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A lattice QCD calculation for the four-gluon one-particle irreducible Green function in the Landau gauge
is discussed. Results for some of the associated form factors are reported for kinematical configurations
with a single momentum scale. Our results show that the computation of this Green function requires large
statistical ensembles with 10 K or larger number of gauge configurations. The simulations considered
herein have a clear Monte Carlo signal for momenta up to ∼1 GeV. The form factors show an hierarchy,
with the form factor associated with the tree level Feynman rule being dominant and essentially constant for
the range of momenta accessed. The remaining form factors seem to increase as the momentum decreases,
suggesting that a possible log divergence may occur. The computed form factors are, at least, in qualitative
agreement with the results obtained with continuum approaches to this vertex, when available.

DOI: 10.1103/PhysRevD.109.074502

I. INTRODUCTION

The dynamical content of the QCD Green functions is of
upmost importance to all hadronic physics, specially its
nonperturbative contents. Indeed, among other phenomena,
the interpretation of the hadron spectra, the comprehension
of dynamical chiral symmetry breaking and of the quark
and gluon confinement mechanisms are outside the scope
of the perturbative solution of the theory.
The analysis of the QCD Green functions started looking

at those functions with smaller number of external legs,
namely the propagator or two-point correlation functions.
Their tensorial structure is simpler, as it requires smaller
tensor basis, and can be guided with the help of the
Slavnov-Taylor identities. All the two-point QCD correla-
tion functions have been studied in detail with nonpertur-
bative methods and a fairly good understanding of these
functions has been achieved [1–7]. A good and coherent
picture of the two-point QCD correlation functions,
obtained with different nonperturbative methods, has been
achieved but there are issues that are still under debate.
An example is their analytical structure, required in the
computation of meson and baryon properties with con-
tinuum methods, that remains to be understood [8–12].

In QCD the three-point one-particle irreducible (1-PI)
Green functions have also been object of study. Indeed, the
ghost-gluon vertex [13–17], the three-gluon vertex [18–36],
and the quark-gluon vertex [37–59] have been investigated
with some degree of detail and its main features are now
understood. If for some of the vertices a qualitative picture
of their dependence for different kinematics can be
claimed, then a complete and accurate description is still
to be done.
The next level of QCD one-particle irreducible Green

functions to be studied with nonperturbative methods are
those with four external legs. These include the four quark
and the four-gluon correlation functions. The four quark
Green function is required to understand, for example, the
meson spectra. The four-gluon correlation function has a
similar role as the four quark function but for the glueball
spectra. Moreover, it also allows for the definition of a
renormalization group invariant QCD charge, it contributes
to the Dyson-Schwinger equation for the gluon propagator
and impacts on the gluon propagator itself [60]. Herein, our
focus of attention is the four-gluon one-particle irreducible
Green function.
The nonperturbative content of the four-gluon 1-PI

Green function has been studied with the continuum
formulation of QCD using the Dyson-Schwinger equations
[61–63]. A full description of this four leg function requires
a tensor basis with a large number of elements [62,64,65],
which makes the analysis of this four-point correlation
function difficult. Continuum studies of this function have
to make simplifications to arrive at a manageable computa-
tional scenario and the calculations performed have to
consider a basis with a reduced number of elements. The
continuum based Dyson-Schwinger calculations identify a
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number of form factors that display very mild dependence
with the momentum, as seems to be the case of the form
factor associated with the tree level tensor structure that,
nevertheless, seems to be suppressed at low momenta, and
others that show log divergences in the IR region. These
divergences are associated with the unprotected log’s
coming from the massless ghost loops in the Dyson-
Schwinger equations [62]. The continuum QCD methods
based on the Dyson-Schwinger equation for this 1-PI Green
function seem to favor such type of scenario.
The picture that emerges from the various continuum

approaches to the four-gluon 1-PI Green function, although
being consistent at the qualitative level, also show diffe-
rences that probably come from the different truncations
and/or the required modeling to solve the underlying
equations. The differences between the various studies
provide an extra motivation to a lattice calculation of the
four-gluon vertex. Indeed, the interplay of the various
nonperturbative methods is important to achieve a proper
and sufficiently accurate description of the QCD one-
particle irreducible Green function.
In this work we address the computation of the four-

gluon one-particle irreducible Green function within pure
Yang-Mills lattice QCD simulations in the Landau gauge.
Preliminary results can be found in [66]. The manuscript is
organized as follows. In Sec. II it is given a description of
the four-gluon full Green function, accessed in the lattice
QCD simulations, and how it relates to the corresponding
1-PI function. Furthermore, details on the extraction of the
1-PI contribution in a simulation in the Landau gauge are
also discussed there, together with the tensor basis that will
be used for the calculation. The definitions of the form
factors to be measured can also be found in this section. The
lattice setup, the choice of the kinematic configurations to be
used in the measurements and some details of the lattice
calculation are given in Sec. III. The lattice form factors,
including those associated with the amputated Green func-
tions, are reported and discussed in Sec. IV. Finally in Sec. V
we summarize and conclude. Some of the details of the
calculation, namely a proof of the decoupling of the three-
gluon contribution to the four-point function for a certain
class of kinematical configuration and the lattice version of
the continuum operators, are given in the appendices.

II. THE FOUR-GLUON VERTEX

Let us start by discussing the computation of the four-
gluon 1-PI Green function using the continuum formulation
of QCD in Minkowski spacetime. By doing so we aim to
arrive at a better understanding of this complex Green
function before plugging into the measurement of the
Green function with lattice QCD simulations.
In the numerical Monte Carlo simulations of QCD on a

lattice only the full Green functions are accessed. In real
space, these Green functions are defined as the vacuum
expectation values of the time order product of the
fundamental fields. In QCD, the gluon N-point full
Green function reads

Ga1���aN
μ1���μN ðx1;…; xNÞ ¼

�
Aa1
μ1ðx1ÞAa2

μ2ðx2Þ � � �AaN
μN ðxNÞ

�
; ð1Þ

where h� � �i represent the vacuum expectation value,
realized as an ensemble average over gauge configurations
sampled with an appropriate action. Any other quantity,
like form factors, have to be computed a posteriori by
handling a set of full Green functions Ga1���aN

μ1���μN . The compu-
tation of the 1-PI four-gluon Green function is no exception
and the first step to perform is to decompose the four-point
full Green function in terms of QCD 1-PI Green functions.
For pure Yang-Mills theory the functional generator of the
full Green functions Z½J� is

Z½J� ¼ eiW½J� ¼
Z

DAeiS½A�þiðJ;AÞ; ð2Þ

where S½A� is the effective action associated with the Yang-
Mills theory, that has contributions coming from the gauge
and ghost fields,

ðJ; AÞ ¼
Z

d4xAa
μðxÞJa μðxÞ; ð3Þ

W½J� is the generating functional of the connected Green
functions and J are classical external sources. It follows
from the definition of the full Green function that the four-
gluon full Green function is given by

Ga1���a4
μ1���μ4 ðx1;…; x4Þ ¼

δ4Z½J�
iδJa1μ1ðx1Þ � � � iδJa4μ4ðx4Þ

����
J¼0

;

¼ i
δ4W½J�

δJa1μ1ðx1Þ � � � δJa4μ4ðx4Þ
����
J¼0

−
δ2W½J�

δJa1μ1ðx1ÞδJa2μ2ðx2Þ
����
J¼0

δ2W½J�
δJa3μ3ðx3ÞδJa4μ4ðx4Þ

����
J¼0

−
δ2W½J�

δJa1μ1ðx1ÞδJa3μ3ðx3Þ
����
J¼0

δ2W½J�
δJa2μ2ðx2ÞδJa4μ4ðx4Þ

����
J¼0

−
δ2W½J�

δJa1μ1ðx1ÞδJa4μ4ðx4Þ
����
J¼0

δ2W½J�
δJa2μ2ðx2ÞδJa3μ3ðx3Þ

����
J¼0

: ð4Þ
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The diagrammatic representation of Ga1���a4
μ1���μ4 ðx1;…; x4Þ in

terms of connected Green functions is given in Fig. 1. The
four-gluon full Green function is a sum of a four-gluon
connected Green function, represented by the full black
blob in Fig. 1, and disconnected parts that are functions of
the two-gluon Green function, i.e., of the gluon propagator,
the full blobs in gray. The four-gluon connected Green
function itself can be written in terms of 1-PI functions. In
order to work out this decomposition let us consider the
classical Yang-Mills field given by

Aa
cl;μðxÞ ¼

δW½J�
δJa μðxÞ ð5Þ

and introduce the generating functional for the one-particle
irreducible correlation functions

Γ½Acl� ¼ W½J� − ðJ; AclÞ: ð6Þ

The one-particle irreducible Green functions are the func-
tional derivatives of the Γ½Acl� at vanishing classical fields.
It follows from the above definitions that

δΓ
δAa

cl;μðxÞ
¼ −Ja μðxÞ ð7Þ

and, from this relation combined with Eqs. (5) and (6), the
orthogonality relation

Z
d4z

δ2W½J�
δJaμðxÞδJcνðzÞ

δ2Γ½Acl�
δAc

cl
νðzÞδAb

clζðyÞ
¼ −δabgμζδðx − yÞ

ð8Þ

is derived. By taking functional derivatives of Eq. (7), using
the orthogonality relation (8), and after some straightfor-
ward algebra, one arrives at the equality

δ4W½J�
δJaμðxÞδJbνðyÞδJcι ðzÞδJeζðtÞ

����
J¼0

¼
Z

d4w1d4w2d4w3

�
Dbb0

νν0 ðy − w1ÞDee0
ζζ0 ðt − w2Þ

δ3W

δJaμðxÞδJcι ðzÞδJc0ι0 ðw3Þ

×
δ3Γ

δAb0
cl ν0 ðw1ÞδAc0

cl ι0 ðw3ÞδAe0
cl ζ0 ðw2Þ

þDcc0
ιι0 ðz − w1ÞDee0

ζζ0 ðt − w2Þ

×
δ3W

δJaμðxÞδJbνðyÞδJb0ν0 ðw3Þ
δ3Γ

δAb0
cl ν0 ðw3ÞδAc0

cl ι0 ðw1ÞδAe0
cl ζ0 ðw2Þ

þDcc0
ιι0 ðz − w1ÞDee0

νν0 ðy − w2Þ
δ3W

δJaμðxÞδJbζðtÞδJb
0

ζ0 ðw3Þ
δ3Γ

δAb0
cl ζ0 ðw3ÞδAc0

cl ι0 ðw1ÞδAe0
cl ν0 ðw2Þ

�

þ
Z

d4w1d4w2d4w3d4w4Daa0
μμ0 ðx − w1ÞDbb0

νν0 ðy − w2ÞDcc0
ιι0 ðz − w3ÞDee0

ζζ0 ðt − w4Þ

×
δ4Γ

δAa0
cl μ0 ðw1ÞδAb0

cl ν0 ðw2ÞδAc0
cl ι0 ðw3ÞδAe0

cl ζ0 ðw4Þ
ð9Þ

whose diagrammatic representation is given in Fig. 2. The
connected four-gluon Green function is a sum of terms that
include the four-gluon 1-PI Green function and contribu-
tions proportional to the three-gluon 1-PI Green functions.
On a lattice simulation it is the full Green function

Ga1���a4
μ1���μ4 , see Eq. (4) and Fig. 1, that is measured. Its

decomposition in terms of connected Green functions calls

for the four-gluon connected Green function and discon-
nected terms that are proportional to products of gluon
propagators. In the lattice formulation of QCD, the Green
functions are proportional to the lattice volume and,
therefore, the terms represented in Fig. 1 are such that
the four-gluon connected part is proportional to the lattice
volume V, while the terms proportional to the propagators

FIG. 1. Diagrammatic representation of the four-gluon full Green function defined in Eq. (4). The filled vertex in the left is the
complete four-point Green function, the blob filled in back is the connected Green function and the blobs in gray stand for one particle-
irreducible diagrams. Color, Lorentz and momentum indices are omitted.
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are proportional to V2. The lattice volume dependence of
the terms that define Ga1���a4

μ1���μ4 make it almost impossible to
have a good Monte Carlo signal for the connected four-
gluon diagram, unless the contribution of the disconnected
parts vanish. This can be achieved considering only those
kinematical configurations such that the momenta pi and
pj associated, respectively, with the external legs i and j are
such that pi þ pj ≠ 0 for all i and j. From now on, it will
be assumed that these conditions on the momenta of the
external legs are fulfilled and, therefore, the contributions
due to the disconnected diagrams can be discarded.
The four-gluon connected Green function, represented

diagrammatically in Fig. 2, is given by a term that includes
the four-gluon 1-PI Green function and diagrams that
include three-gluon 1-PI Green functions and gluon propa-
gators. Then, to access the four-gluon 1-PI Green function
from the connected four-gluon Green function, the three-
gluon contributions needs to be known. However, such
information on the three-gluon contributions is currently
not available. One can either introduce some modeling for
the three-gluon 1-PI Green function, in such a way that its
contribution can be removed, or further constrain the
kinematical configuration of the external legs to suppress
the contributions that call for three-gluon one-particle
irreducible diagrams. For example, as discussed in [62],
this is case when the incoming momenta are p1 ¼ p,
p2 ¼ p, p3 ¼ p, and p4 ¼ −3p. A first and preliminary
analysis of this kinematical configuration using lattice
QCD simulations can be found in [67].
In general, for the Landau gauge, due to the orthogon-

ality of the gluon propagator, for the kinematical configu-
rations where the momenta of the external legs are all
proportional, i.e., for the class of momenta such that

p1 ¼ p; p2 ¼ ηp; p3 ¼ λp;

p4 ¼ −ð1þ ηþ λÞp; ð10Þ

where η and λ are real numbers, the terms in the decom-
position of the four-gluon connected Green function that

require the contribution of the three-gluon vertex vanish.
The proof of this statement can be found in Appendix A.
Herein, in order to avoid any type of extra modeling, we
choose to consider a subset of the kinematical configura-
tions that belong to the class of momenta defined in
Eq. (10). Although the modeling of the three-gluon 1-PI
is avoided, our choice based on the kinematics constraint
the type of information that can be accessed in the
simulation.
The choice of momenta is important to access the four-

gluon 1-PI Green function without extra assumptions.
However, the color-Lorentz structure of this Green function
is complex. For a general kinematical configuration, the
number of tensors required to define a tensor basis to fully
describe the four-gluon 1-PI is large. For example, for the
symmetric point, the four-gluon vertex requires more than
100 different tensors for its full description [64]. General
discussions of the tensor basis for this Green function can
be found in [62,65]. Ideally, one would access each of the
form factors that multiply each tensor of the complete basis
for the Green function with the help of a suitable projection
operator. However, not only the lattice simulations con-
volute the 1-PI functions with the gluon propagators but
also the quality of the signal-to-noise ratio in a Monte Carlo
simulation favor certain types of projecting operators. In
principle, the signal-to-noise ratio can always be improved
by generating larger ensembles of gauge configurations,
but a practical computation has always a limited statistical
ensemble.
A complete tensor basis describing the four-gluon 1-PI

includes several types of operators that are proportional to
the metric tensor and/or momenta. However, given that in a
lattice simulation the measured function convolutes the
four-gluon 1-PI with gluon propagators, for the class of
kinematical configurations considered here that is charac-
terized by a single momentum, see Eq. (10), due to the
orthogonality of the gluon propagator in the Landau gauge,
the tensors proportional to momentum do not contribute to
the full Green function that is measured in a simulation.

FIG. 2. Diagrammatic representation of the four-gluon connected Green function (full black blob) appearing in Fig. 1 in terms of one
particle-irreducible functions (full gray blobs).
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This property simplifies considerably the tensor analysis
the Green function and the tensors that contribute can only
include the metric tensor for its Lorentz component and
fabc or dabc, the fully antisymmetric and fully symmetric
structure constants, and/or δab in the description of the
color part of the Green function. Then, by imposing Bose
symmetry it is possible to build the possible tensor
structures that, for the chosen kinematics, contribute to
the Green measured on a simulation. A particular tensor
that belongs to the class of allowed operators is the tensor
structure that appears in the perturbative tree level four-
gluon Feynman rule

Γ̃ð0Þabcd
μνηζ ¼ fabrfcdrðgμηgνζ − gμζgνηÞ

þ facrfbdrðgμνgηζ − gμζgνηÞ
þ fadrfbcrðgμνgηζ − gμηgνζÞ: ð11Þ

From this tensor another operator that also contributes to
the lattice Green function can be build replacing the fully
antisymmetric SU(3) structure constants fabc by the fully
symmetric dabc and symmetrizing the Lorentz structure
part. The corresponding tensor reads

Γ̃ð1Þabcd
μνηζ ¼ dabrdcdrðgμηgνζ þ gμζgνηÞ

þ dacrdbdrðgμζgνη þ gμνgηζÞ
þ dadrdbcrðgμνgηζ þ gμηgνζÞ: ð12Þ

Besides the two above tensors, one may also consider the
tensor operator

Γ̃ð2Þabcd
μνηζ ¼ ðδabδcd þ δacδbd þ δadδbcÞ

× ðgμνgηζ þ gμηgνζ þ gμζgνηÞ ð13Þ

that was mentioned in [62]. The three above tensors are not
orthogonal to each other and their color-Lorentz scalars are

Γ̃ð0Þ · Γ̃ð0Þ ¼ 108N2ðN2 − 1Þ ¼ 7776; ð14Þ

Γ̃ð0Þ · Γ̃ð1Þ ¼ −36ðN4 − 5N2 þ 4Þ ¼ −1440; ð15Þ

Γ̃ð0Þ · Γ̃ð2Þ ¼ 0; ð16Þ

Γ̃ð1Þ · Γ̃ð1Þ ¼ 12

�
17N4 − 209N2 −

496

N2
þ 688

�

¼ 4640

3
; ð17Þ

Γ̃ð1Þ · Γ̃ð2Þ ¼ 288ðN4 − 5N2 þ 4Þ
N

¼ 3840; ð18Þ

Γ̃ð2Þ · Γ̃ð2Þ ¼ 216ðN4 − 1Þ ¼ 17280; ð19Þ

where the numbers in the rhs refer to the particular case
where N ¼ 3. In general, the above set of tensors do not
define a complete tensor basis for the Green function that is
measured on a simulation and others should be considered.
However, in the current work only their contribution will be
measured.

A. An orthogonal set of operators

Although the operators Γ̃ð0Þ, Γ̃ð1Þ, and Γ̃ð2Þ are not
orthogonal in the color-Lorentz space, by a linear combi-
nation of these operators it is possible to build three
orthogonal operators from Γ̃ðiÞ. Indeed, a straightforward
calculation shows that the tensor operators

tð1Þabcdμνηζ ¼ Γ̃ð0Þabcd
μνηζ ; ð20Þ

tð2Þabcdμνηζ ¼ N2 − 4

3N2
Γ̃ð0Þabcd

μνηζ þ Γ̃ð1Þabcd
μνηζ −

4ðN2 − 4Þ
3NðN2 þ 1Þ Γ̃

ð2Þabcd
μνηζ ;

¼ 5

27
Γ̃ð0Þabcd

μνηζ þ Γ̃ð1Þabcd
μνηζ −

2

9
Γ̃ð2Þabcd

μνηζ ; ð21Þ

tð3Þabcdμνηζ ¼ Γ̃ð2Þabcd
μνηζ ð22Þ

are orthogonal in the color-Lorentz space and, therefore,

tðiÞ · tðjÞ ¼ N jδ
ij; ð23Þ

where the normalization factors N j read

N 1 ¼ 108N2ðN2 − 1Þ ¼ 7776; ð24Þ

N 2 ¼
1280

3
; ð25Þ

N 3 ¼ 216ðN4 − 1Þ ¼ 17280; ð26Þ

once more the numbers in the rhs are for N ¼ 3. For a
general kinematics, the three tensors tð1Þ, tð2Þ, and tð3Þ do
not define a complete basis neither for the full Green
function nor for the one-particle function. The exception
being the configuration of momenta such that p1 ¼ p2 ¼
p3 ¼ p and p4 ¼ −3p where tð1Þ, tð2Þ, and tð3Þ describe
completely the correlation function [62].

B. Full Green function and lattice form factors

For the special kinematics under discussion herein, the
full Green functions measured in lattice simulations gets
only contributions from the connected four-gluon full
Green function. In the Landau gauge, the full Green
function can be written as
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Gabcd
μνηζ ðp1; p2; p3; p4Þ ¼

	
P⊥ðp1Þ



μμ0
	
P⊥ðp2Þ



νν0
	
P⊥ðp3Þ



ηη0
	
P⊥ðp4Þ



ζζ0Dðp2

1ÞDðp2
2ÞDðp2

3ÞDðp2
4Þ

×
�
Fðp2

1;…Þtð1Þabcdμ0ν0η0ζ0 þ Gðp2
1;…Þtð2Þabcdμ0ν0η0ζ0 þHðp2

1;…Þtð3Þabcdμ0ν0η0ζ0 þ � � �
�
; ð27Þ

where Fðp2
1;…Þ, Gðp2

1;…Þ, Hðp2
1;…Þ, etc., are Lorentz

scalar form factors, � � � represent the contribution of the
remaining components of the tensor basis, supposedly but
not necessarily orthogonal to the space spanned by tð1Þ to
tð3Þ, and

	
P⊥ðpÞ



μν ¼ gμν −

pμpν

p2
ð28Þ

is the orthogonal projector in momentum space that appears
in the definition of the Landau gauge gluon propagator

Dab
μνðpÞ ¼ δab

	
P⊥ðpÞ



μνDðp2Þ: ð29Þ

The 1-PI form factors to be measured from the full Green
function are

Fð0Þ ¼−Γ̃ð0Þabcd
μνηζ G

abcd
μ0ν0η0ζ0 ðp1;p2;p3;p4Þgμμ0gνν0gηη0gζζ0 ; ð30Þ

Fð1Þ ¼−Γ̃ð1Þabcd
μνηζ G

abcd
μ0ν0η0ζ0 ðp1;p2;p3;p4Þgμμ0gνν0gηη0gζζ0 ; ð31Þ

Fð2Þ ¼−Γ̃ð2Þabcd
μνηζ G

abcd
μ0ν0η0ζ0 ðp1;p2;p3;p4Þgμμ0gνν0gηη0gζζ0 : ð32Þ

In general, the FðiÞ are linear combinations of the form
factors F, G, H � � � that describe the 1-PI four-gluon
function. It follows from the definitions (30)–(32) that
their rhs are symmetric under interchange of any pair of
momenta and Bose symmetry demands that the FðiÞ can
only depend on the momenta through the combinations

FðiÞ ≡ FðiÞ	p2
1 þ p2

2 þ p2
3 þ p2

4; ðp1p2Þ þ ðp1p3Þ
þ ðp1p4Þ þ ðp2p3Þ þ ðp2p4Þ þ ðp3p4Þ



: ð33Þ

For the kinematical configurations investigated in the
current work, where all momenta are proportional to each

other and there is a unique momentum scale, one can write
that FðiÞ ≡ FðiÞðp2Þ to simplify the notation.

C. Lattice form factors FðiÞ and 1-PI form factors

Our primer concern in this work is to compute the FðiÞ.
These functions are not the form factors that describe the
1-PI four-gluon vertex, see the definition in Eq. (27), but
are given by linear combinations of F;G;H;… Assuming
that the functions F, G and H give the dominant con-
tributions to the form factors lattice form factors FðiÞ,
then for the kinematical configurations ðp1; p2; p3; p4Þ ¼
ð0; p; p;−2pÞ and ðp1; p2; p3; p4Þ ¼ ð0; p; 2p;−3pÞ, a
straightforward calculation gives

Fð0Þðp2Þ ¼ 7776Fðp2Þ; ð34Þ

Fð1Þðp2Þ ¼ −1440Fðp2Þ þ 1280

3
Gðp2Þ þ 3840Hðp2Þ;

ð35Þ

Fð2Þðp2Þ ¼ 17280Hðp2Þ; ð36Þ

while for ðp1; p2; p3; p4Þ ¼ ðp; p; p;−3pÞ one has

Fð0Þðp2Þ ¼ 3888Fðp2Þ; ð37Þ

Fð1Þðp2Þ ¼ −720Fðp2Þ þ 640

3
Gðp2Þ þ 2400Hðp2Þ; ð38Þ

Fð2Þðp2Þ ¼ 10800Hðp2Þ: ð39Þ

If F and H are directly related to Fð0Þ and Fð2Þ, then the
form factor Gðp2Þ can be accessed by the linear combi-
nation of all the lattice form factors

5

27
Fð0Þðp2Þ þ Fð1Þðp2Þ − 2

9
Fð2Þðp2Þ ¼

8><
>:

1280
3

Gðp2Þ; all kinematics except ðp1; p2; p3; p4Þ ¼ ðp; p; p;−3pÞ

640
3
Gðp2Þ; for ðp1; p2; p3; p4Þ ¼ ðp; p; p;−3pÞ

: ð40Þ

We close this section by recalling the reader that for the kinematics ðp1; p2; p3; p4Þ ¼ ðp; p; p;−3pÞ the three-
tensor structures considered define a complete basis [62].

III. LATTICE SETUP AND CHOICE OF MOMENTA

The main goal of this work is to measure the form factors that describe the four-gluon one-particle irreducible correlation
function using lattice simulations. The results described below refer to simulations that use the Wilson action for β ¼ 6.0.
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For this bare coupling constant the corresponding lattice
spacing, measured from the string tension, is a ¼
0.1016ð25Þ fm or, equivalently, 1=a ¼ 1.943ð48Þ GeV.
In the conversion from lattice to physical units we use
the central values just quoted.1 The computer simulations
were performed using the Chroma [69] and PFFT [70]
libraries and run on the Navigator supercomputer at the
University of Coimbra.
The form factors FðiÞ defined in Eqs. (30) to (32) were

computed with several ensembles of gauge configurations.
Our first try was to consider the ensembles used in
[5,71,72] that have 2000 gauge configurations for the 644

lattice and 1801 gauge configurations for the 804 lattice,
both rotated to the Landau gauge.2 For these ensembles of
configurations the signal-to-noise ratios are quite poor,
preventing from achieving any reliable measurement for
the FðiÞ. To overcome the problem of the signal-to-noise

ratio we have generated 9038 gauge configurations, in the
Landau gauge, for a 324 lattice with the same β value,
together with 4560 gauge configurations for a 484 lattice
and β ¼ 6.0. Our choice for β relies on the study of the
gluon propagator [5] that suggests that for this β the lattice
spacing effects are under control with possible mild volume
effects in the IR that show up only in the smallest lattice.
From now on, we will refer only to the measurements with
these two latter lattices.
Our choice of momenta to measure the form factors FðiÞ

considers only a subset of the class of momenta defined
in (10). The subset of momenta was chosen with the aim to
minimize the effects due to the breaking of rotational
symmetry and our choice was to use momenta pi as close
to each other as possible. The momentum configurations
considered are

p1 ¼ 0; p2 ¼ p; p3 ¼ p; p4 ¼ −2p referred as ð0; p; p;−2pÞ;
p1 ¼ 0; p2 ¼ p; p3 ¼ 2p; p4 ¼ −3p referred as ð0; p; 2p;−3pÞ;
p1 ¼ p; p2 ¼ p; p3 ¼ p; p4 ¼ −3p referred as ðp; p; p;−3pÞ: ð41Þ

In a simulation that uses hypercubic lattices, the breaking
of rotational symmetry implies that the measured form
factors FðiÞ are not only functions of p2 but also of the H4
invariants p½n� [25,73–75]. If for the gluon propagator the
building of these invariants and the evaluation of the effects
due to the breaking of rotational symmetry is relatively
straightforward, then a similar analysis of Green functions
with higher number of external legs becomes rather
involved. For the three-point functions, the effects due to
the breaking of rotational symmetry were discussed in [25]
and for an hypercubic lattice, the breaking of rotational
symmetry is minimized when one of the momenta is
proportional to (1, 1, 1, 1). Similar conclusions have been

observed for the two-point functions [74–76] At least
for the two-point and three-point gluon functions it was
observed that the replacement of the naive momentum by
an improved momentum, see Eq. (42) in Sec. IV, seem to
handle the effects due to the breaking of rotation symmetry.
For the kinematical configurations under consideration,

the form factors FðiÞ are functions of a single momentum
scale. In order to improve the signal-to-noise ratio, given
that the form factors are functions of p2, in all cases we
average over equivalent momenta, including negative
momenta, before performing the ensemble averages. For
example, for each gauge configuration the form factors
associated with the momenta

ð1; 1; 1; 1Þ ð−1; 1; 1; 1Þ ð−1;−1; 1; 1Þ ð−1;−1;−1; 1Þ ð−1;−1;−1;−1Þ
ð1;−1; 1; 1Þ ð−1; 1;−1; 1Þ ð−1;−1; 1;−1Þ
ð1; 1;−1; 1Þ ð1;−1;−1; 1Þ ð−1; 1;−1;−1Þ
ð1; 1; 1;−1Þ ð−1; 1; 1;−1Þ ð1;−1;−1;−1Þ

ð1;−1; 1;−1Þ
ð1; 1;−1;−1Þ

1Note that there is an uncertainty of ∼2.5% in the scale setting towards physical momentum. However, in the following, the
uncertainty associated with 1=a will be ignored and only the central value will be used. See Refs. [7,68] for discussions.

2The details on the sampling and the rotation of the gauge configurations towards the Landau gauge can be found in the above cited
works.
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are averaged before performing the ensemble averages. By
doing so we are assuming that the dependence of the form
factors on the H4 invariants p½n� is small or negligible.

IV. LATTICE FORM FACTORS

The continuum form factors FðiÞ defined in Eqs. (30)
to (32) were measured in the simulations using their lattice
implementations as given in Appendix B. For the ensem-
bles referred previously, it turns out that only the simu-
lations using the 324 lattice have a good signal-to-noise
ratio on a range of momenta. On the other hand, the results

coming from the simulation with the 484 lattice show a
good signal-to-noise ratio only for Fð0Þ but not for the
amputated functions. Anyway, despite the relative large
errors associated with this latter lattice, the outcome of
the simulation confirms the tendency observed in the 324

results and the two sets of data are compatible within one
standard deviation. In all cases, the statistical errors were
computed with the bootstrap method with a confidence
level of 67.5%. The bare lattice data for the form
factors will be described in terms of the improved lattice
momenta

pμ ¼ ð2=aÞ sinðπnμ=LÞ with nμ ¼ −L=2;−L=2þ 1;…; 0; 1;…; L=2 − 1; ð42Þ

where L is the length of the lattice. At least for the gluon
propagator the use of the improved momenta handles part
of the lattice effects.
The bare form factors Fð0Þ, Fð1Þ, and Fð2Þ associated with

the full Green functions, i.e., that incorporate the contri-
butions of the gluon propagators, are shown in Fig. 4 for all
the kinematics and for all the momenta accessed in the
simulation. The black circles are the data from simulations
using the 324 lattice volume, while the red squares are the
data measured on the 484 lattice volume. Note the different
vertical scales that are associated with each of the FðiÞ.
Their order of magnitude can be understood looking at the
bare gluon propagator function Dðp2Þ, see Fig. 3, that is
included in the data of Fig. 4.

The data reported show there is a range of momenta
where there is a clear sign for all the form factors that goes
up to p ∼ 1 GeV. For higher momenta the statistical errors
prevent the access to the behavior of the various FðiÞ.
Reduced errors can be accessed by using larger statistical
ensembles of gauge configurations. However, the data also
show that the measurement of the four-gluon Green func-
tions is possible for gauge ensembles with, at least, about
10 k configurations.
Let us now consider the same form factors but associated

with the amputated Green functions. The form factors
describing the 1-PI Green function, i.e., the amputated
Green function, can be computed from the FðiÞ dividing the
later functions by the gluon propagators that are associated
with each of the external legs of the full Green function.
For the size of each gauge ensemble, the statistical errors
associated with the two-point function are tiny, see the
results of Fig. 3, and will be ignored when performing the
division. Then, the statistical errors for the amputated
Green function form factors come only from the statistical
errors on the FðiÞ.
On a lattice simulation the (bare) computed functions

relevant for our purpose are, using now a simplified
notation, a4hAð1Þ � � �Að4Þi for the four-point function
and a2hAð1ÞAð2Þi for the propagator. From the division
of the bare FðiÞ by the bare the gluon propagator, the would
be amputated Green functions are

a4hAð1Þ � � �Að4Þi
ða2hAð1ÞAð2ÞiÞ4 ¼ hAð1Þ � � �Að4Þi

a4ðhAð1ÞAð2ÞiÞ4 : ð43Þ

To arrive at the corresponding dimensionless amputated
Green functions, these ratios have to be multiplied by a4.
Then, the bare lattice amputated Green function reads

a4
a4hAð1Þ � � �Að4Þi
ða2hAð1ÞAð2ÞiÞ4 ð44Þ

FIG. 3. Bare gluon propagator in the Landau gauge using the
data from the simulations with the 324 and 484 lattices. The data
reported are a subset of all the lattice momenta. Indeed, to handle
the effects associated with the breaking of rotational symmetry
we follow the recipe of [76] and perform the so-called cylindrical
and conical cuts in momentum space, while for p < 0.7 GeV all
data are included.
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and can be seen in Fig. 5 as a function of the momenta. The
data reported show that there is a clear Monte Carlo signal
for momenta up to ∼1 GeV for all the amputated form
factors. For larger momenta the statistical errors become
quite large and it is hard to comment on the behavior of the
amputated FðiÞ. The dependence on p shows a hierarchy
between the various amputated form factors, with the form
factor associated with tree level tensor structure Fð0Þ being
the largest of the three FðiÞ. In general, for the same form
factor, the statistical error associated with kinematical
configuration ðp; p; p;−3pÞ is the largest. This can be
understood looking at the lattice operators given in
Appendix B. Indeed, for this kinematical configuration
the number of averages performed for each configurations
is substantially smaller than for the remaining ones and,
therefore, the data associated with ðp; p; p;−3pÞ should

have larger fluctuations, when compared with the other two
kinematics investigated here.
In what concerns the dependence of the amputated form

factors with momentum, the curves suggest that Fð0Þ is
essentially constant for p≳ 0.6 GeV (although for p≳
1 GeV the large statistical errors prevent any firm con-
clusion) and decreases for smaller momenta. The system-
atics for Fð1Þ and Fð2Þ are harder to understand from Fig. 5.
As discussed below, by taking into account the Bose sym-
metry and its implication on the amputated form factors
gives a clear understanding on their dependence with
momentum scales.
The gluon field is a bosonic field and, therefore, the form

factors should depend on momenta as described in Eq. (33).
In this sense, the form factors should be a function not
of p but of

FIG. 4. Dimensionless bare lattice form factors FðiÞ for the various kinematics. Black dots are the data from the simulations on the 324

lattice, while the red squares refer to the simulation on 484. Due to the large statistical errors the data from the larger volume are omitted
in some of the plots. Note the different vertical scales used in each panel. See main text for details.
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s ¼ ðp2
1 þ p2

2 þ p2
3 þ p2

4Þ=4 ð45Þ

and of the combination of scalar products of the various
momenta mentioned in Eq. (33). Let us ignore this latter
dependence and redo the plots, looking at the amputated
form factors as a function of s and combining the various
kinematics in the same plot. The lattice data for the three
amputated form factors are reported in Fig. 6. In general,
the lattice data for the amputated form factors are com-
patible with a dependence on s. For the level of statis-
tical precision achieved in the simulation, the description
of the lattice does not seem to require any further variable
than s itself. The data of the amputated Fð0Þ are compatible
with a constant for s≳ 1 GeV. However, Fð0Þ is slightly

suppressed at lower momenta. On the other hand Fð1Þ and
Fð2Þ seem to be constant for s≳ 1 GeV but increase when s
becomes smaller. Moreover, the lattice data for the ampu-
tated Fð1Þ suggest that this form factor should change sign
at s ∼ 0.3 GeV. No change of sign is seen or suggested for
Fð2Þ. The relative strong increase in the Fð1Þ and Fð2Þ
observed when s approaches zero seem to suggest that
these form factors may have logarithmic divergences in the
IR region. However, given the limited access to the low
momenta region, the question of the logarithmic divergen-
ces is not solved within the current simulation. To answer
this question one should have access to the deep infrared
region that require simulations using larger lattices or with
different lattice spacing.

FIG. 5. Dimensionless bare lattice amputated form factors FðiÞ for the simulation on 324 lattice. The data from the 484 simulation were
omitted as it has a two large statistical error to add any useful information. For the lower momenta, the data from the simulation with a
484, which have smaller statistical errors, follow the trend observed in the 324 simulation and the two sets of data are compatible within
one standard deviation.
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V. SUMMARY AND CONCLUSIONS

Herein, the calculation of the four-gluon one-particle
irreducible Green function, in the Landau gauge, using
lattice QCD simulations is addressed. The determination of
the associated form factors from the full Green function is
discussed and some of the 1-PI Green function form factors
are computed. Our study shows that lattice simulations to
access the four-gluon 1-PI Green function require large
ensembles of gauge configurations, meaning 10 k or more
gauge configurations per ensemble. Moreover, to resolve
the 1-PI contribution to the full four-gluon Green function,
that is the Green function directly measured in the
simulation, the kinematics of the external legs have to

be carefully chosen. In particular, for the kinematics
characterized by a unique momentum, it is possible to
disentangle the four-gluon 1-PI contribution from the
disconnected parts and from the diagrams associated with
the three-gluon 1-PI in the full Green function.
In order to arrive at such large ensembles of configu-

rations, the simulations reported use either a hypercubic
lattice size of 324, that has a physical volume of
ð∼3.3 fmÞ4, or a hypercubic lattice size of 484, whose
physical volume is about ð∼4.9 fmÞ4. For the smaller lattice
our ensemble has about 10 K configurations, for the larger
lattice the size of the ensemble is of the order of 4 K.
This prevents the larger lattice volume simulation to

FIG. 6. Dimensionless bare lattice amputated form factors FðiÞ as a function of s for the simulation on 324 lattice. The plots include the
data for all the kinematical configurations. In the right plots the data for kinematical configuration with the large statistical error were
omitted for a better reading on the dependence of the form factors with s.
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achieve a good signal-to-noise ratio and the statistical errors
for the 1-PI form factors for the 484 lattice are quite large.
Nevertheless, they confirm the tendency observed in the
simulation with the 324 lattice. We are currently working on
the production of larger statistical ensembles to improve
our results, i.e., to achieve a good signal for larger range of
momenta and to explore other kinematical configurations.
The results of such simulations will be made public as soon
as possible.
The complete description of the four-gluon 1-PI irre-

ducible Green function calls for a tensor basis with more
than one hundred independent operators. However, for the
kinematical configurations under consideration, the num-
ber of relevant operators that contribute to full Green
functions is relatively small and, in some cases, can be
handled exactly. Of the possible tensor operators that define
the basis for the 1-PI, we have considered the three
operators (11), (12), and (13), measured the associated
form factors Fð0Þ, Fð1Þ, Fð2Þ defined in (30), (31), (32),
respectively, and their bare amputated versions that appear
in the 1-PI four-gluon irreducible Green function.
The tensor operator used to define the amputated form

factor Fð0Þ is the operator that appears in the tree level
Feynman rule for the four-gluon vertex. Our simulation
gives an amputated form factor that is essentially constant
for momentum above ∼0.5 GeV (see Fig. 6), with the data
suggesting a suppression at small momenta. Despite the
large ensemble, for momentum above ∼1 GeV it is difficult
to disentangle its functional form. For momenta in the
range ∼1–1.5 GeV, despite the size of the statistical errors,
the data seem to be compatible with a constant value; this
can be better seen by replacing the various data points
for the same momentum by their weighted averages using

the statistical error squared as a weight as reported in Fig. 7
for Fð0Þ. This result is in qualitative agreement with the out-
come of recent Dyson-Schwinger calculations [62,63,66]
but not with the calculation described in [61].
The analysis of Fð1Þ shows a negative form factor whose

absolute value is about a quarter of the absolute value of
Fð0Þ, it has the opposite sign of this latter form factor and
seems to approach zero as s is decreased. This behavior
suggests a change of sign for Fð1Þ at s ∼ 0.15 GeV2 and
suggests a divergent behavior for Fð1Þ in the deep infrared
region. Again, the observed Fð1Þ is qualitatively in agree-
ment with the Dyson-Schwinger result reported in [66].
The bare amputated Fð2Þ form factor has, apart the

possible change of sign, a similar behavior as observed for
Fð1Þ, i.e., Fð2Þ ∼ Fð0Þ=4, with both form factors having the
same sign and with the Fð2Þ data suggesting a possible log
divergence in the deep infrared region. The observed lattice
data for Fð2Þ are qualitatively in agreement with the recent
Dyson-Schwinger calculation reported in [66]. Note that
the remaining Dyson-Schwinger studies do not access
either Fð1Þ or Fð2Þ.
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FIG. 7. Dimensionless bare lattice amputated form factors Fð0Þ

as a function of s for the simulation on 324 lattice as in Fig. 6
replacing the various data points for the same momentum with an
weighted average using the statistical error squared as weight.
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APPENDIX A: THREE-GLUON CONTRIBUTION
FOR PROPORTIONAL MOMENTA

The three-gluon one-particle diagram can be analysed
using the Ball-Chiu tensor basis introduced in [81]; see

also [82]. For the momenta configuration of type p1 ¼ p,
p2 ¼ ηp, and p3 ¼ −ð1þ ηÞp, only the so-called longi-
tudinal component contributes. Following the notation of
Ball-Chiu, the one-particle longitudinal component reads

ð1 − ηÞAðp2
1; p

2
2;p

2
3Þgμ1μ2pμ3 þ ð1þ 2ηÞAðp2

2; p
2
3;p

2
1Þgμ2μ3pμ1 − ð2þ ηÞAðp2

3; p
2
1;p

2
2Þgμ3μ1pμ2

þ ð1þ ηÞBðp2
1; p

2
2;p

2
3Þgμ1μ2pμ3 − ð1þ 2ηÞBðp2

2; p
2
3;p

2
1Þgμ2μ3pμ1 − ηBðp2

3; p
2
1;p

2
2Þgμ3μ1pμ2

− ηð1 − ηÞCðp2
1; p

2
2;p

2
3Þp2P⊥

μ1μ2ðpÞpμ3 þ ηð1þ ηÞCðp2
2; p

2
3;p

2
1Þp2P⊥

μ2μ3ðpÞpμ1

− ð1þ ηÞð2þ ηÞCðp2
3; p

2
1;p

2
2Þp2P⊥

μ1μ3ðpÞpμ2 − 2ηð1þ ηÞSðp2
1; p

2
2; p

2
3Þpμ1pμ2pμ3 ; ðA1Þ

where A, B, C, S are the Ball-Chiu form factors and

P⊥
μνðpÞ ¼ gμν −

pμpν

p2
with pμP⊥

μνðpÞ ¼ 0 ðA2Þ

is the orthogonal projector for vector fields. The external
legs are proportional to p at least for one of the Lorentz
indices, given that in the contribution to the four-gluon
connected Green function all the external legs are con-
tracted with a gluon propagator that, in the Landau gauge,
is proportional to P⊥

μνðpÞ, given that P⊥
μνðκpÞ ¼ P⊥

μνðpÞ,
where κ is a constant, then it follows that for this class of
kinematical configuration the terms in Fig. 2 that contain
the three-gluon irreducible diagram vanish. Note that this
result is valid even if one of the momenta vanishes.

APPENDIX B: IMPLEMENTATION OF COLOR-
LORENTZ PROJECTORS TO MEASURE FðiÞ

The tensor operators that define the lattice form factors
FðiÞ, see Eqs. (30) to (32), require the SU(3) totally anti-
symmetric group structure constants fabc, the totally
symmetric structure constants dabc or color diagonal δab

operators. The first two types of operators can be computed
from color traces of the generators given in the fundamental
representation ta as

TrðtatbtcÞ ¼ 1

4
ðdabc þ ifabcÞ ðB1Þ

or, alternatively,

−2iTrð½ta; tb�tcÞ ¼ fabc and 2Trðfta; tbgtcÞ ¼ dabc:

ðB2Þ

The Euclidean version of the tensors in Eqs. (11) to (13) is

Γ̃ð0Þabcd
μνηζ ¼ fabrfcdr

	
δμηδνζ − δμζδνη



þ facrfbdr

	
δμνδηζ − δμζδνη



þ fadrfbcr

	
δμνδηζ − δμηδνζ



; ðB3Þ

Γ̃ð1Þabcd
μνηζ ¼ dabrdcdr

	
δμηδνζ þ δμζδνη



þ dacrdbdr

	
δμζδνη þ δμνδηζ



þ dadrdbcr

	
δμνδηζ þ δμηδνζ



; ðB4Þ

Γ̃ð2Þabcd
μνηζ ¼ 	

δabδcd þ δacδbd þ δadδbc



×
	
δμνδηζ þ δμηδνζ þ δμζδνη


 ðB5Þ

and

FðiÞ ¼ Γ̃ðiÞabcd
μνηζ

�
Aa
μðp1ÞAb

νðp2ÞAc
ηðp3ÞAd

ζðp4Þ
�
: ðB6Þ

Then, plugging in these definitions it turns out that for the
(K. Conf. 1) kinematics

p1 ¼ 0; p2 ¼ p3 ¼ p; p4 ¼ −2p

Fð0Þðp2Þ ¼ −8
X
r

n
Tr
	½Aμð0Þ; AνðpÞ�tr



Tr
	½AμðpÞ; Aνð−2pÞ�tr



− Tr

	½Aμð0Þ; AνðpÞ�tr


Tr
	½AνðpÞ; Aμð−2pÞ�tr




þ Tr
	½Aμð0Þ; Aνð−2pÞ�tr



Tr
	½AμðpÞ; AνðpÞ�tr


o
; ðB7Þ

Fð1Þðp2Þ ¼ 8
X
r

n
Tr
	fAμð0Þ; AνðpÞgtr



Tr
	fAμðpÞ; Aνð−2pÞgtr


þ Tr
	fAμð0Þ; AνðpÞgtr



Tr
	fAνðpÞ; Aμð−2pÞgtr




þ Tr
	fAμð0Þ; Aνð−2pÞgtr



Tr
	fAμðpÞ; AνðpÞgtr


o
; ðB8Þ
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Fð2Þðp2Þ ¼ 4
n
2Tr

	
Aμð0ÞAμðpÞ



Tr
	
AνðpÞAνð−2pÞ


þ 2Tr
	
Aμð0ÞAνðpÞ



Tr
	
AμðpÞAνð−2pÞ



þ 2Tr

	
Aμð0ÞAνðpÞ



Tr
	
AνðpÞAμð−2pÞ


þ 2Tr
	
Aμð0ÞAνð−2pÞ



Tr
	
AμðpÞAνðpÞ



þ Tr

	
Aμð0ÞAμð−2pÞ



Tr
	
AνðpÞAνðpÞ


o
; ðB9Þ

for the (K. Conf. 2) kinematics

p1 ¼ 0; p2 ¼ p; p3 ¼ 2p; p4 ¼ −3p

Fð0Þðp2Þ ¼ −4
X
r

n
Tr
	½Aμð0Þ; AνðpÞ�tr



Tr
	½Aμð2pÞ; Aνð−3pÞ�tr



− Tr

	½Aμð0Þ; AνðpÞ�tr


Tr
	½Aνð2pÞ; Aμð−3pÞ�tr




þ Tr
	½Aμð0Þ; Aνð2pÞ�tr



Tr
	½AμðpÞ; Aνð−3pÞ�tr



− Tr

	½Aμð0Þ; Aνð2pÞ�tr


Tr
	½AνðpÞ; Aμð−3pÞ�tr



þ Tr

	½Aμð0Þ; Aνð−3pÞ�tr


Tr
	½AμðpÞ; Aνð2pÞ�tr



− Tr

	½Aμð0Þ; Aνð−3pÞ�tr


Tr
	½AνðpÞ; Aμð2pÞ�tr


o
; ðB10Þ

Fð1Þðp2Þ ¼ 4
X
r

n
Tr
	fAμð0Þ; AνðpÞgtr



Tr
	fAμð2pÞ; Aνð−3pÞgtr


þ Tr
	fAμð0Þ; AνðpÞgtr



Tr
	fAνð2pÞ; Aμð−3pÞgtr




þ Tr
	fAμð0Þ; Aνð2pÞgtr



Tr
	fAμðpÞ; Aνð−3pÞgtr


þ Tr
	fAμð0Þ; Aνð2pÞgtr



Tr
	fAνðpÞ; Aμð−3pÞgtr



þ Tr

	fAμð0Þ; Aνð−3pÞgtr


Tr
	fAμðpÞ; Aνð2pÞgtr


þ Tr
	fAμð0Þ; Aνð−3pÞgtr



Tr
	fAνðpÞ; Aμð2pÞgtr


o
;

ðB11Þ

Fð2Þðp2Þ ¼ 4
n
Tr
	
Aμð0ÞAμðpÞ



Tr
	
Aνð2pÞAνð−3pÞ


þ Tr
	
Aμð0ÞAμð2pÞ



Tr
	
AνðpÞAνð−3pÞ



þ Tr

	
Aμð0ÞAμð−3pÞ



Tr
	
AνðpÞAνð2pÞ


þ Tr
	
Aμð0ÞAνðpÞ



Tr
	
Aμð2pÞAνð−3pÞ



þ Tr

	
Aμð0ÞAνðpÞ



Tr
	
Aνð2pÞAμð−3pÞ


þ Tr
	
Aμð0ÞAνð2pÞ



Tr
	
AμðpÞAνð−3pÞ



þ Tr

	
Aμð0ÞAνð2pÞ



Tr
	
AνðpÞAμð−3pÞ


þ Tr
	
Aμð0ÞAνð−3pÞ



Tr
	
AμðpÞAνð2pÞ



þ Tr

	
Aμð0ÞAνð−3pÞ



Tr
	
AνðpÞAμð2pÞ


o ðB12Þ

and for the (K. Conf. 3) kinematics

p1 ¼ p2 ¼ p3 ¼ p; p4 ¼ −3p

Fð0Þðp2Þ ¼ 24
X
r

Tr
	½AμðpÞ; AνðpÞ�tr



Tr
	½AνðpÞ; Aμð−3pÞ�tr



; ðB13Þ

Fð1Þðp2Þ ¼ 24
X
r

Tr
	fAμðpÞ; AνðpÞgtr



Tr
	fAμðpÞ; Aνð−3pÞgtr



; ðB14Þ

Fð2Þðp2Þ ¼ 12
n
Tr
	
AμðpÞAμðpÞ



Tr
	
AνðpÞAνð−3pÞ


þ 2Tr
	
AμðpÞAνðpÞ



Tr
	
AμðpÞAνð−3pÞ


o
: ðB15Þ

The expressions in Eqs. (B7) to (B15) will be used in the simulations to measure each of the lattice form factors FðiÞ.
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