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It is long known that interference effects play an important role in understanding the shape of the
πþπ− spectrum of resonances near the threshold. In this manuscript, we investigate the role of the ρ-ω
interference in the study of semileptonic B → πþπ−lν̄l decays. We determine for the first time the
strong phase difference between B → ρ0lν̄l and B → ωlν̄l from a recent Belle measurement of
the mππ spectrum of B → πþπ−lν̄l. We find ϕρ-ω ¼ ð−46þ155

−67 Þ° and extract the branching fraction of

BðB → ρ0lν̄lÞ ¼ ð1.41þ0.49
−0.38 Þ × 10−4. In addition, we set a limit on the S-wave component within an mππ

window ranging from 2mπ to 1.02 GeV of ΔBðB → ½πþπ−�Slν̄lÞ < 0.51 × 10−4 at 90% CL. We also
determine the absolute value of the Cabibbo-Kobayashi-Maskawa matrix element of jVubjρ-ω ¼
ð3.03þ0.49

−0.44 Þ × 10−3, which takes into account the ρ-ω interference.

DOI: 10.1103/PhysRevD.109.074040

I. INTRODUCTION

Determinations of exclusive values of the absolute value
of the Cabibbo-Kobayashi-Maskawa matrix element Vub
are pre-dominantly carried out using B → πlν̄l [1], Λb →
pμν̄μ [2], or Bs → Kμν̄μ [3] decays. Determinations using
decays B → ρlν̄l, B → ωlν̄l, or higher uncharmed reso-
nances received less attention due to the lack of reliable
lattice QCD (LQCD) calculations to predict the corre-
sponding form factors. Here ρ and ω are referring to the
ρð770Þ and ωð782Þ, respectively. Reference [4] provides a
world average of

jVubjρ ¼ ð2.96� 0.29Þ × 10−3; ð1Þ

jVubjω ¼ ð2.99� 0.35Þ × 10−3; ð2Þ

from combining the available measured differential spectra
of B → ρlν̄l and B → ωlν̄l decays and using light-cone
sum rule (LCSR) calculations of Ref. [5] for the form
factors. The resulting values for jVubj are compatible with
each other, but systematically lower than, e.g., the deter-
mination from B → πlν̄l of Ref. [1]

jVubjπ ¼ ð3.70� 0.16Þ × 10−3; ð3Þ

by about 1.8 or 2.2 standard deviations, respectively.
Note that the recent re-analysis of Ref. [6] finds a smaller
disagreement. Determinations of B → ρlν̄l focus both on
ρþ and ρ0 decays into two pions, whereas B → ωlν̄l
focuses on ω → π−πþπ0 or ω → π0γ decays, cf. measure-
ments published by BABAR and Belle in Refs. [7–9]. The
available measurements assume a Breit-Wigner shape for
the dynamic amplitude of both resonances. Also, they
rely on Monte Carlo (MC) simulations to subtract cock-
tails of resonant and nonresonant B → Xulν̄l decays.
The size of these contributions though are known to
differ depending on the assumptions on the underlying
b → ulν̄l MC cocktail or methodology. Using a so-called
“hybrid” approach, as originally suggested in Ref. [10]
and implemented in, e.g., Refs. [11–13], results in
different background estimates as alternative approaches,
used to mix exclusive and inclusive b → ulν̄l predic-
tions, as used, e.g., by Ref. [7]. Both approaches rely on
combining simulated decays into known narrow reso-
nances (typically B → fπ; ρ;ω; η; η0glν̄l) with scaled
predictions from inclusive B → Xulν̄l calculations,
which are hadronized using PYTHIA [14]. None of the
state-of-the-art approaches do, however, take into account
interference effects.
To avoid the difficulties to reliably subtract other

b → ulν̄l processes that decay into two pions, Ref. [15]
measured the B → πþπ−lν̄l process without isolating
explicit resonances. The measurement is unfolded from
detector effects and reports differential branching fractions
as a function of the invariant mass of the dipion system
mππ , the four-momentum transfer squared q2, and in the
two dimensions of q2∶mππ .
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Figure 1 shows the measuredmππ spectrum ranging from
the 2 π threshold up to 2 GeV. The ρ peak is clearly visible,
with a hint of a contribution from the f2ð1270Þ → ππ decay
around 1.2 GeV. The mππ region below 0.5 GeV shows
enhancements, which might be caused by ππ S-wave
contributions. The shape of the mass spectrum near
mππ ≃ 0.77 GeV is strongly affected by the interference
of the dominant ρ amplitude with the small contribution of
ω amplitude decaying into π−πþ.
This seems counter-intuitive at first: the B → ρ0lν̄l

branching fraction is two orders of magnitude larger than
the B → ωð→ 2πÞlν̄l branching fraction [4]:

BðB → ρ0lν̄lÞ ¼ ð1.35� 0.12Þ × 10−4; ð4Þ

BðB → ωð→ 2πÞlν̄lÞ ¼ ð0.017� 0.002Þ × 10−4; ð5Þ

with Bðω → 2πÞ ¼ ð1.53� 0.12Þ × 10−2 [16].
However, as we will see, the interference between both

amplitudes distorts the mππ spectrum with respect to a
pure ρ decay. This effect is also observed in a multitude of
other processes, such as in eþe− → πþπ−ðγÞ [17,18],
in the photoproduction of ρ mesons with gold-gold [19]
or proton-lead collisions [20], or in the invariant mass
spectrum of eþe− pairs photoproduced from nuclear
targets [21].
The remainder of this manuscript will discuss how all

existing measurements of B → ρ0lν̄l are affected by
interference effects of the ρ signal with ω contributions.
We first recapitulate how different parametrization choices
for the dynamic amplitude of the ρ affect its mππ line shape
and peak position. Then we will discuss the formalism to
incorporate the ρ-ω interference, and determine both
branching fractions and the difference of the strong phases
of the amplitudes by analyzing the mππ spectrum of
Ref. [15]. Finally, we set a limit to possible additional
S-wave B → πþπ−lν̄l contributions in a mass-window
around the ρ resonance.

II. THE MANY SHAPES OF THE ρ

There exist a large number of parametrizations to
describe the dynamic amplitudeA of the ρð770Þ resonance,
and one needs to be careful when choosing a nominal
mass M0 and width Γ0 from previously reported values.
A nonexhaustive list of parametrizations with measured
nominal masses and widths is given in Table I. All
parametrizations can be cast into a common form of

AðsÞ ¼ 1

M2
0 − sþ fðsÞ þ iM0ΓðsÞ

; ð6Þ

with s ¼ m2
ππ and their difference is expressed by the

parametrizations for fðsÞ and ΓðsÞ. The simplest choice
assumes

fðsÞ ¼ 0; ΓðsÞ ¼ Γ0; ð7Þ

resulting in a fixed width relativistic Breit-Wigner ampli-
tude. The assumption of ΓðsÞ being constant is only a valid
approximation, if the resonance position is far away from
the opening of the nearest decay channels. The latter is
often expressed as a condition of

2ðM0 −
ffiffiffiffi
s0

p
Þ=Γ ≫ 1: ð8Þ

For the πþπ− channel with
ffiffiffiffi
s0

p ¼ 2mπ, we find

2ðM0 − 2mπÞ=Γ ≈ 6.7: ð9Þ

This value might raise some concerns, that the above
condition is at best not fully fulfilled for the ρ and possible
deviations should be explored.
The s-dependence on the width is often taken into

account using the so-called dynamic-width Breit-Wigner
amplitude, which for a single decay channel reads

fðsÞ ¼ 0; ΓðsÞ ¼ ΓBWðsÞ ¼ Γ0

M0ffiffiffi
s

p q3

q30

F 1ðRqÞ
F 1ðRq0Þ

: ð10Þ

Here, q ¼ qðs;mπ; mπÞ denotes the two-body break-up
momentum

qðs;M1;M2Þ ¼
λ1=2ðs;M2

1;M
2
2Þ

2
ffiffiffi
s

p ; ð11Þ

with λ being the Källén function [37], and q0 ¼ qðM0;
mπ; mπÞ. Further,

F 1ðRqÞ ¼ 1=ð1þ ðRqÞ2Þ; ð12Þ

is the Blatt-Weisskopf [38] factor, with R is a scale factor
related to the radius of the strong potential, which deter-
mines the barrier of the angular momentum of R · q.

FIG. 1. Measured B → πþπ−lν̄l spectrum from Ref. [15].
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Note that we dropped an overall normalization factor, that
cancels in the ratio of Eq. (10). An extension of Eq. (10) is
the so-called Gounaris-Sakurai amplitude [39] with

fðsÞ ¼ fGSðsÞ ¼
Γ0M2

0

q30
ðq2ðh − h0Þ þ ðM2

0 − sÞq20h00Þ;

ΓðsÞ ¼ ΓGSðsÞ ¼ ΓBWðsÞ: ð13Þ

Here, h ¼ hðsÞ and h0 ¼ hðM2
0Þ with

hðsÞ ¼ 2

π

qðsÞffiffiffi
s

p ln

� ffiffiffi
s

p þ 2qðsÞ
2mπ

�
: ð14Þ

andh00¼h0ðð8q20Þ−1−ð2M2
0Þ−1Þþð2πM2

0Þ−1. Equation (13)
is often used, especially when determining the pole position
of the amplitude.
The energy dependence of the dynamic width in

Eq. (10) is not unique and other choices exist [30]: one
can introduce an additional factor of

ffiffiffi
s

p
=M0 that modifies

Eqs. (10) and (13) such that

fðsÞ ¼ 0; ΓðsÞ ¼ ΓðsÞaBW ¼
ffiffiffi
s

p
M0

ΓðsÞBW; ð15Þ

and

fðsÞ¼faGS¼fGSðsÞ; ΓðsÞ¼ΓðsÞaGS¼
ffiffiffi
s

p
M0

ΓðsÞGS; ð16Þ

To widen the amount of possible parametrizations
even further, other authors omit the Blatt-Weisskopf barrier
factors Eq. (12), which is equivalent to choosing
R ¼ 0 GeV−1.
With these different choices at hand, we will now

investigate the various resulting line shapes jAj2 using
the same choice for M0 and Γ0. We use M0 ¼ 0.775 GeV
and Γ0¼0.147GeV and either set R ¼ 0 or R ¼ 5 GeV−1.
The line shapes are shown in Fig. 2. We note that the
dynamic-width Breit-Wigner equation (10) and the
Gounaris-Sakurai amplitude Eq. (13) give very similar
shapes, with some minor differences in the tails of the
resonance peak. The value of the scale parameter R impacts
the position of the peak of the line shape, resulting in a
positive shift of about 10 MeV when going from
R ¼ 0 → 5 GeV−1. Using the alternative s-dependencies
[Eqs. (15) and (16)] results in a negative shift of about
5 MeV of the peak position compared to the nominal
parametrizations.
The observed shifts in the peak position for the different

parametrizations are, however, not a physical property of
the ρ resonance. They are an artefact of the parametriza-
tions. The universal physical properties of a resonance are
described by the position of the pole of the corresponding
amplitude in the complex s-plane, and M0 and Γ0 depend
on the choice of parametrization. Requiring the same
pole position of

ffiffiffiffiffi
s0

p ¼ ð0.764 − 0.146i=2Þ GeV [16,40]
for each parametrization by solving for the corresponding
values of M0 and Γ0 results in nearly identical line shapes
as shown in Fig. 2 (right).

TABLE I. A nonexhaustive list of measurements of the ρð770Þ parameters using different parametrizations, as extracted from
Ref. [16]. If the quoted value for R has an uncertainty, it was fitted to the data, otherwise it was fixed to the quoted value. An R value of
0 fm=ℏc means that no Blatt Weisskopf barrier factors were used to parametrize the dynamic amplitude.

Process Experiment M0 ½MeV� Γ0 ½MeV� R ½fm=ℏc� R ½GeV−1� Equations References

Neutral only eþe− eþe− → πþπ− SND 775.3� 0.5� 0.6 145.6� 0.6� 0.8 0 0 (10) [18]
eþe− → πþπ− CMD2 775.65�0.64�0.50 143.85�1.33�0.80 0 0 (13) [22]
eþe− → πþπ−γ BABAR 775.02� 0.35 149.59� 0.67 0 0 (13) [23]
ϕ → πþπ−π0 KLOE 775.9� 0.5� 0.5 147.3� 1.5� 0.7 0 0 (10) [24]

Charged only τ
decays

τ− → π−π0ντ Belle 774.6� 0.2� 0.5 148.1� 0.4� 1.7 0 0 (13) [25]
τ− → π−π0ντ ALEPH 775.5� 0.7 149.0� 1.2 0 0 (16) [26]
τ− → π−π0ντ CLEO2 775.1� 1.1� 0.5 150.4� 1.4� 1.4 0 0 (13) [27]

Charged only
hadroproduced

π−Cu → π−π0Cu SPEC 767� 3 155� 11 0.48 2.4 (15) [28]
πþA → πþπ0A SPEC 771� 4 150� 5 0.47 2.4 (15) [29]
πp → ππN Various 766.8� 1.5 148.2� 4.1 0.33�0.02 1.67�0.10 (10) [30]

Mixed other pp̄ → πþπ−π0 Crystal barrel 763.0� 0.3� 1.2 149.5� 1.3 1.0 5.0 (10) [31]

Neutral only
photoproduced

ep → eπþπ−p H1 770.8� 1.3þ2.3
−2.4 151.3� 2.2þ1.6

−2.8 0 0 (10) [32]
ep → eπþπ−p ZEUS 771� 2þ2

−1 155� 5� 2 0 0 (10) [33]
γp → π−πþX ZEUS 770� 2� 1 146� 3� 13 0 0 (15) [34]
γp → eþe−p CNTR 767.6þ�2.7 150.9� 3.0 0.01�0.10 0.05�0.52 (10) [35]

Neutral other pπþ → πþπ− þ X HBC 768� 1 154� 2 0 0 (15) [36]
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In order to model the measured mππ spectrum in
B → ππlν̄l decays, we multiply the line shape with two
additional factors: the ππlν̄l phase space ΦðsÞ and the
angular-momentum barrier factor BFðs; RÞ [41]. The BF
factor models centrifugal-barrier effects that distort the line
shape. We approximate the mππ dependence of the phase-
space by the product of the two-body break-up momenta of
the B decay to the ππ and lν̄l systems and the decay of the
ππ system,

ΦðsÞ ≈ qðM2
B;

ffiffiffi
s

p
; mlν̄lÞ · qðs;mπ; mπÞ: ð17Þ

We choose a constant invariant mass for the lν̄l-system of
mlν̄l ¼ 3.6 GeV, determined from a fit to a Monte Carlo
sample that is uniformly distributed in the phase-space of
the studies process. Equation (17) provides an accurate
description for the region of mππ < 1 GeV, which is the
relevant range for our analysis. Finally, the barrier factor is
given by

BFðs; RÞ ¼ q2 · F 1ðRqÞ; ð18Þ

with q ¼ qðs;mπ; mπÞ.
Figure 3 shows our model for the mππ spectrum using

the relativistic Breit-Wigner equation (7) for
ffiffiffiffiffi
s0

p ¼
ð0.764 − 0.146i=2Þ GeV (gray curve) without any addi-
tional factors applied. The blue and green curve show the
line shapes with both factors applied for R ¼ 0 and
R ¼ 5 GeV−1. Note that the pole position in the complex
plane is not affected by Φ and BF, but the peak position in
the mππ spectrum is shifted and hence sensitive to the
choice of the momentum scale parameter R. The blue
and green shaded bands represent the uncertainties on M0

and Γ0, propagated from the uncertainties on the real and
imaginary part of

ffiffiffiffiffi
s0

p
from the global fit in Ref. [40],

which are small and barely visible in Fig. 3.

Figure 4 shows the functional dependence ofΦ and BF.
For R ¼ 0 the Blatt-Weisskopf factor is constant and the
phase space and q2 factors both increase as a function of
mππ . This results in an asymmetry around the ρ peak of
the line shape. If R ≠ 0, the Blatt-Weisskopf factor
decreases as a function of mππ , reducing the size of this
asymmetry.

III. WHEN ρ0 MEETS ω INTERFERENCE ENSUES

We now turn our attention to the ρ-ω interference, which
becomes visible due to the isospin breaking decay of the ω
meson into two pions [42]. The origin of this effect is that
the physical observable ρph and ωph states are a super-
position of the pure ρ and ω isospin states,

FIG. 2. Left: line shapes jAðsÞj2 for different parametrizations using the same of M0 and Γ0 parameters. For details of the
parametrizations see text. All curves were normalized to their respective modes. Right: the same comparison, when the parameters of
the different parametrizations are chosen such that the parametrizations yield the same pole of

ffiffiffiffiffi
s0

p ¼ ð0.764 − 0.146i=2Þ GeV in the
complex s plane.

FIG. 3. Model for the mππ spectrum in B → ππlν̄l decays
using the relativistic Breit-Wigner amplitude The blue curve
shows the model for R ¼ 0, whereas the green curve for
R ¼ 5 GeV−1. The gray curve shows the line shape, i.e., the
model without the phase-space and barrier factors applied for
comparison. For details see text.
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jρphi ¼ jρi − ϵjωi; ð19Þ

jωphi ¼ ϵjρi þ jωi; ð20Þ

with ϵ the electromagnetic admixture.
This interference can be formally introduced using a

complex-valued mixing matrix [43–46]

M ¼
�

m2
ρ − imρΓρ −δðmρ þmωÞ

−δðmρ þmωÞ m2
ω − imωΓω

�
; ð21Þ

with the strength of the electromagnetic mixing expressed
as a complex-valued parameter δ ∼ ϵ. The total ρ-ω
amplitude is then given by

Aρ-ω ¼ ðPρ;PωÞfM − s1g−1
�
Dρ

Dω

�
; ð22Þ

with P and D denoting the production and decay ampli-
tudes of the pure isospin states ρ and ω, and 1 the 2 × 2 unit
matrix.
Neglecting the small direct decay amplitude of ω → ππ,

Eq. (22) can be simplified to [47]

Aρ-ω ¼ Aρ

�
1þAωΔjBjeiϕρ−ω

1 − Δ2AρAω

�
; ð23Þ

with Aρ=ω denoting the amplitude of ρ or ω, respectively,
and Δ ¼ δðmρ þmωÞ. Further,

B ¼ Pω=Pρ0 ¼ jBjeiϕρ-ω ; ð24Þ

with ϕρ-ω denoting relative strong phase difference between
the ρ and ω production amplitudes and jBj is proportional

to the square-root of the production branching fractions of
B → ρ0lν̄l and B → ωlν̄l, cf. Appendix D.
In contrast to the ρ, the ω is a narrow resonance with a

width of ≃8.7 MeV, and none of the effects discussed in
Sec. II have any sizeable impact on its line shape. We thus
describe Aω using a fixed width relativistic Breit-Wigner
amplitude according to Eq. (7) with mass and width from
Ref. [16]. We explicitly investigated different choices
for the ω parametrization and found their impact to be
negligible.
We will use for the electromagnetic mixing the

parameters jδj ¼ ð2.15� 0.35Þ MeV [46] and arg δ ¼
0.22� 0.06 [48]. The phase and absolute value of δ can
be measured with the eþe− → πþπ− process: due to the
production process via a virtual photon no strong phase
difference is introducing an additional phase between the ρ
and ω amplitudes.
Figure 5 illustrates the impact of the interference on the

ππ spectrum if both ρ and ω are produced fully coherently
with ϕρ-ω ¼ 0. The ππ spectra of the pure ρ and ω
contributions, defined as jA0

ρj2 ¼ jAρ=ð1 − Δ2AρAωÞj2
and jA0

ωj2 ¼ jAρAωΔjBj=ð1 − Δ2AρAωÞj2, are shown as
dashed curves. The small crest near the ωmass onA0

ρ stems
from the ð1 − Δ2AρAωÞ term. Due to the interference, the
resulting ππ line shape is strongly distorted near the ω
mass, resulting in a cusp.
Figure 6 shows the distortion with respect to the

incoherent sum of the pure ρ and ω contributions for four
different choices of ϕρ-ω ∈ ½0; π

2
; π; 3

2
π�. If both states are

produced with a relative phase difference of π instead of 0,
the distortion of the spectrum changes sign, resulting in a
depletion below the ω mass and an enhancement above.

FIG. 4. The impact of the phase space and barrier factor, that
lead to the asymmetry of the line shape as a function of mππ are
shown for R ¼ 5 GeV−1 (plum) and R ¼ 0 (light plum). All
curves are normalized to their mode.

FIG. 5. The mππ spectrum from the interference is shown
assuming ρ and ω are produced with ϕρ-ω ¼ 0 (solid line), using
the relativistic Breit-Wigner amplitude with mass and width
chosen to possess a pole at

ffiffiffiffiffi
s0

p ¼ ð0.764 − 0.146i=2Þ GeV and
R ¼ 5 GeV−1. The shaded light blue lines show the interference
prediction using the other parametrizations which mass and width
chosen to yield the same pole position. The dashed lines show the
spectrum for the pure ρ (blue) and ω (green) contributions.
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Fractional phase shifts in π of a half or three halves result in
an enhancement or attenuation of the total signal due to
constructive or destructive interference.

IV. S-WAVE AND ISOBAR MODEL

In addition to the ρ and ω vector mesons, we also
include a B → ½ππ�Slν̄l S-wave contribution to describe
the low massmππ spectrum. The importance to study such
a contribution in the context of B → ρ0lν̄l was pointed
out in Ref. [49]. The S-wave can be calculated in a model
independent way using dispersion theory, using the
measured ππ phase shifts and a couple channel treatment
for the KK̄ system [50]. This requires knowledge of the
Omnés matrix and the pion and kaon form factors at
s ¼ 0. The resulting line shape can only be obtained
numerically and we use values from the authors of
Ref. [50] provided in Ref. [51]. We also study alternative
descriptions of this shape: we implement a simplified
model of the interplay of the f0ð500Þ and f0ð980Þ
resonances used by Ref. [52] and based of Ref. [53].
This model also uses information obtained from ππ
elastic scattering data but removes the f0ð980Þ from
the description of the S-wave amplitude. We further carry
out fits assuming a uniform phase space distribution
according to Eq. (17).
Figure 7 compares the predicted S-wave mass distribu-

tion: the predicted S-wave of Ref. [50] (dash-dotted curve)
enhances the low mππ region and falls off and produces a
cusp around 1 GeV. The prediction of Refs. [52,53] (dashed
curve) predicts a depletion at low mππ, and then raises
steeply. Phase space predicts (dotted curve) a steadily
raising distribution, which raises slower than the model
of Refs. [52,53]. In the following we will use the model of
Ref. [50] as our default parametrization as it provides the
most complete description of the ππ S-wave contribution.
But the other models result in very similar results and are
fully discussed in Appendix A.

We will study the mππ spectrum using an isobar model
approach [54–56], describing the full B → ππlν̄l decay
amplitude using the incoherent sum of the ρ-ω contribution
and the S-wave part. Treating the S-wave incoherently is
justified as we only analyze the mππ spectrum and hence
integrate over all of the decay angles of the process. As the
angular distributions of the S-wave contribution and the
P-wave ρ-ω contribution are orthogonal, their interference
vanishes. Note that in principle a nonuniform experimental
acceptance in the decay angles could break this orthogon-
ality in practice and produce nonvanishing interference
distortions in the experimental mππ spectrum. But such
effects need to be studied by the experimental collabora-
tions and are beyond the scope of this paper.

V. FIT SETUP

We have now assembled all the individual pieces to
finally analyze the mππ spectrum: We will study its
composition using a χ2 fit of the form

χ2 ¼ ðΓm − ΓpÞC−1ðΓm − ΓpÞ þ
X
k

χ2k; ð25Þ

with ðΓmÞi and C denoting the measured spectrum in a
givenmππ bin i and the statistical and systematic covariance
matrix of Ref. [15].
The prediction of the mππ line shape is constructed from

integrals of the form

ðΓpÞi ¼
Z

Δmππ i

dmππðBρ · jAρ-ωj2 ·Φ · BF

þ BS · jAS−wavej2 ·ΦÞ: ð26Þ

The parameters of interest determined by the fit are the
B → ρ0lν̄l branching fraction proportional to Bρ, the
strong phase difference ϕρ-ω (encapsulated in Aρ-ω), and

FIG. 6. The distortion of the mππ spectrum from interference is
shown for four different values of ϕρ-ω.

FIG. 7. The considered parametrizations for the S-wave con-
tribution are shown.
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the B → ½ππ�Slν̄l S-wave contribution proportional to BS.
Appendix D provides the concrete relations.
Additional parameters, for example the masses and

widths of resonances, are constrained to external inputs
using symmetric or asymmetric Gaussian constraints with
σ�k denoting the upper or lower uncertainty via

χ2k¼
ðθmk −θpk Þ2

σ2k
; with σk¼

�
θpk >θmk σk¼σþk
θpk ≤θmk σk¼σ−k

: ð27Þ

Here, θm=p
k denotes either the external or predicted value for

the external input. Table II provides an overview of all
external parameters.
We constrain the pole position of the ρ to

ffiffiffiffiffi
s0

p ¼
ð0.764 − 0.146i=2Þ GeV from Ref. [40]. This is realized
by numerically evaluating the pole of the employed para-
metrization as a function of Mρ and Γρ (and R when
appropriate) in each iteration of the fit. The mass and width
of the ω contribution are constrained to ðMω;ΓωÞ ¼
ð0.783; 0.009Þ GeV [16]. We constrain the momentum
scale parameter to R ¼ 5.3þ0.9

−0.7 GeV−1 from Ref. [16]
based on the determination of Ref. [57] unless stated
otherwise. The absolute value and argument of the electro-
magnetic mixing operator are constrained to the values of
Refs. [46,48]. We further constrain the B → ωð→ 2πÞlν̄l
mixing contribution using the branching fractions of
Refs. [4,16].
We numerically minimize the χ2 of Eq. (25) using the

IMINUIT package [58]. We profile Δχ2 ¼ χ2 − χ2min with
χ2min the minimal value of the χ2 function to determine the
uncertainties of all fit parameters. We further determine
numerically the approximate covariance matrix from the
second-order partial derivatives of the χ2 function at the
best fit point.

VI. RESULTS

As we demonstrated in Secs. II and III the choice of the ρ
parametrization is not important as long as the same
physical pole in

ffiffiffiffiffi
s0

p
is imposed. We thus describe the ρ

amplitude with a relativistic Breit-Wigner, imposing all

constraints listed in Table II, and describe the S-wave
contribution with the prediction of Ref. [50]. We determine:

BðB → ρ0lν̄lÞ ¼ ð1.41þ0.49
−0.38Þ × 10−4; ð28Þ

ϕρ-ω ¼ ð−46þ155
−67 Þ°: ð29Þ

Figure 8 depicts the result of the fit. No statistically
significant contribution of the S-wave was found and we
determine an upper limit of

ΔBðB → ½πþπ−�Slν̄lÞ < 0.51 × 10−4 at 90% CL; ð30Þ

defined as a partial branching fraction inside the window of
mππ ∈ ½2mπ; 1.02 GeV�. The correlation matrix between
between the three parameters is

C ¼

0
B@

1.00 0.27 −0.43
0.27 1.00 −0.10
−0.43 −0.10 1.00

1
CA: ð31Þ

The S-wave contribution is −43% anticorrelated with the ρ
branching fraction. The strong phase difference is 27%
correlated with the ρ branching fraction and −10% anti-
correlated with the S-wave. The χ2 of the fit is 2.07 with
5 degrees of freedom, resulting in a p-value of 83.9%.
The determined values and uncertainties of all fit param-
eters are summarized in Table III and Fig. 9 shows the
two-dimensional contours for fixed Δχ2 spanned by the
B → ρ0lν̄l branching fraction and ϕρ-ω.
We can also assess the branching fraction of the physical

ρph and ωph states, that decay into two pions, defined as the
admixture of the ρ and ω isospin states. This branching
fraction represents the dominant P-wave contribution of the

TABLE II. The used external inputs and references are listed.

Observable Value Referencesffiffiffiffiffi
s0

p ð763.7þ1.7
−1.5 − 73.2þ1.0

−1.2 iÞ MeV [40]
Mω ð782.66� 0.13Þ MeV [16]
Γω ð8.68� 0.13Þ MeV [16]
R 5.3þ0.9

−0.7 GeV−1 [16,57]
jδj ð2.15� 0.35Þ MeV [46]
arg δ 0.22� 0.06 [48]
BðB → ωð→ 2πÞlν̄lÞ ð0.017� 0.002Þ × 10−4 [4,16]

FIG. 8. Fit result using the relativistic Breit-Wigner to model
the ρ amplitude and using the shape of Ref. [50] to model the
S-wave background. The blue line and shaded band show the
total model curve and its uncertainty. The S-wave contribution is
shown as a dash-dotted purple line. The dashed lines show the
prediction of the pure ρ (blue) and ω (green) contributions.
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low mππ spectrum and we find

BðB → ½πþπ−�ρ-ωlν̄lÞ ¼ ð1.49� 0.38Þ × 10−4: ð32Þ
Using alternative parametrizations to describe the ρ

result in very similar branching fractions and strong phases.
A full summary is listed in Table IV. The variations
related to the various parametrizations are no larger than
≃0.01 × 10−4 for the ρ branching fraction or 2° for the
strong phase difference. This is consistent with the shift in
the phase dependence from the alternative parametriza-
tions. Particularly the phase of the Gounaris-Sakurai para-
metrization has a different s dependence, resulting in a
smaller value of the strong phase of ð−44þ150

−67 Þ°. This
difference, however, is not relevant and the recovered ρ
branching fraction is nearly parametrization independent.

By removing the constraint on the momentum scale
parameter R, a marginally smaller branching fraction of
BðB → ρ0lν̄lÞ ¼ ð1.39þ0.46

−0.38Þ × 10−4 and similar phase of
ϕρ-ω ¼ ð−39þ140

−69 Þ° are recovered. The precision of the
measured mππ spectrum, however, is not sufficient to
provide a 68% confidence region on R itself, and we only
can determine a range of R∈ ½0.4; 47� GeV−1 at 50% CL.
Assuming a fully in-phase production of ρ and ω in

the semileptonic decay by fixing ϕρ-ω ¼ 0, results in a
marginally larger branching fraction of BðB → ρ0lν̄lÞ ¼
ð1.48þ0.39

−0.39Þ × 10−4. Assuming a phase shift of ϕρ-ω ¼ π,
similar to the phase observed in B0→ D̄0πþπ− decays [59],
we find BðB → ρ0lν̄lÞ ¼ ð1.35þ0.38

−0.38Þ × 10−4. Notably the
upper uncertainty is reduced, thus theory input on the
strong phase difference has the potential to reduce the ρ
branching fraction uncertainty.
The branching fraction Eq. (28) is about 0.2 standard

deviations larger than the world average of Eq. (4) of
BðB → ρ0lν̄lÞ ¼ ð1.35� 0.12Þ × 10−4 [4]. The two-
dimensional allowed 68% CL region also contains larger
branching fractions with values up to ∼2.1 × 10−4.
Combining Eq. (28) with the form factor predictions of
Ref. [5] we determine

jVubjρ-ω ¼ ð3.03þ0.49
−0.44Þ × 10−3: ð33Þ

This value is about 2% larger than the world average of
Eq. (1). Taking into account interference effects, we recover
an increased upper uncertainty, what reduces the tension
from jVubj from B → πlν̄l to 1.3σ. This direct comparison,
however, is not well suited to quantify the importance of
correctly treating interference effects, as the world average
and Eq. (28) do rely on different assumptions for the
subtraction of the S-wave semileptonic background.
Further, using the measurement of Ref. [11] in contrast
to an average of many measurements results in a larger
overall uncertainty on jVubj.
A better suited comparison to assess the impact of

including the ρ-ω interference effects is to determine the
branching using a simpler resonance model and compare
the result with Eq. (28). We describe the ρ signal using a

FIG. 9. The Δχ2 ¼ 1 (38.3% CL, blue) and Δχ2 ¼ 2.3
(68.3% CL, black dashed) contours of BðB → ρ0lν̄lÞ and
ϕρ-ω are shown for the S-wave described using Ref. [49]. The
best fit point (Δχ2 ¼ 0) is indicated with a blue star. The red data
point shows the result of a fit neglecting the interference effects
between ρ and ω.

TABLE III. Determined values of all parameters of the fit using
the relativistic Breit-Wigner to describe the ρ line shape and the
proposed shape of Ref. [49] for the S-wave contribution.

Parameter Value

BðB → ρ0lν̄lÞ ð1.41þ0.49
−0.38 Þ × 10−4

ϕρ-ω ð−46þ155
−67 Þ°

ΔBðB → ½πþπ−�Slν̄lÞ ð0.29� 0.17Þ × 10−4

BðB → ωð→ 2πÞlν̄lÞ ð0.017� 0.002Þ × 10−4

Mρ ð0.7603þ0.0017
−0.0015 Þ GeV

Γρ ð0.1472þ0.0020
−0.0022 Þ GeV

Mω ð0.7827� 0001Þ GeV
Γω ð0.0087� 0.0001Þ GeV
R 5.27þ0.89

−0.70 GeV−1

jδj 2.1þ4
−3 MeV

arg δ 0.22� 0.06

TABLE IV. The determined B → ρ0lν̄l branching fractions
and ϕρ-ω phases using different parametrizations for the ρ line
shape are listed.

Line shape Equations
BðB→ρ0lν̄lÞ

½10−4� ϕρ-ω½°� χ2

Relativistic Breit-Wigner (7) 1.41þ0.49
−0.38 −46þ155

−67 2.07

Dynamic Breit-Wigner (10) 1.41þ0.49
−0.38 −47þ156

−67 2.09

Gounaris-Sakurai (13) 1.42þ0.47
−0.38 −44þ150

−67 1.98

Al. Dynamic Breit-Wigner (15) 1.41þ0.49
−0.38 −47þ156

−67 2.06

Al. Gounaris-Sakurai (16) 1.42þ0.47
−0.38 −44þ149

−67 1.96
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relativistic Breit-Wigner, the S-wave analogously as before,
and neglect the small direct ω → ππ contribution. We find
BðB → ρ0lν̄lÞ ¼ ð1.48� 0.38Þ × 10−4. The observed
downward shift is ≃0.07 × 10−4, corresponding to about
18% of the quoted uncertainty or about 4.8% of the central
value, respectively. This shift could be used as a proxy to
estimate an uncertainty due to the interference for existing
measurements.
The impact of different choices to model the S-wave

contribution, is studied by carrying out fits using either
the parametrization of Refs. [52,53] or a phase space. With
a relativistic Breit-Wigner for the ρ and with Refs. [52,53]
we find BðB → ρ0lν̄lÞ ¼ ð1.45þ0.61

−0.41Þ × 10−4 and ϕρ-ω ¼
ð−45þ162

−69 Þ°. The upward shift in the ρ branching fraction is
caused by the lower number of predicted S-wave events
below the ρ peak. The recovered phase is in good agree-
ment. Using phase space for the S-wave we determine
BðB→ρ0lν̄lÞ¼ð1.41þ0.52

−0.39Þ×10−4 and ϕρ-ω¼ð−48þ159
−67 Þ°.

This branching fraction is nearly identical with Eq. (28).
The marginal shift in the phase is caused by the shape
difference of the total line-shape above the ρ resonance
peak. Again, the precise details on what parametrization for
the ρ is not important, as long as the same physical pole is
enforced. The full details of both sets of fits are summarized
in Appendix A.

VII. DISCUSSION AND CONCLUSIONS

We demonstrated that interference effects and the mod-
eling of S-wave contributions can have a sizeable effect on
the determination of the B → ρ0lν̄l branching fraction.
The choice of the precise line shape to describe the ρ
resonance, however, has only a negligible impact on the
determined branching fractions if mass and width of the ρ
resonance are constrained to yield the same physical pole in
the s plane. Using the S-wave shape of Ref. [49] and a
relativistic Breit-Wigner to describe the ρ resonance, we
determine with a fit to the measurement of the mππ

spectrum of B → ππlν̄l of Ref. [15] the B → ρ0lν̄l
branching fraction, for the first time taking into account
the ρ-ω interference effects in a consistent way to our
knowledge. We find

BðB → ρ0lν̄lÞ ¼ ð1.41þ0.49
−0.38Þ × 10−4;

ϕρ-ω ¼ ð−46þ155
−67 Þ°;

and constrain a possible S-wave contribution to

ΔBðB → ½πþπ−�Slν̄lÞ < 0.51 × 10−4 at 90% CL;

within mππ ∈ ½2mπ; 1.02 GeV�. These values are higher
than the world average of Ref. [4], seemingly easing the
tension of jVubj determinations from B → ρlν̄l with
respect to B → πlν̄l. With this branching fraction and
the predictions for the rate of Ref. [5] we recover

jVubjρ-ω ¼ ð3.03þ0.49
−0.44Þ × 10−3: ð34Þ

A comparison using the same dataset and assumptions for
the S-wave ππ contribution reveals that not taking into
account interference effects may result in a shift of the order
of ≃0.7 × 10−4 on the branching fraction. An improved
description of the shape of the possible S-wave contribution
is very important for a reliable determination of the ρ
branching fraction. We tested two different models and
observe that depending on the S-wave model the branching
fraction may shift up to ≈0.03 × 10−4 and the phase by ≈3°.
The shift in the branching fraction corresponds to about
11% (14%) of the obtained upper (lower) uncertainty from
the fit.
With the arrival of new and enlarged datasets from both

Belle II [60] and LHCb [61], we must adapt the modeling
of the 2π mass spectrum for future studies of B → ρlν̄l.
Both the ρ-ω interference and the S-wave contribution must
be taken into account to reduce systematic uncertainties and
exploit the expected statistical precision.
Specifically, if partial branching fractions are measured,

which do not integrate the full angular information e.g. due
to acceptance effects, additional interference effects also
between the S-wave and the signal will become important.
One possible remedy for existing measurements could
be to assign an additional 4% uncertainty to the measured
partial branching fractions, based on the observed shift in
analyzing the dataset of Ref. [15] with a line shape with
and without ρ-ω-interference effects. These studies will
complement the golden channel of B → πlν̄l to extract
the value of jVubj. A more precise understanding of
B → ππlν̄l decays will also improve future measurements
of inclusive semileptonic decays of B mesons, as well as
searches for B → μν̄μ. With more data at hand, the analyses
should also exploit angular distributions of the 2π system,
allowing a clear separation of S-, and P-wave, as well as
other background contributions.
A more detailed analysis of the mππ spectrum, which

extends the fit to the full measured ranges, is left for
future work.
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APPENDIX A: ALTERNATIVE DESCRIPTION OF THE S-WAVE CONTRIBUTION
WITH PHASE-SPACE

Figure 10 shows the fits to the mππ spectrum of Ref. [15] using a phase space model or Refs. [52,53] for the S-wave
contribution. The two dimensional χ2 contours of the determined ρ branching fraction and phase are shown in Fig. 11 for
38.3% and 68.3% CL. Table V summarizes the fitted parameters and Table VI shows the impact of choosing different
parametrizations for the ρ line shape.

FIG. 10. Fit results using the relativistic Breit-Wigner to describe the ρ line shape with using phase space (left) or Refs. [52,53] to
model the S-wave component. The blue line show the full interference and background line shape. The S-wave contribution is shown as
a dash-dotted purple line. The dashed lines show the prediction without interference for ρ (blue) and ω (green).

FIG. 11. The Δχ2 ¼ 1 (38.3% CL, blue) and Δχ2 ¼ 2.3 (68.3% CL, black dashed) contours of BðB → ρ0lν̄lÞ and ϕρ-ω are shown for
the S-wave described using phase space (left) or the model of Refs. [52,53] (right). The best fit point (Δχ2 ¼ 0) is indicated with a blue
star. The red data point shows the result of a fit neglecting the interference effects between ρ and ω.
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TABLE V. Determined values of all parameters of the fit using the relativistic Breit-Wigner to describe the ρ line
shape and phase space (top) or Refs. [52,53] (bottom) for the S-wave contribution.

Parameter Value

BðB → ρ0lν̄lÞ ð1.41þ0.52
−0.39 Þ × 10−4

ϕρ-ω ð−48þ160
−67 Þ°

ΔBðB → ½πþπ−�Slν̄lÞ ð0.25� 0.16Þ × 10−4

BðB → ωð→ 2πÞlν̄lÞ ð0.017� 0.002Þ × 10−4

Mρ ð0.7603þ0.0017
−0.0015 Þ GeV

Γρ ð0.1472þ0.0020
−0.0022 Þ GeV

Mω ð0.7827� 0001Þ GeV
Γω ð0.0087� 0.0001Þ GeV
R 5.33þ0.89

−0.71 GeV−1

jδj 0.0021þ0.0003
−0.0003 GeV

arg δ 0.22� 0.06

Parameter Value

BðB → ρ0lν̄lÞ ð1.45þ0.61
−0.41 Þ × 10−4

ϕρ-ω ð−45þ162
−69 Þ°

ΔBðB → ½πþπ−�Slν̄lÞ ð0.20þ0.17
−0.23 Þ × 10−4

BðB → ωð→ 2πÞlν̄lÞ ð0.017� 0.002Þ × 10−4

Mρ ð0.7603þ0.0017
−0.0015 Þ GeV

Γρ ð0.1472þ0.0020
−0.0022 Þ GeV

Mω ð0.7827� 0001Þ GeV
Γω ð0.0087� 0.0001Þ GeV
R 5.33þ0.89

−0.71 GeV−1

jδj 0.0021þ0.0003
−0.0003 GeV

arg δ 0.22� 0.06

TABLE VI. The determined B → ρ0lν̄l branching fractions and ϕρ-ω phases using different parametrizations for
the ρ line shape are listed for phase space (top) or Refs. [52,53] (bottom) to describe the S-wave.

Line shape Equations BðB → ρ0lν̄lÞ½10−4� ϕρ-ω½°� χ2

Relativistic Breit-Wigner (7) 1.41þ0.52
−0.39 −48þ159

−67 2.86

Dynamic Breit-Wigner (10) 1.41þ0.52
−0.39 −48þ159

−67 2.86

Gounaris-Sakurai (13) 1.42þ0.51
−0.40 −45þ153

−67 2.92

Alternative Dynamic Breit-Wigner (15) 1.41þ0.52
−0.39 −48þ159

−67 2.87

Alternative Gounaris-Sakurai (16) 1.41þ0.40
−0.40 −45þ153

−67 2.93

Line shape Equations BðB → ρ0lν̄lÞ½10−4� ϕρ-ω½°� χ2

Relativistic Breit-Wigner (7) 1.45þ0.62
−0.41 −45þ162

−69 2.86

Dynamic Breit-Wigner (10) 1.44þ0.61
−0.41 −45þ163

−69 2.86

Gounaris-Sakurai (13) 1.46þ0.61
−0.42 −42þ157

−69 2.92

Alternative Dynamic Breit-Wigner (15) 1.44þ0.61
−0.41 −45þ163

−69 2.87

Alternative Gounaris-Sakurai (16) 1.46þ0.61
−0.42 −42þ157

−69 2.93
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APPENDIX B: R-DEPENDENCE ON THE LINE SHAPE

Figure 12 (left) depicts the impact of different choices of R on the ρ line shape for R∈ ½0; 5� GeV−1, when multiplying the
amplitude squared of a relativistic Breit-Wigner with the barrier factor and phase space. Figure 12 (right) depicts the line
shapes for R ¼ 0 and R ¼ 5 GeV−1 for alternative parametrizations for the ρ. All line shapes useM0 and Γ0 that reproduce
a pole of

ffiffiffiffiffi
s0

p ¼ ð0.764 − 0.146i=2Þ GeV.

APPENDIX C: M0 AND Γ0 VALUES FOR STUDIED ρ PARAMETRIZATIONS

Table VII lists the values and uncertainties of M0 and Γ0 values if the pole of
ffiffiffiffiffi
s0

p ¼ ð763.7þ1.7
−1.5 − 73.2þ1.0

−1.2 iÞ MeV is
enforced for R ¼ 5 GeV−1 (top) and R ¼ 3 GeV−1 (bottom). We also list the relativistic Breit-Wigner for comparison,
whose parametrization does not depend on R. The recovered values of M0 and Γ0 are very weakly correlated with
correlation coefficients of ρ ≃ 0.01%. The EvtGen event generator [62] implements the dynamic Breit-Wigner equation (10)
with a fixed value of R ¼ 3 GeV−1, but has default values of M0 ¼ 0.77526 GeV and Γ0 ¼ 0.1474 GeV which do not
reproduce the pole of

ffiffiffiffiffi
s0

p ¼ ð763.7þ1.7
−1.5 − 73.2þ1.0

−1.2 iÞ MeV.

FIG. 12. Left: the influence of changing the scale factor R on the relativistic Breit-Wigner shape is seen, whose size is related to the
strong potential.

TABLE VII. The recoveredM0 and Γ0 values for a fit to the pole of
ffiffiffiffiffi
s0

p ¼ ð763.7þ1.7
−1.5 − 73.2þ1.0

−1.2 iÞ MeV [40] with
R ¼ 5 GeV−1 (top) and R ¼ 3 GeV−1 (bottom).

Line shapes with R ¼ 5 GeV−1 Equations M0 ½GeV� Γ0 ½GeV�
Relativistic Breit-Wigner (7) 0.7602� 0.0017 0.1471� 0.0022
Dynamic Breit-Wigner (10) 0.7651� 0.0017 0.1452� 0.0020
Gounaris-Sakurai (13) 0.7657� 0.0017 0.1453� 0.0020
Alternative Dynamic Breit-Wigner (15) 0.7721� 0.0015 0.1479� 0.0022
Alternative Gounaris-Sakurai (16) 0.7728� 0.0015 0.1482� 0.0021

Line shapes with R ¼ 3 GeV−1 Equations M0 ½GeV� Γ0 ½GeV�
Relativistic Breit-Wigner (7) 0.7602� 0.0017 0.1471� 0.0022
Dynamic Breit-Wigner (10) 0.7688� 0.0017 0.1455� 0.0022
Gounaris-Sakurai (13) 0.7694� 0.0017 0.1457� 0.0020
Alternative Dynamic Breit-Wigner (15) 0.7759� 0.0015 0.1496� 0.0023
Alternative Gounaris-Sakurai (16) 0.7765� 0.0016 0.1502� 0.0021
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APPENDIX D: CALCULATION OF BRANCHING FRACTIONS

We choose Bρ and jBj such that the interference amplitude Eq. (23) reproduces

BðB → ωð→ ππÞlν̄lÞ ¼ Bρ

Z∞

2mπ

dmππ

����Aρðm2
ππÞAωðm2

ππÞΔjBjeiϕρ−ω

1 − Δ2Aρðm2
ππÞAωðm2

ππÞ
����
2

·Φðm2
ππÞ · BFðm2

ππÞ; ðD1Þ

BðB → ρ0lν̄lÞ ¼ Bρ

Z∞

2mπ

dmππ

���� Aρðm2
ππÞ

1 − Δ2Aρðm2
ππÞAωðm2

ππÞ
����
2

·Φðm2
ππÞ · BFðm2

ππÞ: ðD2Þ

We choose for the S-wave Bs such that

ΔBðB → ½ππ�Slν̄lÞ ¼ BS

Z1.02 GeV

2mπ

dmππjAS−waveðm2
ππÞj2 ·Φðm2

ππÞ: ðD3Þ
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