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We investigate the possibility of deuteronlike X% bound states within the one-boson-exchange model

and systematically analyze the effects of the contact range 5°(7) potential, the tensor term from the vector-
meson exchange, and nonlocal potentials due to the dependence on the sum of the initial and final state

center-of-mass momenta. We find that the pion-exchange potential including the 6°(7) term and the tensor
term of the p-exchange potential exhibit comparable magnitudes but opposite signs for any S-wave baryon-
antibaryon systems. For the Z¥Z system, it is most likely to form bound states with mass around 3.7 GeV in

the 1(J¥) = 0(27) and 1(27) channels.
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I. INTRODUCTION

Since the landmark discovery of X(3872) in 2003 [1],
there has been a significant surge in both experimental and
theoretical investigations into exotic states. Up to now,
dozens of exotic states or their candidates have been
observed in experiments, and theoretical frameworks
explaining the underlying structures of these exotic states,
such as molecular states, multiquark states, hybrids, or
glueballs, are continuously evolving and being refined. We
refer to Refs. [2—-19] for reviews of the experimental and
theoretical studies. Intriguingly, many of the observed
exotic states are located in close proximity to the thresholds
of a pair of hadrons that they can couple to, including the
following famous examples, X(3872) [1] and Z.(3900)*
[20-22] around the DD* threshold, the T, (3875) [23,24]
near the DD* threshold, the Z.(4020)* [25,26] near the
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D*D* threshold, the Z,(10610)* and Z,(10650)* [27,28]
near the BB* and B*B* thresholds, the Z,(3985) [29-32]
near the D,D* and DD thresholds, the P, states [33] near
the D)X, thresholds, the P, states [34,35] near the D) Z,.
threshold and so on. It is natural to explain them as
hadronic molecules composed of the corresponding hadron
pairs [7,36].

The hadronic molecule picture has undergone a process
of ongoing refinement and evolution. The first proposal of a
hadronic molecule composed of a pair of charmed and
anticharmed mesons was advanced in 1976 [37]. Merely a
year later, the y(4040) peak observed in e™e™ annihilation,
which was ultimately interpreted as a charmonium state,
was speculated to be a result of the production of a D*D*
molecule based on preliminary analysis [38]. Given the
notable success of the one-pion-exchange (OPE) potential
model in describing the deuteron and nucleon-nucleon
scattering, it was widely conceived that the pions play a
significant role in the formation of hadronic molecules. In
the 1980s, an accurate description of the nuclear force
was achieved with the one-boson-exchange (OBE) model
[39—42]. In 1991 and 1994, Tornqvist carried out a com-
prehensive analysis of the potential existence of deuteronlike
meson-meson bound states using the OPE, employing both
qualitative and quantitative methods [43,44].

The theoretical analyses mentioned thus far can be
considered as preliminary attempts to model two-body

Published by the American Physical Society
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hadronic molecular states, in the absence of definitive
experimental results apart from the deuteron. Nevertheless,
with the discovery of the X(3872) by Belle Collaboration,
which lies beyond the conventional charmonium spectrum
[45,46], these initial attempts have been extended to
study possible hadronic molecules in various hadron
systems. Numerous studies suggest that the X(3872)
may be a DD* molecule [47-52], based on its distinct
characteristics near the DD* threshold, and the observed
ratio of its isospin breaking decays I'(X — J/wz"z~) and
(X = J/watn"2°), which can be easily explained within
the molecular picture [53,54]. In 2008, Thomas and Close
undertook a comprehensive analysis, examining and veri-
fying the calculations of the molecular state model in the
literature thus far. They scrutinized several pivotal aspects,
including different conventions for charge conjugation
eigenstates, the 5°(7) term and the tensor force [55].
Their research suggested that the X(3872) could potentially
be a bound state within the OPE model. However, these
results demonstrated a significant sensitivity to the cutoff in
the form factor. For an in-depth discussion on the form
factor and renormalization related to the short-distance
interactions, we refer to Refs. [56,57]. Furthermore, in
Ref. [58], the authors elaborated on the OPE model in a
constituent quark model by integrating additional contri-
butions from mid- and short-range interactions. These
interactions were linked to exchanges of the 7, o, p and
@ mesons.

In this study, we will investigate the potential existence
of XY hadronic molecules with quark components
cSqqq q. If such states exist, they would significantly
enrich the excited D, state spectrum in a higher energy
region beyond the scope of conventional ¢5 mesons and
their mixture of ¢sqq configurations [59]. We will explore
various issues associated with the OBE model, including
the effects of 6°(¥) which has been repeatedly discussed,
the contribution of the tensor term in the vector-meson
exchange, and the impact of nonlocal terms due to the
dependence on the sum of the initial and final state center-

of-mass (c.m.) momenta (denoted as I?), which has not been
thoroughly investigated in the hadronic molecular context.
It is important to clarify that this work is not aiming at
precisely predicting the masses of possible Z:¥ bound
states, but rather at exploring the potential existence of such
hadronic molecules and attempting to formalize the calcu-
lation process of the OBE model after considering various
factors.

This paper is organized as follows. After the
Introduction, we begin by presenting the effective potential
of 2% in Sec. II. We then proceed to discuss various

factors, including the effects of momentum &, the 8°(F)
term and the tensor potential in the OBE model in Sec. III.
Subsequently, we present the numerical outcomes of the
OBE model in Sec. IVA. In Sec. IV B, we show that

cancellations generally exists between the pion and
p-meson-exchange potentials, as derived from the quark
model. Possible X% bound states are discussed in
Sec. IV C. Finally, we present a summary in Sec. V.
Technical and pedagogical details are relegated to
Appendices A-D.

IL. POTENTIAL FOR THE X;¥ SYSTEM

In this section, we perform calculations to determine
the OBE potential between X:X, as depicted in Fig. 1.
Exchanges of mesons lower than 1 GeV are considered.
The Lagrangians for the couplings of X with the exchanged

mesons (o, 7, 1, p, and @) are adopted from Ref. [60],

Lys, = —9220262’ (1)
‘CZZ;T = —gnZ/LZﬂ i}’sj/’l? . 0ﬂi2, (2)
Lys, = = 5Z25,5,m9 3
ZZn__m— 7Y y’lz’ ( )

n

S kZZ) - o
Lss, = —gss,% {7" - m 6””0,,] 7-p,2, (4)

< kEZw v
Lssy = —Gssn> {7" - M"” av] w, X, (5)

where the isospin multiplets are defined as

% = (3,20, 5)7, (6)

ﬁ_<ﬂ++ﬂ_,ﬂ_—ﬂ+,ﬂ0), (7)
V2 V2

. <p,T+p; Pu — Py 0) (8)

NIV, BV, AN

the tensor operator in spinor space is 6#* = i(y*y* — y*y*)/2,
the isospin operator 7 = (71,75, 73) with 7; (i = 1, 2, 3) the
traceless isospin-1 matrices, and m,, m,, My represent the

\\/22 P3

qy70,70,p0
1

FIG. 1. Feynman diagram for the X% — %% process with
t-channel meson exchanges, where P; = (My.,p), P, =
(Ms,-p), P3 = (Mzz,l_?"), Py = (Mg,—p'), and g = P, — P3
represent the four momenta of the corresponding particles.

P, ¥

P, T Y P,
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respective masses of the corresponding p;zurticles.1 In the
heavy quark limit, £} belongs to the light flavor SU(3)
sextet [62],

s+ Il EC
¢ V22
* =t «0 =20
B6 - V2 z:c V2 (9)
j— =40
= = )
o

and the related couplings satisfying heavy quark spin
symmetry read (63,2

Lppo = ngBgaTr[BgMUBgﬂ]» (10)
Lgg:p = 9p:5:pTr[Bg iysPBg, ], (11)

L pev = QBngva[B;”VyVVBEy]
,fB*B*v S "
+ zﬁ;nw(w(a‘w —¥VBL).  (12)

where Tr[- - -] means the trace over flavor indices, and [65]

o S Kt
P=| n —mZ+% K|, (13)
K- K° —\/lgrl
A A Y
w= p- —\”/—%—k% ko | . (14
K K0 b

The pertinent coupling constants are listed in Table 1.

Utilizing the aforementioned Lagrangians, we can derive
the ;¥ scattering amplitude, and the details can be found
in Appendix B. The XX potential in the momentum space
is linked to the scattering amplitude through

'Since we are not interested in isospin symmetry breaking
effects, the isospin averaged masses are used for all particles
within the same isospin multiplet. Regarding the o, we select the
mass value to be used in the OBE model, m ~ 519 MeV, given in
Ref. [61] that corresponds to the coupling constant gyy, listed in
Table 1.

’Indeed, Egs. (10)—(12) can be reformulated in a manner
similar to Eqs. (1)—(5). Specifically, Eq. (10) is of the form as
Eq. (1); Eq. (11) aligns with Egs. (2) and (3) in terms of axial
vector coupling at the tree level [64]; Eq. (12) can be restructured
into the form as Eqgs. (4) and (5) using the Gordon identity, that
is, the terms iBg, (V" —#V¥*)B;, and Bg,(-2Mgy*V* +
"0, V" — 2Mg-y* V¥ + 6**0,V*)B;, are equivalent at the tree
level.

TABLE 1. Pertinent coupling constants for the ¥ — X%
process [60,61,66]. gsy,, is obtained by matching the amplitude of
nr-exchange with that of the o-exchange for the 7-channel
process of XX — £X [61]. For the vector-meson coupling
constants, We US€ gss, = Jyye = Jyyy a0d kys, = kyz, = kys,-

Couplings Js36 )72 Is3y Jssv kss,
Value 3.50 0.79 0.69 7.48 1.33
Couplings  gg:pe  9mmrp  Inmw  JBiBw
Value 5.64 59.50 9.19 95.80

with p and p’ the relative momenta of the incoming and
outgoing particles; see Appendix C for additional details.
As usually done in the OBE model, we introduce a
monopole form factor with a cutoff parameter A at each
vertex,

Flg)=—%—73, (16)

which equals unity when the exchanged particle is on shell.
Then one gets the effective potential in momentum space,
which can be subsequently converted to the coordinate
space potential utilizing the Fourier transformation; see
Appendix A for details. Consequently, we obtain the
S-wave XX effective potential from exchanging the scalar
meson (o), pseudoscalar mesons (p = z, ) and vector
mesons (v =p,w)as V=V, +>  _ V,+> .,V
where

Vo= _ngBgngZZo—Fa(I)HO(r’ mg. ), (17)
988 p3
V, = -l o (VH (rom,. A)As s, (18)

4 2M2:mp

v, = F, (v + v v vy (19)

with
vV = —9g:8:09zsoHo(r.m,, A), (20)
v :ng;;iIg;izzm ( S4Sp —321‘/[]‘2) H(r,m,,A), (21)
o _ % Ay Hy(r.m.A).  (22)
Vi B 5 ) (2
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TABLE II.  The relevant isospin factors for exchanging o, z, 7,
p, o for the T — X% process.
Isospin factors  F,(I)  F,(I) F,(I) F,(I) F,()
=0 1 V2 1Ve V2 12
I=1 ! V2 oyve V2 12
=2 L —1v2 Ve —1/v2 12
and
1 e — e—Ar A2 _ m2
Hy(r,m,A) =— - —Ar| 24
olrum. A) =22 r A ¢ (24)
De~mr 2 —Ar{_ /\3 2 -2 A
Hy(r,m, p) = 2 A (22 4 A

247nr
(25)

For the S-wave XX systems, the spin factor A s,s, outlined
in Appendix B is defined as

(26)

9-28(S+1) (3. S=
ASASB:—3 =9

with § the total spin. The pertinent isospin factors are listed
in Table II.

III. OBE MODEL
A. Effects of k on the effective potential

The relation between the scattering amplitude and the
effective potential in coordinate space, as demonstrated in
Eq. (A17), clearly indicates the necessity to perform
the Fourier transformations of both g=p'—p and

k=P + p, followed by integration with respect to X' that
is defined in Eq. (A12). However, although this math-
ematical operation can be found in certain old references,
e.g., [39,67-69], currently the majority of OBE models
used for calculating the effective potential for hadronic

molecules do not take into account the l_é—dependent terms
from the spinors of the initial and final states [66,70-74].
Nevertheless, the impact of nonlocal contributions was
explored within the OBE model for DD*, BB* [75], KB
and K*B [76] systems (B = A,X,E). It was found that
nonlocal contributions can alter the short-range part of the
corresponding potential, and numerically these nonlocal
contributions to the binding energies typically are at the
order of a few MeV. In the subsequent analysis, we
specifically examine the influence of k on the final results,
particularly on the binding energy of a specified bound
state. From Eqgs. (A43)—(A47), one finds that k in the
amplitude introduces the derivatives of the radial wave-
function and is thus a nonlocal contribution. Furthermore,

considering Eq. (A19), for the S-wave, we need to solve the
Schrodinger equation represented as

) W
W (1) + 2B () - 2ur T HEE) () )

0, (27)

where \A/lj;ﬁ{p 5 I)>(r) is the potential operator in the coor-

dinate space, defined in Eq. (A22). We can then proceed
with the following substitution,

P (1 W)y ME) ()

‘ZSHSJ;] r
M *’_’/
VT ()
+ v PP (), (28)

where the additional subscripts 0, 1, and 2 of VM(B-7)(r)
defined here represent the number of the derivatives of
y(r), specifically w(r), w'(r) and w” (r), respectively. The
momentum I; from the spinor wave function of a spin-1,/2
particle as given in Eq. (B2), consistently appears as
k/ (2M) with M the baryon mass, which would be small
if the composite state was loosely bound. Via numerical
calculations we find that the effects of y/(r) and y”(r) on
the final binding energy are indeed negligible. However,
the k-dependent contribution in Vf)w(p P)(r) could be
sizable (see Appendix D). The conclusion is consistent
with the specific studies in Refs. [75,76]. In the following,
we will keep the E—dependent terms in our calculations, i.e.,
we will compute the effective potential in the form of
Eq. (B2), rather than neglecting the & - I;/ (2M) term, as was
often done in literature.

B. The §°(F) potential

As per Eq. (A25), a Fourier transformation of the
amplitude, denoted as F gL;[M(Z]')], is required to derive
the effective potential in the coordinate space. We now
consider two distinct forms of amplitudes:

1

Ml(a):m

(29)

G/ M? 1 m?
~ = (1) o

and the Fourier transformation yields

M(4)

FiLIM @] = - G1)
M@ = 3 PO -] o)
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respectively. The zero-range &°(7) potential in Eq. (32)
leads to a strong repulsion or attraction at 7 = 0 depending
on the sign of the prefactor which has been neglected in the
above. Being of short-distance in nature, the 5*(7) potential
requires a regularization. Considering the form factor in
Eq. (16), the potentials become

FLAMI@)F(@)] = Ho(r.m. A), (33)

q-7

1 A? —m*\22x
-1 N Y —Ar
F L Ma(q)F*(q)] = 7 K . ) A ¢

—m*Hy(r, m, A)} , (34)

where

A —=m*\22r .
— | —e
vi¥is A

is the smeared form of &°(7) in Eq. (32). Not only does
G*/(g* + m?) contribute to the §°(¥) potential for S-wave
interactions, but also does A - g B-G/(* + m?) [70,77].
This observation aligns with Eq. (A42), where for S-wave,
we have

Bg A-B @
m? 3 G+ m?

A-g
g+

In an effective field theory (EFT), one can introduce
counterterms to absorb the cutoff dependence.3 However,
due to the lack of data for most hadron-hadron scatter-
ings, such counterterms can hardly be fixed. Thus, in the
phenomenological OBE models, one normally does not
bother introducing counterterms but rather plays with
the 5°(7) term. The &°(7) term is retained in its entirety
in Refs. [64,66,73,78-82], while it is discarded in
Ref. [77] and the authors simply make the following
substitution®

) 2
q my
c_]>2+m2_)_(_]'2+m2' (35)

Moreover, in Ref. [44], the &°(F) term in the central
potential is omitted. In Ref. [70], the authors dismiss the

’In Ref. [57], the authors introduce a novel semilocal regu-
larization approach for the chiral two-nucleon potentials. To
minimize the short-range contributions in the regularized OPE
potential, i.e., ensuring that the corresponding potential vanishes
as r — 0, they have incorporated a leading-order contact inter-
action within the momentum space representation.

“In fact, this substitution also triggers a substantial shift in the
low-momentum part, even to the extent of changing its sign.

5°(7) term, arguing that in a loosely bound state, the zero-
range components are not anticipated to be important.
Furthermore, in Ref. [55], the authors explore the impacts
of including or excluding the &°(¥) term in the OPE
potential when solving the Schroédinger equation for the
deuteron, and they find that the cutoff parameters need to be
varied significantly to achieve the same binding energy. In
Ref. [74], the authors claim that the removal of the short-
range &°(7) contributions to the OBE potential is a
necessary step for describing the pentaquark states con-
sistently, and they argue that the behavior of the OBE
potential at a distance shorter than the size of hadrons is not
physical, so they remove these short-range J-potential
contributions completely. However, for a hadronic mol-
ecule close to threshold, its extended nature does not imply
that the short-range potential is insignificant. In contrast, it
indicates that the binding of molecular state cannot probe
details of the short-range binding force, which is distinct
from being negligible. In line with the EFT treatment, in
Ref. [83] an additional parameter is introduced to adjust the
strength of the §°(7) term to reproduce the experimental
masses of the P, states [33].

We can see from the above that the &°(7) term is a
contentious aspect within the OBE model for describing
hadronic molecular states. It is an intrinsic defect of
the OBE model and can be rectified as in EFT by
introducing counterterms, which can be fixed only when
sufficient data are available. Note that the coupling con-
stants that will be used are taken from Refs. [60,66],
which fits to experimental data keeping full contributions
from the &°(7) potential. Hence, we will fully retain the
5°(7) term in the subsequent calculations to maintain self-
consistency.

C. The tensor potential

In this subsection, we concentrate on the contribution of
the tensor term in the Lagrangian, i.e., the second term on
the right-hand side of Egs. (4), (5), and (12), to the effective
potential. This term is to be distinguished from the vector
term, which is the corresponding first term on the right-
hand side of the same equations.5 Many papers have argued
that the contribution of the tensor term to the effective
potential is negligible [18,84,85], or it is ignored to simplify
the calculation [86-88]. In general, the significance of the
tensor term is case dependent and cutoff dependent. As an
illustration, here we consider the X% dibaryon systems
composed of spin-3/2 singly charmed baryons that have
been studied in Ref. [66].

The Lagrangian utilized in Ref. [66] for the vector meson
exchange is given in Eq. (12), with the associated coupling

>The traceless term d, - §d, - § — d; - @>G*/3, which changes
the orbital angular momentum by two units (AL = 2), is a pure
tensor force. Here, we still call a, - ga, - ¢ a tensor term, though
reducible, as it contains a AL = 2 part.

074041-5
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FIG. 2. Contributions of the vector and tensor coupling terms, V..o and V. eor» r€Spectively, in comparison to the total p-exchange
potential for the £*%* systems with total spin J = 0 (top row), J = 2 (middle row), and J = 3 (bottom row). Because of the & potential in

the tensor term, the relative importance is sensitive the cutoff. Here the A values are those taken in Ref. [66].

constants listed in Table 1.° The S-wave effective potentials
for vector meson exchanges read

Vc(r, v, g,f) = Cv ngO(r’ my, A)

—~  (¢*+4¢f)H A
+8MAMB (g + gf) 1<r’m1)’ ) ’
g +29f + f*

Vis(r.o.0.f) = €, S By (rom A,

where the subscripts C and SS denote the central and spin-
spin potentials, respectively, g and f are the coupling

®In Ref. [66], the following relations are used: g, BB = ZﬁgpNN
and g,p:5: + fop;B: = 6V2(gown + fonn)/MiM;/(5My) with
My) being the mass of the baryon in the initial (final) state. Using
gonn = 3.25 and f,yy = 19.82, they obtained 9uB:B; = 9.19 and
f vBLB: = 95.80 as listed in Table I. The large value of vang is
attributed to the large mass of the charmed baryon.

constants of the vector and tensor coupling terms, respec-
tively, M4, and My are the baryon masses, C, is the isospin
factor, m, (v =p, o, ¢) is the mass of the exchanged
meson, and

25(S+1) - 15

Ajg'ASB = 9

Taking the p-exchange potential as an example, we assess
the contribution of the tensor term by comparing the
following specific effective potentials:

Vi(r) =Velr.p.g. f) + Vss(r.p. 9. f).
Vvector(r) = VC(rnD’g’ 0) + VSS(r’p’g’ 0)’

Vtensor(r):VC("’,D’O’f)+VSS(r’p10’f)’ (36)
where V..o (1) only contains the contribution of the vector
coupling term in the Lagrangian, V..., (7) only contains
the contribution of the tensor term, and V,(r) is the total
effective potential. Note that Vo () # Vector (7) + Viensor (7)
due to interference.
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FIG. 3. Effective potentials for the S-wave XX systems with A =1 GeV.

The results for the isoscalar J© = 07, 27 and 3~ ;X
systems, using the chosen cutoffs as presented in Ref. [66],
are depicted in Fig. 2. It is observed that the tensor term,
Viensor(7), plays a predominant role in the J* = 0~ and 3~
cases. In particular, for the /(J*) = 0(37) system, the total
effective potential between the two particles becomes
repulsive at short distances when the tensor term is
included, despite the attractive nature of V... (7). Note
that the vector coupling does not lead to a 5*(7) term while
the tensor coupling does. Thus, the relative importance of
the tensor coupling contribution crucially depends on the
form factor and cutoff.

IV. NUMERICAL RESULTS AND DISCUSSION
A. Results of the general OBE

The quantum numbers 1(J7) of the S-wave ;X systems
encompass 0(17), 1(17), 2(17), 0(27), 1(27) and 2(27).
Figure 3 showcases the effective potentials that include
both the §*(7) term and the vector-meson tensor coupling
term. The total effective potential in our calculation
comprises the exchanges of o, 7, 17, p and w, i.e.,

Vtotal(r) :Va(r)—|—V,,(r)+V,7(r)+V,,(r)+Vw(r). (37)

This effective potential is used to solve the Schrodinger
equation (A19) to search for bound state solutions for the
specific quantum numbers. The results obtained by varying
A from 0.8 GeV to 1.1 GeV are depicted in Fig. 4. It is
evident that the employed potential supports ¥ bound
state solutions when the cutoff is larger than certain values
in the chosen range, except for the case of 2(27).

B. General relation between 7- and p-exchange
potentials in S-wave BB’ systems

If we use the same form factor with the same cutoff for
all the potentials of different mesons, as commonly done in
literature, a distinct characteristic can be observed from
Fig. 3: for the S-wave X:X systems, the pion-exchange
potential [including the 5*(7)] and the p-exchange potential
(including the tensor-term contribution) always have oppo-
site signs, suggesting a mutual cancellation. A similar
phenomenon is also noticeable in the £}, =¥, X, %, and
ElE! systems [66,89]. In the following, we will use the
quark model to demonstrate that this pattern holds for any
S-wave baryon-antibaryon (BB') system: the total pion-
exchange potential is comparable in magnitude to the
tensor-term contribution in the p-exchange potential, but
with opposite signs. This observation provides a theoretical

—60F

E[MeV]

-100 f 1

-120F E

1.00
A[GeV]

0.90 0.95

FIG. 4. Dependence of the binding energy E on the cutoff A for
the S-wave XY systems with the potential in Eq. (37).
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substantiation for the model considering only the vector
term for the vector-meson exchange potential [18,19].

As per Refs. [64,90], at the quark level, the Lagrangian
for the coupling of pseudoscalar (P), vector (V), and o
mesons and quarks reads

‘aq = gpqqzlin,Pq + quqzlhvﬂq + ggquIGQv (38)

where g = (u,d,s)T represents the light quark flavor
triplet, and g,,,4> Gugq> Yoqq are the couplings of the light
quark to the light mesons. The Lagrangian in Eq. (38),
assuming interaction vertices calculated at the quark and
hadron levels to be identical, is frequently utilized to
estimate certain coupling constants [64,73,90]. For in-
stance, the relation between g,pg and g,,,, the former of
which represents the coupling constant between a baryon B
and pion in £,gg, can be derived from

(B.5\L000[B.5) = (B.F|L,, B, (39)

where s represents the spin of B. The calculation of the
right-hand side of the above equation necessitates specific
quark-model wavefunctions for the initial and final states.
Following Ref. [64], we deduce

_3\/§mq

9pgq = TM—NgﬂNN’ (40)
Gvgq = \/EgpNNv (41)

1
go'qq = ggo'NNv (42)

where gyy, g,vnv and g,yy can be obtained by fitting to
experimental data and m,~ My/3~313 MeV [90] is
the constituent quark mass. Utilizing ¢2yy/47 = 13.6,
gfz)NN/47z = 0.84 [40,91], and g,yy = 8.7 [61], we obtain
9paqg ® 37, Gugq # 4.6 and g, = 2.9.

In order to evaluate the contributions of the pion-
exchange and the p-exchange in a generic BB’ system,
we will examine the amplitudes of the two processes
depicted in Fig. 5(a) and (b). At the hadronic level, we have

<B|£7TB[EB|B><B/|‘CEB’[B’|B/>
Q% —m;
where Q denotes the four-momentum of the exchanged

particle. Concurrently, with Eq. (39), the above equation
can be expressed at the quark level as

(B]Lrg,q, [B)(B|L

2 2
Q — myz

M, (BB — BB') = —

, (43)

749191 HQ2112|B/> .

M, (BB — BB') = —

(44)
Utilizing Eq. (38), we obtain’

"Note that we omitted the flavor index in Egs. (45) and (46)
because it is evident from Eq. (38) that the pion and p exchanges
possess identical flavor structure, which does not influence the
assessment of their relative strength.

E/ B/
(a) (b)

FIG. 5. Diagrams for the f-channel (a) pion and (b) p-meson
exchanges for BB — BB'.

p o1 - NG . N _
gpzqal 2Q02 2Q|[BS[B’>. (45)
8my Q7 —my

M, (BB — BB') = (BB'|

Similarly, we derive the amplitude of the p exchange as

2
o T ] _
M, (BB - BB') = (BB/| 2’” i |BB')
P (0%G)) - (0x5,) -
+ <BB/|g_qg(Q 612) (Q2 62) |BB/>,
my 0 —my
(40)

where the second term on the right-hand side corresponds
to the contribution of the tensor term at the hadronic level.

Using (d) x @) -(ay xd3) =a1(dy-ds) — (d @) (@, - @)
and Eq. (A42), for the S-wave BB’ system we get,

) S5 5 22
quqgal i 62Q

M (BB — BE) = BBy 53 r,r [B8): (47)
o "0 151507
M, (BB — BB) = (BE/| 2513 [BB), (48)

8m3 30%-m?
and their relative strength reads

M;ensor([EBB/ N BB/)
M, (BB — BB')

A2
_ 2944 Q i (49)

T2 22 2
9paq O + m;

As illustrated in Fig. 6(a), the ratio lies between approx-

imately —0.1 and —2.0 as |é| varies from 0 to 1 GeV,
indicating a certain degree of cancellation. To more
accurately depict this mutual cancellation effect, we convert
Egs. (47) and (48) into the coordinate space using
Eq. (A41). Consequently, the ratio of the contribution from
the tensor term in the p-exchange potential to the pion-
exchange potential in the S-wave BB’ system reads

V})ensor(r’ Ap) _ —29%{” h(r, mp,Ap) ml,g(r, mp,/\p)
Vlr(rv All') g%qq h(}", mﬂ’Aﬂ —m%g(}’, m”’A”
(50)
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0.0 . -0.90 : : : . . :
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FIG. 6. (a) Ratio of the tensor-term contribution in the p-exchange amplitude to the pion-exchange amplitude in the S-wave BB’ —

BB process, and (b) ratio of the tensor-term contribution in the p-exchange potential to the pion-exchange potential at » = 0 fm with
A, =1 GeV in the S-wave BB’ system.

At r=0fm, A, = A, = 1 GeV, we have VErser(r =0 fm, A, = 1 GeV)

~ _1.0
V.(r=0fm, A, = 0.76 GeV) ’

(52)

V;)ensor(r =0 fm, A/) =1 GCV)
V,,(r =0fm, A, =1 GCV)

~ —0.42, 51 . -
(51) as depicted in Fig. 6(b).

The same analysis can be applied to other pseudoscalar

in line with Fig. 3. Varying the cutoff for the pion exchange
to a smaller value, a larger cancellation may be achieved,

(BB’ — BB')

tensor

M

w

FIG. 7.

(BB' — BB')

M vector

FIG. 8.

the S-wave BB’ system.

-45F

~5.0F
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-5.5F

-6.0F

-6.5F

-7.0f

-7.5F,

(@)

400 600 800

|G|[MeV]

200

1000

mesons and vector mesons, provided they share the same
flavor structure. For instance, in the case of the S-wave BB’

(r=01fm,A, =1 GeV)
V,(r =0 fm, A;)

tensor

Vi

_4F

|
W
T

|
N
T

-3F

(b)

900 950

A, [MeV]

850

1000

(a) Ratio of the tensor-term contribution in w-exchange amplitude to total 5-exchange amplitude in the S-wave BB — BB’
process, and (b) ratio of the tensor-term contribution in w-exchange potential to total #-exchange potential at » = 0 fmand A, = 1 GeV
in the S-wave BB’ system.
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e
)

M, (BB — BB')
o
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I
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0.55F

0.50F

0.45F

0.40F

0.35F

0.30F

0.25F
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(a) Ratio of the vector-term contribution in w-exchange amplitude to the total -exchange amplitude in the S-wave BB — BB’
process, and (b) ratio of vector-term contribution in w-exchange potential to total o-exchange potential at r = 0 fmand A, = 1 GeV in
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FIG.9. Effective potentials for the S-wave X systems at A = 1 GeV after dropping the pion-exchange potential and the contribution

of the tensor term in the p-exchange potential.

system where the light quark component includes only u, d,
i and d, we can conduct a similar analysis for #, ® and o.
The results are shown in Figs. 7 and 8. It is observed that
the contribution of the tensor term in the w-exchange
potential is opposite in sign to that of the n-exchange
potential. Moreover, the former is significantly stronger
than the latter, which further elucidates why the contribu-
tion of the # is nearly negligible in the general OBE model.
Concurrently, the vector coupling term in the w-exchange
potential at short distances is comparable in magnitude to
that of the s-exchange potential and shares the same sign.

In conclusion, we find that it is a plausible approxima-
tion to consider the contribution of the tensor term in the

oF T T T T ——T]
20k -
~
~

—40F =~ ]
3

= -eof ]
S3]

—80F ]

-100F L

o) )
120 - - . . .
0.90 0.95 1.00 1.05 1.10
A[GeV]

FIG. 10. Dependence of the binding energy E on the cutoff A
for the S-wave X2 systems with the potential in Eq. (53) which
has dropped the pion-exchange potential and the contribution of
the tensor term in the p-exchange potential.

p-exchange potential and the pion-exchange potential as
mutually canceling, ie., V,+ themor ~0, in the OBE
model for any S-wave BB’ systems. In addition, if the
light quark component comprises only u, d, i1, and d, then
the n-exchange potential becomes entirely negligible in
comparison to the w-exchange potential. Given the spin-
isospin independence of the o meson, which effectively
leads to a single background term, this observation eluci-
dates the rationality of the OBE model being dominated by
the exchange of vector mesons.

C. Results after considering V, + Vy"°" ~ 0

From the above discussion, one may use the following
approximation for the effective potential,

Vi (r) = Vo(r) + V() + ViSO (r) £V, (r). - (53)
shown in Fig. 9. Results for the binding energies of the
S-wave XY system with this potential are depicted in
Fig. 10. The difference between the corresponding curves
in Fig. 4 and Fig. 10 is an indication of the unavoidable
model dependence of the OBE model. Nevertheless, a X%
bound state solution exists for 0(27) and 1(27) for both
potentials with the cutoff in the range between 0.9
to 1.1 GeV.

V. SUMMARY

In this work, we take the calculation of the Zﬁi bound
states as an example and systematically clarify the complex
issues encountered in the OBE model, including the effects

of the sum of initial and final state momenta k, the 5(7)
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potential, and the contribution of the tensor term in the

vector-meson exchange. The momentum k in the ampli-
tude, which originates solely from the spinors and intro-
duces derivatives of the radial wave function, is suppressed

as (’)(l’_c'2 /M?) in the potential and thus negligible when the
particle mass is significantly heavier than the binding

momentum of the bound state. For the £ X systems, we

retain the & dependence as the X is a light baryon.

We find using quark model relations that for any S-wave
baryon-antibaryon system the pion-exchange potential with
the 5°(¥) term and the tensor coupling contribution to the
p-exchange potential have similar magnitudes but with
different signs, indicating a tendency for mutual cancellation.

Despite the model dependence of the results, we find that
1(J¥) = 0(27) and 1(27) each emerge as the most probable
quantum numbers to have a X bound state, with mass
around 3.7 GeV. They may be looked for in the final states
of D%, D, >*A, DAY, DAA, D,D*n, D,D'n,
D,D.,p, D,D,w, D,D*K, etc., by examining relevant
charm-strange two-body (such as X:¥, X*A and so on)
invariant mass distributions, from the e™e~ annihilation
process at Belle-1I or experiments at other electron-positron
colliders with higher luminosity in the future.
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APPENDIX A: BASIC FORMALISM
OF THE OBE MODEL

To find the bound state of two particles, we need to solve
the relative-motion part of the Schrodinger equation for the
two-body system in quantum mechanics (QM), given by

H|¥) = E|P). (A1)

Here, H represents the relative-motion part of the
Hamiltonian of the system, and |¥) is the wave function
of the relative motion. Let us impose the constraint that the
solution of this equation is given by

W) = 1£), Ly T ). (A2)
Here, the |f), represents the radial part of the relative-motion
wave function |¥), and the notation [*S*!L,,J.)|I15)
denotes that the quantum number of the total spin is S,
the relative orbital angular momentum is L, the total angular
momentum is J, the third component of total angular
momentum is J,, the total isospin is I, and the third
component of the total isospin is /5 of the system. We can
rewrite the Schrodinger equation as
HIf), P L I L) = E|f), PSP I ). (A3)
Multiplying ,(r|(3*1L,, J,|(I I5| from the left to the above
equation, we have

AL (), PSP L I )Y =Ef(r). (Ad)

Taking into account

ss. 7l
Z Z C5.5,.5,5,. Cssnr |1S1512) 18282 )LL)

Sz Lz Slz SZ:
S(J.—L. JJ.
= > O St o5 Colitir |SISIIS2 (T, = Ly = S))LL). (AS)
Lz Slz
the complete bases
/ ST = 1. / & ol o) (Bl = 1. (A6)

and H = 123—; + V, where C gf‘g]:; 5255, is the Clebsch-Gordan (CG) coefficient for the SU(2) group, and y is the reduced mass of

the two-body system, Eq. (A4) can be rewritten as
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1 d? L(L —|— JJ. S(J.~L)
‘%p(rf (M) + =5 () + Y > O s J -5 O, Cs, 5,850~ 11-55,)
L.S). LS,

<l [ drotr = </ AP FET ()Y (0. ) YL (0. )
X (F5) (BI) (7' 1500 $2(0. = L = $5.), 115 V15,5112 a0 = L. = 51.), 113>) “Ef(). (A7)

with the boundary conditions

limrf(r) =0, }irgrf(r) =0. (A8)

r—0

We will solve Eq. (A7) for the radial wave function f(r), subject to the boundary conditions in Eq. (A8), to find bound
states. Furthermore, for simplicity, we define

ey s SO o 9
S]SI SZJ -L.-S,,) ~S(J,-L,) SS3 SZ(J —L’-S3,) S(J —L.);LL,>
LS. L.S;.
JJ, SJ, JJ.
z : z :z : SlSl :$(J.=812) CSJZ;OOCS1S3Z;S2(J,—S3Z)CSJZ;OO' (AIO)
S—wave S S3;

Using the relation between the amplitude in quantum field theory (QFT) and the potential in momentum space in QM,
Eq. (C16), the Schrddinger equation becomes

e L+1 e , . e
5 T+ LV 10 £ 30 [t )| [ @507 0000 )Y 0.0) R 517)
- (2_7t)3 M(P. 8181, 8(J, =L, = Sy,). 115 = P, 8185, $,(J, = L, = S3.). 113) | = Ef(r). (A11)

Considering (7|p) = (27)73/2¢'P7, the variable transformations

1

i=F-5 (p=K
k=p +p = _ ktg
- _;_;,p s P =5 (A12)
=" X=X +X
2, — I o = =
2 X = Xy — X
and the Fourier transformation
Froalf (@) = [ fBe TS, (A13)
FLlo@) = o5 [ 9@, (A14)
q—Xx (271')3
the integrals of Eq. (A11) in momentum space can be recast as
I B k-G k+q
32/43 / / N — __ - -1
[ OB G s MG ) = g 7 72k M (ST (A15)

where the —1/8 arises from the variable transformation. Furthermore, we introduce a new function y(r) = rf(r) to
simplify the calculation further. Finally, the Schrodinger equation can be rewritten in the following form
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p L(L+1 w(r
() =P D) b (r) 2w 6T 0P~ (A16)

where

VT 4y (1) ==Y [asatr—)| [ 0w 0wt @07 0.0

-

k-g k+4
xFils, [J/Ekji,gl [M (Tq75151zv52(1z—Lz—Slz)7U3—’¥,5153z752(fz—L/Z—Ssz)’113>H]-

(A17)
The superscript M(p, p’) denotes the amplitude corresponding to the effective potential, while the subscript
|*S*1L,,J.;1,15) represents the state labeled by the corresponding quantum numbers of the two-body system. The

quantum numbers of J, and /5 are generally omitted since they do not affect final results. Similarly, the boundary conditions
in Eq. (A8) can be rewritten as

limy (r) =0, limy (r) = 0. (A18)

r—0 r—oo

For S-wave (L = 0), the aforementioned formulas can be simplified as

w(r
W' (r) + 24y (r) = 2ur VN () (r):o, (A19)

where

Vol (Nf(r) = 32ﬂ / dxd(r — x { / dOdF f(x')

S—wave

k k+g
xFik et M (Tq $181e: 8302 = S 11y = 180550 - si.n ) ||| 420
—X

By further simplifying with the redefined amplitude

M\ZS“S,;I)(ﬁ - p)= Z M(P. $181:.$2(J; = S12). 113 = P, 8185;. $2(J . — S3.). I13), (A21)

S—wave

Equation (A20) can be streamlined to

M(p 52/ ) ; k-g_k+g
V) () / dxs(r { / dQd’% =5 fq%{ i |:./\/lzs+lsj;1> (TQT . (A22)

It is worth noting that, in most papers concerning the OBE model, the amplitude generally does not include terms
depending on the sum of the initial and final state c.m. momenta k, i.e., setting k = p + p’ = 0. As a result, only the
momentum g of the exchanged meson from the propagator remains in the amplitude of Eq. (A17). For this specific case,
according to

——5“ 7l M@ = =771 IM(9)8° (X - X), (A23)

G—X, k—X, q—)x

Equation (A17) can be further simplified to

A

PO L f) ==Y [ [ arie.ovi .07 Mm@ | 10 (A24)
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Clearly, the impact of an effective potential operator on the

radial wave function, i.e., V|zs+(| L) (r)f(r), can be simply

regarded as an effective potential function

VM@) (r)

‘25+]L 1)
—Z UdQYL (60, @) Y™ (0, 9) (=) FLIM@G)]|.
(A25)

Hence, in the subsequent discussion of the amplitude,
which only contains the momenta ¢, we may get rid of the
hat on V to imply that its effect is equivalent to a function in
the Schrodinger equation.

In particular, with the redefined amplitude in Eq. (A21),
the corresponding case for S-wave is

A M q
Vs, () ()

= ——/ dQ]:q_); M‘zs+151;1>(E]))]f(}"). (A26)

In other words, when the amplitude contains only momen-
tum ¢, computing the S-wave effective potential boils down
to taking the average of the redefined amplitude across the
full solid angle space after applying a Fourier transforma-
tion, subject to a minus sign determined by the established
convention within the relation between amplitude and
potential.

at each vertex, where A represents the cutoff parameter and
m,, denotes the mass of the exchanged meson. Since we are
interested in near-threshold bound state, we disregard the
term of O(;k). Actually, we only need to calculate the
following cases of M in Eq. (A17),

1 g

F2 1-F%(q), F2(g),
p— (4), (4) o (4)
A-GB-G , . k2 R A-kBk , _
——— F%(g), 5 F?(g), = F?(g),
a— (q) a— (9) " (q)
A- §§ & . k x q .
=17 T FG), _ F2(3). A27
7+ (9) - (q) (A27)

After lengthy derivations and using the following notations,

y(F.L L) = f(r)Y1(0.0), (A28)

q—7 "2+m

1 e~ — e—Ar A2 _ m2 B
_E< P eAr), (A29)

o(rm. A) = F-! [ (?1)]

h(rom, A) = F7' (1 F2(3)]

We introduce an monopole form factor _ A —m?\? 2n e (A30)
4r A '
A2 —m2,
Fl9) =—5—5 , ,
A —gq we arrive at the following results:
=121 2
Vit F(r) =Y (=1)g(r.m, A)sy 1, f(r), (A31)
~1.F2(0 -
vfzilt{};nf(r) =¥ (=Dh(r,m A)3 1 f(r). (A32)
V;‘f;":; o P =S (1) h(r.m. A) = mg(r.m. )61, £ (7). (A33)
R fquf sz N .
V‘ML " Z / dQYX (0, @)w(F. L. L,)(A - VB - V)g(r.m, A), (A34)
A <2;~ L
Ve =3 / dQYL" (0. )4V (y (7. L. L)g(r.m. N) = V(7. L. L.) - Vg(r.m. A)
3.
- WL L)Vg(rm ). (A39)
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AAB kFZ(

q) - ! % - - - - N —
Ve 1) =Y [ aQri(0.p)dx- VB V(. L.Lg(r.m.A) = 22 V(y(F.L. LB - To(r.m. 1)

—2B-V(y(*,.L.L)A-Vg(r.m,\)) +w(F.L.L,)B-VA -Vg(r.m,A) (A36)
VTJ*ITL " Z/dQYL* (6,9)[2(B-Vy(F,L,L.))(A-Vg(r,m,A) +w(7,L,L.)(B-VA-Vg(r,m,A))], (A37)

2( .
vTZ;";L G S / dQYI (6, 9)2(Vy (7, L, L)) x (Vg(r,m, A))

r) dg( A N 5
=3 2 DB [aorio.g)ivi6.0) (A3%)
r

where L =7 x p = 7 x (—iV) is the orbital angular momentum operator.

It is worth noting that the momentum k introduces the derivative of the radial wave function, specifically f'(r) and f”(r).
Furthermore, for S-wave, the aforementioned Eqs. (A31)-(A38) will be simplified as follows:

ATD 2F2(‘1) 2

Va0 = 3 (Dglrim S() (A39)
VES ) = 3 (=Dhram M) (r) (A40)

v, ) = S;we(—m[h(r,m,m—ng<r,m,A>}f<r>, (Ad1)
Ve = LB T ), (A42)

VT Hr) = 32 e o 4 () (2 = Ar) + A) = 20) + 4 () o = AT+ 2)

S—wave 8ﬂ'AI"
+ Arf(r)(m*(Ar —2) — A3r)) + 2Ae™N (4 — dmr) f'(r) + 4rf" (r) + m*rf(r)))], (A43)
) A-B P @)
VTZS+1; 0 f(l") TVTstS q) f(i"), (A44)
LT 2~ [2e (mPrf(r) = 2(mr 4+ 1)f'(r))
Vq +m2
|25“S f(r) s%;ve[ 871'1’2
. e N (21 (r) (=m*r? + Ar(Ar +2) +22) +rf(r)(m*(Ar —2) = Ar)) ’ (A45)
8xr
A‘fnkﬁ(tz) A-B. E2F(4)
VT;SHE 1)) f(r) = TVTZSHS ) f(l"), (A46)
k:q FZ(*
Vi, f(r) =0. (A47)
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In summary, the crucial computation in the OBE model

can be broken down into three steps:

(1) Compute the amplitude M(p,S;S.,S>S,,, 113 —
D', 8183, 8,84, I13) of the t-channel Feynman dia-
gram. For S-wave, this step involves computing the
redefined amplitude Mpsiig .y (p — p') as depicted
in Eq. (A21).

(2) Perform the integrals in Eq. (A17) with the assis-
tance of Eqgs. (A31)—(A38). For the S-wave scatter-
ing, this step is simplified to calculating Eq. (A22) in
light of Eqgs. (A39)—(A47).

(3) Solve the Schrodinger equation (A16), or Eq. (A19)
for the S-wave case.

APPENDIX B: THE AMPLITUDE FOR THE
t-CHANNEL PROCESS OF XX — X%

With the consideration that the spin of the particle X} i 1s g
its vector-spinor wave function is formed through the
coupling of the spin-1/2 spinor and spin-1 polarization
vector [60], which can be expressed as

N 1
w(p.2) =Z<ul,2zz

I

= ZCM 12,€

Ay

3 R o
24>eﬂ<p,zl>u<p,xz>

p? l)u( ) (Bl)

The wave functions for spin-1/2 and spin-1 particles are
defined as follows:

. (pa . op.a
u(p,a) = <¢?’ﬁ rz> ’ U(p,(l) - <2Mi( )’ <B2)
wm? X

1 . _
;5(0,1,11,0), €(0) =

where ¢% and y® are two-component spinors, ¢ represents
the Pauli matrices, M is the mass of the particle, and p is its
momentum.

With these relations, one can derive the scattering
amplitude for the process depicted in Fig. 1. We will
neglect the O(p?/M?) terms, as their impact on the
effective potential is minimal for nonrelativistic systems.
For a more detailed discussion, see Appendix D. Below we
derive the S-wave amplitudes.

For the o exchange, based on Eq. (A21), it is straightfor-
ward to derive

e(£1) = (0,0,0,1), (B3)

—C, (1)

A B4
_'2+m2 (B4)

MTZS“SJ;I) (ﬁ - ﬁ/) ~
where C, ()

meson exchange, we have

= —gGBnggZXGF,,(I). For the pseudoscalar

Cp( ) ASASB ‘72

P - =/
Mpsns(P = PV S oy 3 s B
where
9-25(5+1 2 (§=1)
e = (B6)
3 -1 (§=2)

and C,(I) = ~ L gp. B pJsz)p F,(I). Analogously, for the

vector meson exchange
amplitude is

the corresponding redefined

Mfés+lsj;,> (P = P)~F,(I)gss, <93;B;UM1

kEXy fBﬁBﬁv
+ 98B M My + M, M;
fB B v kzz
v B7
where
1
M, = m (B3)
1 7 1 [8Ag AV
M — _ AVB 7D ten -k ,
2 é’z—l—m%{ 2M2+8MZ:< 3 17314
(B9)
1 1 2 qk q’
MS :2ME C—I>2+m% (Aten 3 +2ASASB 3 ) (BIO)

1 1\ —4As,s, -
S S (S i YLV} Bl11
M4 62+m%< 2) 3 q-, ( )

and for the S-wave, one has

A=A =o.

ten ten

(B12)

Let us comment on one subtle detail in the derivation.
The £ belongs to the 2 representation of the spin SU(2)
group, whereas the X belongs to the 2 representation. The 2
and 2 representations of the SU(2) group are equivalent.
However, to uphold consistency in the application of CG
coefficients, a similarity transformation on the 2 represen-
tation is required. We adopt the following convention for
the two-component spinors in Eq. (B2):

(o) o= (1)
() =(0)

I—

ST

@

=
=

P (B13)
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APPENDIX C: RELATION BETWEEN THE which implies that
MOMENTUM-SPACE POTENTIAL

AND THE QFT AMPLITUDE

(P1D2|PADB)QFT =) 5 =
= LS BY o (C4)

The relation between the amplitude and the potential can (P1P21S1PaPs)ger 7' Pros
be established by comparing the S-matrix elements in QFT Q
and in QM. Specifically, for a two-to-two elastic scattering
process, the QFT representation is given by In QFT, we adopt the normalization |p, r) = \/2E ,;a’;|0>
AL and
(P1P2|S|PaPB)

— (3. 717D 2 454 _ _ . o
<f71P2|PAPB> + (27)*6*(pa + Ps — P1 — P2) {a%, a;T} — {b%, b;T} _ (27[)353(1) —§)8  (C5)
“IM(pa+pg = P1+ P2)- (C1)

In the QM context, it is represented as for the Dirac field. In QM, we have (X|p) = (27 )_3/ 2P

and Eq. (A6). So we obtain
(P'I8Ip) = 8(P' = p) — 22id(Ey — E)(P'|T(Ej1i0+)|P)
~ 6 (p' = p) = 2mid(Ey — E5)(B'|VIB).  (C2)  QFT (B, rld.s) = \/2Ejy/2E;(2n)38* (5 — §)5",

Here p=(M,py—M,pp)/M and p'=(M,p,—M,p,)/M (Co)
denote the relative momentum of the initial and final two-
body systems, respectively. Furthermore, p3 = p? = M3,
pr=p3=M3 and M=M,+M,. The S-matrix elementsin QM (p,r|g.s) = & (p — q)5"™. (C7)
QFTand QM should be the same up to the normalization, i.e.,

(517 §| Pabs) W §| p) Clearly, the spin of a particle only generates the identical term
p lp 2 ﬂp Aﬁp B/QFT _ \P _ ﬁp . (C3) 6" inboth QM and QFT. For simplicity, we will disregard the
(P1P2|PaPB)qrr (P'lP)om particle’s spin in the following. Thus, we have

|

(P1P2|PaDB) QFT _ \/2E 2E;,2E; 2Eﬁ3(2”)653(l_51 - I3A)53(ﬁ2 - Pg)
(P'P)om &P - p)

(C8)

We define P =, + pp and P' = B, + P, as the total three-momenta of the initial and final two-body systems,
respectively. Utilizing the property of the Dirac-6 function, i.e., f(x)8(x — xy) = f(x9)8(x — x¢), we get

Lo M LML L
P = PP )= (52 = ) = (52 = 5) )P = ) = (= 72)
M M ﬁ e
=5 (2 515+ 5= 50 )21 - ) - (B - 7o)
= &8 (P1 — Pa)& (P2 — Pa)- (C9)
Then, we have
(P1P2|PaPB) 5 s
2 O — | DE S DE; 2E; 2E; (21)°6° (P — P), (C10)

< |p>QM

which just means that the total momentum is conserved and in the usual QM treatment the c.m. motion has been factored
out. Substituting Eq. (C10) into Eq. (C4), we obtain

(P1PalSIBaBs)rr = v/2Ep, 2E5,2E 5, 2E 5, (2m)°6> (P = P)(F'|5|P)qu (C11)

Considering Eqgs. (C1) and (C6), we have
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(P1P2IS|PaPs)orr = /2E5,2E5,2E5,2E;;, (21)°6*(By — Pa)5° (P2 — Pi)

Substituting Eq. (C2) into the right half part of Eq. (C11), we obtain

3 (P = P)(p'8|p)qu = (P = P)&(p' =

From Egs. (C11)-(C13), it is easy to get

Finally, we obtain

(P'IVIp) = -

This relation differs from those in Refs. [71,72,79,92], due
to the distinct normalization relation of (X|p) in QM.
However, when using Eq. (B2) as the spin-1/2 particle
P.r) = d|0), Eq. (C15) will not
contain /2M,;. Therefore, in this paper, the relation

wave function, where

+ (27)*6*(pa + pp — P1 — P2) - iM(pa + pg = p1 + P2). (C12)
) = (2n)i8(Ey — E5)8 (P' = P)(p'|V|p)
= 8 (1 — )8 (P2 — Pp) — 2m)is*(pa + ps — p1 — p2)(P'IVID). (C13)
—\/2E; 2E; 2E; 2E; (2n)7i(p'|V|p) = (22)*iM(ps + ps = p1 + P2)- (C14)
M(pa+ ps = pP1+P2) z_M(PA + P = P1+p2) (C15)
(27)\/2E; 2E;2E; 2E; (27)°\/2M2My2M2M
[
which results in
M3 = (A+m)? M3 = A(A + 2m),
A-BAA+2
M3 :—(3 +2m) (D3)

between amplitude and potential in momentum space reads

1

(P'IVIP) ® = z—3 M(pa + pp = P1 + P2).

o (C16)

APPENDIX D: RELATIVE IMPORTANCE
OF EACH TERM IN THE
SCATTERING AMPLITUDE

In this appendix, we scrutinize the contribution from
each term in the amplitude to the effective potential with the
intention of simplifying the computation by eliminating
insignificant quantities.

First, we compare the following four distinct terms:

1 1
= F2(q), = — F%(q),
MO Z]»2+m2 (q) Ml M% (‘I)
1 . 1 A-GB-G .
= — I;‘2 ) = F2 ?
M2 M% 62 + m2 (Q) MS M% (_])2 + m2 (Q)
(D1)

where we introduce additional masses M; (i = 1, 2, 3) to
match the dimensions of all terms. To compare the relative
importance of the effective potentials from the terms in
Eq. (D1), we normalize them at » = 0 fm:

lirréVMO(r) = lir%VMl (r) = lir%VMZ(r)

= limVMs(r),

r—0

(D2)

The resulting S-wave effective potentials obtained by
assigning A =1 GeV, m = 0.5 GeV and A-B=1 are
depicted in Fig. 11(a). To a certain extent, from the results
we can estimate that

7 = AA+2m). (D4)

We note that the average effect of the exchanged-meson
momentum is too large, even though we have incorporated
a form factor to suppress the contribution from high-
momentum transition.

Next, we consideg the other terms in amplitude, which
contain momentum X,

1@ 1 A-kBk
My=———F(3). Ms=———-F(3).
4 M3 G +m? (2) 3 M2 G +m? (@)
1 A-GB*
= L AP T p g, D5
MG M§§2+m2 (CI) ( )

Given that k introduces the derivatives of the radial wave-
function, we adopt Eq. (28) in the form of
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FIG. 11. The different S-wave effective potential V(r) from different amplitude M (q) (a) or the different S-wave effective potential

Vo(r) from different amplitude M(q, /?) (b), where A=1 GeV, m =0.5 GeV and A - B = 1. The curves of M, and M align
perfectly, as they should according to Eq. (A42); similarly the M, and M5 curves are identical due to Eq. (A44).

where the additional subscripts 0, 1 and 2 correspond to the
number of derivatives on y/(r). For terms containing only g,
they can also be expanded in this manner, where only
V(/)M(q)(r)z//(r) appears, ie., VI (r) = v () =0. It
can be verified that the effects from y/(r) and w”(r) in the
Schrodinger equation are marginal and do not alter the
existence of bound states as discussed in Sec. LI A.
Therefore, we primarily focus on the magnitude of
Vo'PP)(r) as the main contribution of the corresponding
term to the effective potential.

For a comparison of the behavior of each term, we take

the following normalization at r = 0 fm

limVMo(r) = 1ir%VOM4(r) = nn&vg% (r)

r—0
= limVy™ (r), (D7)
which results in
Mﬁ:—A(A+2m), Mg__A'BA(A—FZm)’
3 9
A-BAA+2
M% = # (D8)

The results obtained by setting A = 1 GeV, m = 0.5 GeV

and A - B = 1 are shown in Fig. 11(b).

Let us take the terms in &(p’,S;.)u(p,S;.) as an
example. With Eq. (B2) and the y-matrices in Bjorken-
Drell representation,

L0 (0D )
o) T o) P o)

we obtain

05, S Ju(p. S12) = 5 (1 - (D10)

Wlth (EC_IH)(E (,72) :51 '52 +l(§) (671 X 672) fOI' [8, 51] =
[6,d,] =0, Egs. (A12) and (A47) and the above normal-
izations at r = 0 fm, for the S-wave we have

453 (]_Zz—ﬁzz)d,slz
n<,;rv5<31)u(ﬁ<slz)F2@) _ 16 F2(3)
vy T (N=v, = (r)
ot (1)
0 e L P2(G)
2y, T ")
A(A+2m)
= S3:T 1 + .
p (1 ™)

=1 F(q)
s pSvE . (D11)
In the computation of the szi bound state with the o, 7, , p

and o exchanges, we take the cutoff range to be

A(
A€]0.8,1.5] GeV. Consequently, the value of o
reaches a maximum of about 0.27 for X
(M =~ 1190 MeV) and 0.06 for X} (M =2520 MeV).

55'5p

Therefore, it is reasonable to neglect the term e for

the X¥ vertex in Eq. (D10). As for the T vertex, the
approximation may not be precise enough. However,
considering that the primary purpose of OBE is to explore
the potential existence of a molecule state, this approxi-
mation is also acceptable. The main reason for this differ-
ence is the significantly larger mass of X, compared to that
of X. As a consequence, this reminds us that the non-
relativistic limit |p|/M << 1 only holds well if the mass is
considerably larger than the typical energy scale of the
interaction.
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