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We study the correlator of temporal Wilson lines at nonzero temperature in 2þ 1 flavor lattice QCD with
the aim to define the heavy quark-antiquark potential at nonzero temperature. For temperatures 153 MeV ≤
T ≤ 352 MeV the spectral representation of this correlator is consistent with a broadened peak in the
spectral function, position, or width of which then defines the real or imaginary parts of the heavy quark-
antiquark potential at nonzero temperature, respectively. We find that the potential’s real part is not
screened contrary to the widely held expectations. We comment on how this fact may modify the picture of
quarkonium melting in the quark-gluon plasma.
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I. INTRODUCTION

At very high temperatures the strongly interacting matter
undergoes a transition to a new state called quark-gluon
plasma (QGP). Creating and studying the properties of
QGP is the goal of large experimental programs in heavy-
ion collisions at RHIC and LHC [1].
The question of in-medium modifications of the forces

between heavy quark Q and antiquark Q̄ generated a lot of
interest since the seminal paper by Matsui and Satz [2].
They conjectured that color screening in QGP will make
the QQ̄ interaction short ranged, and therefore quarkonium
states cannot be formed in QGP. Thus, QGP formation in
heavy-ion collision will lead to quarkonium suppression.
The study of quarkonium production in heavy-ion colli-
sions is a large part of the experimental heavy-ion program,
see, e.g., Ref. [3] for a recent review.
The idea of having a screened potential between heavy

quarks in QGP is closely related to the exponential screen-
ing of the free energy of infinitely heavy quarks in QGP,
which is well established by lattice QCD calculations, see,

e.g., Ref. [4] for a review. However, the free energy of
heavy quarks describes the in-medium interaction of heavy
quarks at macroscopic time scales much larger than the
inverse temperature. For understanding the quarkonium
properties in QGP one needs to know if and how the heavy
QQ̄ potential is modified at scales comparable to the
internal time scale of quarkonium. The effective field
theory approach provides a natural framework to address
this problem at high temperatures when the weak-coupling
approach is applicable [5,6]. Depending on the separation
of the bound-state scales and the thermal scales the heavy
QQ̄ potential can be modified by QGP and also acquire an
imaginary part. In general, however, the real part of this
potential does not have a screened form in this approach
[6]. How to study the modification of heavy QQ̄ inter-
actions in QGP beyond weak coupling remains an unsolved
problem. However, we could define the heavyQQ̄ potential
at nonzero temperature (T > 0) in analogy with the zero
temperature (T ¼ 0) case in terms of the Wilson loops of
size τ × r [7]. We can write the following spectral repre-
sentation of the Wilson loops in terms of the r-dependent
spectral function:

Wðτ; r; TÞ ¼
Z þ∞

−∞
dωe−ωτρrðω; TÞ: ð1Þ

The distance r between the heavyQ and Q̄ acts as the label
of the spectral function. At T ¼ 0, the spectral function’s
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lowest delta function peak corresponds to the ground state
potential. We expect that there is a dominant, broadened
peak in the spectral function for not too high temperatures;
its position and width determine the real and imaginary
parts of the potential, respectively [7]. For very high
temperatures the spectral function may lack a well-defined
peak such that a potential cannot be defined. While the
relation between the above defined complex potential and
the effective field theory concept of the complex potential is
an unsolved problem, too, the existence of a well-defined
peak in ρrðω; TÞ is necessary, yet not a sufficient condition
for a potential picture of heavy quarkonium at T > 0.
In this paper we present calculations of the real part of

the potential at T > 0 in 2þ 1 flavor QCD using the lattice
QCD approach and estimate the imaginary part. There have
been several attempts to calculate the complex potential at
T > 0 both in quenched QCD [7,8] as well as in 2þ 1
flavor QCD [9,10]. The state of the art calculation of the
complex potential in 2þ 1 flavor QCD has been performed
using lattices with temporal extent Nτ ¼ 12, and thus at a
single lattice spacing per temperature. The new results are
based on several lattice spacings and several values ofNτ in
the range Nτ ¼ 16–36. The rest of the paper is organized as
follows. In Sec. II we give some details of the lattice QCD
calculations. Section III presents the analysis of the lattice
results and the main results of the study, while Sec. IV
contains our conclusions. Many technical details of the
calculations are discussed in the Appendix.

II. DETAILS OF THE LATTICE QCD
CALCULATIONS

In lattice QCD one often considers correlators of Wilson
lines in Coulomb gauge instead of Wilson loops since these
contain the same physical information and are less noisy,
see the discussions in Ref. [10] and Appendix A. We
calculated the Wilson line correlators Wðτ; r; TÞ in 2þ 1
flavor QCD using highly improved staggered quark action
[11] and Lüscher-Weisz action [12,13] on N3

s × Nτ lattices
for physical strange quark mass,ms and two sets of light (u
and d) quark mass,ml ¼ ms=5 andml ¼ ms=20. The latter
corresponds to almost physical pion mass, mπ ¼ 161 MeV
in the continuum limit. Furthermore, the calculations have
been performed for three different lattice spacings corre-
sponding to the following values of bare lattice gauge
coupling β ¼ 10=g20 ¼ 7.596, 7.825 and 8.249. The lattice
spacing and thus the temperature scale T ¼ 1=ðaNτÞ has
been fixed using the r1-scale determined in Ref. [14] with
the value r1 ¼ 0.3106 fm obtained in Ref. [15]. The value
of the strange quark mass was obtained from the para-
metrization of the line of constant physics from Ref. [16].
We this scale setting for the lattice spacing we obtain:
aðβ ¼ 8.249Þ ¼ 0.0280 fm, aðβ ¼ 7.285Þ ¼ 0.0404 fm
and aðβ ¼ 7.596Þ ¼ 0.0493 fm. For the finest lattices
the spatial size of the lattice is Ns ¼ 96, while for the
two coarser lattices we use Ns ¼ 64. The temporal size of

the lattice is varied in the range Nτ ¼ 16–36, which
corresponds to the temperature range 153 MeV ≤ T ≤
352 MeV. Further details about the parameters of the
lattice calculations are given in Appendix A.
For the smallest lattice spacing, we only consider T ≥

195 MeV, i.e. temperatures well above the chiral crossover
temperatures. For these temperatures we do not expect
significant quark mass dependence of the Wilson line
correlators. Therefore, the calculations for the smallest
lattice spacing have been performed only with ml ¼ ms=5,
while for the coarser lattices we use ml ¼ ms=20. As
discussed later, we do not see any ml dependence of the
Wilson line correlator for T ≥ 195 MeV, as expected.
For lattices with large temporal extents, employed in this

study, noise reduction methods have to be used. We use
gradient flow [17] for noise reduction. To reduce noise even
further, we require that Wðτ; r; TÞ at large r=a is a smooth
function of r=a, and replace it for each value τ by a
corresponding local r=a interpolation. We verified that this
procedure does not introduce bias in our analysis by
varying the interpolation intervals and comparing to the
results that do not use interpolation. Further details on the
noise reduction techniques are presented in Appendix A.
To aid the reconstruction of the spectral function we also

performed calculations on Nτ ¼ 64 and Nτ ¼ 56 lattices,
which we refer to as T ¼ 0 lattices.

III. ANALYSIS AND RESULTS

To analyze the Wilson line correlator Wðτ; r; TÞ in
Eq. (1) it is useful to consider the effective mass defined as

meffðτ; r; TÞ ¼ −∂τ lnWðτ; r; TÞ;

¼ −
1

a
ln

�
Wðτ þ a; r; TÞ
Wðτ; r; TÞ

�
; ð2Þ

where the last equation applies to the case of nonzero lattice
spacing. At T ¼ 0, the effective mass decreases with
increasing τ, and reaches a plateau for sufficiently large
τ, since the spectral function is positive definite and has the
lowest ground state delta function peak followed by many
excited states for ω above the ground state. We show the
results for the effective masses in Fig. 1. We see that at
T ¼ 0 the effective mass decreases with increasing τ, with
the exception of the data at smallest τ, and approaches a
plateau for τ around 0.5 fm. The nonmonotonic behavior is
due to the smearing artifacts coming from the gradient flow,
as discussed in Appendix B. Except for very small τ, meff
decreases at T > 0 with increasing τ for all τ values and
does not reach a plateau. This means that there is no stable
ground state at nonzero temperature. We see from Fig. 1
that the effective masses show neither lattice spacing nor
sea quark mass dependence for T > 200 MeV. This
implies that for these temperatures using ml ¼ ms=5 is
equivalent to using the physical light quark mass and that
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our results are essentially in the continuum limit. We also
compared the effective masses corresponding to different
lattice spacings at lower temperatures and found no
dependence on the lattice spacing.
At small τ the difference between the T ¼ 0 or T > 0

effective masses is the smallest, and their τ dependence is
rather similar, see Fig. 1. Thus, we aim to constrain the
corresponding contributions at T > 0 by using the T ¼ 0
results.
Our objective is to extract information on a dominant

peak in the spectral function corresponding toWðτ; r; TÞ at
T > 0. We choose an ansatz [10] for the spectral function as

ρrðω; TÞ ¼ ρlowr ðω; TÞ þ ρpeakr ðω; TÞ þ ρhighr ðωÞ; ð3Þ

where ρhighr ðωÞ is assumed to be a temperature-independent
part dominating at large ω. ρpeakr ðω; TÞ describes a dom-
inant peak encoding the complex potential at T > 0, while
ρlowr ðω; TÞ is a small, medium-dependent contribution
below the dominant peak.
Fixing ρhighr ðωÞ to its T ¼ 0 value effectively means

subtracting it from the T > 0 result. We define the
subtracted correlator as follows:

Wsubðτ; r; TÞ ¼ Wðτ; r; TÞ −Whighðτ; rÞ; ð4Þ

which is solely determined by the medium-dependent
contributions to the spectral function,

ρlowr ðω; TÞ þ ρpeakr ðω; TÞ ¼ ρrðω; TÞ − ρhighr ðωÞ: ð5Þ

Since the T ¼ 0 spectral function has the form

ρrðω; T ¼ 0Þ ¼ Arδðω − Vðr; T ¼ 0ÞÞ þ ρhighr ðωÞ; ð6Þ

we define

Whighðτ; rÞ≡
Z

∞

−∞
dωρhighr ðωÞe−ωτ ð7Þ

via

Whighðτ; rÞ ¼ Wðτ; r; T ¼ 0Þ − Are−Vðr;T¼0Þτ: ð8Þ

Thus, it is straightforward to estimate Whighðτ; rÞ using
single-exponential fits for Ar and Vðr; T ¼ 0Þ. The task of
constraining ρpeakr ðω; TÞ and ρlowr ðω; TÞ is now reduced to
the analysis of the τ dependence of Wsubðτ; r; TÞ.
The effective masses fromWsubðτ; r; TÞ at T > 0 are also

shown in Fig. 1. The uncertainties in the effective masses
due to the errors in the determination of the ground state
contribution at T ¼ 0 have been taken into account by
combining these uncertainties with the statistical errors of
the T > 0 calculations. We note that the nonmonotonic
behavior at small τ due to smearing artifacts is absent
in these subtracted effective masses msub

eff ðτ; r; TÞ, and,
therefore, these artifacts do not affect ρpeakr ðω; TÞ, see
Appendix C. As discussed in Appendix C, msub

eff ðτ; r; TÞ
would decrease linearly in τ if the ground state peak had a
Gaussian shape [10]. msub

eff ðτ; r; TÞ shows linear behavior in
τ at small τ, indicating that the dominant ground state peak
has broadened. Here we note, that the behavior of the
subtracted effective masses obtained from the Wilson line
correlators and from the Wilson loops is the same [10].
As discussed in Ref. [10] ρlowr ðω; TÞ is the contribution

to the spectral function at T > 0, which has support for
energies well below the dominant peak and representing a
heavy QQ̄ state propagating forward in Euclidean time
interacting with a backward propagating light state from the
medium. This contribution is much smaller than ρpeakr ðω; TÞ
but dominates the correlator at τ around 1=T. This part of
the spectral function explains the rapid drop ofmeffðτ; r; TÞ
at large τ [10] that can be seen in Fig. 1.
A physically appealing parametrization of ρpeakðω; TÞ is

a Lorentzian form. However, a Lorentzian form is only
valid in the vicinity of the peak. In general, we can assume
that the correlator has a pole at some complex ω, so

ρpeakr ðω;TÞ¼ 1

π
Im

ArðTÞ
ω−ReVðr;TÞ− iΓðω;r;TÞ: ð9Þ

For ω ≃ ReVðr; TÞ we can approximate Γðω; r; TÞ by a
constant: Γðω; r; TÞ ≃ ΓLðr; TÞ. However, for ω values far
away from the peak Γðω; r; TÞmust quickly go to zero. The
self-consistent T-matrix calculation of heavy QQ̄ propa-
gators indeed shows an exponential decrease of Γðω; r; TÞ
away from the peak [18]. To incorporate this feature of the
spectral function in our analysis we assume that ρpeakr ðω; TÞ
is given by ΓLðr; TÞ=ð½ω − ReVðr; TÞ�2 þ Γ2

Lðr; TÞÞ for
jω − ReVðr; TÞj≲ ΓLðr; TÞ and is zero otherwise. Such
a cut Lorentzian form gives rise to an almost linear behavior

FIG. 1. The effective masses at T ¼ 0 and at T ≃ 220 MeV
for r ≃ 0.7 fm and a ¼ 0.0280 fm (circles), a ¼ 0.0404 fm
(squares), or a ¼ 0.0493 fm (triangles). The green symbols
correspond to subtracted data. The lines show the fits discussed
in the text. Filled (open) symbols represent ms=ml ¼ 20ð5Þ.

UNSCREENED FORCES IN THE QUARK-GLUON PLASMA? PHYS. REV. D 109, 074504 (2024)

074504-3



of msub
eff ðτ; r; TÞ at small τ, too, as required by the

lattice data.
The most general parametrization of ρlowr ðω; TÞwould be

a sum of delta functions at ω well below the dominant peak
position. However, to describe our effective mass data even
a single delta function at sufficiently small ω, ρlowr ðω; TÞ ¼
clowr ðTÞδðω − ωlow

r ðTÞÞ turns out as sufficient.
With these forms of ρpeakr ðω; TÞ and ρlowr ðω; TÞ we fitted

the lattice data on msub
eff ðτ; r; TÞ and determined the

fit parameters ReVðr; TÞ, ΓLðr; TÞ, clowr ðTÞ=ArðTÞ, and
ωlow
r ðTÞ. A sample fit is shown in Fig. 1 and details of the

fits are discussed in Appendix C. We typically find that
clowr ðTÞ=ArðTÞ < 5 × 10−4 and decreases with decreasing
r, while ωlow

r ðTÞ is between (1.8–3.8) GeV below the peak
position ω ¼ ReVðr; TÞ.
The results for ReVðr; TÞ are shown in Fig. 2 indicating a

temperature-independent real part in good agreement with
the T ¼ 0 potential. This is not completely unexpected, as
meffðτ; r; TÞ at small τ is close to the vacuum result,

cf. Fig. 1. The peak position is insensitive to the detailed
shape of ρpeakr ðω; TÞ; i.e., for a Gaussian form we find the
same peak position within errors. Thus our lattice QCD
results show that the potential’s real part is unscreened.
This observation supersedes conclusions drawn earlier by
applying the Bayesian reconstruction method [19] to older
lattice data [20] with much larger statistical errors and
larger discretization artifacts. There are distortions in
ReVðr; TÞ at the two shortest distances in lattice units
(r ¼ a; 2a), but these distortions are the same both at T ¼ 0
or T > 0, see the discussion in Appendices B and C, and do
no affect our conclusion about the absence of screening.
As discussed above the imaginary part of the potential is

defined as the width of the ground state peak at T > 0. If we
knew the spectral function exactly we could fit it in the
peak’s vicinity with a Lorentzian form, whose width
parameter would give the potential’s imaginary part.
This has been explicitly checked for the spectral function
of an infinitely heavy QQ̄ pair calculated in hard thermal
loop perturbation theory [21]. Yet the correlator is sensitive
to all parts of the spectral function, in particular to
ρlowr ðω; TÞ and to the tails of ρpeakr ðω; TÞ. For this reason,
the parameter ΓL cannot be considered as ImVðr; TÞ.
A better way to characterize ImVðr; TÞ is to consider
the cumulants of ρpeakr ðω; TÞ. The first two cumulants
are defined as c1 ¼ hωi and c2 ¼ hω2i − hωi2, where
h…i ¼ R

dω…. In the case of the Gaussian, the second
cumulant of the spectral function is the square of the width
parameter. In the case of the cut Lorentzian, it is propor-
tional to the square of the parameter ΓL. Furthermore, if
clowr =Ar is very small, ρpeakr ðω; TÞ determines the behavior
of the Wilson line correlator around τ ¼ 0. Therefore, the
second cumulant of ρpeakr ðω; TÞ determines the slope of
msub

eff ðτ; r; TÞ at small τ, which is well defined from the
lattice data, see Appendix D. Thus the square root of the
second cumulant of ρpeakr ðω; TÞ is a good proxy for the r
and temperature dependence of ImVðr; TÞ. In Fig. 3 we

FIG. 2. The real part of the potential as a function of r at
different temperatures. We show results for a ¼ 0.0280 fm
(circles), a ¼ 0.0404 fm (squares) or a ¼ 0.0493 fm (triangles).
Open symbols for ms=ml ¼ 5 and filled symbols for
ms=ml ¼ 20.

FIG. 3. The estimate of the imaginary part of the potential from the fit using cut Lorentzian form as a function of r or rT for different
temperatures. The three panels focus on different temperature ranges. The circles correspond to a ¼ 0.0280 fm, the squares to
a ¼ 0.0404 fm, and the triangles correspond to a ¼ 0.0493 fm. Open symbols forms=ml ¼ 5 and filled symbols forms=ml ¼ 20. Error
bars include a systematic contribution discussed Appendix D.
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show this proxy for ImVðr; TÞ as a function of distance r
for different temperatures. We scaled the x and y axes by
the temperature in the two middle and right panels of Fig. 3.
We see that for 180 MeV < T ≤ 352 MeV the numerical
results for ImVðr; TÞ scale with the temperature, i.e., the
imaginary part of the potential depends only on rT and is
proportional to the temperature. This is in qualitative
agreement with the weak-coupling results. Since for
rT ≃ 1 the imaginary part of the potential is larger than
the temperature, the forces between heavy quarks are
damped very quickly, i.e., on the time scale comparable
to or shorter than the thermal scale. During that short
timescale, the chromoelectric field between the heavy Q
and Q̄ cannot adjust itself to the medium. The chromo-
electric force between the heavy quarks is simply damped
away, and the heavy Q and Q̄ will not interact. This picture
of quarkonium melting is very different from the one
proposed by Matsui and Satz. While ImV is quite large we
still think the QQ̄ energy is well defined in the considered
temperature interval. For if there would be no well-defined
dominant peak in the spectral functions, different staticQQ̄
correlators would have quite different τ dependence.
However, as shown in our previous study [10] this is not
the case.

IV. CONCLUSION

We studied the complex heavy quark-antiquark potential
at nonzero temperature in 2þ 1 flavor QCD using lattice
calculations with a large temporal extent. We have found
that contrary to some common expectations the real part of
the potential is not screened for temperatures 153 MeV ≤
T ≤ 352 MeV.We also found that the dissipative effects on
the chromoelectric forces between the heavy quarks,
encoded in the imaginary part of the potential are very
large and likely will lead to quarkonium dissolution.
As already mentioned in the introduction, the lack of

screening in the real part of the potential is expected in
weak-coupling limit for rT < 1 [6]. Our study shows that
this also holds nonperturbatively. Furthermore, a numerical
evaluation of the weak-coupling result of the thermal
correction to the real part of the potential shows that this
correction is quite small. For T > 500 MeV and rT < 0.4,
where the weak coupling result of Ref. [6] may be
applicable, the thermal correction to the real part of the
potential is smaller than 0.1T.
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APPENDIX A: LATTICE QCD SETUP

In this appendix we discuss further details of our lattice
QCD calculations. The parameters of the lattice calcula-
tions including the lattice volume and the quark masses are
given in Tables I–III. The gauge configurations used in this
study have been generated using a rational hybrid
Monte Carlo algorithm [24] with grants from PRACE on
Juwels Booster and Marconi 100 and NERSC on
Perlmutter using the SIMULATeQCD code [22]. We also
used the MILC code on Cori at NERSC to generate the
gauge configurations. Some of the gauge configurations
have been generated on the USQCD cluster in JLab. After
removing the initial trajectories for thermalization we
arrived at the data set in Tables I–III. Every fifth trajectory
has been used for Nσ ¼ 96 and every tenth trajectory
for Nσ ¼ 64.
On the generated gauge configurations we calculated

Wilson line correlators in Coulomb gauge with the aim
of determining the static quark-antiquark (QQ̄) potential.
We use Wilson line correlators instead of Wilson loops
because these are much less noisy and provide more

TABLE I. Parameters for the Nσ ¼ 96, β ¼ 8.249, ams ¼
0.01011 lattice configurations used. The last column shows
the flow time used for each Nτ.

Nτ # ms=ml T [MeV] τF=a2

20 3200 5 352 0.125
24 856 5 293 0.125
28 2400 5 251 0.2
32 1100 5 220 0.4
36 2400 5 195 0.6
56 1000 5 126 0.125, 0.2, 0.4, 0.6
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convenient access to distances at noninteger multiples of
the lattice spacing. At T ¼ 0 both Wilson loops and Wilson
line correlators in Coulomb gauge have been used
for the determination of the QQ̄ potential, see, e.g.,
Refs. [14,25–28]. In the case of Wilson loops, smearing
should be applied to the spatial gauge links entering the
Wilson loops in order to obtain a reasonable signal. In
Ref. [10] both Wilson lines and Wilson loops with three-
dimensional hypercubic smearing [29] in the spatial gauge
links have been studied at nonzero temperature. It was
found there that the behavior of the Wilson line correlators
and Wilson loops is fairly similar except for small τ, where
sensitivity to excited states is different, similar to the T ¼ 0
case [30]. At T > 0 there are also some differences between
the behavior of Wilson loops and Wilson line correlators at
τ ≃ 1=T, which are, however, not related toQQ̄ potential as
discussed below. Thus bothWilson lines in Coulomb gauge
and Wilson loops encode the same temperature modifica-
tion of theQQ̄ potential. In Ref. [10] the calculations of the
Wilson lines have been performed on Nτ ¼ 12 lattices.
Since we use much largerNτ in this study, also the temporal

links have to be smeared. We use gradient flow [17] for the
smearing of the temporal gauge links. More precisely we
use Zeuthen flow [31]. For flow time τF the gauge links are
smeared in a radius

ffiffiffiffiffiffiffi
8τF

p
. This radius should be much

smaller than the inverse temperature. We use different
flow times corresponding to the flow radius in the range
a − 2.53a and study the sensitivity of our results to the flow
time. For the final results presented in the paper, we use the
smallest flow time that gives an acceptable signal. Since the
signal deteriorates with increasing Nτ we use larger flow
time for large Nτ. The range of flow times and the specific
values of flow times for which we show the final result are
presented in Tables I–III for β ¼ 8.249, 7.825, and 7.596,
respectively.
After performing the gradient flow we fix the Coulomb

gauge. The precision of Coulomb gauge fixing was set to
10−6. We also note that neither is the gradient flow the only
option to smear the temporal gauge links nor is it a problem
to fix the Coulomb gauge before performing the gradient
flow, when studying Wilson line correlators. Previously we
used hypercubic smearing after gauge fixing for the
temporal gauge links when calculating the Wilson line
correlators at T > 0 [32] and found that the temperature
and the τ dependence of the correlators are similar to that
reported here. Thus even though smearing destroys the
gauge fixing condition to some extent, the qualitative
behavior of the Wilson line correlators is not affected.
This implies that our findings are neither sensitive to the
details of gauge link smearing nor to details of the Coulomb
gauge fixing.

APPENDIX B: ANALYSIS OF THE WILSON LINE
CORRELATORS AT T = 0

In this appendix we discuss the analysis of the Wilson
line correlators at zero temperature. For the analysis of the
Wilson line correlators, it is useful to consider the effective
masses defined in Eq. (2). The Wilson line correlators
require multiplicative renormalization, which corresponds
to an additive normalization of the effective masses that is
proportional to 1=a. This normalization can be fixed by
requiring for each lattice spacing that the QQ̄ potential at
T ¼ 0 is equal to a prescribed value for one given distance.
Here we use the prescription Vðr ¼ r0Þ ¼ 0.954=r0, where
r0 is the Sommer scale, which for 2þ 1 flavor QCD is
r0 ¼ 0.468ð4Þ fm [27]. This normalization condition was
used in our previous studies [16,27,33]. The normalization
constant depends on the amount of smearing, i.e., the
coefficient 2cQ of the 1=a divergence is smearing depen-
dent. The larger the amount of smearing, the smaller the
coefficient of the 1=a divergence becomes. For unsmeared
Wilson line correlators the coefficient cQ was determined in
Ref. [33] for several beta values including, the two lowest
ones used here, namely cQðβ ¼ 7.596Þ ¼ 0.3545ð11Þ and
cQðβ ¼ 7.825Þ ¼ 0.3403ð12Þ. Interpolating the results for

TABLE II. Parameters for Nσ ¼ 64, β ¼ 7.825, ams ¼ 0.0164
lattice configurations. The last column shows the range of flow
time in lattice units used in the calculations. The numbers in the
square brackets indicate the flow time for which the final results
in the paper are presented.

Nτ # ms=ml T [MeV] τF=a2

16 5528 20 305 0.0–0.6 [0.125]
18 5230 20 271 0.0–0.6 [0.125]
20 4726 20 244 0.0–0.6 [0.125]
22 3515 20 222 0.0–0.6 [0.125]
24 3345 20 203 0.0–0.6 [0.2]
26 4147 20 188 0.0–0.6 [0.2]
28 3360 20 174 0.0–0.6 [0.4]
30 2679 20 163 0.0–0.6 [0.4]
32 2133 20 153 0.0–0.6 [0.6]
64 1006 20 76 0.0–0.6 [0.125–0.6]

TABLE III. Parameters for Nσ ¼ 64, β ¼ 7.596, ams ¼ 0.0202
lattice configurations. The last column shows the range of flow
time in lattice units used in the calculations. The numbers in the
square brackets indicate the flow time for which the final results
in the paper are presented.

Nτ # ms=ml T [MeV] τF=a2

16 4697 20 250 0.0–0.8 [0.2]
18 3715 20 222 0.0–0.8 [0.2]
20 3005 20 200 0.0–0.8 [0.4]
22 4158 20 182 0.0–0.8 [0.4]
24 3278 20 167 0.0–0.8 [0.6]
26 2423 20 154 0.0–0.8 [0.8]
64 914 20 63 0.0–0.8 [0.2–0.8]
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cQ from Ref. [33] with cubic polynomial we estimate
cQðβ ¼ 8.249Þ ¼ 0.3144ð10Þ.
In Fig. 4 (top) we show the unrenormalized effective

masses at T ¼ 0 for β ¼ 8.249 at different flow times. The
improvement in the signal with increasing flow time at
large τ is obvious from the figure. We also see that the
effective masses decrease with increasing flow time as one
would expect based on the discussions above. There is a
nonmonotonic behavior of the effective masses in τ for
τ=a ¼ 1–3. This is due to the fact that the gradient flow
distorts short distance physics and potentially can lead to
nonpositive definite spectral function for very large ω.
However, for not too large ω there is no sign of positivity
violation in the spectral function since the effective masses
approach plateaus from above for τ=a > 3. This means that
the gradient flow does not lead to artifacts in the determi-
nation of the QQ̄ potential at T ¼ 0. With a constant, flow-
time dependent shift the effective masses for different τF
can be collapsed to one line, except for very small τ, where
there are τF-dependent distortions due to gradient flow.
This is demonstrated in Fig. 4 (bottom). We determine this
shift by fitting the difference in the effective masses
calculated at different flow times to a constant for
τ=a ¼ 7–18 for β ¼ 8.249 and τ=a ¼ 7–15 for the two
smaller values of β. This constant shift should amount to

the difference in the additive normalization of the QQ̄
potential, and therefore, should be independent of QQ̄
separation, r, apart from the distortions at small r due to
smearing. In Fig. 5 we show the relative shifts as a function
of r for β ¼ 8.249. We see that for very small r there is
some dependence on the value of r implying that there are
distortions in the zero temperature potential at these
distances due to smearing as expected. Namely, when
τF=a2 ≤ 0.2 we see distortion for r=a < 2, while for larger
flow time we see distortions for r=a < 3. To demonstrate
this in Fig. 6 we show the zero temperature potential for
different smearing levels for relatively small r values. We
see from the figure that except for the smallest distance the
potential does not depend on the smearing level including
the case of no smearing. We found that the situation for the
other two β values is the same.
In addition to the gradient flow, we use polynomial

interpolations to reduce fluctuations in the Wilson line
correlators. For fixed τ the Wilson line correlators should
be a smooth function of r apart from the effects of breaking
of rotational symmetry on the lattice. For Symanzik gauge
action these effects are smaller than the statistical errors for
r=a > 3 [30,34]. Therefore, it is natural to require that the

FIG. 4. The effective masses corresponding to the Wilson line
correlators at r=a ¼ 15, β ¼ 8.249 obtained for different flow
times (top). The effective masses for different flow times after
applying the additive shift are discussed in the text (bottom).

FIG. 5. The additive shifts for different flow times as a function
of r=a for β ¼ 8.249.

FIG. 6. The zero temperature potential for β ¼ 8.249 obtained
with different smearing levels, including no smearing.
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data on the Wilson line correlators are smooth functions of
r at a fixed value of τ. By imposing this requirement we
effectively reduce the fluctuations in the original dataset
since nearby r values usually correspond to very different
path geometries and thereby suffer from quite independent
gauge noise. We perform second order polynomial inter-
polations in a limited range of distances, Δr around a target
value of r and replace the original datum with the
interpolated value. We take into account that, with increas-
ing distance, there are many different separations that are
close to the target value of r and adjust Δr as we vary r.
This additional noise reduction and the interpolation
procedure are demonstrated in Fig. 7. In fact the result
on the effective masses shown in Fig. 4 also incorporate the
noise reduction from the interpolations. Because of the use
of the above noise reduction the determination of the QQ̄
potential at zero temperature is now more accurate.
Therefore, we recalibrated the central value of the constant
cQ and used the following values in the present analysis:
cQðβ ¼ 7.596Þ ¼ 0.3552, cQðβ ¼ 7.825Þ ¼ 0.3401 and
cQðβ ¼ 8.249Þ ¼ 0.3135. These values agree with the
one quoted above within errors.
To check that interpolations do not introduced additional

bias we performed the analysis by doubling the

interpolation range in r, and also obtained the zero temper-
ature potential without any interpolations. The results are
shown in Fig. 8. As one can see the zero temperature
potential is not sensitive to these changes. Doubling the
interval in the interpolations does not change the result,
while skipping the interpolation in the analysis only results
in large statistical fluctuations.

APPENDIX C: ANALYSIS OF THE WILSON LINE
CORRELATORS AT T > 0

In this appendix we discuss the analysis of the Wilson
line correlators at T > 0. Our aim is to gain information on
the spectral function corresponding to the Wilson line
correlator at T > 0. As discussed in the main text we use
the following ansatz for the spectral function

ρrðω; TÞ ¼ ρlowr ðω; TÞ þ ρpeakr ðω; TÞ þ ρhighr ðωÞ; ðC1Þ

where ρhighr ðωÞ is the dominant part of the spectral function
at large ω and is assumed to be temperature independent.
Furthermore, ρpeakr ðω; TÞ describes the dominant peak in
the spectral function and encodes the complex potential at
T > 0, while ρlowr is a small contribution to the spectral
function below the dominant peak, which is discussed
below in more detail. The position and width of the
dominant peak in the spectral function should not depend
on the interpolating operator details used in the static QQ̄
correlator, e.g., on the flow time and whether we use
Wilson line correlators in Coulomb gauge or Wilson loops.
On the other hand ρlowr ðω; TÞ and ρhighr ðωÞ will depend on
the specific choices of the interpolating operators used in
the correlator, e.g., on the amount of smearing or the gauge
tolerance used. In Fig. 9 we show the effective masses for
T ¼ 305 MeV and r ¼ 0.606 fm for different flow times.
We see nonmonotonic behavior and flow time dependence

FIG. 7. Top: effective mass for Nτ ¼ 64, Nx ¼ 64, r=a ¼ 20,
and τF=a2 ¼ 0.125 for the raw data, compared to an interpolation
fit done around r=a ¼ 20 in a range �Δr=a ¼ 0.9 with a second
order polynomial. Bottom: the correlator as a function of distance
r at fixed τ ¼ 15a for the same lattice as the top plot.

FIG. 8. The zero temperature potential for different smearing
and interpolation levels for a ¼ 0.0404fm. The label “0 × int”
means no interpolation used in the analysis. The label “2 × int”
means that the r interval used in the interpolation was doubled
compared to the default setup.
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for small τ as we do for the T ¼ 0 case. However, for an
intermediate τ range 0.1 fm < τ < 0.45 fm, where the
contribution from ρpeakr ðω; TÞ is the dominant one, the
effective masses for different flow times agree with each
other very well. At τ > 0.5 fm the contribution from
ρlowr ðω; TÞ becomes important, and we see some depend-
ence on the flow time. As discussed in Ref. [10] ρlowr ðω; TÞ
depends on the overlap of the chosen QQ̄ operator with the
light states that propagate backward in the Euclidean time
together with the forward propagatingQQ̄. Similar depend-
ence on the level of spatial link smearing of the effective
mass was observed in Ref. [10].
As discussed in the main text the effective masses

corresponding to Wsubðτ; r; TÞ decrease monotonically
with τ, and for sufficiently small τ they are approximately
linear in τ. This is demonstrated in Fig. 9, where the
effective masses from Wsubðτ; r; TÞ are shown for
T ¼ 305 MeV and r ¼ 0.606 fm at various flow times.
Thus the removal of the high energy part of the spectral
function also removes the artifacts induced by the gradient
flow. For a small contribution from ρlowr ðω; TÞ this linear
behavior of the effective masses in τ for small τ could be
easily explained if ρpeakr ðω; TÞ had a Gaussian form
ρGr ðω; TÞ ∼ e−ðω−Vðr;TÞÞ2=ð2Γ2

GÞ

Wsubðτ; r; TÞ ∼
Z

dωe−ωτρGr ðω; TÞ;

∼ exp

�
−Vðr; TÞτ þ Γ2

G

2
τ2
�
: ðC2Þ

However, the Gaussian form of the spectral function is not
physically motivated and the width of the Gaussian cannot
be interpreted as ImVðr; TÞ. If we assume that the detailed
shape of the spectral function away from the peak position
is not too important we can define ImVðr; TÞ as the width
at half maximum height. In this case, a Gaussian form of
the spectral function can be used. A physically appealing
choice of ρpeakr ðω; TÞ is a Lorentzian form. However, this
form is only valid for ω values that are not too far
from ω ¼ ReVðr; TÞ. The hard thermal loop spectral
function of staticQQ̄ [21] is Lorentzian only in the vicinity
of the peak and decays exponentially when jReV − ωj is
larger [21]. The same holds for the spectral function in the
T-matrix approach [18]. Therefore, we use a cut Lorentzian
for ρpeakr ðω; TÞ in our analysis

ρcLr ðωÞ ¼ 1

π

ArΓLθðCut − jω − ReVjÞ
ðω − ReVÞ2 þ Γ2

L
: ðC3Þ

It turns out that the cut Lorentzian also gives an almost
linear dependence in τ for the effective masses. In our
analysis, we set Cut ¼ 2ΓL. To cross-check our results we
also use the Gaussian form.

FIG. 9. The effective masses for different flow times at
T ¼ 305 MeV, r ¼ 0.606 fm, β ¼ 7.825. The bottom panel
shows the effective masses for the subtracted correlator. The
lines in the bottom panel show the fits discussed in the text.

FIG. 10. The effective masses for β ¼ 8.249, T ¼ 352 MeV,
r ¼ 0.280 fm and the corresponding fits with the cut Lorentzian
plus the delta function for ρlowr shown as a line. The bottom panel
shows the relative deviation between the fit and the data with the
lines indicating the estimated 1 − σ band of the data.
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It was shown in Ref. [10] that the rapid nonlinear decrease
in the effectivemasses is due to ρlowr ðω; TÞ. This contribution
to the spectral function arises from the light states in the
medium propagating backward in timewhich are coupled to
the static QQ̄ propagating forward in time [10]. This
contribution also depends on the details of the QQ̄ corre-
lators, e.g., whether one uses Wilson line or Wilson loops
and the amount of smearing used [10].Wemodel this part of
the spectral function with a single delta function because
such a simple form is sufficient to describe the data for the
Wilson line correlators with the exception of one data point
very close to the boundary τ ¼ 1=T. We perform fits of
subtracted Wilson line correlator with cut Lorentzian form
of ρpeakr ðω; TÞ and a single delta function for ρlowr ðω; TÞ for

all available data sets omitting the first datum, which is
possibly affected by the distortions due to smearing, and the
last data point. Some sample fits are shown in Fig. 9 for
T ¼ 305 MeV, r ¼ 0.606 fm, β ¼ 7.825, and in Fig. 10 for
T ¼ 352 MeV, r ¼ 0.28 fm, β ¼ 8.249. The fits work well
as demonstrated in Fig. 10 (bottom), where the relative
difference between the fit and the lattice data is shown. Fits
using theGaussian form for ρpeakr ðω; TÞwork equallywell as
demonstrated in Fig. 11.
The amplitude and the position of the small delta

function that parametrizes ρlowr are shown relative to the
dominant peak in Fig. 12 for β ¼ 8.249 and different
temperatures. As one can see from the figure, the position
of this delta function is between 1.8 and 3.8 GeV below the
position of the dominant peak, and shows only mild
dependence on r. The amplitude of this delta function
on the other hand increases rapidly with increasing r.
Similar results have been obtained for the two other β
values. We also note that for small values of r, typically
smaller than five times the lattice spacing, it is not
necessary to include this small delta function in the fits;
i.e., we can set ρlowr to zero and obtain good fits.
In Fig. 13 we show the width of the spectral function

defined as the width at half of the maximum height as a
function of r and different temperatures obtained from the
fits using Gaussian and cut Lorentzian form for ρpeakr ðω; TÞ.
We see that using the Gaussian results in a systematically
larger width. The Lorentzian parameter ΓL though is
dependent on the cut on the Lorentzian. This means that
there is a systematic uncertainty in the determination of
ImVðr; TÞ from the parametrization of the spectral func-
tion. As we discuss in the section below it is possible to
define the width in a model independent way by consid-
ering cumulants of the spectral function.
We also studied the dependence of our results on the real

and imaginary part of the potential on the number of
smearing level and on the interpolations. As in the zero
temperature case we performed the analysis without using
interpolation or doubling the interpolation range. We find

FIG. 11. The effective masses for β ¼ 8.249, T ¼ 251 MeV,
r ¼ 0.392 fm and the corresponding fits with a Gaussian plus the
delta function for ρlowr shown as a line. The bottom panel shows
the relative deviation between the fit and the data with the lines
indicating the estimated 1 − σ band of the data.

FIG. 12. The amplitude of the small delta function divided by Ar (left) and the position of the small delta function relative to the
position of the dominant peak (right) as a function of r. The results are shown at different temperatures for lattice spacing a ¼
0.0280 fm (β ¼ 8.249).
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that the distortions in ReVðr; TÞ due to smearing are the
same as in the zero temperature potential. This is shown in
Fig. 15. This means that while smearing can distort the
potential at very short distances, it does not affect the
temperature dependence of the real part of the potential.
Therefore, we show our results for ReV also at the shortest
distances in the main text. At these distance we use slightly
different values of cQ shown in Fig. 5 to offset the
distortions due to smearing. From Fig. 15 we also show
that using interpolation does not introduce a bias in our
results for ReVðr; TÞ. The dependence of ImVðr; TÞ on the
smearing level and on the interpolations is shown in
Fig. 16. As one can see from the figure also here we do
not see significant dependence on these.

APPENDIX D: CUMULANTS OF THE SPECTRAL
FUNCTION

In this appendix we discuss the cumulants of the spectral
functions and their relation to the effective mass of the
Wilson line correlators. The cumulants of the spectral
functions cn are defined as

c1 ¼ hωi; ðD1Þ

c2 ¼ hω2i − hωi2; ðD2Þ

c3 ¼ hω3i − 3hωihω2i þ 2hωi3; ðD3Þ

where h…i stands for R dωρrðω; TÞ…. Cumulants exist if
the spectral function has support in a finite ω range, which
is the case for the subtracted spectral function ρsubr ðω; TÞ ¼
ρrðω; TÞ − ρhighr ðωÞ≡ ρlowr ðω; TÞ þ ρpeakr ðω; TÞ. In what

FIG. 13. Width at half the maximum height for the cut
Lorentzian fit and Gaussian fit.

FIG. 14.
ffiffiffiffiffi
c2

p
for the Gaussian fit (G), compared to the cut

Lorentzian fit (L), or to a Gaussian fit without accounting for the
low ω structure (G no delta).

FIG. 15. Real part of the potential for the cut Lorentzian fit for
different smearing and interpolation levels for a ¼ 0.0404 fm,
Nτ ¼ 20, T ¼ 244 MeV. The label “0 × int” means no interpo-
lation is used in the analysis, while the label “2 × int” means that
the interpolations range was doubled in the analysis compared to
the default setup. Fits done from τ ¼ 2 to 17. Fits with no
smearing or no interpolation fits have been cut above r=a ≥ 20
due to large errors. The fit for no smearing is only done up to
τ ¼ 16. Error bars are purely statistical.

FIG. 16. Imaginary part of the potential for the cut Lorentzian
fit for different smearing and interpolation levels for
a ¼ 0.0404 fm, Nτ ¼ 20, T ¼ 244 MeV. The label “0 × int”
means no interpolation is used in the analysis, while the label
“2 × int” means that the interpolations range was doubled in the
analysis compared to the default setup. Fits done from τ ¼ 2 to
17. Fits with no smearing or no interpolation have been cut above
r=a ≥ 20 due to large errors. Fit for no smearing is only done up
to τ ¼ 16. Error bars are purely statistical.
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follows we will discuss the moments of this spectral
function. The cumulants of the spectral function are related
to the cumulants of the subtracted Wilson line correlators at
τ ¼ 0, mn defined as

Wsubðτ; r; TÞ ¼ exp

�X∞
n¼0

mnð−τÞn
n!

�
: ðD4Þ

This can be seen by Taylor expanding the exponential in the
spectral representation of the subtracted Wilson line corre-
lator

Wsubðτ; r; TÞ ¼
Z

dωe−ωτρsubr ðω; TÞ;

¼
Z

dω
X∞
n¼0

ð−ωτÞn
n!

ρsubr ðω; TÞ;

¼
X∞
n¼0

hωni ð−τÞ
n

n!
: ðD5Þ

Expanding the exponential in Eq. (D4) and comparing to
Eq. (D5) we see that

m1 ¼ hωi; ðD6Þ

m2 ¼ hω2i − hωi2: ðD7Þ

The first cumulant of the Wilson line correlators is the
effective mass. The second cumulant is the slope of the
effective mass in τ.
We calculated the second cumulant of the subtracted

spectral function using the Gaussian form and cut
Lorentzian form including and excluding the δ function
at small ω. The result of this analysis is shown in Fig. 14.
We see that the second cumulant of the spectral function is
not sensitive whether we use a Gaussian or cut Lorentzian
in our analysis. Furthermore, the second cumulant does not
change much if we include or exclude the contribution from
ρlowr ðω; TÞ that is the small delta peak. We also see that

ffiffiffiffiffi
c2

p
has a similar dependence on r as the full width half
maximum in Fig. 13 but is somewhat smaller.
We have estimated the systematic uncertainties due to

the ansatz for the spectral function by varying the fit
range for the cut Lorentzian ansatz with τmin=a ¼ 2 and
τmax=a ¼ fNτ − 5; Nτ − 4; Nτ − 3g. The effect of this
variation for

ffiffiffiffiffi
c2

p
exceeds the difference upon changing

the ansatz (to Gaussian) or the cut of the Lorentzian. Thus,
we used the average of the two most outlying results for cut
Lorentzian as central values and the full spread as the
systematic error estimate, which we have added in quad-
rature. For large distances this estimate clearly exceeds the
statistical errors. ReVðr; TÞ is insensitive to these changes
within statistical errors.

We can also fit our lattice results on the subtracted
Wilson line correlator with the following simple form

Wapproxðτ; r; TÞ ¼ expðm0 −m1τ þm2τ
2=2Þ ðD8Þ

in the range τ=a ¼ 2 − Nτ=3, where the effective mass is
approximately linear. From this fit, we can then estimate the
second cumulant of the spectral function and compare it
with the determination of c2 obtained by integrating the
model spectral function based on the cut Lorentzian and the
small delta function in almost the entire τ range. This
comparison is shown in Fig. 17. We see that the two
methods of estimating c2 are in good agreement. This
means that defining ImVðr; TÞ in terms of c2 is model
independent and robust.
We also calculated the third cumulant of the spectral

function using our fitted spectral function based on the cut
Lorentzian form. The result on c3, which is the measure of
skewness of the spectral function, is shown in Fig. 18. We
see that −c3 is close to zero at small r but then rapidly

FIG. 17. The second cumulant of the subtracted spectral
function as a function of r determined from the cut Lorentzian
form of the spectral function (circles) and from the second order
polynomial fit of the Wilson line correlation function in the
τ=a range 2 − Nτ=3 (blue band) for T ¼ 251 MeV and
a ¼ 0.0280 fm.

FIG. 18. ð−c3Þ1=3 as a function of r in temperature units for
lattice spacing a ¼ 0.0280 fm and different temperatures.
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increases with increasing r. For very small distances,
r < 5a ρlowr ðω; TÞwas not included in the fit, and therefore,
c3 is exactly zero here. Unfortunately, our lattice results are
not precise enough to obtain c3 using fits with Eq. (D8)

extended to higher order polynomials in the exponent.
Thus at the present level of accuracy, the short τ behavior
of the effective masses can be parametrized solely by
m1 and m2.
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