model,
with H set to 0. These quantities are given by

hEi ¼ ∂ lnZN

∂ð−βÞ

CH ¼
�
∂hEi
∂T

�
H
¼ β2ðhE2i − hEi2Þ ð4Þ

with E ¼ −J
P

hi;ji σiσj. The model is simulated at temper-
ature values given by T ∈ f1.76;…2.15g in steps of 0.03,

FIG. 1. Top: average energy (scaled by 1=L instead of 1=L2 for
better visualization) as a function of β from simulations. Bottom:
specific heat capacity per lattice site calculated from the con-
figurations generated.
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f2.17;…2.40g in steps of 0.01 and f2.43;…3.00g in
steps of 0.03 with H ¼ 0. These are then repeated for
different lattice volumes at L∈ f10; 20; 40; 64; 80g, to
perform the finite volume analysis of the Fisher zeros
obtained.
We refer the reader to Fig. 1 for the results of the

simulation for hEi and CH. As an indication for the kind of
statistics used, we list here the number of configurations
used per lattice size. For L∈ f10; 20; 40; 64; 80g, the
following number of configurations were used respectively:
f300K; 125K; 125K; 40K; 25Kg. Before analyzing this
data, we detail the simulations required for the LY zero
analysis.

B. Simulation: To extract Lee-Yang zeros

For the second part of the analysis, we want to study the
zeros of the partition function in the complex H plane. For
this we need to compute the average magnetization hMi
and susceptibility χH of the model, given by

hMi ¼ 1

β

∂ lnZN

∂H

χH ¼
�
∂hMi
∂H

�
T
¼ βðhM2i − hMi2Þ ð5Þ

with M ¼ P
i σi. In order to verify the volume scaling of

the LY zeros, we simulate lattice volumes of sizes L∈
f10; 15; 20; 30g. Each lattice volumewas simulated forH∈
f−0.125;…0.125g, in steps of 0.005 at T ¼ Tc ∼ 2.269J.
The resulting hMi and χH, per lattice site, are shown in

Fig. 2 and the details of the number of configurations are as
follows: For each lattice size, 625K configurations were
used to estimate the average magnetization and the result-
ing susceptibility. We will now proceed to describe the
multipoint Padé method for extracting the zeros of the
partition function from the poles of the CH and hMi data.

IV. MULTIPOINT PADÉ METHOD

Padé-type rational approximations have recently
(re)emerged as a reliable tool to resum Taylor series
coefficients in the studies of lattice QCD [25,42–46].
Most of the literature that exists toward the existence,
convergence, and uniqueness of solutions for Padé approx-
imations is limited to only a restricted class of functions to
be approximated [47–54]. Instead, many of the interest-
ing results on Padé approximants are known only due to
numerical experiments like those in [44,55–57]. However,
most of the literature referred to above is based on what is
called the “single point Padé” approximation. This involves
using Taylor series coefficients of the unknown function
about a single point and constructing a rational approxi-
mation using these coefficients. An immediate limitation of
this method is the need to have a relatively high number of
Taylor coefficients to build rational functions of increasing
order. Numerical simulations typically do not allow for the
generation of such high order Taylor coefficients with
reasonable accuracy. One can instead use lower order
Taylor coefficients of the function evaluated at multiple
points, which forms the basis of our analysis. This trade-off
allows us to construct high order rational approximants.
In the following we will only focus on the construction of
such approximants and briefly outline the sources of error.
For a more detailed discussion on this method and results of
numerical experiments, we refer the reader to [25].

A. The multipoint Padé method in a nutshell

Let us consider the rational function Rm
n ðzÞ,

Rm
n ðzÞ ¼

PmðzÞ
Q̃nðzÞ

¼ PmðzÞ
1þQnðzÞ

¼
P

m
i¼0 aiz

i

1þP
n
j¼1 bjz

j ; ð6Þ

with m and n being the degrees of the polynomials at
the numerator and the denominator, respectively. Writing
Q̃nðzÞ ¼ 1þQnðzÞ ensures that the rational function

FIG. 2. Top: average magnetization per site as a function of H
from simulations. Bottom: susceptibility per site calculated from
the configurations generated.
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depends essentially on nþmþ 1 parameters. Notice that
one should naturally also demand that there is no point z0
such that Pmðz0Þ ¼ Q̃nðz0Þ ¼ 0, i.e., we should in principle
exclude any (common) zero of both numerator and denom-
inator. If this were not the case, we would have rather
essentially defined the rational function Rm0

n0 ðzÞ with n ¼
n0 þ l and m ¼ m0 þ l for some integer l > 0. Despite this,
we will nevertheless not exclude the possibility of common
zeros, for a reason that will be clear when we explain why
we are interested in Rm

n ðzÞ.
Let us consider now a function fðzÞ and suppose we

know a few of its Taylor expansion coefficients, let us say at
different points fzkjk ¼ 1…Ng. The number of coefficients
we know can be different at different points, but for the sake
of simplicity we will assume that fðs−1Þ is the highest order
derivative which is known at each point, together with all
derivatives of degree 0 ≤ g < s − 1. Then the system of
equations we have to solve becomes

PmðzkÞ−fðzkÞQnðzkÞ¼ fðzkÞ
P0
mðzkÞ−f0ðzkÞQnðzkÞ−fðzkÞQ0

nðzkÞ¼ f0ðzkÞ
..
.

Pðs−1Þ
m ðzkÞ−fðs−1ÞðzkÞQnðzkÞ− � � �−fðzkÞQðs−1Þ

n ðzkÞ
¼ fðs−1ÞðzkÞ: ð7Þ

In what follows, we will solve this system of linear
equations to determine the coefficients of the polynomials
Pm andQn while restricting our analysis to diagonal (½q; q�)
and near diagonal (½q; qþ 1�) type Padé approximants.
Other techniques like a generalized χ2 method can also be
used to estimate the coefficients of the rational functions by
minimizing the distance between the measured Taylor
coefficients and the required rational function, weighted
by the estimated errors on the measured coefficients. This
has been compared to the linear solver method in [25].

B. The method at work for the 2D Ising model

We will now focus on the results of the approximation
and the singularity structure obtained from the Padé
procedure outlined in the previous subsection, for the
average magnetization. We will first show the results of
the approximation in Fig. 3. That we can see the rational
functions approximate the data correctly is not surprising
because we have essentially done a rational interpolation
through the data, since our input only consisted of the
average magnetization values and not the susceptibilities.
Therefore, the first real success of the rational approxima-
tion is to see how well its derivatives approximate the
susceptibilities, as shown in Fig. 4 for the L ¼ 10, 15 data.
This is a nice result because the rational function was
constructed assuming only the knowledge of the zeroth
order Taylor coefficients in the expansion of the average

magnetization and it faithfully returns the expected first
order coefficients at all the input points [58]. Having gained
some confidence in our multipoint Padé approximation, we
can now proceed to look at the singularity structure, i.e., we
will now study the zeros and poles of the rational function
constructed in the complex H plane [59].
Selecting two lattice sizes at Tc, we refer the reader to

Fig. 5. In the figure, we depict the zeros of the numerator
(black pentagons) and of the denominator (red crosses) of
Rm
n ðHÞ at different values of the lattice size L, i.e. L ¼ 15

(left panel) and L ¼ 30 (right panel). The order the rational
approximant constructed is ½m; n� ¼ ½25; 25�. The pale blue
points are shown to indicate the interval of points where the
value of average magnetization was used as an input to
build the rational function. We can easily make a couple of
key observations.

(i) A few zeros of the denominator are canceled by
corresponding zeros of the numerator. These are not
genuine pieces of information: actually their location

FIG. 3. Average magnetization as a function of the external
magnetic field, rational function approximation vs data. Top:
L ¼ 15, 20; Bottom: L ¼ 10, 30 (plotted separately for sake of
clarity). The rational approximation shown has the order
½m; n� ¼ ½25; 25�.
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can vary when varying, e.g., the order of the Padé
approximant ½m; n�. On the other hand, genuine
pieces of information (i.e., actual zeros and poles)
stay stable to a very good precision. Notice that the
alternating sequence of zeros and poles along the
imaginaryH axis is how a Padé approximant alludes
to a branch cut eventually showing up in the
thermodynamic limit [62].

(ii) In order to analyze the genuine poles more carefully,
we remove the spurious poles from the singularity
structure. We further remove all remaining zeros to
focus the attention on poles and refer to Fig. 6.
Looking at the pole structure of the figures, we can
make the following comments: (1) As the lattice size
L gets larger, the closest singularityH0 gets closer to
the real H axis. We claim that we verify the circle
theorem, which translates to the Lee-Yang zeros
lying on the imaginary H axis. However, looking at
Fig. 5 the reader may notice that some of the poles
for the L ¼ 30 lattice are shifted away from imagi-
naryH axis, and hence seemingly violating theH →
−H symmetry. This is because we have used the
central values of magnetization which were simu-
lated at each quoted value of H and hence do not
respect the antisymmetry exactly, but do so within
errors. In support of our claim we provide the
location of the genuine poles of magnetization at
the central values along with error bars in Fig. 6,
obtained by performing a bootstrap procedure, i.e.
for a given point we extract new data from a
Gaussian distribution with mean given by central
value and standard deviation given by the estimated
error. Notice that only the closest pole tends to
appear stable. We further observe that for the smaller
L ¼ 15 lattice, the second pole has some uncertainty

easy to inspect by eye. For the L ¼ 30, we observe a
third pole which now appears with even larger
uncertainty. In the following, only the closest pole
is important for the discussions of scaling. (2) Re-
ferring the reader to Sec. II, all poles occur with their
complex conjugate pairs. (3) Although this obser-
vation is highly dependent on the statistics used,
which for the purposes of this work is relatively
high, we can see an increase in the number of zeros
as the number of lattice sites increases. All of these
points seem to indicate that we are observing
genuine Lee-Yang zeros.

C. On the stability of the closest poles to the real H axis

Before moving on to discuss the scaling of these zeros,
which will make use of the closest poles extracted for each

FIG. 4. Derivative of the rational function obtained in Fig. 3 for
L ¼ 10, 15 plotted against the susceptibility data. Note that this is
not an interpolation and no data on the susceptibility was used
in the construction of the rational function. Since this is a
derivative of an ½m; n� ¼ ½25; 25� rational function, the order is
½m; n� ¼ ½24; 25�.

FIG. 5. Zeros of the numerator (black pentagons) and of the
denominator (red crosses) of the rational approximant Rm

n ðHÞ for
the magnetization on L ¼ 15 (top) and L ¼ 30 (bottom), with
½m; n� ¼ ½25; 25�. The pale blue circles are the points used as
input for the Padé. Notice that the closest singularity to the real
axis gets closer to the real H axis as L gets larger, with real parts
being consistent with ReðH0Þ ¼ 0.
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lattice size, we would like to briefly discuss the procedure
we have used to attach error bars on the locations of the
poles in the complex plane of H and β. An important point
to make is that in the absence of noise in data (e.g., one can
construct this by discretizing a known function), if there is a
genuine singularity of the function, it will appear as a stable
pole of the rational approximation constructed. However, if
the data is noisy, as it always is when dealing with
simulation results, even if there is a genuine singularity
of the function, the resulting pole will move, commensurate
with the amount of noise present. Here, we can distinguish
between two types of errors the poles can have, although
they are not strictly independent.

(i) Statistical errors. These are the errors propagated
from the estimated error on the measured Taylor
coefficients to the poles of the rational function
approximant. The procedure used to estimate this
error was to solve the system of linear equations in

Eq. (7) repeatedly by choosing new Taylor coef-
ficients for each solve. These coefficients are drawn
from a Gaussian distribution centered at the central
values of the measured coefficients and having
standard deviation given by the estimated error on
the corresponding Taylor coefficient. We refer the
reader to Fig. 7, where the cloud of green points are
the closest poles extracted for the L ¼ 10 lattice.
The scatter is from repeating the bootstrap procedure
around ∼700 times, keeping the order of the Padé
approximant fixed at ½m; n� ¼ ½25; 25�.

(ii) Systematic errors. These are the errors on the closest
poles resulting from varying the order of the multi-
point Padé and (or) changing the selection of the
input points used to construct the Padé approximant,
using only the central values of the input data. The
idea is to change the input points by deleting data in
a systematic way to construct the rational function of
varying orders. We vary the order of the Padé
approximant from ½m; n� ¼ ½25; 25� by taking all
the input points to then systematically decrease the
order by skipping every second, third, fourth, etc.
points to reach an order as low as ½m; n� ¼ ½5; 5�. We
now refer to Fig. 8 where we show the singularity
structure for L ¼ 15 lattice [63]. Here the scatter of
poles arising from changing the order of the rational
function is shown as dark blue points, notice that the
scatter is over only around ∼50 points, as the goal is
only to show the stability of the closest pole.

Note that the systematic errors mentioned above are
correlated with the statistical errors. All in all, from the
error analysis performed above, the stability of the closest
poles of average magnetization gives us confidence in the

FIG. 7. Stability of closest pole for L ¼ 10. The green cloud
represents closest poles extracted from varying the Taylor
coefficients with noise drawn from a Gaussian distribution.
The singularity structure shown, red crosses and black pentagons,
is for the central values of the data at L ¼ 10. This is the result of
drawing the coefficients ∼700 times using a rational function of
order ½m; n� ¼ ½25; 25�.

FIG. 6. Genuine poles extracted from Fig. 5 along with their
error bars, shown for two lattice sizes (top: L ¼ 15, bottom:
L ¼ 30). We want to highlight that these poles follow the circle
theorem. They lie on the imaginary H axis (within errors) and the
closest pole moves closer to the real H axis as the lattice size
increases. Moreover, the number of poles increases.
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fact that we are extracting genuine poles of the function,
i.e., genuine zeros of the partition function and thus LY
zeros. We can now proceed to analyze the scaling of these
poles with the lattice volume to extract physical informa-
tion like the critical exponents.

V. SCALING ANALYSIS OF ZEROS

Until now we have mainly focused on partition function
zeros arising in the complex H plane (LY zeros) when
considering cumulants at fixed temperature and varying H.
However, looking at Eq. (2) we can also consider the
partition function zeros in the complex inverse temperature
(β) plane. This has been done numerically in [22], where
the authors have studied the Fisher and Yang-Lee zeros of
the 2D and 3D Ising model by using a relatively high
number of cumulants in the temperature and external
magnetic field variables. As explained before, instead of
using such high order of cumulants, we have made use of
the multipoint Padé method to study only two different
cumulants as a function of temperature and external
magnetic field. We refer again to the Hamiltonian of
Eq. (1), in which we set J to unity. To draw parallel with
the analysis in [22], we expand the partition function in
terms of its zeros in the β plane,

Zðβ; HÞ ¼ Zð0; HÞecβ
Y
k

�
1 −

β

βk

�
; ð8Þ

c being some constant and the product is over the k zeros
given by fβkg. Thermal cumulants are defined by the
relation

hhUnii ¼ ∂
n

∂ð−βÞn lnZðβ; HÞ

which using the expansion above can be reexpressed as

hhUnii ¼ ð−1Þðn−1Þ
X
k

ðn − 1Þ!
ðβk − βÞn ðn > 1Þ: ð9Þ

Looking at Eq. (9) above, it is easy to see that near
criticality, the closest zero to the real axis will contribute the
most to the thermal cumulant. Additionally, it is possible to
study the finite volume scaling of the Fisher zero following
[11,64,65], and the relations describing the approach
of leading zeros to critical inverse temperature can be
written as

Imðβ0Þ ∝ L−1=ν ð10Þ

and

jβ0 − βcj ∝ L−1=ν; ð11Þ

where β0 is the Fisher zero, resulting in the closest
singularity of cumulants to the real axis [66], βc is the
critical inverse temperature, and ν is the relevant critical
exponent, which describes the divergence of the correlation
length with respect to temperature, near criticality. The
proportionality constants in Eqs. (10) and (11) are related to
the infinite volume scaling function for the energy den-
sity [22].

A. Extracting ν and βc
In order to determine these critical quantities, we will

follow the steps (which we have previously also described
in [26]): (1) We compute the n ¼ 2 thermal cumulant (i.e.,
the specific heat) at various inverse temperatures β and
lattice sizes L; (2) for each L we compute the rational
approximant Rm

n ðβÞ by our multipoint Padé method; (3) at
each L we find the Fisher zero β0, which is obtained as the
closest singularity of the cumulant to the real axis; and
(4) we study the finite size scaling of the values of β0. We
refer the reader to the first row of Table I for the results
for ν.

(i) Using Eq. (10), we will try to extract the critical
exponent ν using the following fit:

FIG. 8. Stability of closest pole for L ¼ 15. The dark blue cloud
of points represents the closest pole extracted by varying the
order of the input Taylor coefficients using only the central
values. The orders of the rational approximation used to obtain
the blue cloud have been varied between [5, 5] to [25, 25].

TABLE I. Results for the fits shown in Eqs. (12), (13), and (16),
shown for each row, respectively. For Fit I, B has to be compared
with the exact value stated, whereas for Fit II, the intercept gives
βc, hence the exact value has to be compared with A. For the last
fit, Fit III, the fit parameter B has to be compared to the exact
value of the critical exponent product, namely, βδ.

FIT A B Exact χ2=d:o:f:

I −0.446ð209Þ 1.014ð60Þ ν ¼ 1 1.3
IIa 0.4404ð19Þ −0.216ð70Þ βc ∼ 0.4407 1.44
III 1.30(24) 1.881ð93Þ d − β=ν ¼ βδ ¼ 1.875 1.2
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Fit I∶ log Im½β0� ¼ Aþ 1

B
� log 1

L
ð12Þ

with A being the logarithm of the proportionality
constant in Eq. (10) and B is the exponent of 1

L that
we want to extract and compare its value with ν.
As can be seen in Table I, the value of the relevant
critical exponent ν is obtained with decent accuracy
with a value of 1.014(60), its exact value being
ν ¼ 1 [35]. Shown in the top panel of Fig. 9 is a
pictorial description of the fit described in Eq. (12).
We plot Imðβ0Þ as a function of 1=L. On account of

B ∼ 1, the dash-dotted line (which is the result of the
fit) can hardly be distinguished from a straight line.

(ii) Using Eqs. (10) and (11) and the fact that the
exponent ν ¼ 1, it is not hard to see that one can
obtain a linear relation for Re½β0� as a function of
1=L and define a fit function to extract βc as follows:

Fit IIa∶ Re½β0� ¼ Aþ B � 1

L
ð13Þ

Fit IIb∶ Im½β0� ¼ CþD � 1

L
: ð14Þ

Here ν ¼ 1 simplifies Eq. (11) with Re½β0� → βc in
the limit L → ∞. Hence, in order to determine βc,
we will fit the real part of the closest Fisher zeros to
the real β axis as a function of 1=L and extract the
intercept A. This intercept is shown as a green star in
the bottom panel of Fig. 9. Also for this our estimate
seems fairly accurate at βc ¼ 0.4404ð19Þ, when
compared with the exact result of βc ∼ 0.4407
[35]. We additionally show in the same figure that,
after identifying the exponent, one can also find the
intercept of the line Imðβ0Þ vs 1=L and show that it
goes to zero within errors as seen with the red star on
the figure. The value obtained for C in the above fit
is 0.0006(10).

B. Extracting βδ

After obtaining the inverse critical temperature, we can
now perform simulations at βc, to study the closest zero
ImðH0Þ to the real axis in the complex H plane as a
function of lattice volume L. This has been the focus of
most of the previous discussions in Secs. II and IV. Once
again following the procedure outlined in [26], our program
again entails the following steps: (1) We compute the n ¼ 1
magnetic cumulant (i.e., the magnetization) at β ¼ βc and
various values of external magnetic field H and lattice size
L; (2) for each L we compute the rational approximant
Rm
n ðHÞ for the magnetization by our multipoint Padé

method; (3) at each L we find the Lee-Yang zero H0,
which is the singularity of the rational approximant for the
magnetization which is the closest to the real axis; and
(4) we study the finite size scaling of the values of ImðH0Þ
(as we have seen in Fig. 6, H0 always sits at ReðH0Þ ¼ 0),
given by [11,22]

jH0 −Hcj ∝ Lβ=ν−d; ð15Þ

where the exponent β is the well-known critical exponent
that describes how the average magnetization goes to zero
when we approach the critical point from below Tc and d is
the dimension. The proportionality constant in Eq. (15) is
related to the infinite volume scaling function for the total
magnetization. In order to extract the exponent in Eq. (15),
we will fit the following function:

FIG. 9. Top: the scaling in 1=L of Imðβ0Þ, i.e., the imaginary
part of the Fisher zero, detected as the closest singularity of the
cumulant to the real axis. The correct critical exponent ν ¼ 1 is
reproduced with fairly good accuracy. Bottom: once ν has been
extracted from the data, one can fit the value of the critical inverse
temperature βc given by the intercept A marked by a green star,
which is reconstructed to 1% accuracy. The red star marks the
intercept of Imβ0 as L → ∞ which is recovered to be zero.
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Fit III∶ log Im½H0� ¼ Aþ B � logL ð16Þ

with A being the logarithm of the proportionality constant
in Eq. (15) and B the exponent of L that we want to extract
and compare with β=ν − d. Using the known scaling rela-
tions between the standard critical exponents, we can derive
the following hyperscaling relation between β, ν, d and δ:

νd ¼ βð1þ δÞ

⇒
β

ν
− d ¼ −

βδ

ν
: ð17Þ

Remembering the value of ν ¼ 1 for the 2D Ising model,
we can thus use the fit result for the parameter B to estimate
βδ. As can be seen from Table I, the fit parameter B ¼
−1.881ð93Þ has been determined, which gives to decent
precision the estimate for βδ whose exact value for the 2D
Ising model is 1.875. Further, without using the hyper-
scaling relation given in Eq. (17), the fit parameter B should
be compared against β=ν − d, to obtain β ¼ 0.119ð93Þ
which, compared against its exact value of 0.125 for the 2D
Ising model, gives an estimate for the exponent. Finally, we
show the results of the fit ofH0 we obtained for each lattice
size, plotted against Lβ=ν−d in Fig. 10. In principle, one
should be able to follow these steps to estimate the critical
region for QCD using Taylor expansions from lattice QCD.
The relevant parameters which control the critical region in
QCD will be the baryon density. We have tried to make
some concrete steps in this direction recently in [67].
However, being a much more complicated theory, both
numerically and conceptually, we may have to wait for
some time to be able to do that.

VI. CONCLUSIONS AND OUTLOOK

As a first step we simulated the 2D Ising model using a
cluster spin flip algorithm in two ways. For the LY zero
analysis, we simulated the model on varying lattice sizes at
a set of values of the external magnetic field. These
simulations were performed at Tc, and the goal was to
approximate the average magnetization as a rational func-
tion of the external magnetic field and study the structure of
zeros and poles that arise. On the one hand, we were able to
verify numerically, many properties of the LY zeros
including the famous circle theorem for the Ising model,
observing that only the genuine poles (uncanceled and
stable) of magnetization lie on the purely imaginaryH axis.
It was further observed that the number of genuine poles
increases with volume and, for simulations at Tc, comes
closer to the real H axis. In order to verify that these were
indeed physical effects, volume scaling of the zeros using
the prescription in [11,22] was performed leading to a
decent estimate of the combination of critical exponents
βδ ¼ 1.881ð93Þ. The fact that LY zeros can be studied at Tc
is in our approach fully self-consistent. In fact, Fisher zeros
were also studied by approximating the specific heat with a
multipoint Padé function and studying its poles in the
complex β plane. Finite size scaling of these zeros
following the prescription of [22] was done to obtain,
again, precise values of the critical exponent ν ¼ 1.014ð60Þ
and of the critical inverse temperature βc ¼ 0.4404ð19Þ.
These results give us some confidence in our pursuits of
studying the QCD phase diagram using lattice QCD
simulations combined with multipoint Padé method, the
main caveat being that in the case of the Ising model it was
not very computationally expensive to reach statistics of the
order of ∼625 K configurations for each lattice, for each
value of H and β. These kinds of statistics are not currently
realistic for lattice QCD simulations.
Another direction to pursue would be to study the

universal location of the Lee-Yang edge singularities as
done using the Functional Renormalisation Group (FRG)
approach in [68,69] or using a suitable parametrization of
lattice data as done in [70] for theOðNÞmodels. In order to
do this using our approach, we would need accurate values
of the closest LY zero to the realH axis, but at temperatures
T > Tc. We would like to close by inviting the reader to use
the multipoint Padé method for extracting Lee-Yang and
Fisher zeros in their choice of models.

All data from our calculations, presented in the figures of
this paper, can be found in Ref. [71].
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