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We investigate the possibility of deuteronlike Σ�
cΣ̄ bound states within the one-boson-exchange model

and systematically analyze the effects of the contact range δ3ðr⃗Þ potential, the tensor term from the vector-
meson exchange, and nonlocal potentials due to the dependence on the sum of the initial and final state
center-of-mass momenta. We find that the pion-exchange potential including the δ3ðr⃗Þ term and the tensor
term of the ρ-exchange potential exhibit comparable magnitudes but opposite signs for any S-wave baryon-
antibaryon systems. For the Σ�

cΣ̄ system, it is most likely to form bound states with mass around 3.7 GeV in
the IðJPÞ ¼ 0ð2−Þ and 1ð2−Þ channels.
DOI: 10.1103/PhysRevD.109.074041

I. INTRODUCTION

Since the landmark discovery of Xð3872Þ in 2003 [1],
there has been a significant surge in both experimental and
theoretical investigations into exotic states. Up to now,
dozens of exotic states or their candidates have been
observed in experiments, and theoretical frameworks
explaining the underlying structures of these exotic states,
such as molecular states, multiquark states, hybrids, or
glueballs, are continuously evolving and being refined. We
refer to Refs. [2–19] for reviews of the experimental and
theoretical studies. Intriguingly, many of the observed
exotic states are located in close proximity to the thresholds
of a pair of hadrons that they can couple to, including the
following famous examples, Xð3872Þ [1] and Zcð3900Þ�
[20–22] around the DD̄� threshold, the Tccð3875Þ [23,24]
near the DD� threshold, the Zcð4020Þ� [25,26] near the

D�D̄� threshold, the Zbð10610Þ� and Zbð10650Þ� [27,28]
near the BB̄� and B�B̄� thresholds, the Zcsð3985Þ [29–32]
near the D̄sD� and D̄�

sD thresholds, the Pc states [33] near
the D̄ð�ÞΣc thresholds, the Pcs states [34,35] near the D̄ð�ÞΞc
threshold and so on. It is natural to explain them as
hadronic molecules composed of the corresponding hadron
pairs [7,36].
The hadronic molecule picture has undergone a process

of ongoing refinement and evolution. The first proposal of a
hadronic molecule composed of a pair of charmed and
anticharmed mesons was advanced in 1976 [37]. Merely a
year later, the ψð4040Þ peak observed in eþe− annihilation,
which was ultimately interpreted as a charmonium state,
was speculated to be a result of the production of a D�D̄�
molecule based on preliminary analysis [38]. Given the
notable success of the one-pion-exchange (OPE) potential
model in describing the deuteron and nucleon-nucleon
scattering, it was widely conceived that the pions play a
significant role in the formation of hadronic molecules. In
the 1980s, an accurate description of the nuclear force
was achieved with the one-boson-exchange (OBE) model
[39–42]. In 1991 and 1994, Törnqvist carried out a com-
prehensive analysis of the potential existence of deuteronlike
meson-meson bound states using the OPE, employing both
qualitative and quantitative methods [43,44].
The theoretical analyses mentioned thus far can be

considered as preliminary attempts to model two-body
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hadronic molecular states, in the absence of definitive
experimental results apart from the deuteron. Nevertheless,
with the discovery of the Xð3872Þ by Belle Collaboration,
which lies beyond the conventional charmonium spectrum
[45,46], these initial attempts have been extended to
study possible hadronic molecules in various hadron
systems. Numerous studies suggest that the Xð3872Þ
may be a DD̄� molecule [47–52], based on its distinct
characteristics near the DD̄� threshold, and the observed
ratio of its isospin breaking decays ΓðX → J=ψπþπ−Þ and
ΓðX → J=ψπþπ−π0Þ, which can be easily explained within
the molecular picture [53,54]. In 2008, Thomas and Close
undertook a comprehensive analysis, examining and veri-
fying the calculations of the molecular state model in the
literature thus far. They scrutinized several pivotal aspects,
including different conventions for charge conjugation
eigenstates, the δ3ðr⃗Þ term and the tensor force [55].
Their research suggested that the Xð3872Þ could potentially
be a bound state within the OPE model. However, these
results demonstrated a significant sensitivity to the cutoff in
the form factor. For an in-depth discussion on the form
factor and renormalization related to the short-distance
interactions, we refer to Refs. [56,57]. Furthermore, in
Ref. [58], the authors elaborated on the OPE model in a
constituent quark model by integrating additional contri-
butions from mid- and short-range interactions. These
interactions were linked to exchanges of the η, σ, ρ and
ω mesons.
In this study, we will investigate the potential existence

of Σ�
cΣ̄ hadronic molecules with quark components

cs̄qqq̄ q̄. If such states exist, they would significantly
enrich the excited Ds state spectrum in a higher energy
region beyond the scope of conventional cs̄ mesons and
their mixture of cs̄qq̄ configurations [59]. We will explore
various issues associated with the OBE model, including
the effects of δ3ðr⃗Þ which has been repeatedly discussed,
the contribution of the tensor term in the vector-meson
exchange, and the impact of nonlocal terms due to the
dependence on the sum of the initial and final state center-
of-mass (c.m.) momenta (denoted as k⃗), which has not been
thoroughly investigated in the hadronic molecular context.
It is important to clarify that this work is not aiming at
precisely predicting the masses of possible Σ�

cΣ̄ bound
states, but rather at exploring the potential existence of such
hadronic molecules and attempting to formalize the calcu-
lation process of the OBE model after considering various
factors.
This paper is organized as follows. After the

Introduction, we begin by presenting the effective potential
of Σ�

cΣ̄ in Sec. II. We then proceed to discuss various
factors, including the effects of momentum k⃗, the δ3ðr⃗Þ
term and the tensor potential in the OBE model in Sec. III.
Subsequently, we present the numerical outcomes of the
OBE model in Sec. IVA. In Sec. IV B, we show that

cancellations generally exists between the pion and
ρ-meson-exchange potentials, as derived from the quark
model. Possible Σ�

cΣ̄ bound states are discussed in
Sec. IV C. Finally, we present a summary in Sec. V.
Technical and pedagogical details are relegated to
Appendices A–D.

II. POTENTIAL FOR THE Σ�
cΣ̄ SYSTEM

In this section, we perform calculations to determine
the OBE potential between Σ�

cΣ̄, as depicted in Fig. 1.
Exchanges of mesons lower than 1 GeV are considered.
The Lagrangians for the couplings of Σ with the exchanged
mesons (σ, π, η, ρ, and ω) are adopted from Ref. [60],

LΣΣσ ¼ −gΣΣσΣ̄σΣ; ð1Þ

LΣΣπ ¼ −
gΣΣπ
mπ

Σ̄γ5γμτ⃗ · ∂μπ⃗Σ; ð2Þ

LΣΣη ¼ −
gΣΣη
mη

Σ̄γ5γμ∂μηΣ; ð3Þ

LΣΣρ ¼ −gΣΣρΣ̄
�
γμ −

kΣΣρ
2MΣ

σμν∂ν

�
τ⃗ · ρ⃗μΣ; ð4Þ

LΣΣω ¼ −gΣΣωΣ̄
�
γμ −

kΣΣω
2MΣ

σμν∂ν

�
ωμΣ; ð5Þ

where the isospin multiplets are defined as

Σ ¼ ðΣþ;Σ0;Σ−ÞT; ð6Þ

π⃗ ¼
�
πþ þ π−ffiffiffi

2
p ;

π− − πþ

i
ffiffiffi
2

p ; π0
�
; ð7Þ

ρ⃗μ ¼
�
ρþμ þ ρ−μffiffiffi

2
p ;

ρ−μ − ρþμ
i
ffiffiffi
2

p ; ρ0μ

�
; ð8Þ

the tensor operator in spinor space isσμν ¼ iðγμγν − γνγμÞ=2,
the isospin operator τ⃗ ¼ ðτ1; τ2; τ3Þ with τi (i ¼ 1, 2, 3) the
traceless isospin-1 matrices, and mπ , mη, MΣ represent the

FIG. 1. Feynman diagram for the Σ�
cΣ̄ → Σ�

cΣ̄ process with
t-channel meson exchanges, where P1 ¼ ðMΣ�

c
; p⃗Þ, P2 ¼

ðMΣ;−p⃗Þ, P3 ¼ ðMΣ�
c
; p⃗0Þ, P4 ¼ ðMΣ;−p⃗0Þ, and q ¼ P1 − P3

represent the four momenta of the corresponding particles.
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respective masses of the corresponding particles.1 In the
heavy quark limit, Σ�

c belongs to the light flavor SU(3)
sextet [62],

B�
6 ¼

0
BBB@

Σ�þþ
c

Σ�þ
cffiffi
2

p Ξ�þ
cffiffi
2

p

Σ�þ
cffiffi
2

p Σ�0
c

Ξ�0
cffiffi
2

p

Ξ�þ
cffiffi
2

p Ξ�0
cffiffi
2

p Ω�0
c

1
CCCA ð9Þ

and the related couplings satisfying heavy quark spin
symmetry read [63],2

LB�
6
B�
6
σ ¼ gB�

6
B�
6
σTr½B̄�μ

6 σB�
6μ�; ð10Þ

LB�
6
B�
6
p ¼ gB�

6
B�
6
pTr½B̄�μ

6 iγ5PB�
6μ�; ð11Þ

LB�
6
B�
6
v ¼ gB�

6
B�
6
vTr½B̄�μ

6 γνVνB�
6μ�

þ i
fB�

6
B�
6
v

2M6�
Tr½B̄�

6μð∂μVν − ∂
νVμÞB�

6ν�; ð12Þ

where Tr½� � �� means the trace over flavor indices, and [65]

P ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA; ð13Þ

Vμ ¼

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA

μ

: ð14Þ

The pertinent coupling constants are listed in Table I.
Utilizing the aforementioned Lagrangians, we can derive

the Σ�
cΣ̄ scattering amplitude, and the details can be found

in Appendix B. The Σ�
cΣ̄ potential in the momentum space

is linked to the scattering amplitude through

hp⃗0jV̂jp⃗i ≈ −
1

ð2πÞ3MðΣ�
cΣ̄ → Σ�

cΣ̄Þ; ð15Þ

with p⃗ and p⃗0 the relative momenta of the incoming and
outgoing particles; see Appendix C for additional details.
As usually done in the OBE model, we introduce a
monopole form factor with a cutoff parameter Λ at each
vertex,

FðqÞ ¼ Λ2 −m2
ex

Λ2 − q2
; ð16Þ

which equals unity when the exchanged particle is on shell.
Then one gets the effective potential in momentum space,
which can be subsequently converted to the coordinate
space potential utilizing the Fourier transformation; see
Appendix A for details. Consequently, we obtain the
S-wave Σ�

cΣ̄ effective potential from exchanging the scalar
meson (σ), pseudoscalar mesons (p ¼ π, η) and vector
mesons (v ¼ ρ, ω) as V ¼ Vσ þ

P
p¼π;η Vp þ

P
v¼ρ;ω Vv,

where

Vσ ¼ −gB�
6
B�
6
σgΣΣσFσðIÞH0ðr;mσ;ΛÞ; ð17Þ

Vp ¼ −
gB�

6
B�
6
pgΣΣp

2MΣ�
c
mp

FpðIÞH1ðr;mp;ΛÞΔSASB ; ð18Þ

Vv ¼ FvðIÞðVð1Þ
v þ Vð2Þ

v þ Vð3Þ
v þ Vð4Þ

v Þ; ð19Þ

with

Vð1Þ
v ¼ −gB�

6
B�
6
vgΣΣvH0ðr;mv;ΛÞ; ð20Þ

Vð2Þ
v ¼ gB�

6
B�
6
vgΣΣvkΣΣv

2MΣ�
c
MΣ

�
ΔSASB −

3MΣ�
c

2MΣ

�
H1ðr;mv;ΛÞ; ð21Þ

Vð3Þ
v ¼ fB�

6
B�
6
vgΣΣv

2MΣ�
c
MΣ

ΔSASBH1ðr;mv;ΛÞ; ð22Þ

Vð4Þ
v ¼ fB�

6
B�
6
vgΣΣvkΣΣv

2MΣ�
c
MΣ

ΔSASBH1ðr;mv;ΛÞ; ð23Þ

TABLE I. Pertinent coupling constants for the Σ�
cΣ̄ → Σ�

cΣ̄
process [60,61,66]. gΣΣσ is obtained by matching the amplitude of
ππ-exchange with that of the σ-exchange for the t-channel
process of ΣΣ̄ → Σ̄Σ [61]. For the vector-meson coupling
constants, we use gΣΣρ ¼ gΣΣω ¼ gΣΣv and kΣΣρ ¼ kΣΣω ¼ kΣΣv.

Couplings gΣΣσ gΣΣπ gΣΣη gΣΣv kΣΣv

Value 3.50 0.79 0.69 7.48 1.33

Couplings gB�
6
B�
6
σ gB�

6
B�
6
p gB�

6
B�
6
v fB�

6
B�
6
v

Value 5.64 59.50 9.19 95.80

1Since we are not interested in isospin symmetry breaking
effects, the isospin averaged masses are used for all particles
within the same isospin multiplet. Regarding the σ, we select the
mass value to be used in the OBE model,m ≃ 519 MeV, given in
Ref. [61] that corresponds to the coupling constant gΣΣσ listed in
Table I.

2Indeed, Eqs. (10)–(12) can be reformulated in a manner
similar to Eqs. (1)–(5). Specifically, Eq. (10) is of the form as
Eq. (1); Eq. (11) aligns with Eqs. (2) and (3) in terms of axial
vector coupling at the tree level [64]; Eq. (12) can be restructured
into the form as Eqs. (4) and (5) using the Gordon identity, that
is, the terms iB̄�

6μð∂μVν − ∂
νVμÞB�

6ν and B̄�
6μð−2M6�γ

μVν þ
σμα∂αVν − 2M6�γ

νVμ þ σνα∂αVμÞB�
6ν are equivalent at the tree

level.
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and

H0ðr;m;ΛÞ ¼ 1

4π

�
e−mr − e−Λr

r
−
Λ2 −m2

2Λ
e−Λr

�
; ð24Þ

H1ðr;m;ΛÞ ¼ 2e−mrm2 þ e−Λr½−rΛ3 þm2ð−2þ ΛrÞ�
24πr

:

ð25Þ

For the S-wave Σ�
cΣ̄ systems, the spin factor ΔSASB outlined

in Appendix B is defined as

ΔSASB ¼ 9 − 2SðSþ 1Þ
3

¼
�

5
3
; S ¼ 1

−1; S ¼ 2
ð26Þ

with S the total spin. The pertinent isospin factors are listed
in Table II.

III. OBE MODEL

A. Effects of k⃗ on the effective potential

The relation between the scattering amplitude and the
effective potential in coordinate space, as demonstrated in
Eq. (A17), clearly indicates the necessity to perform
the Fourier transformations of both q⃗≡ p⃗0 − p⃗ and
k⃗≡ p⃗0 þ p⃗, followed by integration with respect to x⃗0 that
is defined in Eq. (A12). However, although this math-
ematical operation can be found in certain old references,
e.g., [39,67–69], currently the majority of OBE models
used for calculating the effective potential for hadronic
molecules do not take into account the k⃗-dependent terms
from the spinors of the initial and final states [66,70–74].
Nevertheless, the impact of nonlocal contributions was
explored within the OBE model for DD̄�, BB̄� [75], K̄B
and K̄�B [76] systems (B ¼ Λ;Σ;Ξ). It was found that
nonlocal contributions can alter the short-range part of the
corresponding potential, and numerically these nonlocal
contributions to the binding energies typically are at the
order of a few MeV. In the subsequent analysis, we
specifically examine the influence of k⃗ on the final results,
particularly on the binding energy of a specified bound
state. From Eqs. (A43)–(A47), one finds that k⃗ in the
amplitude introduces the derivatives of the radial wave-
function and is thus a nonlocal contribution. Furthermore,

considering Eq. (A19), for the S-wave, we need to solve the
Schrödinger equation represented as

ψ 00ðrÞ þ 2μEψðrÞ − 2μrV̂Mðp⃗;p⃗0Þ
j2Sþ1SJ ;IiðrÞ

ψðrÞ
r

¼ 0; ð27Þ

where V̂Mðp⃗;p⃗0Þ
j2Sþ1SJ ;IiðrÞ is the potential operator in the coor-

dinate space, defined in Eq. (A22). We can then proceed
with the following substitution,

rV̂Mðp⃗;p⃗0Þ
j2Sþ1SJ ;IiðrÞ

ψðrÞ
r

¼ VMðp⃗;p⃗0Þ
0 ðrÞψðrÞ

þ VMðp⃗;p⃗0Þ
1 ðrÞψ 0ðrÞ

þ VMðp⃗;p⃗0Þ
2 ðrÞψ 00ðrÞ; ð28Þ

where the additional subscripts 0, 1, and 2 of VMðp⃗;p⃗0ÞðrÞ
defined here represent the number of the derivatives of
ψðrÞ, specifically ψðrÞ, ψ 0ðrÞ and ψ 00ðrÞ, respectively. The
momentum k⃗, from the spinor wave function of a spin-1=2
particle as given in Eq. (B2), consistently appears as
k⃗=ð2MÞ with M the baryon mass, which would be small
if the composite state was loosely bound. Via numerical
calculations we find that the effects of ψ 0ðrÞ and ψ 00ðrÞ on
the final binding energy are indeed negligible. However,

the k⃗-dependent contribution in VMðp⃗;p⃗0Þ
0 ðrÞ could be

sizable (see Appendix D). The conclusion is consistent
with the specific studies in Refs. [75,76]. In the following,
we will keep the k⃗-dependent terms in our calculations, i.e.,
we will compute the effective potential in the form of
Eq. (B2), rather than neglecting the σ⃗ · k⃗=ð2MÞ term, as was
often done in literature.

B. The δ3ð⃗rÞ potential
As per Eq. (A25), a Fourier transformation of the

amplitude, denoted as F−1
q⃗→r⃗½Mðq⃗Þ�, is required to derive

the effective potential in the coordinate space. We now
consider two distinct forms of amplitudes:

M1ðq⃗Þ ¼
1

q⃗2 þm2
; ð29Þ

M2ðq⃗Þ ¼
q⃗2=M2

q⃗2 þm2
¼ 1

M2

�
1 −

m2

q⃗2 þm2

�
; ð30Þ

and the Fourier transformation yields

F−1
q⃗→r⃗½M1ðq⃗Þ� ¼

1

4π

e−mr

r
; ð31Þ

F−1
q⃗→r⃗½M2ðq⃗Þ� ¼

1

M2

�
δ3ðr⃗Þ −m2

4π

e−mr

r

�
; ð32Þ

TABLE II. The relevant isospin factors for exchanging σ, π, η,
ρ, ω for the Σ�

cΣ̄ → Σ�
cΣ̄ process.

Isospin factors FσðIÞ FπðIÞ FηðIÞ FρðIÞ FωðIÞ
I ¼ 0 1

ffiffiffi
2

p
1=

ffiffiffi
6

p ffiffiffi
2

p
1=

ffiffiffi
2

p
I ¼ 1 1 1=

ffiffiffi
2

p
1=

ffiffiffi
6

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
I ¼ 2 1 −1=

ffiffiffi
2

p
1=

ffiffiffi
6

p
−1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
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respectively. The zero-range δ3ðr⃗Þ potential in Eq. (32)
leads to a strong repulsion or attraction at r⃗ ¼ 0 depending
on the sign of the prefactor which has been neglected in the
above. Being of short-distance in nature, the δ3ðr⃗Þ potential
requires a regularization. Considering the form factor in
Eq. (16), the potentials become

F−1
q⃗→r⃗½M1ðq⃗ÞF2ðq⃗Þ� ¼ H0ðr;m;ΛÞ; ð33Þ

F−1
q⃗→r⃗½M2ðq⃗ÞF2ðq⃗Þ� ¼ 1

M2

��
Λ2 −m2

4π

�
2 2π

Λ
e−Λr

−m2H0ðr;m;ΛÞ
�
; ð34Þ

where

�
Λ2 −m2

4π

�
2 2π

Λ
e−Λr

is the smeared form of δ3ðr⃗Þ in Eq. (32). Not only does
q⃗2=ðq⃗2 þm2Þ contribute to the δ3ðr⃗Þ potential for S-wave
interactions, but also does A⃗ · q⃗ B⃗ ·q⃗=ðq⃗2 þm2Þ [70,77].
This observation aligns with Eq. (A42), where for S-wave,
we have

A⃗ · q⃗ B⃗ ·q⃗
q⃗2 þm2

∼
A⃗ · B⃗
3

q⃗2

q⃗2 þm2
:

In an effective field theory (EFT), one can introduce
counterterms to absorb the cutoff dependence.3 However,
due to the lack of data for most hadron-hadron scatter-
ings, such counterterms can hardly be fixed. Thus, in the
phenomenological OBE models, one normally does not
bother introducing counterterms but rather plays with
the δ3ðr⃗Þ term. The δ3ðr⃗Þ term is retained in its entirety
in Refs. [64,66,73,78–82], while it is discarded in
Ref. [77] and the authors simply make the following
substitution4

q⃗2

q⃗2 þm2
π
→ −

m2
π

q⃗2 þm2
π
: ð35Þ

Moreover, in Ref. [44], the δ3ðr⃗Þ term in the central
potential is omitted. In Ref. [70], the authors dismiss the

δ3ðr⃗Þ term, arguing that in a loosely bound state, the zero-
range components are not anticipated to be important.
Furthermore, in Ref. [55], the authors explore the impacts
of including or excluding the δ3ðr⃗Þ term in the OPE
potential when solving the Schrödinger equation for the
deuteron, and they find that the cutoff parameters need to be
varied significantly to achieve the same binding energy. In
Ref. [74], the authors claim that the removal of the short-
range δ3ðr⃗Þ contributions to the OBE potential is a
necessary step for describing the pentaquark states con-
sistently, and they argue that the behavior of the OBE
potential at a distance shorter than the size of hadrons is not
physical, so they remove these short-range δ-potential
contributions completely. However, for a hadronic mol-
ecule close to threshold, its extended nature does not imply
that the short-range potential is insignificant. In contrast, it
indicates that the binding of molecular state cannot probe
details of the short-range binding force, which is distinct
from being negligible. In line with the EFT treatment, in
Ref. [83] an additional parameter is introduced to adjust the
strength of the δ3ðr⃗Þ term to reproduce the experimental
masses of the Pc states [33].
We can see from the above that the δ3ðr⃗Þ term is a

contentious aspect within the OBE model for describing
hadronic molecular states. It is an intrinsic defect of
the OBE model and can be rectified as in EFT by
introducing counterterms, which can be fixed only when
sufficient data are available. Note that the coupling con-
stants that will be used are taken from Refs. [60,66],
which fits to experimental data keeping full contributions
from the δ3ðr⃗Þ potential. Hence, we will fully retain the
δ3ðr⃗Þ term in the subsequent calculations to maintain self-
consistency.

C. The tensor potential

In this subsection, we concentrate on the contribution of
the tensor term in the Lagrangian, i.e., the second term on
the right-hand side of Eqs. (4), (5), and (12), to the effective
potential. This term is to be distinguished from the vector
term, which is the corresponding first term on the right-
hand side of the same equations.5 Many papers have argued
that the contribution of the tensor term to the effective
potential is negligible [18,84,85], or it is ignored to simplify
the calculation [86–88]. In general, the significance of the
tensor term is case dependent and cutoff dependent. As an
illustration, here we consider the Σ�

cΣ̄�
c dibaryon systems

composed of spin-3=2 singly charmed baryons that have
been studied in Ref. [66].
The Lagrangian utilized in Ref. [66] for the vector meson

exchange is given in Eq. (12), with the associated coupling

3In Ref. [57], the authors introduce a novel semilocal regu-
larization approach for the chiral two-nucleon potentials. To
minimize the short-range contributions in the regularized OPE
potential, i.e., ensuring that the corresponding potential vanishes
as r → 0, they have incorporated a leading-order contact inter-
action within the momentum space representation.

4In fact, this substitution also triggers a substantial shift in the
low-momentum part, even to the extent of changing its sign.

5The traceless term a⃗1 · q⃗a⃗2 · q⃗ − a⃗1 · a⃗2q⃗2=3, which changes
the orbital angular momentum by two units (ΔL ¼ 2), is a pure
tensor force. Here, we still call a⃗1 · q⃗a⃗2 · q⃗ a tensor term, though
reducible, as it contains a ΔL ¼ 2 part.
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constants listed in Table I.6 The S-wave effective potentials
for vector meson exchanges read

VCðr; v; g; fÞ ¼ Cv

�
g2H0ðr;mv;ΛÞ

þ 3

8MAMB
ðg2 þ 4gfÞH1ðr;mv;ΛÞ

�
;

VSSðr; v; g; fÞ ¼ Cv
g2 þ 2gf þ f2

2MAMB
H1ðr;mv;ΛÞΔ�

SASB
;

where the subscripts C and SS denote the central and spin-
spin potentials, respectively, g and f are the coupling

constants of the vector and tensor coupling terms, respec-
tively,MA andMB are the baryon masses, Cv is the isospin
factor, mv (v ¼ ρ, ω, ϕ) is the mass of the exchanged
meson, and

Δ�
SASB

¼ 2SðSþ 1Þ − 15

9
:

Taking the ρ-exchange potential as an example, we assess
the contribution of the tensor term by comparing the
following specific effective potentials:

V totðrÞ ¼ VCðr; ρ; g; fÞ þ VSSðr; ρ; g; fÞ;
VvectorðrÞ ¼ VCðr; ρ; g; 0Þ þ VSSðr; ρ; g; 0Þ;
V tensorðrÞ ¼ VCðr; ρ; 0; fÞ þ VSSðr; ρ; 0; fÞ; ð36Þ

where VvectorðrÞ only contains the contribution of the vector
coupling term in the Lagrangian, V tensorðrÞ only contains
the contribution of the tensor term, and V totðrÞ is the total
effective potential. Note that V totðrÞ≠VvectorðrÞþV tensorðrÞ
due to interference.

FIG. 2. Contributions of the vector and tensor coupling terms, Vvector and V tensor, respectively, in comparison to the total ρ-exchange
potential for the Σ�

cΣ̄�
c systems with total spin J ¼ 0 (top row), J ¼ 2 (middle row), and J ¼ 3 (bottom row). Because of the δ potential in

the tensor term, the relative importance is sensitive the cutoff. Here the Λ values are those taken in Ref. [66].

6InRef. [66], the following relations are used: gvB�
6
B�
6
¼ 2

ffiffiffi
2

p
gρNN

and gvB�
6
B�
6
þ fvB�

6
B�
6
¼ 6

ffiffiffi
2

p ðgρNN þ fρNNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMf

p
=ð5MNÞ with

MiðfÞ being the mass of the baryon in the initial (final) state. Using
gρNN ¼ 3.25 and fρNN ¼ 19.82, they obtained gvB�

6
B�
6
¼ 9.19 and

fvB�
6
B�
6
¼ 95.80 as listed in Table I. The large value of fvB�

6
B�
6
is

attributed to the large mass of the charmed baryon.

WU, DONG, GUO, and ZOU PHYS. REV. D 109, 074041 (2024)

074041-6



The results for the isoscalar JP ¼ 0−, 2− and 3− Σ�
cΣ̄�

c
systems, using the chosen cutoffs as presented in Ref. [66],
are depicted in Fig. 2. It is observed that the tensor term,
V tensorðrÞ, plays a predominant role in the JP ¼ 0− and 3−

cases. In particular, for the IðJPÞ ¼ 0ð3−Þ system, the total
effective potential between the two particles becomes
repulsive at short distances when the tensor term is
included, despite the attractive nature of VvectorðrÞ. Note
that the vector coupling does not lead to a δ3ðr⃗Þ term while
the tensor coupling does. Thus, the relative importance of
the tensor coupling contribution crucially depends on the
form factor and cutoff.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Results of the general OBE

The quantum numbers IðJPÞ of the S-wave Σ�
cΣ̄ systems

encompass 0ð1−Þ, 1ð1−Þ, 2ð1−Þ, 0ð2−Þ, 1ð2−Þ and 2ð2−Þ.
Figure 3 showcases the effective potentials that include
both the δ3ðr⃗Þ term and the vector-meson tensor coupling
term. The total effective potential in our calculation
comprises the exchanges of σ, π, η, ρ and ω, i.e.,

V totalðrÞ¼VσðrÞþVπðrÞþVηðrÞþVρðrÞþVωðrÞ: ð37Þ

This effective potential is used to solve the Schrödinger
equation (A19) to search for bound state solutions for the
specific quantum numbers. The results obtained by varying
Λ from 0.8 GeV to 1.1 GeV are depicted in Fig. 4. It is
evident that the employed potential supports Σ�

cΣ̄ bound
state solutions when the cutoff is larger than certain values
in the chosen range, except for the case of 2ð2−Þ.

B. General relation between π- and ρ-exchange
potentials in S-wave BB̄0 systems

If we use the same form factor with the same cutoff for
all the potentials of different mesons, as commonly done in
literature, a distinct characteristic can be observed from
Fig. 3: for the S-wave Σ�

cΣ̄ systems, the pion-exchange
potential [including the δ3ðr⃗Þ] and the ρ-exchange potential
(including the tensor-term contribution) always have oppo-
site signs, suggesting a mutual cancellation. A similar
phenomenon is also noticeable in the Σ�

cΣ̄�
c, Ξ�

cΞ̄�
c, ΣcΣ̄c and

Ξ0
cΞ̄0

c systems [66,89]. In the following, we will use the
quark model to demonstrate that this pattern holds for any
S-wave baryon-antibaryon (BB̄0) system: the total pion-
exchange potential is comparable in magnitude to the
tensor-term contribution in the ρ-exchange potential, but
with opposite signs. This observation provides a theoretical

FIG. 3. Effective potentials for the S-wave Σ�
cΣ̄ systems with Λ ¼ 1 GeV.

FIG. 4. Dependence of the binding energy E on the cutoff Λ for
the S-wave Σ�

cΣ̄ systems with the potential in Eq. (37).
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substantiation for the model considering only the vector
term for the vector-meson exchange potential [18,19].
As per Refs. [64,90], at the quark level, the Lagrangian

for the coupling of pseudoscalar (P), vector (V), and σ
mesons and quarks reads

Lq ¼ gpqqq̄iγ5Pqþ gvqqq̄γμVμqþ gσqqq̄σq; ð38Þ
where q ¼ ðu; d; sÞT represents the light quark flavor
triplet, and gpqq, gvqq, gσqq are the couplings of the light
quark to the light mesons. The Lagrangian in Eq. (38),
assuming interaction vertices calculated at the quark and
hadron levels to be identical, is frequently utilized to
estimate certain coupling constants [64,73,90]. For in-
stance, the relation between gπBB and gπqq, the former of
which represents the coupling constant between a baryon B
and pion in LπBB, can be derived from

hB; s⃗jLπBBjB; s⃗i≡ hB; s⃗jLπqqjB; s⃗i; ð39Þ
where s⃗ represents the spin of B. The calculation of the
right-hand side of the above equation necessitates specific
quark-model wavefunctions for the initial and final states.
Following Ref. [64], we deduce

gpqq ¼
3
ffiffiffi
2

p

5

mq

MN
gπNN; ð40Þ

gvqq ¼
ffiffiffi
2

p
gρNN; ð41Þ

gσqq ¼
1

3
gσNN; ð42Þ

where gπNN , gρNN and gσNN can be obtained by fitting to
experimental data and mq ≈MN=3 ≈ 313 MeV [90] is
the constituent quark mass. Utilizing g2πNN=4π ¼ 13.6,
g2ρNN=4π ¼ 0.84 [40,91], and gσNN ¼ 8.7 [61], we obtain
gpqq ≈ 3.7, gvqq ≈ 4.6 and gσqq ≈ 2.9.
In order to evaluate the contributions of the pion-

exchange and the ρ-exchange in a generic BB̄0 system,
we will examine the amplitudes of the two processes
depicted in Fig. 5(a) and (b). At the hadronic level, we have

MπðBB̄0 → BB̄0Þ ¼ −
hBjLπBBjBihB̄0jLπB0B0 jB̄0i

Q2 −m2
π

; ð43Þ

where Q denotes the four-momentum of the exchanged
particle. Concurrently, with Eq. (39), the above equation
can be expressed at the quark level as

MπðBB̄0 → BB̄0Þ ¼ −
hBjLπq1q1 jBihB̄0jLπq2q2 jB̄0i

Q2 −m2
π

: ð44Þ

Utilizing Eq. (38), we obtain7

MπðBB̄0 → BB̄0Þ ¼ hBB̄0j−g
2
pqq

8m2
q

σ⃗1 · Q⃗σ⃗2 · Q⃗
Q2 −m2

π
jBB̄0i: ð45Þ

Similarly, we derive the amplitude of the ρ exchange as

MρðBB̄0 → BB̄0Þ ¼ hBB̄0jg
2
vqq

2

1

Q2 −m2
ρ
jBB̄0i

þ hBB̄0j g
2
vqq

8m2
q

ðQ⃗× σ⃗1Þ · ðQ⃗× σ⃗2Þ
Q2 −m2

ρ
jBB̄0i;

ð46Þ

where the second term on the right-hand side corresponds
to the contribution of the tensor term at the hadronic level.
Using ða⃗1× a⃗2Þ ·ða1!× a⃗3Þ¼ a⃗21ða⃗2 · a⃗3Þ−ða⃗1 · a⃗2Þða⃗1 · a⃗3Þ

and Eq. (A42), for the S-wave BB0 system we get,

Mtensor
ρ ðBB̄0 → BB̄0Þ ¼ hBB̄0j g

2
vqq

8m2
q

2

3

σ⃗1 · σ⃗2Q⃗
2

Q2 −m2
ρ
jBB̄0i; ð47Þ

MπðBB̄0 → BB̄0Þ ¼ hBB̄0j−g
2
pqq

8m2
q

1

3

σ⃗1 · σ⃗2Q⃗
2

Q2 −m2
π
jBB̄0i; ð48Þ

and their relative strength reads

Mtensor
ρ ðBB̄0 → BB̄0Þ

MπðBB̄0 → BB̄0Þ ¼ −
2g2vqq
g2pqq

Q⃗2 þm2
π

Q⃗2 þm2
ρ

: ð49Þ

As illustrated in Fig. 6(a), the ratio lies between approx-
imately −0.1 and −2.0 as jQ⃗j varies from 0 to 1 GeV,
indicating a certain degree of cancellation. To more
accurately depict this mutual cancellation effect, we convert
Eqs. (47) and (48) into the coordinate space using
Eq. (A41). Consequently, the ratio of the contribution from
the tensor term in the ρ-exchange potential to the pion-
exchange potential in the S-wave BB̄0 system reads

V tensor
ρ ðr;ΛρÞ
Vπðr;ΛπÞ

¼ −2g2vqq
g2pqq

hðr;mρ;ΛρÞ −m2
ρgðr;mρ;ΛρÞ

hðr;mπ;ΛπÞ −m2
πgðr;mπ;ΛπÞ

:

ð50Þ

FIG. 5. Diagrams for the t-channel (a) pion and (b) ρ-meson
exchanges for BB̄0 → BB̄0.

7Note that we omitted the flavor index in Eqs. (45) and (46)
because it is evident from Eq. (38) that the pion and ρ exchanges
possess identical flavor structure, which does not influence the
assessment of their relative strength.
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At r ¼ 0 fm, Λρ ¼ Λπ ¼ 1 GeV, we have

V tensor
ρ ðr ¼ 0 fm;Λρ ¼ 1 GeVÞ
Vπðr ¼ 0 fm;Λπ ¼ 1 GeVÞ ≈ −0.42; ð51Þ

in line with Fig. 3. Varying the cutoff for the pion exchange
to a smaller value, a larger cancellation may be achieved,

V tensor
ρ ðr ¼ 0 fm;Λρ ¼ 1 GeVÞ

Vπðr ¼ 0 fm;Λπ ¼ 0.76 GeVÞ ≈ −1.0; ð52Þ

as depicted in Fig. 6(b).
The same analysis can be applied to other pseudoscalar

mesons and vector mesons, provided they share the same
flavor structure. For instance, in the case of the S-wave BB̄0

FIG. 6. (a) Ratio of the tensor-term contribution in the ρ-exchange amplitude to the pion-exchange amplitude in the S-wave BB̄0 →
BB̄0 process, and (b) ratio of the tensor-term contribution in the ρ-exchange potential to the pion-exchange potential at r ¼ 0 fm with
Λρ ¼ 1 GeV in the S-wave BB̄0 system.

FIG. 7. (a) Ratio of the tensor-term contribution in ω-exchange amplitude to total η-exchange amplitude in the S-wave BB̄0 → BB̄0
process, and (b) ratio of the tensor-term contribution in ω-exchange potential to total η-exchange potential at r ¼ 0 fm and Λω ¼ 1 GeV
in the S-wave BB̄0 system.

FIG. 8. (a) Ratio of the vector-term contribution in ω-exchange amplitude to the total σ-exchange amplitude in the S-wave BB̄0 → BB̄0
process, and (b) ratio of vector-term contribution in ω-exchange potential to total σ-exchange potential at r ¼ 0 fm and Λω ¼ 1 GeV in
the S-wave BB̄0 system.
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system where the light quark component includes only u, d,
ū and d̄, we can conduct a similar analysis for η, ω and σ.
The results are shown in Figs. 7 and 8. It is observed that
the contribution of the tensor term in the ω-exchange
potential is opposite in sign to that of the η-exchange
potential. Moreover, the former is significantly stronger
than the latter, which further elucidates why the contribu-
tion of the η is nearly negligible in the general OBE model.
Concurrently, the vector coupling term in the ω-exchange
potential at short distances is comparable in magnitude to
that of the σ-exchange potential and shares the same sign.
In conclusion, we find that it is a plausible approxima-

tion to consider the contribution of the tensor term in the

ρ-exchange potential and the pion-exchange potential as
mutually canceling, i.e., Vπ þ V tensor

ρ ≈ 0, in the OBE
model for any S-wave BB̄0 systems. In addition, if the
light quark component comprises only u, d, ū, and d̄, then
the η-exchange potential becomes entirely negligible in
comparison to the ω-exchange potential. Given the spin-
isospin independence of the σ meson, which effectively
leads to a single background term, this observation eluci-
dates the rationality of the OBE model being dominated by
the exchange of vector mesons.

C. Results after considering Vπ +Vtensor
ρ ≈ 0

From the above discussion, one may use the following
approximation for the effective potential,

V totalðrÞ ¼ VσðrÞ þ VηðrÞ þ Vvector
ρ ðrÞ þ VωðrÞ; ð53Þ

shown in Fig. 9. Results for the binding energies of the
S-wave Σ�

cΣ̄ system with this potential are depicted in
Fig. 10. The difference between the corresponding curves
in Fig. 4 and Fig. 10 is an indication of the unavoidable
model dependence of the OBE model. Nevertheless, a Σ�

cΣ̄
bound state solution exists for 0ð2−Þ and 1ð2−Þ for both
potentials with the cutoff in the range between 0.9
to 1.1 GeV.

V. SUMMARY

In this work, we take the calculation of the Σ�
cΣ̄ bound

states as an example and systematically clarify the complex
issues encountered in the OBE model, including the effects
of the sum of initial and final state momenta k⃗, the δ3ðr⃗Þ

FIG. 9. Effective potentials for the S-wave Σ�
cΣ̄ systems at Λ ¼ 1 GeV after dropping the pion-exchange potential and the contribution

of the tensor term in the ρ-exchange potential.

FIG. 10. Dependence of the binding energy E on the cutoff Λ
for the S-wave Σ�

cΣ̄ systems with the potential in Eq. (53) which
has dropped the pion-exchange potential and the contribution of
the tensor term in the ρ-exchange potential.
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potential, and the contribution of the tensor term in the
vector-meson exchange. The momentum k⃗ in the ampli-
tude, which originates solely from the spinors and intro-
duces derivatives of the radial wave function, is suppressed
as Oðk⃗2=M2Þ in the potential and thus negligible when the
particle mass is significantly heavier than the binding
momentum of the bound state. For the Σ�

cΣ̄ systems, we
retain the k⃗ dependence as the Σ is a light baryon.
We find using quark model relations that for any S-wave

baryon-antibaryon system the pion-exchange potential with
the δ3ðr⃗Þ term and the tensor coupling contribution to the
ρ-exchange potential have similar magnitudes but with
different signs, indicating a tendency formutual cancellation.
Despite the model dependence of the results, we find that

IðJPÞ ¼ 0ð2−Þ and 1ð2−Þ each emerge as the most probable
quantum numbers to have a Σ�

cΣ̄ bound state, with mass
around 3.7 GeV. They may be looked for in the final states
of D̄sΣ�

cΣ̄, D̄sΣ�
cΛ̄, D̄sΛcΣ̄ð�Þ, D̄sΛcΛ̄, D̄sD�

sπ, D̄sD�
sη,

D̄sDsρ, D̄sDsω, D̄sD�K, etc., by examining relevant
charm-strange two-body (such as Σ�

cΣ̄;Σ�
cΛ̄ and so on)

invariant mass distributions, from the eþe− annihilation
process at Belle-II or experiments at other electron-positron
colliders with higher luminosity in the future.
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APPENDIX A: BASIC FORMALISM
OF THE OBE MODEL

To find the bound state of two particles, we need to solve
the relative-motion part of the Schrödinger equation for the
two-body system in quantum mechanics (QM), given by

ĤjΨi ¼ EjΨi: ðA1Þ

Here, Ĥ represents the relative-motion part of the
Hamiltonian of the system, and jΨi is the wave function
of the relative motion. Let us impose the constraint that the
solution of this equation is given by

jΨi ¼ jfirj2Sþ1LJ; JzijI I3i: ðA2Þ

Here, the jfir represents the radial part of the relative-motion
wave function jΨi, and the notation j2Sþ1LJ; JzijI I3i
denotes that the quantum number of the total spin is S,
the relative orbital angular momentum is L, the total angular
momentum is J, the third component of total angular
momentum is Jz, the total isospin is I, and the third
component of the total isospin is I3 of the system. We can
rewrite the Schrödinger equation as

Ĥjfirj2Sþ1LJ; JzijI I3i ¼ Ejfirj2Sþ1LJ; JzijI I3i: ðA3Þ

Multiplying rhrjh2Sþ1LJ; JzjhI I3j from the left to the above
equation, we have

rhrjh2Sþ1LJ;JzjhII3jĤjfirj2Sþ1LJ;JzijII3i¼EfðrÞ: ðA4Þ

Taking into account

j2Sþ1LJ; Jzi ¼ jððS1S2ÞSLÞJJzi
¼
X
Sz Lz

X
S1z S2z

CSSz
S1S1z;S2S2z

CJJz
SSz;LLz

jS1S1zijS2S2zijLLzi

¼
X
Lz S1z

CSðJz−LzÞ
S1S1z;S2ðJz−Lz−S1zÞC

JJz
SðJz−LzÞ;LLz

jS1S1zijS2ðJz − Lz − S1zÞijLLzi; ðA5Þ

the complete bases Z
d3x⃗jx⃗ihx⃗j ¼ 1;

Z
d3p⃗0jp⃗0ihp⃗0j ¼ 1; ðA6Þ

and Ĥ ¼ ˆp⃗2

2μ þ V̂, whereCSSz
S1S1z;S2S2z

is the Clebsch-Gordan (CG) coefficient for the SU(2) group, and μ is the reduced mass of
the two-body system, Eq. (A4) can be rewritten as
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−
1

2μr
d2

dr2
ðrfðrÞÞ þ LðLþ 1Þ

2μr2
fðrÞ þ

X
LzS1z

X
L0
zS3z

CSðJz−LzÞ
S1S1z;S2ðJz−Lz−S1zÞC

JJz
SðJz−LzÞ;LLz

CSðJz−L0
zÞ

S1S3z;S2ðJz−L0
z−S3zÞ

× CJJz
SðJz−L0

zÞ;LL0
z

Z
dxδðr − xÞ

�Z
dΩd3p⃗0d3p⃗d3x⃗0fðx0ÞYLz

L ðθ0;φ0ÞYL0
z�

L ðθ;φÞ

× hx⃗jp⃗0ihp⃗jx⃗0ihp⃗0; S1S3z; S2ðJz − L0
z − S3zÞ; II3jV̂jp⃗; S1S1z; S2ðJz − Lz − S1zÞ; II3i

�
¼ EfðrÞ; ðA7Þ

with the boundary conditions

lim
r→0

rfðrÞ ¼ 0; lim
r→∞

rfðrÞ ¼ 0: ðA8Þ

We will solve Eq. (A7) for the radial wave function fðrÞ, subject to the boundary conditions in Eq. (A8), to find bound
states. Furthermore, for simplicity, we define

X̂ ≡X
LzS1z

X
L0
zS3z

CSðJz−LzÞ
S1S1z;S2ðJz−Lz−S1zÞC

JJz
SðJz−LzÞ;LLz

CSðJz−L0
zÞ

S1S3z;S2ðJz−L0
z−S3zÞC

JJz
SðJz−L0

zÞ;LL0
z
; ðA9Þ

X̂
S−wave

≡X
S1z

X
S3z

CSJz
S1S1z;S2ðJz−S1zÞC

JJz
SJz;00

CSJz
S1S3z;S2ðJz−S3zÞC

JJz
SJz;00

: ðA10Þ

Using the relation between the amplitude in quantum field theory (QFT) and the potential in momentum space in QM,
Eq. (C16), the Schrödinger equation becomes

−
1

2μr
d2

dr2
ðrfðrÞÞ þ LðLþ 1Þ

2μr2
fðrÞ þ

X̂ Z
dxδðr − xÞ

�Z
dΩd3p⃗0d3p⃗d3x⃗0fðx0ÞYLz

L ðθ0;φ0ÞYL0
z�

L ðθ;φÞhx⃗jp⃗0ihp⃗jx⃗0i

×
−1

ð2πÞ3 Mðp⃗; S1S1z; S2ðJz − Lz − S1zÞ; II3 → p⃗0; S1S3z; S2ðJz − L0
z − S3zÞ; II3Þ

�
¼ EfðrÞ: ðA11Þ

Considering hr⃗jp⃗i ¼ ð2πÞ−3=2eip⃗·r⃗, the variable transformations

8>>>>><
>>>>>:

q⃗ ¼ p⃗0 − p⃗

k⃗ ¼ p⃗0 þ p⃗

x⃗1 ¼ x⃗−x⃗0
2

x⃗2 ¼ x⃗þx⃗0
2

⇔

8>>>>><
>>>>>:

p⃗ ¼ k⃗−q⃗
2

p⃗0 ¼ k⃗þq⃗
2

x⃗ ¼ x⃗1 þ x⃗2
x⃗0 ¼ x⃗2 − x⃗1

; ðA12Þ

and the Fourier transformation

F x⃗→q⃗½fðx⃗Þ� ¼
Z

fðx⃗Þe−iq⃗·x⃗d3x⃗; ðA13Þ

F−1
q⃗→x⃗½gðq⃗Þ� ¼

1

ð2πÞ3
Z

gðq⃗Þeiq⃗·x⃗d3q⃗; ðA14Þ

the integrals of Eq. (A11) in momentum space can be recast as

Z
d3p⃗0d3p⃗hx⃗jp⃗0ihp⃗jx⃗0i −1

ð2πÞ3Mðp⃗; p⃗0Þ ¼ −
1

8
F−1

q⃗→x⃗2

�
F−1

k⃗→x⃗1

�
M
�
k⃗ − q⃗
2

;
k⃗þ q⃗
2

���
; ðA15Þ

where the −1=8 arises from the variable transformation. Furthermore, we introduce a new function ψðrÞ ¼ rfðrÞ to
simplify the calculation further. Finally, the Schrödinger equation can be rewritten in the following form
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ψ 00ðrÞ − LðLþ 1Þ
r2

ψðrÞ þ 2μEψðrÞ − 2μrV̂Mðp⃗;p⃗0Þ
j2Sþ1LJ;Jz;I;I3iðrÞ

ψðrÞ
r

¼ 0; ðA16Þ

where

V̂Mðp⃗;p⃗0Þ
j2Sþ1LJ;Jz;I;I3iðrÞfðrÞ¼−

1

8

X̂ Z
dxδðr−xÞ

�Z
dΩd3x⃗0fðx0ÞYLz

L ðθ0;φ0ÞYL0
z�

L ðθ;φÞ

×F−1
q⃗→x⃗2

�
F−1

k⃗→x⃗1

�
M
�
k⃗− q⃗
2

;S1S1z;S2ðJz−Lz−S1zÞ; II3→
k⃗þ q⃗
2

;S1S3z;S2ðJz−L0
z−S3zÞ; II3

����
:

ðA17Þ

The superscript Mðp⃗; p⃗0Þ denotes the amplitude corresponding to the effective potential, while the subscript
j2Sþ1LJ; Jz; I; I3i represents the state labeled by the corresponding quantum numbers of the two-body system. The
quantum numbers of Jz and I3 are generally omitted since they do not affect final results. Similarly, the boundary conditions
in Eq. (A8) can be rewritten as

lim
r→0

ψðrÞ ¼ 0; lim
r→∞

ψðrÞ ¼ 0: ðA18Þ

For S-wave (L ¼ 0), the aforementioned formulas can be simplified as

ψ 00ðrÞ þ 2μEψðrÞ − 2μrV̂Mðp⃗;p⃗0Þ
j2Sþ1SJ ;IiðrÞ

ψðrÞ
r

¼ 0; ðA19Þ

where

V̂Mðp⃗;p⃗0Þ
j2Sþ1SJ ;IiðrÞfðrÞ ¼ −

1

32π

X̂
S−wave

Z
dxδðr − xÞ

�Z
dΩd3x⃗0fðx0Þ

× F−1
q⃗→x⃗2

�
F−1

k⃗→x⃗1

�
M
�
k⃗ − q⃗
2

; S1S1z; S2ðJz − S1zÞ; II3 →
k⃗þ q⃗
2

; S1S3z; S2ðJz − S3zÞ; II3
����

: ðA20Þ

By further simplifying with the redefined amplitude

Mj2Sþ1SJ ;Iiðp⃗ → p⃗0Þ≡ X̂
S−wave

Mðp⃗; S1S1z; S2ðJz − S1zÞ; II3 → p⃗0; S1S3z; S2ðJz − S3zÞ; II3Þ; ðA21Þ

Equation (A20) can be streamlined to

V̂Mðp⃗;p⃗0Þ
j2Sþ1SJ ;IiðrÞfðrÞ ¼ −

Z
dxδðr − xÞ

�Z
dΩd3x⃗0

fðx0Þ
32π

F−1
q⃗→x⃗2

�
F−1

k⃗→x⃗1

�
Mj2Sþ1SJ ;Ii

�
k⃗ − q⃗
2

→
k⃗þ q⃗
2

����
: ðA22Þ

It is worth noting that, in most papers concerning the OBE model, the amplitude generally does not include terms
depending on the sum of the initial and final state c.m. momenta k⃗, i.e., setting k⃗ ¼ p⃗þ p⃗0 ¼ 0. As a result, only the
momentum q⃗ of the exchanged meson from the propagator remains in the amplitude of Eq. (A17). For this specific case,
according to

−
1

8
F−1

q⃗→x⃗2
½F−1

k⃗→x⃗1
½Mðq⃗Þ�� ¼ −F−1

q⃗→x⃗2
½Mðq⃗Þ�δ3ðx⃗ − x⃗0Þ; ðA23Þ

Equation (A17) can be further simplified to

V̂Mðq⃗Þ
j2Sþ1LJ ;IiðrÞfðrÞ ¼ −

X̂�Z
dΩYLz

L ðθ;φÞYL0
z�

L ðθ;φÞF−1
q⃗→r⃗½Mðq⃗Þ�

�
fðrÞ: ðA24Þ
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Clearly, the impact of an effective potential operator on the

radial wave function, i.e., V̂Mðq⃗Þ
j2Sþ1LJ ;IiðrÞfðrÞ, can be simply

regarded as an effective potential function

VMðq⃗Þ
j2Sþ1LJ ;IiðrÞ

¼
X̂�Z

dΩYLz
L ðθ;φÞYL0

z�
L ðθ;φÞð−1ÞF−1

q⃗→r⃗½Mðq⃗Þ�
�
:

ðA25Þ

Hence, in the subsequent discussion of the amplitude,
which only contains the momenta q⃗, we may get rid of the
hat on V̂ to imply that its effect is equivalent to a function in
the Schrödinger equation.
In particular, with the redefined amplitude in Eq. (A21),

the corresponding case for S-wave is

V̂Mðq⃗Þ
j2Sþ1SJ ;IiðrÞfðrÞ

¼ −
1

4π

Z
dΩF−1

q⃗→r⃗½Mj2Sþ1SJ ;Iiðq⃗Þ�fðrÞ: ðA26Þ

In other words, when the amplitude contains only momen-
tum q⃗, computing the S-wave effective potential boils down
to taking the average of the redefined amplitude across the
full solid angle space after applying a Fourier transforma-
tion, subject to a minus sign determined by the established
convention within the relation between amplitude and
potential.
We introduce an monopole form factor

FðqÞ ¼ Λ2 −m2
ex

Λ2 − q2

at each vertex, where Λ represents the cutoff parameter and
mex denotes the mass of the exchanged meson. Since we are
interested in near-threshold bound state, we disregard the
term of Oð 1

M2Þ. Actually, we only need to calculate the
following cases of M in Eq. (A17),

1

q⃗2 þm2
F2ðq⃗Þ; 1 · F2ðq⃗Þ; q⃗2

q⃗2 þm2
F2ðq⃗Þ;

A⃗ · q⃗ B⃗ ·q⃗
q⃗2 þm2

F2ðq⃗Þ; k2

q⃗2 þm2
F2ðq⃗Þ; A⃗ · k⃗ B⃗ ·k⃗

q⃗2 þm2
F2ðq⃗Þ;

A⃗ · q⃗ B⃗ ·k⃗
q⃗2 þm2

F2ðq⃗Þ; k⃗ × q⃗
q⃗2 þm2

F2ðq⃗Þ: ðA27Þ

After lengthy derivations and using the following notations,

ψðr⃗; L; LzÞ ¼ fðrÞYLz
L ðθ;φÞ; ðA28Þ

gðr;m;ΛÞ ¼ F−1
q⃗→r⃗

�
F2ðq⃗Þ
q⃗2 þm2

�

¼ 1

4π

�
e−mr − e−Λr

r
−
Λ2 −m2

2Λ
e−Λr

�
; ðA29Þ

hðr;m;ΛÞ ¼ F−1
q⃗→r⃗½1 · F2ðq⃗Þ�

¼
�
Λ2 −m2

4π

�
2 2π

Λ
e−Λr; ðA30Þ

we arrive at the following results:

V̂
1

q⃗2þm2F
2ðq⃗Þ

j2Sþ1LJ ;Ii fðrÞ ¼
X̂

ð−1Þgðr;m;ΛÞδLzLz0fðrÞ; ðA31Þ

V̂1·F2ðq⃗Þ
j2Sþ1LJ ;IifðrÞ ¼

X̂
ð−1Þhðr;m;ΛÞδLzLz0fðrÞ; ðA32Þ

V̂
q⃗2

q⃗2þm2F
2ðq⃗Þ

j2Sþ1LJ ;Ii fðrÞ ¼
X̂

ð−1Þ½hðr;m;ΛÞ −m2gðr;m;ΛÞ�δLzLz0fðrÞ; ðA33Þ

V̂
A⃗·q⃗ B⃗ ·q⃗

q⃗2þm2F
2ðq⃗Þ

j2Sþ1LJ ;Ii fðrÞ ¼
X̂ Z

dΩYL0
z�

L ðθ;φÞψðr⃗; L; LzÞðA⃗ ·∇B⃗ · ∇Þgðr;m;ΛÞ; ðA34Þ

V̂
k⃗2

q⃗2þm2F
2ðq⃗Þ

j2Sþ1LJ ;Ii fðrÞ ¼
X̂ Z

dΩYL0
z�

L ðθ;φÞ4½∇2ðψðr⃗; L; LzÞgðr;m;ΛÞÞ −∇ψðr⃗; L; LzÞ ·∇gðr;m;ΛÞ

−
3

4
ψðr⃗; L; LzÞ∇2gðr;m;ΛÞ�; ðA35Þ
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V̂
A⃗·k⃗ B⃗ ·k⃗
q⃗2þm2F

2ðq⃗Þ
j2Sþ1LJ ;Ii fðrÞ ¼

X̂ Z
dΩYL0

z�
L ðθ;φÞ½4A⃗ ·∇B⃗ · ∇ðψðr⃗; L; LzÞgðr;m;ΛÞÞ − 2A⃗ ·∇ðψðr⃗; L; LzÞB⃗ ·∇gðr;m;ΛÞÞ

− 2B⃗ · ∇ðψðr⃗; L; LzÞA⃗ · ∇gðr;m;ΛÞÞ þ ψðr⃗; L; LzÞB⃗ · ∇A⃗ ·∇gðr;m;ΛÞ�; ðA36Þ

V̂
A⃗·q⃗ B⃗ ·k⃗

q⃗2þm2F
2ðq⃗Þ

j2Sþ1LJ ;Ii fðrÞ¼
X̂ Z

dΩYL0
z�

L ðθ;φÞ½2ðB⃗ ·∇ψðr⃗;L;LzÞÞðA⃗ ·∇gðr;m;ΛÞÞþψðr⃗;L;LzÞðB⃗ ·∇A⃗ ·∇gðr;m;ΛÞÞ�; ðA37Þ

V̂
k⃗×q⃗

q⃗2þm2F
2ðq⃗Þ

j2Sþ1LJ ;Ii fðrÞ ¼
X̂ Z

dΩYL0
z�

L ðθ;φÞ2ð∇ψðr⃗; L; LzÞÞ × ð∇gðr;m;ΛÞÞ

¼
X̂

ð−2iÞ fðrÞ
r

dgðr;m;ΛÞ
dr

Z
dΩYL0

z�
L ðθ;φÞ ˆL⃗YLz

L ðθ;φÞ; ðA38Þ

where ˆL⃗ ¼ r⃗ × ˆp⃗ ¼ r⃗ × ð−i∇Þ is the orbital angular momentum operator.
It is worth noting that the momentum k⃗ introduces the derivative of the radial wave function, specifically f0ðrÞ and f00ðrÞ.

Furthermore, for S-wave, the aforementioned Eqs. (A31)–(A38) will be simplified as follows:

V̂
1

q⃗2þm2F
2ðq⃗Þ

j2Sþ1SJ ;Ii fðrÞ ¼
X̂

S−wave
ð−1Þgðr;m;ΛÞfðrÞ; ðA39Þ

V̂1·F2ðq⃗Þ
j2Sþ1SJ ;IifðrÞ ¼

X̂
S−wave

ð−1Þhðr;m;ΛÞfðrÞ; ðA40Þ

V̂
q⃗2

q⃗2þm2F
2ðq⃗Þ

j2Sþ1SJ ;Ii fðrÞ ¼
X̂

S−wave
ð−1Þ½hðr;m;ΛÞ −m2gðr;m;ΛÞ�fðrÞ; ðA41Þ

V̂
A⃗·q⃗ B⃗ ·q⃗

q⃗2þm2F
2ðq⃗Þ

j2Sþ1SJ ;Ii fðrÞ ¼ A⃗ · B⃗
3

V̂
q⃗2

q⃗2þm2F
2ðq⃗Þ

j2Sþ10J ;Ii fðrÞ; ðA42Þ

V̂
k⃗2

q⃗2þm2F
2ðq⃗Þ

j2Sþ1SJ ;Ii fðrÞ ¼
X̂

S−wave

1

8πΛr2
½e−rðΛþmÞðemrð4f0ðrÞðrðm2ð2 − ΛrÞ þ Λ3rÞ − 2ΛÞ þ 4rf00ðrÞðm2r − ΛðΛrþ 2ÞÞ

þ ΛrfðrÞðm2ðΛr − 2Þ − Λ3rÞÞ þ 2ΛeΛrðð4 − 4mrÞf0ðrÞ þ 4rf00ðrÞ þm2rfðrÞÞÞ�; ðA43Þ

V̂
A⃗·k⃗ B⃗ ·k⃗
q⃗2þm2F

2ðq⃗Þ
j2Sþ1SJ ;Ii fðrÞ ¼ A⃗ · B⃗

3
V̂

k⃗2

q⃗2þm2F
2ðq⃗Þ

j2Sþ1SJ ;Ii fðrÞ; ðA44Þ

V̂
q⃗·k⃗

q⃗2þm2F
2ðq⃗Þ

j2Sþ1SJ ;Ii fðrÞ ¼
X̂

S−wave

�
2e−mrðm2rfðrÞ − 2ðmrþ 1Þf0ðrÞÞ

8πr2

þ e−Λrð2f0ðrÞð−m2r2 þ ΛrðΛrþ 2Þ þ 2Þ þ rfðrÞðm2ðΛr − 2Þ − Λ3rÞÞ
8πr2

�
; ðA45Þ

V̂
A⃗·q⃗ B⃗ ·k⃗

q⃗2þm2F
2ðq⃗Þ

j2Sþ1SJ ;Ii fðrÞ ¼ A⃗ · B⃗
3

V̂
q⃗·k⃗

q⃗2þm2F
2ðq⃗Þ

j2Sþ1SJ ;Ii fðrÞ; ðA46Þ

V̂
k⃗×q⃗

q⃗2þm2F
2ðq⃗Þ

j2Sþ1SJ ;Ii fðrÞ ¼ 0: ðA47Þ
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In summary, the crucial computation in the OBE model
can be broken down into three steps:
(1) Compute the amplitude Mðp⃗; S1S1z; S2S2z; II3 →

p⃗0; S1S3z; S2S4z; II3Þ of the t-channel Feynman dia-
gram. For S-wave, this step involves computing the
redefined amplitude Mj2Sþ1SJ ;Iiðp⃗ → p⃗0Þ as depicted
in Eq. (A21).

(2) Perform the integrals in Eq. (A17) with the assis-
tance of Eqs. (A31)–(A38). For the S-wave scatter-
ing, this step is simplified to calculating Eq. (A22) in
light of Eqs. (A39)–(A47).

(3) Solve the Schrödinger equation (A16), or Eq. (A19)
for the S-wave case.

APPENDIX B: THE AMPLITUDE FOR THE
t-CHANNEL PROCESS OF Σ�

cΣ̄ → Σ�
cΣ̄

With the consideration that the spin of the particle Σ�
c is 3

2
,

its vector-spinor wave function is formed through the
coupling of the spin-1=2 spinor and spin-1 polarization
vector [60], which can be expressed as

uμðp⃗; λÞ ¼
X
λ1;λ2

�
1λ1;

1

2
λ2

				 32 λ


ϵμðp⃗; λ1Þuðp⃗; λ2Þ

¼
X
λ1;λ2

C
3
2
λ

1λ1;
1
2
λ2
ϵμðp⃗; λ1Þuðp⃗; λ2Þ: ðB1Þ

The wave functions for spin-1=2 and spin-1 particles are
defined as follows:

uðp⃗;αÞ¼
 

φα

σ⃗·p⃗
2Mφα

!
; vðp⃗;αÞ¼

 
σ⃗·p⃗
2Mχα

χα

!
; ðB2Þ

ϵð�1Þ ¼∓ 1ffiffiffi
2

p ð0; 1;�i; 0Þ; ϵð0Þ ¼ ð0; 0; 0; 1Þ; ðB3Þ

where φα and χα are two-component spinors, σ⃗ represents
the Pauli matrices,M is the mass of the particle, and p⃗ is its
momentum.
With these relations, one can derive the scattering

amplitude for the process depicted in Fig. 1. We will
neglect the Oðp⃗2=M2Þ terms, as their impact on the
effective potential is minimal for nonrelativistic systems.
For a more detailed discussion, see Appendix D. Below we
derive the S-wave amplitudes.
For the σ exchange, based on Eq. (A21), it is straightfor-

ward to derive

Mσ
j2Sþ1SJ ;Iiðp⃗ → p⃗0Þ ≈ −CσðIÞ

q⃗2 þm2
σ
; ðB4Þ

where CσðIÞ ¼ −gσB�
6
B�
6
gΣΣσFσðIÞ. For the pseudoscalar

meson exchange, we have

Mp
j2Sþ1SJ ;Iiðp⃗ → p⃗0Þ ≈ CpðIÞ

2MΣ�
c

ΔSASB

3

q⃗2

q⃗2 þm2
p
; ðB5Þ

where

ΔSASB ¼ 9 − 2SðSþ 1Þ
3

¼
� 5

3
ðS ¼ 1Þ

−1 ðS ¼ 2Þ ; ðB6Þ

and CpðIÞ ¼ − 1
mp

gB�
6
B�
6
pgΣΣpFpðIÞ. Analogously, for the

vector meson exchange, the corresponding redefined
amplitude is

Mv
j2Sþ1SJ ;Iiðp⃗ → p⃗0Þ ≈ FvðIÞgΣΣv

�
gB�

6
B�
6
vM1

þ gB�
6
B�
6
v
kΣΣv
2MΣ

M2 þ
fB�

6
B�
6
v

2MΣ�
c

M3

þ fB�
6
B�
6
v

2MΣ�
c

kΣΣv
2MΣ

M4

�
; ðB7Þ

where

M1 ¼
1

q⃗2 þm2
v
; ðB8Þ

M2 ¼
1

q⃗2þm2
v

�
−

q⃗2

2MΣ
þ 1

8MΣ�
c

�
8ΔSASB

3
q⃗2þΔð1Þ

ten

3
q⃗ · k⃗

��
;

ðB9Þ

M3 ¼
1

2MΣ

1

q⃗2 þm2
v

�
Δð2Þ

ten
q⃗ · k⃗
3

þ 2ΔSASB

q⃗2

3

�
; ðB10Þ

M4 ¼
1

q⃗2 þm2
v

�
−
1

2

�
−4ΔSASB

3
q⃗2; ðB11Þ

and for the S-wave, one has

Δð1Þ
ten ¼ Δð2Þ

ten ¼ 0: ðB12Þ

Let us comment on one subtle detail in the derivation.
The Σ̄ belongs to the 2̄ representation of the spin SU(2)
group, whereas the Σ belongs to the 2 representation. The 2
and 2̄ representations of the SU(2) group are equivalent.
However, to uphold consistency in the application of CG
coefficients, a similarity transformation on the 2̄ represen-
tation is required. We adopt the following convention for
the two-component spinors in Eq. (B2):

φ
1
2 ¼

�
1

0

�
; φ−1

2 ¼
�
0

1

�
;

χ
1
2 ¼

�
0

1

�
; χ−

1
2 ¼

�−1
0

�
: ðB13Þ
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APPENDIX C: RELATION BETWEEN THE
MOMENTUM-SPACE POTENTIAL

AND THE QFT AMPLITUDE

The relation between the amplitude and the potential can
be established by comparing the S-matrix elements in QFT
and in QM. Specifically, for a two-to-two elastic scattering
process, the QFT representation is given by

hp⃗1p⃗2jŜjp⃗Ap⃗Bi
¼ hp⃗1p⃗2jp⃗Ap⃗Bi þ ð2πÞ4δ4ðpA þ pB − p1 − p2Þ
· iMðpA þ pB → p1 þ p2Þ: ðC1Þ

In the QM context, it is represented as

hp⃗0jŜjp⃗i ¼ δ3ðp⃗0 − p⃗Þ − 2πiδðEp⃗0 − Ep⃗Þhp⃗0jT̂ðEp⃗þi0þÞjp⃗i
≈ δ3ðp⃗0 − p⃗Þ − 2πiδðEp⃗0 − Ep⃗Þhp⃗0jV̂jp⃗i: ðC2Þ

Here p⃗¼ðM2p⃗A−M1p⃗BÞ=M and p⃗0 ¼ðM2p⃗1−M1p⃗2Þ=M
denote the relative momentum of the initial and final two-
body systems, respectively. Furthermore, p2

A ¼ p2
1 ¼ M2

1,
p2
B¼p2

2¼M2
2 and M¼M1þM2. The S-matrix elements in

QFTandQMshould be the same up to the normalization, i.e.,

hp⃗1p⃗2jŜjp⃗Ap⃗BiQFT
hp⃗1p⃗2jp⃗Ap⃗BiQFT

¼ hp⃗0jŜjp⃗iQM
hp⃗0jp⃗iQM

; ðC3Þ

which implies that

hp⃗1p⃗2jŜjp⃗Ap⃗BiQFT ¼ hp⃗1p⃗2jp⃗Ap⃗BiQFT
hp⃗0jp⃗iQM

hp⃗0jŜjp⃗iQM: ðC4Þ

In QFT, we adopt the normalization jp⃗; ri ¼ ffiffiffiffiffiffiffiffi
2Ep⃗

p
ar†p⃗ j0i

and

farp⃗; as†q⃗ g ¼ fbrp⃗; bs†q⃗ g ¼ ð2πÞ3δ3ðp⃗ − q⃗Þδrs ðC5Þ

for the Dirac field. In QM, we have hx⃗jp⃗i ¼ ð2πÞ−3=2eip⃗·x⃗
and Eq. (A6). So we obtain

QFT hp⃗; rjq⃗; si ¼ ffiffiffiffiffiffiffiffi
2Ep⃗

p ffiffiffiffiffiffiffiffi
2Eq⃗

q
ð2πÞ3δ3ðp⃗ − q⃗Þδrs;

ðC6Þ

QM hp⃗; rjq⃗; si ¼ δ3ðp⃗ − q⃗Þδrs: ðC7Þ

Clearly, the spin of a particle only generates the identical term
δrs in bothQMandQFT. For simplicity, wewill disregard the
particle’s spin in the following. Thus, we have

hp⃗1p⃗2jp⃗Ap⃗BiQFT
hp⃗0jp⃗iQM

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗1

2Ep⃗2
2Ep⃗A

2Ep⃗B

p ð2πÞ6δ3ðp⃗1 − p⃗AÞδ3ðp⃗2 − p⃗BÞ
δ3ðp⃗0 − p⃗Þ : ðC8Þ

We define P⃗ ¼ p⃗A þ p⃗B and P⃗0 ¼ p⃗1 þ p⃗2 as the total three-momenta of the initial and final two-body systems,
respectively. Utilizing the property of the Dirac-δ function, i.e., fðxÞδðx − x0Þ ¼ fðx0Þδðx − x0Þ, we get

δ3ðp⃗0 − p⃗Þδ3ðP⃗0 − P⃗Þ ¼ δ3
�
M2

M
ðp⃗1 − p⃗AÞ −

M1

M
ðp⃗2 − p⃗BÞ

�
δ3ððp⃗1 − p⃗AÞ − ðp⃗B − p⃗2ÞÞ

¼ δ3
�
M2

M
ðp⃗1 − p⃗AÞ þ

M1

M
ðp⃗1 − p⃗AÞ

�
δ3ððp⃗1 − p⃗AÞ − ðp⃗B − p⃗2ÞÞ

¼ δ3ðp⃗1 − p⃗AÞδ3ðp⃗2 − p⃗BÞ: ðC9Þ

Then, we have

hp⃗1p⃗2jp⃗Ap⃗BiQFT
hp⃗0jp⃗iQM

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗1

2Ep⃗2
2Ep⃗A

2Ep⃗B

p ð2πÞ6δ3ðP⃗0 − P⃗Þ; ðC10Þ

which just means that the total momentum is conserved and in the usual QM treatment the c.m. motion has been factored
out. Substituting Eq. (C10) into Eq. (C4), we obtain

hp⃗1p⃗2jŜjp⃗Ap⃗BiQFT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗1

2Ep⃗2
2Ep⃗A

2Ep⃗B

p ð2πÞ6δ3ðP⃗0 − P⃗Þhp⃗0jŜjp⃗iQM: ðC11Þ

Considering Eqs. (C1) and (C6), we have
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hp⃗1p⃗2jŜjp⃗Ap⃗BiQFT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗1

2Ep⃗2
2Ep⃗A

2Ep⃗B

p ð2πÞ6δ3ðp⃗1 − p⃗AÞδ3ðp⃗2 − p⃗BÞ
þ ð2πÞ4δ4ðpA þ pB − p1 − p2Þ · iMðpA þ pB → p1 þ p2Þ: ðC12Þ

Substituting Eq. (C2) into the right half part of Eq. (C11), we obtain

δ3ðP⃗0 − P⃗Þhp⃗0jŜjp⃗iQM ¼ δ3ðP⃗0 − P⃗Þδ3ðp⃗0 − p⃗Þ − ð2πÞiδðEp⃗0 − Ep⃗Þδ3ðP⃗0 − P⃗Þhp⃗0jV̂jp⃗i
¼ δ3ðp⃗1 − p⃗AÞδ3ðp⃗2 − p⃗BÞ − ð2πÞiδ4ðpA þ pB − p1 − p2Þhp⃗0jV̂jp⃗i: ðC13Þ

From Eqs. (C11)–(C13), it is easy to get

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗1

2Ep⃗2
2Ep⃗A

2Ep⃗B

p ð2πÞ7ihp⃗0jV̂jp⃗i ¼ ð2πÞ4iMðpA þ pB → p1 þ p2Þ: ðC14Þ

Finally, we obtain

hp⃗0jVjp⃗i ¼ −
MðpA þ pB → p1 þ p2Þ
ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ep⃗1
2Ep⃗2

2Ep⃗A
2Ep⃗B

p ≈ −
MðpA þ pB → p1 þ p2Þ
ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M12M22MA2MB
p : ðC15Þ

This relation differs from those in Refs. [71,72,79,92], due
to the distinct normalization relation of hx⃗jp⃗i in QM.
However, when using Eq. (B2) as the spin-1=2 particle
wave function, where jp⃗; ri ¼ ar†p⃗ j0i, Eq. (C15) will not
contain

ffiffiffiffiffiffiffiffiffi
2Mi

p
. Therefore, in this paper, the relation

between amplitude and potential in momentum space reads

hp⃗0jVjp⃗i ≈ −
1

ð2πÞ3MðpA þ pB → p1 þ p2Þ: ðC16Þ

APPENDIX D: RELATIVE IMPORTANCE
OF EACH TERM IN THE

SCATTERING AMPLITUDE

In this appendix, we scrutinize the contribution from
each term in the amplitude to the effective potential with the
intention of simplifying the computation by eliminating
insignificant quantities.
First, we compare the following four distinct terms:

M0 ¼
1

q⃗2 þm2
F2ðq⃗Þ; M1 ¼

1

M2
1

F2ðq⃗Þ;

M2 ¼
1

M2
2

q⃗2

q⃗2 þm2
F2ðq⃗Þ; M3 ¼

1

M2
3

A⃗ · q⃗ B⃗ ·q⃗
q⃗2 þm2

F2ðq⃗Þ;

ðD1Þ

where we introduce additional masses Mi (i ¼ 1, 2, 3) to
match the dimensions of all terms. To compare the relative
importance of the effective potentials from the terms in
Eq. (D1), we normalize them at r ¼ 0 fm:

lim
r→0

VM0ðrÞ ¼ lim
r→0

VM1ðrÞ ¼ lim
r→0

VM2ðrÞ
¼ lim

r→0
VM3ðrÞ; ðD2Þ

which results in

M2
1 ¼ ðΛþmÞ2; M2

2 ¼ ΛðΛþ 2mÞ;

M2
3 ¼

A⃗ · B⃗ΛðΛþ 2mÞ
3

: ðD3Þ

The resulting S-wave effective potentials obtained by
assigning Λ ¼ 1 GeV, m ¼ 0.5 GeV and A⃗ · B⃗ ¼ 1 are
depicted in Fig. 11(a). To a certain extent, from the results
we can estimate that

q⃗2 → ΛðΛþ 2mÞ: ðD4Þ

We note that the average effect of the exchanged-meson
momentum is too large, even though we have incorporated
a form factor to suppress the contribution from high-
momentum transition.
Next, we consider the other terms in amplitude, which

contain momentum k⃗,

M4 ¼
1

M2
4

k⃗2

q⃗2 þm2
F2ðq⃗Þ; M5 ¼

1

M2
5

A⃗ · k⃗ B⃗ ·k⃗
q⃗2 þm2

F2ðq⃗Þ;

M6 ¼
1

M2
6

A⃗ · q⃗ B⃗ ·k⃗
q⃗2 þm2

F2ðq⃗Þ: ðD5Þ

Given that k⃗ introduces the derivatives of the radial wave-
function, we adopt Eq. (28) in the form of

rV̂Mðp⃗;p⃗0ÞðrÞψðrÞ
r

¼ VMðp⃗;p⃗0Þ
0 ðrÞψðrÞ þ VMðp⃗;p⃗0Þ

1 ðrÞψ 0ðrÞ

þ VMðp⃗;p⃗0Þ
2 ðrÞψ 00ðrÞ; ðD6Þ
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where the additional subscripts 0, 1 and 2 correspond to the
number of derivatives on ψðrÞ. For terms containing only q⃗,
they can also be expanded in this manner, where only

VMðq⃗Þ
0 ðrÞψðrÞ appears, i.e., VMðq⃗Þ

1 ðrÞ ¼ VMðq⃗Þ
2 ðrÞ ¼ 0. It

can be verified that the effects from ψ 0ðrÞ and ψ 00ðrÞ in the
Schrödinger equation are marginal and do not alter the
existence of bound states as discussed in Sec. III A.
Therefore, we primarily focus on the magnitude of

VMðp⃗;p⃗0Þ
0 ðrÞ as the main contribution of the corresponding

term to the effective potential.
For a comparison of the behavior of each term, we take

the following normalization at r ¼ 0 fm

lim
r→0

VM0ðrÞ ¼ lim
r→0

VM4

0 ðrÞ ¼ lim
r→0

VM5

0 ðrÞ

¼ lim
r→0

VM6

0 ðrÞ; ðD7Þ

which results in

M2
4 ¼ −

ΛðΛþ 2mÞ
3

; M2
5 ¼ −

A⃗ · B⃗ΛðΛþ 2mÞ
9

;

M2
6 ¼

A⃗ · B⃗ΛðΛþ 2mÞ
9

: ðD8Þ

The results obtained by setting Λ ¼ 1 GeV, m ¼ 0.5 GeV
and A⃗ · B⃗ ¼ 1 are shown in Fig. 11(b).
Let us take the terms in ūðp⃗0; S3zÞuðp⃗; S1zÞ as an

example. With Eq. (B2) and the γ-matrices in Bjorken-
Drell representation,

γ0¼
�
1 0

0 −1

�
; γi¼

�
0 σi

−σi 0

�
; γ5¼

�
0 1

1 0

�
; ðD9Þ

we obtain

ūðp⃗0; S3zÞuðp⃗; S1zÞ ¼ ϕS3z†
�
1 −

σ⃗ · p⃗0σ⃗ · p⃗
4M2

�
ϕS1z : ðD10Þ

With ðσ⃗ · a⃗1Þðσ⃗ · a⃗2Þ¼ a⃗1 · a⃗2þ iσ⃗ ·ða⃗1× a⃗2Þ for ½σ⃗; a⃗1� ¼
½σ⃗; a⃗2� ¼ 0, Eqs. (A12) and (A47) and the above normal-
izations at r ¼ 0 fm, for the S-wave we have

V
ūðp⃗0 ;S3zÞuðp⃗;S1zÞ

q⃗2þm2 F2ðq⃗Þ
0 ðrÞ ¼ V

ϕS3z†

�
1−k⃗

2−q⃗2

16M2

�
ϕS1z

q⃗2þm2 F2ðq⃗Þ
0 ðrÞ

⟶
r→0

V

ϕS3z†

�
1þΛðΛþ2mÞ

12M2

�
ϕS1z

q⃗2þm2 F2ðq⃗Þ
0 ðrÞ

¼ ϕS3z†
�
1þ ΛðΛþ 2mÞ

12M2

�

× ϕS1zV
1

q⃗2þm2F
2ðq⃗Þ

0 ðrÞ: ðD11Þ

In the computation of the Σ�
cΣ̄ bound state with the σ, π, η, ρ

and ω exchanges, we take the cutoff range to be

Λ∈ ½0.8; 1.5� GeV. Consequently, the value of ΛðΛþ2mÞ
12M2

reaches a maximum of about 0.27 for Σ
(M ≈ 1190 MeV) and 0.06 for Σ�

c (M ≈ 2520 MeV).
Therefore, it is reasonable to neglect the term σ⃗·p⃗0σ⃗·p⃗

4M2 for
the Σ�

c vertex in Eq. (D10). As for the Σ̄ vertex, the
approximation may not be precise enough. However,
considering that the primary purpose of OBE is to explore
the potential existence of a molecule state, this approxi-
mation is also acceptable. The main reason for this differ-
ence is the significantly larger mass of Σ�

c, compared to that
of Σ. As a consequence, this reminds us that the non-
relativistic limit jp⃗j=M ≪ 1 only holds well if the mass is
considerably larger than the typical energy scale of the
interaction.

FIG. 11. The different S-wave effective potential VðrÞ from different amplitude Mðq⃗Þ (a) or the different S-wave effective potential
V0ðrÞ from different amplitude Mðq⃗; k⃗Þ (b), where Λ ¼ 1 GeV, m ¼ 0.5 GeV and A⃗ · B⃗ ¼ 1. The curves of M2 and M3 align
perfectly, as they should according to Eq. (A42); similarly the M4 and M5 curves are identical due to Eq. (A44).
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