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We calculate the form factors for the B → D�lνl decay in 2þ 1 flavor lattice QCD. For all quark
flavors, we employ the Möbius domain-wall action, which preserves chiral symmetry to a good precision.
Our gauge ensembles are generated at three lattice cutoffs a−1 ∼ 2.5, 3.6, and 4.5 GeV with pion masses as
low asMπ ∼ 230 MeV. The physical lattice size L satisfies the conditionMπL ≥ 4 to control finite volume
effects (FVEs), while we simulate a smaller size at the smallestMπ to directly examine FVEs. The bottom
quark masses are chosen in a range from the physical charm quark mass to 0.7a−1 to control discretization
effects. We extrapolate the form factors to the continuum limit and physical quark masses based on heavy
meson chiral perturbation theory at next-to-leading order. Then the recoil parameter dependence is
parametrized using a model independent form leading to our estimate of the decay rate ratio between the tau
(l ¼ τ) and light lepton (l ¼ e, μ) channels RðD�Þ ¼ 0.252ð22Þ in the Standard Model. A simultaneous fit
with recent data from the Belle experiment yields jVcbj ¼ 39.19ð91Þ × 10−3, which is consistent with
previous exclusive determinations, and shows good consistency in the kinematical distribution of the
differential decay rate between the lattice and experimental data.

DOI: 10.1103/PhysRevD.109.074503

I. INTRODUCTION

The B → D�lνl semileptonic decay, where l ¼ e, μ, τ
and νl represents the corresponding neutrino, plays a key
role in stringent tests of the Standard Model (SM) and
searches for new physics. The channels associatedwith light
leptons l ¼ e, μ provide a determination of the Cabibbo-
Kobayashi-Maskawa (CKM)matrix element jVcbj, which is
a fundamental parameter of the SM. On the other hand, the τ

channel is expected to be a good probe of newphysics, since,
for instance, it is expected to strongly couple to the charged
Higgs boson predicted by supersymmetric models. Indeed,
there is an intriguing ≳3σ tension between the SM and
experiments on the decay rate ratio

RðD�Þ ¼ ΓðB → D�τντÞ
ΓðB → D�lνlÞ

ðl ¼ e; μÞ ð1Þ

describing the lepton-flavor universality violation [1].
However, there has been a long-standing tension

between the jVcbj determinations from exclusive and
inclusive decays ðB → Dlνl þD�lνl þD��lνl þ � � �Þ.
The Heavy Flavor Averaging Group reported that analysis
of the inclusive decay yields [1]
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jVcbj × 103 ¼ 41.98ð45Þ; ð2Þ

which shows a ≲4σ (9%) tension with the determination
from the exclusive decays

jVcbj × 103 ¼
�
39.14ð99Þ ðB → DlνlÞ;
38.46ð68Þ ðB → D�lνlÞ:

ð3Þ

It has been argued [2] that such a tension can be explained
by introducing a tensor interaction beyond the SM, which,
however, largely distorts the Z → b̄b decay rate measured
precisely by experiments. Therefore, it is likely that the
jVcbj tension is due to our incomplete understanding of the
theoretical and/or experimental uncertainty.
The largest theoretical uncertainty in the exclusive

determination comes from form factors, which describe
nonperturbative QCD effects to the decay amplitude
through the matrix elements

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p −1hD�ðϵ0; p0ÞjVμjBðpÞi ¼ iεμνρσϵ0�νv0ρvσhVðwÞ;
ð4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p −1hD�ðϵ0; p0ÞjAμjBðpÞi
¼ ðwþ 1Þϵ0�μ hA1

ðwÞ
− ðϵ0�vÞfvμhA2

ðwÞ þ v0μhA3
ðwÞg; ð5Þ

where w ¼ vv0 is the recoil parameter defined by four
velocities v ¼ p=MB and v0 ¼ p0=MDð�Þ , and ϵ0 is the
polarization vector of D�, which satisfies p0ϵ0 ¼ 0. Note
that, here and in the following, kinematical variables
(momentum, velocity, polarization vector, but not space-
time coordinates) with and without the symbol “ 0” represent
those for D� and B, respectively.
Lattice QCD is a powerful method to provide a first-

principles calculation of the form factors with systemati-
cally improvable accuracy [3,4]. However, until recently,
only hA1

ð1Þ at the zero-recoil limit w ¼ 1 had been
calculated in unquenched lattice QCD [5–7]. In the
previous determination of jVcbj, therefore, other informa-
tion of the form factors in addition to jVcbj had to be
determined by fitting experimental data of the differential
decay rate to a theoretical expression [1,8–10]. While a
model independent parametrization of the form factors by
Boyd, Grinstein, and Lebed (the BGL parametrization) is
available [11], its large number of parameters due to the
poor knowledge on the form factors makes the fit unstable
[12–15] even with experimental data of differential dis-
tribution with respect to all kinematical variables, namely
the recoil parameter and three decay angles, from the
KEKB/Belle experiment [16–18].
One of the largest problems in the lattice study of B

meson physics is that the simulation cost rapidly increases
as the lattice spacing decreases. In spite of recent progress

in computer performance and development of simulation
algorithms, it is still difficult to simulate lattice cutoffs a−1

sufficiently larger than the physical bottom quark mass
mb;phys to suppress OððambÞnÞ discretization errors to, say,
the 1% level. For the time being, a practical approach to B
physics on the lattice is to employ a heavy quark action
based on an effective field theory, such as the heavy quark
effective theory (HQET), to directly simulate mb;phys at
currently available cutoffs a−1 ≲mb;phys. Another straight-
forward approach is the so-called relativistic approach,
where a lattice QCD action is used also for heavy quarks
but with their masses sufficiently smaller than the lattice
cutoff to suppress discretization effects. The Fermilab/
MILC reported the first lattice calculation of all form
factors at zero and nonzero recoils [19] using the Fermilab
approach for heavy quarks, namely a HQET interpretation
of the anisotropic Wilson-clover quark action [20], and
staggered light quarks. It was recently followed by the
HPQCD collaboration with a fully relativistic approach
[21], where the highly improved staggered quark action
was used both for light and heavy flavors.
In this paper, we present an independent study with a

fully relativistic approach using the Möbius domain-
wall quark action [22] for all relevant quark flavors.
This preserves chiral symmetry to good precision at finite
lattice spacing, reducing the leading discretization errors
to second order, i.e. OððambÞ2Þ. We can also use chiral
perturbation theory in the continuum limit (a ¼ 0) to guide
the chiral extrapolation to the physical pion mass. Note also
that we do not need explicit renormalization of the weak
axial and vector currents on the lattice to calculate relevant
form factors, because the renormalization constants of
these currents coincide with each other and are canceled
by taking appropriate ratios of relevant correlation func-
tions [23]. Our preliminary analyses and discussions on
these features can be found in our earlier reports [24–26].
This paper is organized as follows. After a brief

introduction to our choice of simulation parameters, the
form factors are extracted from correlation functions at the
simulation points in Sec. II. These results are extrapolated
to the continuum limit and physical quark masses in
Sec. III. In Sec. IV, we generate synthetic data of the form
factors and fit them to a model-independent parametriza-
tion in terms of the recoil parameter to make a comparison
with the previous lattice and phenomenological studies as
well as to estimate the SM value of RðD�Þ. We also perform
a simultaneous fit with experimental data to estimate jVcbj.
Our conclusions are given in Sec. V.

II. FORM FACTORS AT SIMULATION POINTS

A. Gauge ensembles

Our gauge ensembles are generated for 2þ 1-flavor
lattice QCD, where dynamical up and down quarks are
degenerate and dynamical strange quark has a distinct mass.
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We take three lattice spacings of a ≃ 0.044, 0.055,
and 0.080 fm [27], which correspond to the lattice
cutoffs a−1 ∼ 2.453ð4Þ, 3.610(9), and 4.496(9)GeV, respec-
tively. They are determined using the Yang-Mills gradient
flow [28]. The tree-level improved Symanzik gauge action
[29–31] and the Möbius domain-wall quark action [22]
are used to control discretization errors and to preserve chiral
symmetry to a good precision. We refer the interested
reader to Refs. [22,27,32] for the five-dimensional formu-
lation of the quark action and our implementation. Its four-
dimensional effective Dirac operator is given by

1þmq

2
þ 1 −mq

2
γ5ϵ½HM�; ð6Þ

where mq represents the quark mass. We employ the
kernel operator HM ¼ 2γ5DWð−MÞ=f2þDWð−MÞg,
where DWð−MÞ is the Wilson-Dirac operator with a
negative mass with M ¼ 1 and with stout smearing [33]
applied three successive times to the gauge links. With our
choice of the staple weight (ρ ¼ 0.1), the smearing radius
∼1.5a is at the scale of the lattice spacing and vanishes in the
limit of a → 0. We therefore expect that the link smearing
does not change the continuum limit of the B → D� form
factors. It may induce additional discretization effects,
which, however, do not turn out to be large in our continuum
and chiral extrapolation in Sec. III. The polar decomposition
approximation in Eq. (6) is realized for the sign function
ϵ½HM� in the five-dimensional domain-wall implementation.
With this choice, the residual quarkmass,which is ameasure
of the chiral symmetry violation, is suppressed to the level of

1MeVat a ≃ 0.080 fm, and 0.2MeVor less on finer lattices,
which are significantly smaller than the physical up and
down quark masses [27]. With reasonably small values of
the fifth-dimensional size N5 ¼ 8–12, the computational
cost is largely reduced from that of our previous large-scale
simulation [34,35] using the overlap formulation that also
preserves chiral symmetry [36].
We employ the Möbius domain-wall action for all

relevant quark flavors. Our choices of the degenerate up
and down quark mass mud correspond to pion masses
from Mπ ∼ 500 MeV down to 230 MeV. Chiral symmetry
allows us to use heavy meson chiral perturbation theory
(HMChPT) [37,38] for our chiral extrapolation of simu-
lation results to the physical pion mass without introducing
terms to describe discretization effects. We take a strange
quark mass ms close to its physical value fixed from
M2

ηs ¼ 2M2
K −M2

π . The charm quark mass mc is set to its
physical value fixed from the spin-averaged charmonium
mass ðMηc þ 3MJ=ΨÞ=4 [39]. Depending on the lattice
spacing a, we take three to six bottom quark masses mQ ¼
1.25nmc ðn ¼ 0; 1;…Þ satisfying the condition mQ ≤
0.7a−1 to avoid large discretization errors. We note that,
with chiral symmetry, the leading discretization error is
reduced toOððamQÞ2Þ. As we will see in the next section, a
and mQ dependences of the form factors are mild, and the
extrapolation to the continuum limit and physical quark
masses is under good control. Our simulation parameters
are summarized in Tables I and II.
The spatial lattice size L ¼ Nsa is chosen to satisfy the

condition MπL≳ 4 to suppress finite volume effects

TABLE I. Parameters of gauge ensembles. We denote the five-dimensional lattice size as N3
s × Nt × N5. Quark masses are bare value

in lattice units.

Lattice parameters mud ms Mπ½MeV� MK ½MeV� Δtþ Δt0 Nconf Ntsrc

β ¼ 4.17, a−1 ¼ 2.453ð44Þ GeV, 323 × 64 × 12 0.0190 0.0400 499(1) 618(1) 12, 16, 24, 28 100 1
0.0120 0.0400 399(1) 577(1) 12, 16, 22, 26 100 1
0.0070 0.0400 309(1) 547(1) 12, 16, 22, 26 100 2
0.0035 0.0400 230(1) 527(1) 8, 12, 16, 20 100 2

β ¼ 4.17, 483 × 96 × 12 0.0035 0.0400 226(1) 525(1) 8, 12, 16, 20 100 2

β ¼ 4.35, a−1 ¼ 3.610ð65Þ GeV, 483 × 96 × 8 0.0120 0.0250 501(2) 620(2) 18, 24, 36, 42 50 1
0.0080 0.0250 408(2) 582(2) 18, 24, 33, 39 50 1
0.0042 0.0250 300(1) 547(2) 18, 24, 33, 39 50 2

β ¼ 4.47, a−1 ¼ 4.496ð80Þ GeV, 643 × 128 × 8 0.0030 0.0150 284(1) 486(1) 16, 24, 32, 40 50 2

TABLE II. Bare heavy quark masses in lattice units used to calculate relevant two- and three-point functions. The
smallest value corresponds to the physical charm mass fixed from the spin averaged charmonium mass.

β mQ

4.17 0.44037, 0.55046, 0.68808
4.35 0.27287, 0.34109, 0.42636, 0.53295, 0.66619
4.47 0.210476, 0.263095, 0.328869, 0.4110859, 0.5138574, 0.6423218
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(FVEs). At our smallest Mπ on the coarsest lattice, we also
simulate a smaller physical lattice size MπL ∼ 3 to directly
examine the FVEs.
The statistics at the lattice cutoffs a−1 ≃ 2.5, 3.6, and

4.5 GeV, are 5,000, 2,500, and 2,500 hybrid Monte Carlo
trajectories with a unit trajectory length of 1, 2, and 4 times
the molecular dynamics time unit, respectively, which is
increased to take account of the longer autocorrelation
toward the continuum limit. On each ensemble, we take

Nconf configurations in an equal trajectory interval to
calculate correlation functions relevant to the B → D�lν
decay. Our choice of Nconf is listed in Table I. More details
on our simulation setup can be found in Ref. [27].

B. Ratio method

The B → D� matrix elements can be extracted from the
three- and two-point functions

CBD�
OΓ

ðΔt;Δt0;p;p0;ϵ0Þ¼ 1

N3
sNtsrc

X
tsrc;xsrc

X
x;x0

hOD�ðx0;tsrcþΔtþΔt0;ϵ0ÞOΓðx;tsrcþΔtÞOBðxsrc;tsrcÞ†ie−ipðx−xsrcÞ−ip0ðx0−xÞ; ð7Þ

CPðΔt;pÞ ¼ 1

N3
sNtsrc

X
tsrc;xsrc

X
x

hOPðx; tsrc þ ΔtÞOPðxsrc; tsrcÞ†ie−ipðx−xsrcÞ ð8Þ

through their ground state contribution

CBD�
OΓ

ðΔt;Δt0;p;p0; ϵ0Þ⟶
Δt;Δt0→∞

Z�
D�ðp0; ϵ0ÞZBðpÞ
4ED�ðp0ÞEBðpÞ

hD�ðp0; ϵ0ÞjOΓjBðpÞie−ED� ðp0ÞΔt0−EBðpÞΔt;

CPðΔt;pÞ⟶
Δt→∞

Z�
PðpÞZPðpÞ
2EPðpÞ

e−EPðpÞΔt; ð9Þ

where OΓ is the weak vector (Vμ) or axial (Aμ) current,
and we omit the symbol 0 on the momentum variable
and the argument ϵ0 for the D� two-point function
CD�ðΔt;p0; ϵ0Þ for simplicity. The meson interpolating field
is denoted byOP (P ¼ B;D�), where Gaussian smearing is
applied to enhance their overlap with the ground state
ZPðpÞ ¼ hPjO†

Pi. The B meson is at rest (p ¼ 0) through-
out this paper. The w dependence of the form factors is
studied by varying the three-momentum ofD� as jp0j2 ¼ 0,
1, 2, 3, 4 (in this paper, we denote the momentum
on the lattice in units of 2π=L). To this end, we also
calculate D� two-point functions with the local sink
operator O†

D�;lcl:

CD�
sl ðΔt;p0; ϵ0Þ ¼ 1

N3
sNtsrc

X
tsrc;xsrc

X
x

hOD�;lclðx; tsrc þ Δt; ϵ0Þ

×OD� ðxsrc; tsrc; ϵ0Þ†ie−ip0ðx−xsrcÞ; ð10Þ

which are used in a correlator ratio (13) below.
The three-point functions are calculated by using the

sequential source method, where the total temporal sepa-
ration Δtþ Δt0 between the source and sink operators is
fixed and the temporal location of the weak current is
varied. In order to control the contamination from the
excited states, we repeat our measurement for four values of
the source-sink separation Δtþ Δt0 listed in Table I.

The statistical accuracy of the two- and three-point
functions are improved by averaging over the spatial
location of the source operator xsrc as indicated in
Eqs. (7) and (8). To this end, we employ a volume source
with Z2 noise. At Mπ ≲ 300 MeV, we repeat our meas-
urement over two values of the source time slices tsrc ¼ 0
and Nt=2 to take the average of the correlators. Namely,
Ntsrc in Eqs. (7) and (8) is 2 at Mπ ≲ 300 MeV, and 1
otherwise. The correlators with nonzero momentum p are
also averaged over all possible p’s based on parity and
rotational symmetries on the lattice.
The number of measurements on each ensemble is given

as NconfNtsrc in Table I. As mentioned above, correlation
functions for each configuration are averaged over Ntsrc
values of the source time slice tsrc. Then, simulation data of
Nconf configurations are divided into 50 bins: namely, the
bin size is two (one) configurations for β ¼ 4.17 (4.35 and
4.47). The statistical error is estimated by the bootstrap
method with 5,000 replicas. Figure 1 shows the bin size
dependence of the relative statistical error of a three-point
function at our largest cutoff, where the topological charge
Q changes much less frequently leading to larger auto-
correlation compared to the coarser lattices [27]. Our
choice of the bin size on this finest lattice is one configu-
ration, and we do not observe significant increase of the
statistical error toward larger bin sizes. This suggests that
our bin size is sufficiently large partly due to our choice of
larger unit trajectory length towards the continuum limit.
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We also note that the error estimate is stable when we vary
the number of bootstrap replicas as well as when we
employ the jackknife method instead.
As observed in our previous simulation in the trivial

topological sector [34], the local topological fluctuation are
active even if we fix the “global” topological charge Q,
namely the whole-volume integral of the topological charge
density. In Ref. [40], we demonstrated that the topological
susceptibility χt is calculable within the fixed topology
setup. Our result for χt shows quark mass dependence
consistent with ChPT, and its value extrapolated to the
chiral limit is in good agreement with that from our
simulation in the ϵ regime [41,42]. References [43,44]
argued that the bias due to the freezing of the global
topology can be considered as FVEs suppressed by the
inverse space-time volume. In our study of the B → πlν
decay [27], we confirmed that such FVEs on the pion
effective mass are well suppressed, so that its jQj depend-
ence is not significant. Figure 2 shows the statistical
average of a B → D� three-point function calculated for
each jQj. We do not observe any significant jQj depend-
ence of the average at jQj ≤ 4. At larger jQj, we do not
have enough data for a reliable error estimate, but indi-
vidual data plotted by crosses are consistent with the
averages at jQj ≤ 4. We therefore conclude that the top-
ology freezing effect is insignificant within our statistical
accuracy.
To precisely extract the form factors, we construct ratios

of the correlation functions, in which unnecessary overlap
factors and exponential damping factors cancel for the
ground-state contribution [23]. The statistical fluctuation is
also expected to partly cancel in such a ratio. With B and
D� mesons at rest, the vector current matrix element (4)
vanishes, and the axial vector one (5) is sensitive only to the
axial vector form factor hA1

at zero recoil, which is the
fundamental input to determine jVcbj. In order to precisely
determine hA1

ð1Þ, we employ a double ratio,

R1ðΔt;Δt0Þ ¼
CBD�
A1

ðΔt;Δt0; 0; 0; ϵ0ÞCD�B
A1

ðΔt;Δt0; 0; 0; ϵ0Þ
CBB
V4
ðΔt;Δt0; 0; 0ÞCD�D�

V4
ðΔt;Δt0; 0; 0; ϵ0; ϵ0Þ

⟶
Δt;Δt0→∞

jhA1
ð1Þj2; ð11Þ

where the D� polarization is chosen as ϵ0 ¼ ð1; 0; 0; 0Þ
along the polarization of the current inserted, i.e. A1.
The left panel of Fig. 3 shows our results for this ratio
at our smallest Mπ and a−1 with mQ ¼ 1.25mc. Note that
the ratio is symmetrized as R1ðΔt;Δt0Þ → fR1ðΔt;Δt0Þ þ
R1ðΔt0;ΔtÞg=2, since we use the same smearing function
for both the source and sink operators. We observe a
reasonable consistency among data at intermediate values
of the source-sink separation Δtþ Δt0 ¼ 12 (circles) and
16 (squares). The excited state contribution could poten-
tially be significant but not large (≲1%) for the smallest
Δtþ Δt0 ¼ 8 (diamonds). Data at the largest Δtþ Δt0 ¼
20 (triangles) show a long plateau and are consistent with
those at smaller Δtþ Δt0 within the large statistical errors.
These observations suggest that the data at Δtþ Δt0 ¼ 12,
which is roughly 1 fm, are dominated by the ground state
contribution at least at the midpoint Δt ∼ Δt0. The situation
is similar in the right panel of the same figure for our largest
a−1 and with mQ ¼ 1.254mc, where data around midpoint
Δt ∼ Δt0 are consistent among all simulated source-sink
separations within 2σ.
We find that all data are well described by the following

fitting form including effects from the first excited states:

R1ðΔt;Δt0Þ ¼ jhA1
ð1Þj2�1þ ae−ΔMBΔt þ be−ΔMD�Δt

þ ae−ΔMBΔt0 þ be−ΔMD�Δt0
� ð12Þ

0 1 2 3 4 5 6
bin size [conf]
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0.05

�C
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1B
D
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�t
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�,
��

)
� = 4.47, m

ud
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s
 = 0.0150, m

Q
 = 1.25

4
m

c

�t = �t� = 16,  |p|
2
 = 0,  |p�|2 = 2, �� = (1,0,0,0)

FIG. 1. Bin size dependence of relative statistical error of three-
point function CBD�

OΓ
ðΔt;Δt0;p;p0; ϵ0Þ. We plot data at the largest

cutoff a−1 ≃ 4.5 GeV, mQ ¼ 1.254mc, Δt ¼ Δt0 ¼ 16, jpj2 ¼ 0,
jp0j2 ¼ 2, and ϵ0 ¼ ð1; 0; 0; 0Þ.

0 5
|Q|

2.0

4.0

C
A

1B
D

* (�
t,
�t
�; 

0,
 0

, �
�)
� 

 1
011
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FIG. 2. Topological charge dependence of three-point function
CBD�
OΓ

ðΔt;Δt0;p;p0; ϵ0Þ at a−1 ≃ 2.5 GeV and Mπ ≃ 300 MeV.

We plot data with mQ ¼ 1.252mc, Δt ¼ Δt0 ¼ 11, zero momenta
jpj2 ¼ jp0j2 ¼ 0, and ϵ0 ¼ ð1; 0; 0; 0Þ. The error is estimated by
the jackknife method. At jQj ≥ 5, the number of data are smaller
than 10, and it is difficult to reliably estimate the statistical error.
We therefore plot individual data by crosses rather than their
statistical average.
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with χ2=d:o:f:≲ 1 for a wide range of the values of Δt and
Δt0. Here ΔMBðD�Þ represents the energy difference
between the BðD�Þmeson ground state and the first excited
state of the same quantum numbers, and is set to the value
estimated from a two-exponential fit to the two-point
function CBðD�ÞðΔt; 0Þ. The fit range is chosen such that
all the data of R1ðΔt;Δt0Þ with the source-to-current
(current-to-sink) separation Δtð0Þ equal to or larger than a

lower cut Δtð0Þmin are included irrespective of the source-sink
separation Δtþ Δt0. As shown in the left panel of Fig. 4,
our result for hA1

ð1Þ is stable against the choice of the lower
cuts Δtmin and Δt0min.
The right panels of Figs. 3 and 4 for our largest a−1 also

show ground state dominance with Δtþ Δt0 ≳ 23a ∼ 1 fm

and stability of hA1
ð1Þ against the choice of the fit range,

respectively. The situation is similar for other simulation
parameters.
In order to extract form factors at nonzero recoils, theD�

momentum and polarization vector need to be chosen
appropriately. The axial vector matrix element (5) is
sensitive only to hA1

with a polarization vector ϵ0 ¼
ð1; 0; 0Þ and a momentum p0⊥ that satisfies ϵ0�v ¼ 0. We
note that, here and in the following, three-dimensional
polarization vector ϵ is accompanied by its temporal
component to be fixed from the convention ϵ0�p0⊥ ¼ 0,
which is assumed for Eqs. (4) and (5). Then, the recoil
parameter dependence of hA1

may be studied from the
following ratio:
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FIG. 3. Double ratio (11) to estimate hA1
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R0
1ðp0⊥;Δt;Δt0Þ ¼

CBD�
A1

ðΔt;Δt0; 0;p0⊥; ϵ0ÞCD�
sl ðΔt0; 0; ϵ0Þ

CBD�
A1

ðΔt;Δt0; 0; 0; ϵ0ÞCD�
sl ðΔt0;p0⊥; ϵ0Þ

⟶
Δt;Δt0→∞

wþ 1

2

hA1
ðwÞ

hA1
ð1Þ : ð13Þ

Here we use the two-point function with the local sink CD�
sl

(10) as in our study of the K → πlνl decay [45]. The
vector form factor hV can be extracted from the following
ratio through the vector current matrix element (4):

RVðp00⊥;p0⊥;Δt;Δt0Þ ¼
CBD�
V1

ðΔt;Δt0; 0;p00⊥; ϵ00Þ
CBD�
A1

ðΔt;Δt0; 0;p0⊥; ϵ0Þ

⟶
Δt;Δt0→∞

iε1ijϵ00�i v00⊥j

wþ 1

hVðwÞ
hA1

ðwÞ : ð14Þ

Here we use two different polarization vectors, ϵ0 ¼
ð1; 0; 0Þ and ϵ00 ¼ ð0; 1; 0Þ, and momenta p0⊥ and p00⊥ that

satisfy p0ð00Þ
⊥ ⊥ ϵ0ð00Þ. Note that jp00⊥j ¼ jp0⊥j to share the same

recoil parameter w, and v00⊥j ¼ p00⊥j=MD� . We emphasize
that renormalization factors of the weak vector and axial
currents cancel thanks to chiral symmetry preserved in our
simulations.
Figures 5 and 6 show an example of our results for

R0
1 and RV at our largest cutoff a−1 ≃ 4.5 GeV and

mQ ¼ 1.254mc. Around the midpoint Δt ∼ Δt0, we observe
good consistency in these ratios among all simulated values
of the source-sink separation Δtþ Δt0 ≳ 1 fm. A similar
ground state dominance is also observed at other simulation
points. We carry out a simultaneous fit using a fitting form
that takes account of the first excited state contribution as

R0
1ðp0⊥;Δt;Δt0Þ ¼ R0

1ðp0⊥Þ
�
1þ ae−ΔMBΔt þ be−ΔMD�Δt0

�
ð15Þ

to extract the form factor ratio hA1
ðwÞ=hA1

ð1Þ from the
ground state contribution R0

1ðp0⊥Þ, and a similar form for
RVðp00⊥;p0⊥;Δt;Δt0Þ to extract hVðwÞ=hA1

ðwÞ. Our data are
well described by this fitting form with χ2=d:o:f:≲ 1. From
these form factor ratios and hA1

ð1Þ from R1, we calculate
hA1

ðwÞ and hVðwÞ at simulated values of w.
There is a 2σ bump of R0

1 for Δtþ Δt0 ¼ 40 (black
triangles) around Δt ¼ 28 (Δt0 ¼ 12) in Fig. 5. Since the
global topological charge does not fluctuate very much at
the corresponding cutoff, one may expect bump(s) in the
exponential decay of relevant correlators due to instantons
frozen at the temporal separation Δtð0Þ for a certain period
of our simulation time. However, Fig. 7 shows that there is
no statistically significant bump of the relevant correlators
at Δt ∼ 28 and Δt0 ∼ 12. As mentioned above, the local
topological fluctuation is active even when the global
topological charge is fixed. We attribute 1 − 2σ bumps of
correlator ratios in Figs. 3, 5–6, 8, and 9 to large statistical
fluctuations of correlators at the largest temporal separation
Δtþ Δt0 ¼ 40, and accidental anticorrelation of the stat-
istical fluctuations. Since these data have larger statistical
error than those at smaller Δtþ Δt0, these bumps do not
change results of the fits (12) and (15) to extract the ground
state contribution.
The axial vector form factors hA2

and hA3
can be

extracted from the axial vector matrix element (5) with
the D� spatial momentum p0

=⊥ not perpendicular to the

spatial polarization vector. The matrix element of A1, for
instance, has nonzero sensitivity to hA1

and hA3
. We use the

following ratio to extract hA3
:

R3ðp0
=⊥;p

0⊥;Δt;Δt0Þ ¼ rZ
CBD�
A1

ðΔt;Δt0; 0;p0
=⊥; ϵ

00Þ
CBD�
A1

ðΔt;Δt0; 0;p0⊥; ϵ0Þ

⟶
Δt;Δt0→∞

ϵ00�1 −
ϵ00�4v

0
=⊥;1

wþ 1

hA3
ðwÞ

hA1
ðwÞ ; ð16Þ
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where ϵ0 ¼ ð1; 0; 0Þ, ϵ0�p0⊥ ¼ 0, ϵ00�p0
=⊥ ≠ 0, and

jp0
=⊥j ¼ jp0⊥j. The factor rZ ¼ ZD� ðp0⊥; ϵ0Þ=ZD� ðp0

=⊥; ϵ
00Þ

appears, since the overlap factor of D� depends on whether
the polarization vector is perpendicular to the momentum,
even if jp0

=⊥j ¼ jp0⊥j. While rZ can be estimated from

individual fit to the relevant two-point functions, we employ

a ratio rZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CD�ðΔtref ;p0⊥; ϵ0Þ=CD� ðΔtref ;p0

=⊥; ϵ
00Þ

q
, which

shows better stability against the temporal separation. The
reference temporal separation is chosen as Δtref ∼ T=4 by
inspecting the statistical accuracy and the ground state
saturation of rZ. A similar ratio but with A4 in the numerator
is also sensitive to hA2

:

R2ðp0
=⊥;p

0⊥;Δt;Δt0Þ ¼ rZ
CBD�
A4

ðΔt;Δt0; 0;p0
=⊥; ϵ

00Þ
CBD�
A1

ðΔt;Δt0; 0;p0⊥; ϵ0Þ
⟶
Δt;Δt0→∞

ϵ00�4

�
1 −

1

wþ 1

�
hA2

ðwÞ
hA1

ðwÞ þ v=⊥;4

hA3
ðwÞ

hA1
ðwÞ

��
: ð17Þ

We plot our results for R3 and R2 on our finest lattice in
Figs. 8 and 9, respectively. Similar to other ratios, the
excited state contamination is not large. The fit similar to
(15) yields the ground state contributions, R3ðp0

=⊥;p
0⊥Þ and

R2ðp0
=⊥;p

0⊥Þ, which are stable against the choice of the fit

range: we do not observe Δtð0Þmin dependence beyond 1σ
level when Δtmin þ Δt0min ≲ 16, which is our smallest
value of the source-sink separation Δtþ Δt0. The error

rapidly increases at larger values ofΔtð0Þmin, because less data
are available for the fit. From R2, R3, and hA1

extracted
above, we can calculate hA2

and hA3
.

For one of the D� momenta p0 ¼ ð1; 1; 1Þ, it is not
straightforward to use the above-mentioned correlator
ratios, which use CBD�

A1
ðΔt;Δt0; 0;p0; ϵ0Þ with ϵ0�p0 ¼ 0

as a correlator sensitive only to hA1
ðwÞ. In this case, we

use a linear combination

CBD�
A1

ðΔt;Δt0; 0;p0; ϵ0Þ − CBD�
A1

ðΔt;Δt0; 0;p0; ϵ00Þ
∝ ðwþ 1ÞhA1

ðwÞ ð18Þ

which only involves hA1
with ϵ0 ¼ ð1; 0; 0Þ and

ϵ00 ¼ ð0; 1; 0Þ.

The double ratio R1 enables us to calculate hA1
ð1Þ with

1% statistical error or better, as it only involves correlators
with zero momentum and the statistical fluctuation partially
cancels between the numerator and the denominator. At
nonzero recoil, the numerator of R0

1 (RV) is exclusively
sensitive to hA1

(hV), and the statistical error of hA1
and hV is

typically a few %. This is not the case for hA2
and hA3

with
our setup where the Bmeson is at rest. The numerator of R3

involves hA1
and hA3

, and the typical precision for hA3
is

10%–20%. The statistical error increases to ≳40% for hA2
,

since the central value is suppressed by heavy quark
symmetry and R2 is a linear combination of all axial form
factors.
We note that, thanks to chiral symmetry, finite renorm-

alization factors for theweak vector and axial currents cancel
in the above correlator ratios (11), (13), (14), (16), and (17).
While discretization effects to the wave function renormal-
ization are not small [46], these also cancel in the ratios.

III. EXTRAPOLATION TO CONTINUUM LIMIT
AND PHYSICAL QUARK MASSES

A. Choice of fitting form

Our results for the form factors obtained at various
simulation parameters are plotted as a function of the recoil
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FIG. 9. Same as Fig. 5 but for ratio R2ðp⊥;p⊥;Δt;Δt0Þ (16) to study hA2
ðwÞ.
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parameter w in Fig. 10. We find that the results with different heavy and light quark masses are all close to each other. It also
turns out that the discretization effects are not large.
We extrapolate these results to the continuum limit and physical quark masses based on next-to-leading order heavy

meson chiral perturbation theory (NLO HMChPT) [37,38]. The extrapolation form is generically written as

hX=ηX ¼ cþ gD�Dπ
2

2Λ2
χ

F̄logðξπ;ΔD;ΛχÞ þ cπξπ þ cηsξηs þ cQϵQ

þ caξa þ camQ
ξamQ

þ cwðw − 1Þ þ dwðw − 1Þ2 ðX ¼ A1; A2; A3 and VÞ; ð19Þ

which comprises the constant term, chiral logarithm at w ¼ 1, and leading corrections in small expansion parameters

ξπ ¼
M2

π

Λ2
χ
; ξηs ¼

M2
ηs

Λ2
χ
; ϵQ ¼ Λ̄

2mQ
; ξa ¼ ðΛaÞ2; ξamQ

¼ ðamQÞ2; ð20Þ

withM2
ηs ¼ 2M2

K −M2
π , Λχ ¼ 4πfπ , and nominal values of

Λ̄ ¼ Λ ¼ 500 MeV.
We denote the one-loop integral function for the chiral

logarithm by F̄logðξπ;ΔD;ΛχÞ, where ΔD ¼ MD� −MD is
the D�-D mass splitting. While the loop function can be
approximated as F̄logðξπ;ΔD;ΛχÞ ¼ Δ2

D ln½ξπ� þOðΔ3
DÞ,

we use its explicit form in Ref. [38]. For theD�Dπ coupling,
we take a value of gD�Dπ ¼ 0.53ð8Þ, which was employed in
the Fermilab/MILC paper [6] and covers previous lattice
estimates [47–51]. This choice does not lead to a large
systematic uncertainty, because the chiral logarithm is sup-
pressed by the small mass splitting squared Δ2

D.
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FIG. 10. Form factors as a function of recoil parameter w. The top-left, top-right, bottom-left, and bottom-right panels show results for
hA1
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, and hV , respectively. The black, blue, and red symbols show data at a−1 ∼ 2.5, 3.6, and 4.5 GeV, whereas the open, pale-
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In Fig. 11, we plot hA1
and hV at our smallest value of w

as a function of M2
π. The M2

π dependence is rather mild,
possibly because there is no valence pion in this decay. We
note that there is a nontrivial concave structure at smallM2

π

due to the opening of the D� → Dπ decay. The effect
estimated in NLO HMChPT is, however, not large com-
pared to our statistical accuracy.
For our chiral extrapolation, we employ the so-called ξ

expansion in ξπ and ξηs : namely, we use the measured
meson masses squared, M2

π and M2
ηs , instead of quark

masses mud and ms, respectively, as well as quark-mass
dependent fπ for Λχ instead of the decay constant f in the
chiral limit. This is motivated by our observation [52] that
the ξ expansion shows better convergence of the chiral
expansion for light meson observables compared to the x
expansion with x ¼ 2Bmq=ð4πfÞ2, where B gives the
lowest order relation M2

π ¼ 2Bmud.

The extrapolation form explicitly includes the one-
loop radiative correction ηX for the matching of the
heavy-heavy currents between QCD and HQET [53–55].
Remaining heavy quark mass dependence of the form
factors is then parametrized by polynomials of ϵQ ∝ 1=mQ

and ξamQ
∝ mQ. The dependence is mild as shown in

Fig. 12. Our results are well described by the linear terms
cQϵQ and camQ

ξamQ
in Eq. (19). We note that, for hA1

, the
term cQϵQ is modified as cQðw − 1ÞϵQ to be consistent with
Luke’s theorem [56], and we add the quadratic term dQϵQ2

to take account of possible mQ dependence at w ¼ 1.
The discretization effects in the form factors also turn out to

be mild with our choice of parameters, a−1 ≳ 2.5 GeV and
mQ ≤ 0.7a−1. These are described by an expansion,
i.e. linear in the mQ independent and dependent parameters
ξa and ξamQ

, respectively. Figure 12 shows that the mQ
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and ∼1.205 for hV, respectively. For the latter, w is not exactly equal
to 1.025 due to the slight difference in L among simulated lattice spacings as well as discretization effects to w ¼ E�
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D itself. The

black, blue, and red symbols and lines show data and fit curve at a−1 ∼ 2.5, 3.6, and 4.5 GeV, respectively. The green dashed line shows
the form factors extrapolated to the continuum limit and physical strange and bottom quark masses. The dark and pale shaded green
bands represent the statistical and total error, respectively.
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FIG. 12. Same as Fig. 11 but as a function of HQET expansion parameter ϵQ. To cancel nontrivialmQ dependence due to the matching
factor ηfA1;Vg, we plot a ratio to this factor, which is fitted to the HMChPT-based polynomial form (19) in ϵQ and ξamQ

.
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dependent discretization error is significant in our results.
However, the net mQ dependence is described reasonably
well with our fitting form (19). We note that the mQ

dependence for hA2
and hA3

is insignificant due to their large
relative uncertainty. Aswewillmention later, fit results do not
change significantly if we exclude data at 0.5 ≤ amQ ≤ 0.7
in our continuum and chiral extrapolation.
In this study, we first extrapolate the form factors to the

continuum limit and physical quark masses, and then
parametrize the w dependence by using the model inde-
pendent BGL parametrization, because it may not be
simply combined with the chiral and heavy quark expan-
sions. Concerning the w dependence, therefore, the fit form
(19) with an expansion in w − 1 is used to interpolate our
results. Figure 10 shows that our data do not show strong
curvature in the simulation region of 1 ≤ w≲ 1.1, and can
be well described with only up to the quadratic term.
Numerical results of our continuum and chiral extrapo-

lation are summarized in Table III. The polynomial
coefficients turn out to be Oð1Þ or less with our choice
of the dimensionless expansion parameters (20), which are
normalized by appropriate scales. Many of them are
consistent with zero reflecting the mild dependence on
the lattice spacing and quark masses mentioned above. As a
result, our choice of the fitting forms (19) results in small
values of χ2=d:o:f:≲ 0.2, which, however, are only a rough
measure of the goodness of the fits, because we employ
approximated estimators of the covariance matrix as dis-
cussed in the next subsection.

B. Systematic uncertainties

1. Correlated fit

With limited statistics, the covariance matrix C of our
form factor data has exceptionally small eigenvalues with
large statistical error. In this study, we test two methods to
take the correlation into account in the combined continuum
and chiral extrapolation. First, as in the study of B → πlνl
[27], we introduce a lower cut of the eigenvalue (singular
value) λcut. Effects of the exceptionally small eigenvalues are
suppressed by replacing eigenvalues smaller than λcut by λcut
in the singular value decomposition of C as

C ∼
X
k≤ncut

λcutukuTk þ
X
k>ncut

λkukuTk ; ð21Þ

where uk represents the eigenvector corresponding to the
eigenvalue λk. Here eigenvalues are sorted in ascending
order (λk < λkþ1) and ncut satisfies λncut < λcut < λncutþ1. We
choose λcut such that all eigenvalues below λcut have
statistical error larger than 100%. The second method is
the so-called shrinkage estimate of the covariance matrix
[57,58], which amounts to replacing Cij by

ρδijCii þ ð1 − ρÞCij: ð22Þ

With 0 ≤ ρ ≤ 1, the shrinkage is an interpolation between
the uncorrelated (ρ ¼ 1) and correlated (ρ ¼ 0) fits. An
optimal value of ρ can be estimated by minimizing a loss
function [58]. We observed, however, that results of the
continuum and chiral extrapolation do not strongly depend
on the choice of λcut and ρ. In this study,we therefore employ
the singular value cut for our main results, since this is a
conservative approach,which only tends to increase the final
error. The shift of the fit results obtained with the shrinkage
estimator is treated as a systematic error due to the estimate
of C.
With the approximated estimators of C, χ2=d:o:f: is only

a rough measure of the goodness of the fit. The impact is
shown in Fig. 13. We observe that, in the case of our
analysis, χ2=d:o:f: tends to be slightly smaller than that for

TABLE III. Fit parameters from continuum and chiral extrapolation of form factors (19).

hX χ2=d:o:f: c cπ cηs cQ dQ ca camQ
cw dw

hA1
0.14(11) 0.898(54) 0.68(19) 0.08(16) −0.18ð32Þ 0.59(17) 0.37(26) 0.0376(89) −0.953ð70Þ 0.67(22)

hA2
0.18(13) −0.5ð1.0Þ 0.9(3.6) −0.0ð2.6Þ 0.13(49) � � � 3.3(3.0) −0.022ð67Þ −0.41ð86Þ 10.3(7.1)

hA3
0.18(13) 0.91(90) −0.4ð3.3Þ 0.3(2.4) 1.25(47) � � � −3.4ð2.7Þ 0.117(62) −1.72ð75Þ 1.9(6.1)

hV 0.15(14) 0.87(13) 1.47(45) 0.39(37) 0.33(13) � � � −0.51ð63Þ 0.092(18) −1.32ð14Þ 0.6(1.3)
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FIG. 13. Values of χ2=d:o:f: for our continuum and chiral
extrapolation of form factors. The left panel shows χ2=d:o:f: with
the singular value cut for the covariance matrix, whereas the right
panel shows that with the shrinkage estimator as a function of the
parameter ρ in Eq. (22). The error is estimated by the bootstrap
method.
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the unquenched fit, and rather stable against the choice of
the estimator (singular value cut, or shrinkage) and param-
eter ρ. While C is not invertible for the correlated fit (with
ρ ¼ 0 for the shrinkage estimator), we may expect that
χ2=d:o:f: does not change drastically and serves as a
“rough” measure of the goodness of the fit even with
the approximated estimators of C. We also note that, in this
paper, the approximated estimators are used only for the
continuum and chiral extrapolation of form factors due to
the large size of C with different choices of the quark
masses (including mQ for the relativistic approach), lattice
cutoff, and recoil parameter.

2. Fitting form

The highest order is quadratic in the recoil parameter
w − 1 expansion and heavy quark expansion for hA1

, and
linear for other expansions including chiral and finite a
expansions. The systematic error due to this choice is
estimated by repeating the continuum and chiral extrapo-
lation without one of the highest order terms, if the
corresponding coefficient is poorly determined, otherwise
by adding a yet higher order term.
Possible higher order corrections in the chiral expansion

are also examined by testing the x expansion. We also test a
multiplicative form,

hX=ηX ¼ cþ
	
1þ gD�Dπ

2

2Λ2
χ

F̄logðξπ;ΔD;ΛχÞ þ cπξπ þ cηsξηs



ð1þ cQϵQÞ

× ð1þ caξa þ camQ
ξamQ

Þf1þ cwðw − 1Þ þ dwðw − 1Þ2g; ð23Þ

to examine the potential effect of cross terms. We find that
these alternative fits yield a change of the fit results well
below the statistical error.

3. Inputs

The lattice cutoff a−1, physical meson masses Mπ , MK ,
Mηb , and the D�Dπ coupling gD�Dπ are inputs to the
continuum and chiral extrapolation. Since the masses have
been measured very precisely, we take account of the
uncertainty due to a−1 and gD�Dπ by repeating the extra-
polation with each input shifted by �1σ.
We set Mπ and MK to those in the isospin limit as in our

determination of a [27]. To examine the isospin breaking
effects to the form factors, we test the continuum and chiral
extrapolation toMπ ¼ Mπ0 andMπ� as well asMK ¼ MK0

and MK� . We also test the heavy quark expansion param-
eter replaced with ϵQ ¼ Λ̄=2MB and compare the extrap-
olations using MB ¼ MB0 and MB� . The difference in the
form factor can be considered as an estimate of the strong
isospin breaking effect. It turns out to be small as suggested
by the mild quark mass dependence of the form factors. We
include this in the systematic uncertainty so that our
synthetic data for the form factors can be used for both
the neutral and charged B meson decays.

4. Finite volume effects (FVEs)

Our spatial lattice size satisfies MπL ≥ 4. At our
smallest pion mass on the coarsest lattice, we also
simulate a smaller size L ≃ 3.0M−1

π to directly examine
FVEs. Comparison between the two volumes at that
simulation point does not show any significant deviation:
for instance, hA1

at w ¼ 1 is consistent within statistical
error of ≲1%. We also repeat the continuum and chiral
extrapolation by replacing the form factors at the smallest

Mπ with those on the smaller L. The change in the fit
results is included in the systematic uncertainty, but turns
out to be well below the statistical uncertainty. We
conclude that finite volume effects are not significant in
our simulation region of Mπ ≳ 230 MeV.

5. Accuracy of continuum and chiral extrapolation

Figure 14 shows the estimate of various uncertainties
for the form factors in the continuum limit and at the
physical quark masses as a function of w. As discussed in
Sec. II, the axial [vector] matrix element is exclusively
sensitive to hA1

ðwÞ [hVðwÞ] with an appropriate choice of
the D� meson polarization vector and momentum.
Combined with a precise determination at zero recoil,
the total uncertainty of hA1

is about 2% in our simulation
region of w, and the largest uncertainty comes from
statistics and discretization effects. On the other hand,
either D� or B needs to have nonzero momentum to
determine hV , which is, therefore, less accurate. The total
accuracy is ≲7% with 3%–4% statistical and ∼5%
discretization errors.
Since the simulated bottom quark masses are not far

below the lattice cutoff (mQ ≤ 0.7a−1), we repeat the
continuum and chiral extrapolation only using the data
with mQ ≤ 0.5a−1. The change in the fit results is well
below the statistical uncertainty. We therefore conclude that
our continuum extrapolation in the relativistic approach is
controlled.
On the other hand, the axial form factors, hA2

and hA3
,

have larger uncertainty, i.e. 40% and 15%, respectively,
dominated by the statistical error. Towards a more precise
determination, it would be advantageous to simulate mov-
ing B mesons so as to have matrix elements more sensitive
to these form factors.
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Previous determinations of jVcbj often employed a
HQET-based parametrization by Caprini, Lellouch, and
Neubert (CLN) of hA1

and form factor ratios

R1ðwÞ ¼
hVðwÞ
hA1

ðwÞ ; R2ðwÞ ¼
rhA2

ðwÞ þ hA3
ðwÞ

hA1
ðwÞ ; ð24Þ

where higher order HQET corrections are expected to be
partially canceled [59]. Figure 15 shows that these ratios
also have mild parameter dependences and can be safely
extrapolated to the continuum limit and physical quark
masses. We, however, do not employ the model-dependent
CLN parametrization in the following analysis.

IV. FORM FACTORS AS A FUNCTION OF THE
RECOIL PARAMETER

A. Fit to lattice data

From the continuum and chiral extrapolation in the
previous section, we generate synthetic data of the form
factors in the relativistic convention,

hD�ðϵ0; p0ÞjVμjBðpÞi ¼ iεμνρσϵ0�νp0ρpσgðwÞ; ð25Þ

hD�ðϵ0; p0ÞjAμjBðpÞi ¼ ϵ0�μ fðwÞ − ðϵ0�pÞfðpþ p0ÞμaþðwÞ
þ ðp − p0Þμa−ðwÞg; ð26Þ

with which the BGL parametrization was originally pro-
posed. A kinematic invariant k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtþ − q2Þðt− − q2Þ=4t

p
is defined with the maximum value of the momentum
transfer q2max ¼ t− ¼ ðMB −MD� Þ2, which corresponds to
the zero recoil limit, and the threshold tþ ¼ ðMB þMD� Þ2
for the W → BD� production channel. Instead of aþ and
a−, it is common to use linear combinations

F 1ðwÞ¼
1

MD�

�
1

2
ðM2

B−M2
D� −q2ÞfðwÞþ2k2q2aþðwÞ

�
;

ð27Þ

F 2ðwÞ ¼
1

MD�
ffðwÞ þ ðM2

B −M2
D� ÞaþðwÞ þ q2a−ðwÞg:

ð28Þ

These are related to the form factors in the HQET
convention as
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gðwÞ ¼ 1

MB
ffiffiffi
r

p hVðwÞ; ð29Þ

fðwÞ ¼ MB
ffiffiffi
r

p ðwþ 1ÞhA1
ðwÞ; ð30Þ

F 1ðwÞ ¼ M2
B

ffiffiffi
r

p ðwþ 1Þ�ðw − rÞhA1
ðwÞ

− ðw − 1ÞfrhA2
ðwÞ þ hA3

ðwÞg�; ð31Þ

F 2ðwÞ ¼
1ffiffiffi
r

p 
ðwþ 1ÞhA1
ðwÞ

þ ðrw − 1ÞhA2
ðwÞ þ ðr − wÞhA3

�
: ð32Þ

We note that there are two kinematical constraints to be
satisfied at the minimum (w ¼ 1) and maximum values of
w [wmax ¼ ð1þ r2Þ=2r with ml ¼ 0]:

F 1ð1Þ ¼ MBð1 − rÞfð1Þ; ð33Þ

F 2ðwmaxÞ ¼
1þ r

M2
Brð1 − rÞðwmax þ 1ÞF 1ðwmaxÞ: ð34Þ

With these form factors, we can write the helicity
amplitudes for a given helicity of the intermediate W
boson, and the differential decay rate with respect to w
in simple forms

H�ðwÞ ¼ fðwÞ ∓ M2
Br

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
gðwÞ; ð35Þ

H0ðwÞ ¼
1ffiffiffiffiffi
q2

p F 1ðwÞ; ð36Þ

HSðwÞ ¼ MBr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

1 − 2rwþ r2

s
F 2ðwÞ; ð37Þ

and

dΓ
dw

¼ G2
F

16π3
jVcbj2jηEWj2MBr2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p 	
1 −

m2
l

q2



2

×

�
q2

3

	
1þ m2

l

2q2



jHþðwÞj2 þ jH−ðwÞj2 þ jH0ðwÞj2
�þm2

l

2
jHSðwÞj2

�
: ð38Þ

From the continuum and chiral extrapolation presented in Sec. III, synthetic data of f, g, and F 1;2 are calculated at
reference values of the recoil parameter wref through the relations (29)–(32). We take wref ¼ 1.025, 1.060, and 1.100, which
span the whole simulated region of w, since our continuum and chiral extrapolation interpolates hAf1;2;3g and hV in w. Three
values are chosen, because the statistical covariance matrix of the synthetic data develops ill-determined eigenvalues with
four or more values of wref . This might be partly because, in our continuum and chiral extrapolation, we parametrize the w
dependence of each form factor using a quadratic form with three independent parameters. The numerical values together
with their covariance matrix are presented in Table IV.
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FIG. 15. Form factor ratios R1ðwÞ (left panel) and R2ðwÞ (right panel) as a function of recoil parameter w. Results at simulated
parameters are plotted in symbols, which have the same meaning as in Fig. 10. The green bands show these ratios in the continuum limit
and at physical quark masses reproduced by the continuum and chiral extrapolation of form factors (19).

B → D�lνl SEMILEPTONIC FORM … PHYS. REV. D 109, 074503 (2024)

074503-15



The synthetic data are fitted to the model-independent
BGL parametrization

FðzÞ ¼ 1

PFðzÞϕFðzÞ
XNF

k¼0

aF;kzk ðF ¼ f; g;F 1;F 2Þ; ð39Þ

where the z parameter

zðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p ð40Þ

maps the whole semileptonic kinematical region 0 ≤
q2½GeV2� ≲ 11 (1 ≤ w≲ 1.5) (ml ¼ 0) into a small param-
eter region of z, 0 ≤ z≲ 0.06.
The Blaschke factors

PfðzÞ ¼ PF 1
ðzÞ ¼ P1þðzÞ; PgðzÞ ¼ P1−ðzÞ;

PF 2
ðzÞ ¼ P0−ðzÞ ð41Þ

factor out the pole singularities outside the semileptonic
region but below the threshold tþ due to the resonances for a
given channel JP of bc̄mesons. The explicit form is given as

PJPðzÞ ¼
Ynpole
k

z − zpole;k
1 − zzpole;k

; ð42Þ

where

zpole;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ −M2

pole;k

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t−

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ −M2

pole;k

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t−
p ð43Þ

is the z parameter corresponding to the kth resonance (in term
of q2 rather than w). In our main analysis, we employ
resonance masses denoted as “Input-A” in Table V.
This choice consists of slightly old experimental measure-
ment [60] (Mpole;f0;1g for JP ¼ 0−) and estimates based on
lattice QCD [61,62] (Mpole;0 for 1þ andMpole;f0;1g for 1−) and
quark potential models [63,64] (otherMpole;n). This input has
been used in someof the previous phenomenological analysis
using the BGL parametrization [9,14] and lattice calculations
of form factors [19,21]. Another choice (“Input-B” in
Table V) in the literature is used to estimate the systematics
uncertainty due to the use of input-A (see below).
The outer function ϕFðzÞ is chosen such that a constraint

on the expansion coefficients derived from unitarity of the
theory has a simple form:

X∞
k¼0

jag;kj2 ≤ 1;
X∞
k¼0

jaf;kj2 þ
X∞
k¼0

jaF 1;kj2 ≤ 1;

X∞
k¼0

jaF 2;kj2 ≤ 1: ð44Þ
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The explicit form is given as

ϕgðzÞ¼16r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nI
3πχ̃T1−ð0Þ

r ð1þzÞ2ð1−zÞ−1=2
fð1þrÞð1−zÞþ2

ffiffiffi
r

p ð1þzÞg4 ;

ð45Þ

ϕfðzÞ¼
4r
M2

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

3πχT
1þð0Þ

r ð1þzÞð1−zÞ3=2
fð1þrÞð1−zÞþ2

ffiffiffi
r

p ð1þzÞg4 ;

ð46Þ

ϕF 1
ðzÞ¼ 4r

M3
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

6πχT
1þð0Þ

r ð1þzÞð1−zÞ5=2
fð1þrÞð1−zÞþ2

ffiffiffi
r

p ð1þzÞg5 ;

ð47Þ

ϕF 2
ðzÞ¼8

ffiffiffi
2

p
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

πχL
1þð0Þ

r ð1þzÞ2ð1−zÞ−1=2
fð1þrÞð1−zÞþ2

ffiffiffi
r

p ð1þzÞg4 ;

ð48Þ

where nI ¼ 2.6 is the number of the spectator quarks with a

correction due to SU(3) breaking. By χfT;LgJP ð0Þ, we denote
the derivative of the vacuum polarization function of the
weak current at zero momentum q2 ¼ 0 for a given channel
JP and polarization fT; Lg. As in the literature, we replace
χT1− by χ̃T1−, from which the one-particle state contribution
due to B�

c is subtracted for a better saturation of the unitarity
bound (44). While a lattice QCD estimate is available [68],
we employ a perturbative estimate [12,69,70] summarized
in Table VI. We note that our choice of the resonance
masses (input-A) and derivatives are the same as previous
lattice studies to allow a direct comparison of the BGL

parametrization with them. It is known that the unitarity
bound (44) is not well saturated by the B → D�lνl
channel, and hence is rather weak. In this study, we do
not impose this bound, but confirm that fit results satisfy it
within the error.
Figure 16 shows the regular part of the axial form factor

PfðzÞϕfðzÞfðzÞ, which is to be expanded in z. We observe
rather mild z dependence of all form factors. While there is
no clear sign of curvature in our simulation region, we
employ a quadratic form Nf ¼ Ng ¼ NF 1

¼ NF 2
¼ 2 to

safely suppress the truncation error. Among twelve coef-
ficients, constants aF 1;0 and aF 2;0 are fixed to fulfill the
kinematical constraints (33) at w ¼ 1, where z ¼ 0 and the
linear and quadratic terms in the z-parameter expansion
(39) vanish, and (34) at wmax, where z ∼ 0.05 is well below
unity, and hence the constant term gives rise to a large
contribution to F 2. To be consistent with the unitarity
bound (44), we impose the bound jaF;kj ≤ 1 (k ¼ 0, 1, 2)
for all form factors F ¼ g; f;F 1, and F 2. Table VII shows
fit results, which describe the synthetic data with an
acceptable value of χ2=d:o:f: ¼ 0.51.
We test the stability of the fit with different choices of

the input and reference values of w. Input-B in Table V
of the resonance masses for the Blaschke factors consists of
the pseudoscalar massesMpole;f0;1g from recent experimen-
tal measurements [66], and other resonance masses from
phenomenological studies different from input-A: namely,
Ref. [67] for JP ¼ 0− and n ¼ 2, and Ref. [65] for
JP ¼ 1fþ;−g. We note that these vector and axial masses
have been used in a phenomenological analysis [10] and
Belle analyses [16,17] of the B → D�lν decay. For the
derivatives of the vacuum polarization functions χT;LJP , we
test the lattice QCD estimate in Ref. [68]. Shift of the

TABLE V. Two sets of input resonance masses with quantum number JP. All values are in GeVunits. The input-A
is a compilation of slightly old experimental measurement [60] and lattice QCD [61,62] and phenomenological
[63,64] studies. A different phenomenological estimate [65] for the (axial) vector resonances is used for input-B,
where the pseudoscalar masses are set from a recent edition of the Particle Data Book [66] (n ¼ 0, 1) and another
phenomenological study [67] (n ¼ 2). We employ input-A in our main analysis, whereas input-B is used to test the
stability of the BGL parametrization against the choice of the input. See the text for more details.

Input-A Input-B

JP npole Mpole;n npole Mpole;n

1þ 4 6.739, 6.750, 7.145, 7.150 4 6.730, 6.736, 7.135, 7.142
1− 3 6.329, 6.920, 7.020 4 6.337, 6.899, 7.012, 7.280
0− 3 6.275, 6.842, 7.250 3 6.274, 6,871, 7220

TABLE VI. Derivatives of vacuum polarization functions entering other functions (45)–(48). Perturbative
estimate (upper line) is employed in our main analysis.

χT
1þð0Þ [GeV−2] χT1−ð0Þ [GeV−2] χL

1þð0Þ
Perturbation [12,69,70] 3.894 × 10−4 5.131 × 10−4 1.9421 × 10−2

Lattice QCD [68] 4.69ð20Þ × 10−4 5.84ð44Þ × 10−4 2.19ð19Þ × 10−2
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expansion coefficients afg;f;F 1;F 2g;f0;1g in units of their
uncertainty is summarized in Table VIII, where we test four
choices of the input: namely, (i) vector and axial resonance
masses from Ref. [65], (ii) ground and first excited
pseudoscalar masses from Ref. [66], (iii) second excited
pseudo-scalar mass from Ref. [67], and (iv) lattice estimate
of χT;LJP . The shift of afg;f;F 1;F 2g;f0;1g is at the 2-σ level or
typically well below it. A large shift (∼4σ) in af;0 with the
lattice QCD estimate of χT;LJP can be attributed to about 20%
shift of χT

1þ for the axial channel. As suggested in Eq. (46),
this simply leads to rescaling of all aff;F 1g;f0;1;2g for the
corresponding channel. Also for other coefficients, the
changes in the Blaschke factors and outer functions due to
the different inputs are largely absorbed into the shift in
afg;f;F 1;F 2g;f0;1;2g to reproduce the synthetic data of the
form factors. As a result, the shift in physical observables,
RðD�Þ and jVcbj in this paper, is well below 1σ as we will
see later. This also means that our results for
afg;f;F 1;F 2g;f0;1g in Table VII should be used with our
choice of the input, namely input-A for resonance masses
in Table V and perturbative estimate of χT;LJP in Table VI,
otherwise the uncertainty suggested in Table VIII should
be taken into account.
In Table VIII, we also test three different choices of the

reference values wref : namely, (v) decreased maximum value
wref;max ¼ 1.080, (vi) increased minimum value wref;min ¼
1.040, and (vii) twovalues ofwref ¼ 1.025, 1.100 against our
main choice ofwref ¼ 1.025, 1.060, 1.100. Table VIII shows
that the shift of the coefficients afg;f;F 1;F 2g;f0;1g is well below
1σ. Their relative accuracy is slightly worse (typically by
5%–10%) with the above choices of wref suggesting that our
main choice is reasonably good.
We confirm the unitarity bound for the axial vector

channel as
PNf

k¼0 jaf;kj2 þ
PNF1

k¼0 jaF 1;kj2 ¼ 0.012ð96Þ,
which is poorly saturated by B → D�lνl. The bounds

for other channels are satisfied as
PNg

k¼0 jag;kj2 ¼ 1.0ð3.5Þ

0.000 0.005 0.010 0.015 0.020
z

0.0018

0.002

0.0022

P
f(z

)
� f(z

)
f(

z)

FIG. 16. Regular part of axial form factor PfðzÞϕfðzÞfðzÞ as a
function of z. The two error bars in this figure and Fig. 17 show
the statistical and total errors, respectively.
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and
PNF2

k¼0 jaF 2;kj2 ¼ 0.9ð2.1Þ. The large uncertainty comes
from the poorly determined quadratic coefficients. The
sums up to the linear term,

P
1
k¼0 jag;kj2 ¼ 0.0029ð31Þ andP

1
k¼0 jaF 2;kj2 ¼ 0.006ð10Þ, suggest that the unitarity

bound is rather weak as mentioned above.

The BGL parametrization and synthetic data of the form
factors are plotted in Fig. 17. We observe reasonable
consistency with the Fermilab/MILC results [19] except
the vector form factor gðwÞ near zero recoil and the axial
form factor F 2 extrapolated to large recoils. This can be
seen in a more detailed comparison of the expansion

TABLE VIII. Stability of BGL parametrization coefficients afg;f;F 1;F 2g;f0;1g given in Table VII. We list their shift in units of their
uncertainty due to different choices of input and reference values wref . We omit aF 1;0, which is proportional to af;0 due to the kinematical
constraint (33), as well as afg;f;F 1;F 2g;2 for quadratic terms, which show tiny shift due to their large relative uncertainty. Note that ag;n is
independent of the pseudoscalar resonance mass input. The maximum (minimum) value of wref is denoted as wref;max (wref;min). The
quadratic fit (Nff;g;F 1;F 2g ¼ 2) is impossible with two values of wref , with which we compare coefficients of the linear fit
(Nff;g;F 1;F 2g ¼ 1).

Choice of input-B, χT;LJP or wref ag;0 ag;1 af;0 af;1 aF 1;1 aF 2;0 aF 2;1

(i) Mpole;n for JP ¼ 1þ; 1− −1.62 0.32 −2.22 0.04 0.03 0.01 0.00
(ii) Mpole;f0;1g for JP ¼ 0− � � � � � � 0.00 0.00 0.00 0.57 −0.04
(iii) Mpole;2 for JP ¼ 0− � � � � � � 0.00 0.00 0.00 −1.59 0.10
(iv) χT;LJP from lattice −0.74 0.08 −4.18 −0.11 0.02 −1.24 0.03
(v) wref;max ¼ 1.080 −0.00 −0.01 −0.02 −0.05 −0.10 0.12 0.31
(vi) wref;min ¼ 1.040 −0.00 −0.01 −0.03 −0.02 −0.04 0.30 −0.30
(vii) 2 wref ’s ¼ 1.025, 1.100 −0.01 −0.09 −0.04 −0.08 0.01 0.11 −0.04
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FIG. 17. BGL parametrization (green band) of the synthetic data (green circles) in the whole semileptonic region 1 ≤ w ≲ 1.5. The
top-left, top-right, bottom-left, and bottom-right panels show fðwÞ, F 1ðwÞ, F 2ðwÞ, and gðwÞ, respectively. We also plot the
parametrization by Fermilab/MILC [19] by the open black bands. The stars in the panels for F 1 and F 2 represent the values fixed from
the kinematical constraints (33) and (34), respectively.
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coefficients in Fig. 18, where there is slight tension in ag;0,
ag;1, and aF 1;1. Recent HPQCD results show better con-
sistency with ours, except for aF 1;1 and aF 2;0.
In the same figure, we also plot a phenomenological

estimate [14] obtained from the Belle data [16] combined
with a lattice input of the FLAG average of hA1

ð1Þ ∝ fð1Þ
[71]. Note that this analysis employs the same BGL

parametrization with the input (Mpole;n and χfT;LgJP ) and
orders (Nf, Ng, NF 1

), which are the same as our main
analysis. The phenomenological result of af;0 is well
determined and shows good consistency with lattice results,
simply because it is mainly fixed from the lattice input.
Other poorly determined coefficients suggest the impor-
tance of lattice calculations to obtain controlled BGL
parametrization.
On the other hand, the slope aF1;1 is well determined

from the phenomenological analysis of the experimental
data, which are precise at large recoils. This study observes
a reasonable agreement in aF1;1 and, hence, in the differ-
ential decay rate as discussed in the next subsection (see
Fig. 19). We note, however, that the Fermilab/MILC and
HPQCD studies reported tension in the w dependence of
the differential decay rate with experiment.
Since F 2 describes the contribution suppressed by m2

l to
the decay rate (38), its expansion coefficients are poorly
constrained by the experimental data for the light lepton
channels B → D�lνl (l ¼ e, μ). The lattice determination

of F 2 is, therefore, helpful towards a precision new physics
search using the τ channel. Through numerical integration
of Eq. (38) for l ¼ e, μ, and τ with fit results in Table VII,
we obtain a pure SM value

RðD�Þ ¼ 0.252ð22Þð4Þ; ð49Þ

which does not resort to phenomenological models nor
experimental data. The second error comes from the test of
the stability of the BGL parametrization summarized in
Table VIII. It mainly comes from the shift in wrefmin and
wrefmax, but smaller than statistical and other systematic
errors of the BGL parametrization. This estimate can
be improved as RðD�Þ ¼ 0.252ðþ0.009= − 0.016Þð4Þ by
imposing the unitarity bound (44) on the expansion
coefficients. These are consistent with Fermilab/MILC
and HPQCD estimates, 0.265(13) and 0.279(13), respec-
tively, and to be compared with the experimental average
0.295(14) [1]. For a more precise and reliable estimate of
RðD�Þ, it is helpful to simulate larger recoils as well as
resolving the tensions in aF 2;f0;1g shown in Fig. 18.

B. Fit including Belle data

In this subsection, we carry out a simultaneous fit to our
lattice and Belle data to estimate jVcbj. The differential
decay rate with respect to w and three decay angles θl, θv,
and χ is given as
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FIG. 18. Comparison of expansion coefficients for BGL parametrization (39). Our results are plotted as filled blue circles. Open red
triangles are obtained by HPQCD (triangles up) [21] and Fermilab/MILC (triangles down) [19]. We also plot results from a recent
phenomenological analysis of the Belle data [16] as open black squares [14]. Since all these studies impose the kinematical constraint
(33) leading to aF 1;0 ∝ af;0, we omit a panel for aF 1;0.
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dΓ
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� ð50Þ

with the helicity amplitudes given in (35) and (36). For a
simultaneous fit with the Belle data for B0 → D�−lþνl
ðl ¼ e; μÞ in Ref. [16], we set ml ¼ 0, and include the
Coulomb factor ð1þ απÞ in the right-hand side. The
decay angles are chosen the same as for the Belle paper,
where the full kinematical distribution is described by four
differential decay rates dΓ=dw, dΓ=dcos½θl�, dΓ=dcos½θv�,
and dΓ=dχ, which are integrated over the other three
variables. The differential decay rates are provided at ten
equal-size bins in the range of each variable, w∈ ½1.0; 1.5�,
cos½θfl;vg�∈ ½−1; 1�, and χ ∈ ½−π; π�.

To estimate jVcbj, we fit our synthetic data of the form
factors to the BGL parametrization (39) alongside the Belle
data of the calculated differential decay rates where the
expansion coefficients afg;f;F 1;F 2g;f0;1;2g are shared param-
eters and jVcbj is an additional parameter determined from
the fit. The expression (38) is used for dΓ=dw. We calculate
dΓ=d cos½θfl;vg� and dΓ=dχ by analytically integrating over
two other decay angles and by numerically integrating over
w via Simpson’s rule with 800 steps within each bin as in
the Belle paper [16].
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FIG. 19. Differential decay rate with respect to recoil parameter, dΓ=dw (top-left panel), and three decay angles, dΓ=d cos½θl� (top-
right panel), dΓ=d cos½θv� (bottom-left panel), and dΓ=dχ (bottom-right panel). We divide dΓ=dw by a phase space factor
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make its w dependence milder and monotonous. The symbols show Belle results, whereas the green band is reproduced from our
simultaneous fit to our lattice and Belle data.
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Our results for the expansion coefficients are summa-
rized in Table IX. These are consistent with those in
Table VII, which are obtained without the experimental
data, with slightly smaller uncertainty. We obtain

jVcbj ¼ 39.19ð90Þð12Þ × 10−3; ð51Þ

where the first error comes from our main fit with input-A in

Table V, perturbative χfT;LgJP in Table VI, and wref ¼ 1.025,
1.060, 1.100. The second error is obtained by testing the
stability of the fit against the different choices of the input
andwref as in Table VIII. This is in good agreement with the
previous determination from the exclusive decay (3). In
contrast to previous lattice studies, as shown in Fig. 19, we
observe consistency between our lattice and Belle data
leading to an acceptable value of χ2=d:o:f: ∼ 0.90.
Towards the resolution of the jVcbj tension, we need a more
detailed analysis taking care of, for instance, bias in jVcbj
discussed in Refs. [14,15] due toD’Agostini effects [72] and
the strong systematic correlation of experimental data. That
analysis is left for future work.

V. CONCLUSION

In this article, we present our calculation of the
B → D�lνl semileptonic form factors in 2þ 1-flavor
lattice QCD. The Möbius domain-wall action is employed
for all relevant quark flavors to simulate lattices of cutoffs
up to 4.5 GeV with chiral symmetry preserved to good
accuracy. This removes the leading OðaÞ discretization
errors and explicit renormalization is not necessary to
calculate the SM form factors through the correlator ratios.
The ground state saturation of the correlator ratios is
carefully studied by simulating four source-sink separa-
tions. The bottom quark mass is limited to mb ≤ 0.7a−1 to
suppress Oða2Þ and higher discretization error. Note also
that the chiral logarithm is suppressed by the small D�–D
mass splitting squared. As a result, the lattice spacing and
quark mass dependence turns out to be mild in our
simulation region leading to good control of the continuum
and chiral extrapolation. We find finite size effects to be
small by direct simulations of two volumes at our smallest
pion mass.

One of the main results is the synthetic data of the form
factors g, f, F 1, and F 2 in the relativistic convention at
three reference values of the recoil parameter w ¼ 1.025,
1.060, and 1.100, which can be used in future analyses to
determine jVcbj and to search for new physics. Through the
BGL parametrization, we obtain RðD�Þ ¼ 0.252ð22Þ in the
SM. A combined analysis with the Belle data yields
jVcbj ¼ 39.19ð91Þ × 10−3. These are consistent with pre-
vious lattice studies. However, the expansion coefficients
for g, F 1, and F 2 show significant tension among lattice
studies. In particular, our slope for F 1 is slightly larger and
consistent with a phenomenological analysis of the Belle
data. As a result, our data show better consistency with the
Belle data in the differential decay rates.
High statistics simulations on finer lattices would be

helpful in resolving this tension. Simulating larger recoils
can lead to a better estimate of RðD�Þ as well as more
detailed comparison with experiment in a wide range of the
recoil parameter to search for new physics. In order to
resolve the jVcbj tension, it would also be very helpful to
study the inclusive decay on the lattice for more direct
comparison of the exclusive and inclusive analyses in the
same simulations [73]. While it is an ill-posed problem to
calculate the relevant hadronic tensor from discrete lattice
data on a finite volume, a joint project of the JLQCD and
RBC/UKQCD collaborations along a strategy proposed in
Refs. [74,75] is in progress [76–78] towards a realistic
study of B → Xclνl.
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