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Until recently the spin-flip processes in the deep inelastic scatterings are thought to be suppressed in the
high energy. We found a positive intercept for the spin-flip generalized transverse momentum-dependent
parton distribution (GTMDs) ReðF1;2Þ as ReðF1;2Þ ∼ ð1xÞᾱsð4 ln 2−8=3Þðcos 3ϕkΔ þ cosϕkΔÞ: This is done by
analytically solving the integro-differential evolution equation for ReðF1;2Þ, recently proposed by Hatta and
Zhou, in the dilute regime. Interestingly, the surviving solution corresponds to conformal spin n ¼ 2 and
carries an explicit cos 3ϕkΔ þ cosϕkΔ azimuthal dependence. As the imaginary part of F1;2, is related to the
spin-dependent odderon or gluon Siver function and scales as ImðF1;2Þ ∼ x0, the positive intercept for
ReðF1;2Þ implies that it is expected to dominate over the gluon Siver function in the small-x limit and may
directly impact the modeling of unpolarized GTMDs and associated spin-flip processes.
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I. INTRODUCTION

Two key physics goals of the upcoming Electron-Ion
Collider are to profile the inner structure of the proton and
to probe the yet unexplored saturation regime at small-x [1].
A significant part of these contemporary efforts, to under-
stand the multidimensional structure of proton, revolves
around the study of nonperturbative gluon-gluon correla-
tors, especially at small-x. Technically, the correlator is the
bilocal off-forward hadronic matrix element of color field
strength tensors at two different space points at some light-
cone time. Parametrization of the correlator would give rise
to the generalized transverse-momentum-dependent distri-
butions (GTMDs). The GTMDs are functions of x, gluon
transverse momentum k⊥, transverse momentum transfer
Δ⊥, and longitudinal momentum transfer also known as
skewness parameter ξ. Different projections, through the
various independent combinations of k⊥, Δ⊥, and spin
vector, if there, S, project out different GTMDs from the
gluon-gluon correlator. All the GTMDs as well as their
descendants, e.g., transverse-momentum-dependent distri-
butions (TMDs), generalized parton distributions (GPDs),
and parton distribution functions (PDFs) are themselves
nonperturbative objects and can be extracted only from
the experiments. However, their evolutions, both across the
high scale Q2 or small Bjorken-x, can be studied using
the first principle perturbative quantum chromodynamics
(QCD) setup.

While all the GTMDs can be thought of as the different
scalar pieces of the nonperturbative color field strength
correlator, they, however, evolve quite differently both along
high scale Q2 or small Bjorken variable x. Nucleon helicity
nonflip distributions, e.g.,H-type GPDs, follow the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) equation that stems from the
single αs ln 1=x resummations [2,3]. Considerable theoreti-
cal work has been done around this distribution that does not
flip the helicity. However, the helicity-flip or spin-flip gluon
Eg GPDs or associatedGTMDs are among the least explored,
yet phenomenologically important, distributions. As GPDEg

are associated with the nucleon helicity flip processes, it is a
general belief that they are suppressed in the high energy.
However, recentlyHatta andZhouhave shown thatGPDEg at
vanishing skewness exhibits Regge behavior similar to the
BFKLpomeronwith an identical intercept [4]. This is doneby
deriving the small-x evolution equations for the two F-type
spin-flip gluon GTMDs, the f1;2 and f1;3. In this article, we
have analytically solved the equations and find small-x
asymptotics of the GTMDs f1;2 (and f1;3) that are related
to the novel helicity flip processes.

II. F-TYPE SPIN-FLIP GTMDs

The gluon GTMDs can be defined through the para-
metrization of the off-forward bilocal correlator of the two
gluon field strength tensors,
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Z
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where average proton momentum P ¼ ðpþ p0Þ=2 and
momentum transfer Δ ¼ p0 − p. While the transverse
momentum transfer Δ⊥ is explicit in the expression, the
longitudinal momentum transfer to the nucleon is presented
through the skewness parameter ξ as ξ ¼ −Δþ=Pþ. The
two gauge links ensure the gauge invariance of the color
correlator. The prescription, however, is not unique and
depends on the actual process under consideration. The two
most used staple gauge links are the past pointing and
future pointing gauge links [5]. The dipole distribution,
which we are considering here, contains both.

(i) F-type gluon GTMDs: Contraction of W½i;j� by
symmetric δij will project the four complex (or
equivalently eight real) F-type unpolarized gluon
GTMDs. The unpolarized gluon TMD fg1 and gluon
Siver’s function f⊥g

1T are the forward limit (Δ⊥ ¼ 0)
of two of these GTMDs. While fg1 is the distribution
of unpolarized gluons in an unpolarized proton, the
Siver function gives distributions of unpolarized
gluons in a transversely polarized proton.

(ii) G-type gluon GTMDs: The antisymmetric iϵij will
project the G-type gluon GTMDs, which are related
to the distribution of circularly polarized gluons. The
gluon helicity TMD gg1L for longitudinally polarized
proton and worm-gear gluon TMD gg1T for trans-
versely polarized proton are both the descendants of
G-type gluon GTMDs.

(iii) H-type gluon GTMDs: Projection by transverse spin
S⊥ will single out the H-type gluon GTMDs. In the
Δ⊥ ¼ 0 limit, one recovers Boer-Mulder function
hg1L (distribution of linearly polarized gluon in an
unpolarized proton) and other TMDs, e.g., h⊥g

1L , h
g
1T ,

h⊥g
1T , for linearly polarized gluons.

In this article, we consider the F-type gluon GTMDs. In the
off-forward limit, at the leading twist, δijW½i;j� are para-
metrized through the F-type GTMDs as below [6–12],

δijW½i;j�
λ;λ0 ¼

1

2M
ūðp0; λ0Þ

�
F1;1 þ i

σjþkj⊥
Pþ F1;2 þ i

σjþΔj
⊥

Pþ F1;3

þ i
σijki⊥Δ

j
⊥

M2
F1;4

�
uðp;λÞ: ð2Þ

All GTMDs, in the above expression, are functions of
ðx; k2⊥;Δ2⊥; k⊥ · Δ⊥; ξÞ and are in general complex func-
tions. In the eikonal limit, ξ ≪ 1, one may write [11], for
n ¼ 1, 3, 4,

F1;n ¼ f1;n þ i
k⊥ · Δ⊥
M2

f̃1;n; ð3Þ

whereas, for n ¼ 2,

F1;2 ¼
k⊥:Δ⊥
M2

f1;2 þ if̃1;2: ð4Þ

Clearly, in the off-forward limit (Δ⊥ ≠ 0), there are four
complex F-type gluon GTMDs (F1;n) or equivalently eight

real GTMDs (f1;n and f̃1;n). Integration over k⊥ in Eq. (2)
would show the two GPDs, spin nonflip Hg and spin-flip
Eg, as follows:Z

d2k⊥W
½i;i�
λ;λ0 ¼

1

2Pþ ūðp0;λ0Þ
�
Hgγ

þ þ iEg
σþνΔν

2M

�
uðp;λÞ:

ð5Þ
Both GPDs are functions of x;Δ2⊥ and ξ. The first term is
proportional to δλ;λ0 , while the second term is proportional
to δλ;−λ0 making the Hg being the spin nonflip and Eg being
spin-flip distributions. The real GTMDs, f1;1, f1;2, and f1;3
are related to the two GPDs by the following two integrals:

xHg ¼
Z

d2k⊥f1;1ðk⊥Þ; ð6Þ

xEg ¼
Z

d2k⊥
�
−f1;1ðk⊥Þ þ

k2⊥
M2

f1;2ðk⊥Þ þ 2f1;3ðk⊥Þ
�
:

ð7Þ
It’s well known that in the dilute regime, where the
saturation phenomena did not yet kick in, the unpolarized
spin independent f1;1 follows BFKL evolution, leading to

f1;1 ∼ xGðxÞ ∼
�
1

x

�
ᾱs4 ln 2

: ð8Þ

Deep inside the saturation region, the distribution is naturally
expected to follow the Balitsky-Kovchegov (BK) equation
[13,14]. The dipole gluon TMD, so as the function f1;1, at
small-k⊥ and at asymptotically small-x is found to be
proportional to lnðk2⊥=Q2

sðxÞÞ, where QsðxÞ is the saturation
scale [15,16]. Other than f1;1, only f̃1;2 ¼ ImðFg

1;2Þ survives
in the forward limitΔ⊥ ¼ 0. While the f distributions follow
pomeron evolution, the f̃ distributions are connected with
odderons; e.g., f̃1;2 is known as a spin-dependent odderon.
Its k⊥ moments are related to the three gluon correlators
relevant for transverse single spin asymmetry [17]. In fact,
for the transversely polarized proton, f̃1;2 can be identified
as gluon Sivers’ function as xf⊥;g

1T ðx; k2⊥Þ ∼ −2ImðFg
1;2Þ.

Odderons too satisfy the BFKL-like equation in the dilute
regime with identical eigenfunctions and eigenvalues.
However, as the C-odd initial conditions allow only the
odd harmonics, the odderon intercept is found to be at
zero [18,19]. One may then expect that

f̃1;2 ∼
�
1

x

�
0

: ð9Þ

Access prospects of the gluon Sivers’ function in the
upcoming Electron-Ion Collider and its small-x evolution
have been studied recently [20,21]. The function F1;4 is
associated with gluon orbital angular momentum and
vanishes in the eikonal limit due to PT symmetry [22,23].
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III. EVOLUTION OF f 1;2

The small-x evolution equation for f1;2 as derived by Hatta and Zhou in [4], is a nonlinear integro-differential equation.
In the dilute regime, where the nonlinear term can be dropped, after some rearrangement of terms, the equation can be
written as

∂

∂ lnð1=xÞF 1;2ðx; k⊥Þ ¼
ᾱs
π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
F 1;2ðx; k0⊥Þ−

k2⊥
2k02⊥

F 1;2ðx; k⊥Þ þ
2ðk⊥:k0⊥Þ2 − k2⊥k02⊥ − k4⊥

k4⊥
F 1;2ðx; k0⊥Þ

�
: ð10Þ

The function F 1;2 is defined for convenience and is related
to f1;2 as

f1;2 ¼ k2⊥
∂
2

∂ki⊥∂ki⊥
F 1;2: ð11Þ

We note that Eq. (10) has IR poles at k⊥ ¼ 0, k0⊥ ¼ 0, and
k0⊥ ¼ k⊥. The first two terms, on the right-hand side of
Eq. (10), essentially constitute the BFKL kernel. As k⊥ is a
vector in the transverse plane, therefore, F 1;2ðx; k⊥Þ in
principle should be a function of the azimuthal angle ϕkΔ
between k⊥ andΔ⊥. Now one may study the eigenvalues of
the integral operator as in Eq. (10), following the procedure
outlined by Del Duca [24]. To begin with, we assume that
the solution of the Eq. (10) admits a Fourier series in the
azimuthal angle:

F 1;2ðx; jk⊥j;ϕkÞ ¼
X∞
n¼−∞

F ðnÞ
1;2ðx; k2⊥Þ einϕkΔ ; ð12Þ

where F ðnÞ
1;2 ’s are the Fourier coefficients that depend on x

and jk⊥j (or on k2⊥) but not on ϕkΔ. The inverse Mellin
transformation for the variable x gives the series solution as
the integral over the complex variable γ along a contour that
is a straight vertical line in the complex plane,

F ðnÞ
1;2ðx; k2⊥Þ ¼

Z
dγ
2πi

�
1

x

�
ᾱsχ1;2ðn;γÞ k2γ⊥

k2⊥
; ð13Þ

where one assumes that the Mellin transform function of

F ðnÞ
1;2 consists of powers of transverse momentum, k⊥; i.e.,

it’s a power law function of k2⊥. This essentially stems from
the conformal structure of the kernel of evolution equation
in Eq. (10). The power law structure makes the eigenfunc-
tion scale invariant.
One may now move on to evaluate the eigenvalue

χ1;2ðn; γÞ, corresponding to the above eigenfunction,

χ1;2ðn; γÞ ¼
1

π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
��

k02⊥
k2⊥

�ðγ−1Þ
einðϕk0Δ−ϕkΔÞ −

k2⊥
2k02⊥

�

þ 1

π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
2ðk⊥:k0⊥Þ2 − k2⊥k02⊥ − k4⊥

k4⊥

��
k02⊥
k2⊥

�ðγ−1Þ
einðϕk0Δ−ϕkΔÞ: ð14Þ

The first term in the above equation is the eigenvalue for the BFKL kernel χBFKLðn; γÞ. After solving Eq. (14), the full
eigenvalue χ1;2ðn; γÞ is found to be

χ1;2ðn; γÞ ¼ 2ψð1Þ − 1

2
ψ

�
γ þ jnj

2

�
−
1

2
ψ

�
γ þ jnj

2
þ 2

�
−
1

2
ψ

�
−γ þ jnj

2
− 1

�
−
1

2
ψ

�
−γ þ jnj

2
þ 1

�
: ð15Þ

While evaluating χ1;2ðn; γÞ, all IR divergences are mutually canceled leading to IR finite, divergence-free χ1;2ðn; γÞ as
presented in Eq. (A9). This also shows that the evolution equation as given in Eq. (10) is IR finite. It is interesting to note
that, unlike the BFKL eigenvalue, for which the saddle point is located at ReðγÞ ¼ 1=2, the saddle point of χ1;2ðn; γÞ is at
ReðγÞ ¼ −1=2 for all n. Taking γ ¼ −1=2þ iν,

χ1;2

�
n;−

1

2
þ iν

�
¼ 2ψð1Þ − Re

�
ψ

�
−
1

2
þ jnj

2
þ iν

�
þ ψ

�
3

2
þ jnj

2
− iν

��
; ð16Þ

we may now expand χ1;2ðn; νÞ around ν ¼ 0 and evaluate the integral in Eq. (A12) for different values of n.
(i) Special case jnj ¼ 0: If the transverse momentum of gluons is not too large, i.e., k⊥ ∼ Λ, which still is larger than

ΛQCD, one may evaluate the ν integral in Eq. (A12) in the diffusion approximation and get the amplitude for first or

radial harmonic (corresponds to n ¼ 0). However, the leading behavior of F ð0Þ
1;2 is found to be ∼x4ð1−ln 2Þᾱs , and this

term will not survive in the high energy.
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(ii) Special case jnj ¼ 1 and all other odd harmonics: As the function f1;2 is even under the transformation Δ⊥ → −Δ⊥
or equivalently it depends on the azimuthal angle θkΔ only through jk⊥:Δ⊥j, all the odd harmonics, jnj ¼ 1, 3, will
vanish identically from the very beginning.

(iii) Special case jnj ¼ 2: This is the first and only mode that survives in the high energy. After ν integration in the saddle
point approximation, one gets

F ð2Þ
1;2ðx; k2Þ ¼

1

π

Λ
jk⊥j3

�
π

14ðζð3Þ − 16
27
Þᾱs ln ð1=xÞ

�
1=2

�
1

x

�
ᾱsð4 ln 2−8=3Þ

exp

�
−

ln2ðk⊥=ΛÞ
14ðζð3Þ − 16

27
Þᾱs lnð1=xÞ

�
: ð17Þ

Unlike jnj ¼ 0 and jnj ¼ 1, one may now observe that

F ð2Þ
1;2ðx; k2Þ ∼

�
1

x

�ð4 ln 2−8=3Þᾱs
: ð18Þ

As 4 ln 2 − 8=3 ¼ 0.106 is positive, the term will survive
in the small-x and govern the leading small-x behavior of
F 1;2ðx; k⊥Þ. For all other values of n, other than n ¼ 2, the
χ1;2 ’s are finite and negative at ν ¼ 0 [see Fig. 1(b)]. In the
small-x limit, only the term corresponding to n ¼ 2 will
survive, leading to

F 1;2ðx; jk⊥j;ϕkΔÞ ∼
Λ

jk⊥j3
�
1

x

�ð4 ln 2−8=3Þᾱs

× S2ðx; k2⊥Þ 2 cosð2ϕkΔÞ; ð19Þ
where

S2ðx; k2⊥Þ ¼
�

π

τ2ᾱs lnð1=xÞ
�

1=2
exp

�
−

ln2ðk2⊥=Λ2Þ
4τ2ᾱs lnð1=xÞ

�
;

ð20Þ
with 4 ln 2 − 8=3 ¼ 0.106 and τ2 being 14ðζð3Þ − 16=27Þ.
Interestingly in the leading order, we see that the evolution of
F 1;2 has an azimuthal ϕkΔ dependence. Unlike BFKL, the
surviving solution corresponds to conformal spin n ¼ 2. This
leads to an explicit 2 cos 2ϕkΔ dependence in theGTMDs.As
the function f1;2 comes with an additional cosϕkΔ from the
prefactor k⊥:Δ⊥ as shown in Eq. (4)—this will lead to

ReðF1;2Þ ∼
�
1

x

�
αsð4 ln 2−8=3Þ

ðcos 3ϕkΔ þ cosϕkΔÞ:

We note here that, the cos 2ϕkΔ correlation between k⊥ and
Δ⊥ contained inf1;1—leading to“ellipticGTMDs”havebeen
studied earlier [25].

IV. EVOLUTION OF f 1;3

While the evolution equation for F 1;2 as presented in
Eq. (10) is a closed equation, the evolution equation for
F 1;3 is not a closed one. The evolution of F 1;3 not just
depends on itself but depends on F 1;2 as well,

∂

∂Y
F 1;3ðk⊥Þ ¼

ᾱs
π

Z
d2k0⊥

ðk⊥−k0⊥Þ2
�
F 1;3ðk0⊥Þ−

k2⊥
2k02⊥

F 1;3ðk⊥Þ

−
ðk⊥:k0⊥Þ2−k2⊥k02⊥

k2⊥M2
F 1;2ðk0⊥Þ

�
: ð21Þ

We assume that F 1;3 has the following form:

F 1;3ðx; k⊥Þ ¼ C1ϕ1ðx; k⊥Þ þ C2
k2⊥
M2

ϕ2ðx; k⊥Þ; ð22Þ

where both ϕ1 and ϕ2 are some regular functions of x and
k⊥. The coefficients C1;2 are dimensionless constants.
Substituting Eq. (A21) in Eq. (A20), rearranging, and then
equating the mass-independent and mass-dependent parts
to be zero would make ϕ1 and ϕ2 to be identified with F 1;1

FIG. 1. Eigen values of the two kernels, at their respective saddle points, as a function of ν.
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and F 1;2 with C ¼ 1 and C2 ¼ −1=2 (details are in the
Appendix). Therefore,

F 1;3ðx; k⊥Þ ¼ F 1;1ðx; k⊥Þ −
k2⊥
2M2

F 1;2ðx; k⊥Þ: ð23Þ

The small-x asymptotics of the two functions on the right
side of the above equation are now known,

F 1;1ðx; k⊥Þ ∼
�
1

x

�
4 ln 2ᾱs

;F 1;2ðx; k⊥Þ ∼
�
1

x

�ð4 ln 2−8=3Þᾱs
:

ð24Þ

V. SUMMARY AND OUTLOOK

Until a few years ago, it was virtually unknown how to
measure gluon GTMDs. Only recently, it was shown that
gluon GTMDs can in principle be accessed via diffractive
di-jet production in the deep-inelastic electron-proton and
electron-ion collisions [25–27]. At about the same time, it
was proposed that the GTMDs, especially the “elliptic”
GTMD can be accessed via virtual photon-nucleus qua-
sielastic scattering [28] and also in proton-nucleus colli-
sions [29]. The three GTMDs f̃1;1, f̃1;2, and f̃1;3, which
describe how odderons couple to generic spin-1=2 hadrons,
have been studied in the off-forward kinematics and are
found to be accessible via exclusive pion production in the
deep-inelastic scatterings [11]. These studies on accessing
GTMDs, so far, cover either the unpolarized f1;1, odderon
inspired f̃1;i (for their connection to gluon Siver function
[11]) or F1;4 due to its close connection to gluon orbital
angular momentum [22]. The two GTMDs, f1;2 and f1;3,
which we studied here, have been relatively less explored in
the phenomenological context.
Both the positive intercept and the nontrivial angular

correlation between k⊥ and Δ⊥, the one we found in this
study, are likely to have phenomenological consequences
and relevant observables within the kinematic and detector
reach of the upcoming Electron-Ion Collider. The proton
recoil momentum Δ⊥ can be directly measured at the EIC,
thanks to the planned installation of Roman pots and the
off-momentum detector to be placed very close to the
beamline to track the recoil proton.
GTMD f12 appears in some results in the literature

(e.g., [30]); however, finding a process in which f12 plays
the dominant role is a challenge and is open to the
community to explore as of now.
Many efforts, especially in the theory front, have been

made in the last few years to explore phenomenology
aimed at nucleon tomography in terms of GTMDs for
current and future experiments. While the TMDs and
GTMDs studies, especially their small-x evolutions in
the quarks sector, have been studied a lot in recent times
[31,32], the gluon PDFs, especially the helicity PDFs
(hPDFs) [33], gluon TMDs [34,35], related nonperturbative
parameters e.g., jet quenching parameter [36] or gluon

GTMDs [23], are relatively less explored objects. A fresh
new approach to the nucleon tomography, e.g., based on
nucleon energy correlators [37,38] or correlations of di-
hadron productions between the current fragmentation
region (CFR) and target fragmentation region (TFR) in
DIS [39], harmonics of parton saturation in lepton-jet
correlations [40], now start appearing.
In this work, we have analytically solved the small-x

evolution equation for spin-flip gluon GTMD f1;2 and f1;3.
Key results are as follows:
(a) The evolution equation for ReðF1;2Þ carries IR sin-

gular terms. We have shown that all IR divergences,
from different terms, mutually cancel making the
equation a self-consistent and closed equation. The
only known examples of such IR-safe equations,
within small-x physics, are the celebrated BFKL
equation (or BK equation) and the Odderon equation.

(b) The intercept for ReðF1;2Þ is found to be positive,

ReðF1;2Þ ∼
�
1

x

�ð4 ln 2−8=3Þᾱs
;

which implies that it is expected to dominate over the
gluon Siver function in the small-x limit. This may
directly impact the modeling of unpolarized GTMDs
and associated spin-flip processes.

(c) Unlike BFKL or Odderon evolution equations, the
surviving solution corresponds to conformal spin
n ¼ 2. This leads to an explicit cos 3ϕkΔ þ cosϕkΔ
azimuthal dependence in the GTMDs and may translate
to angular correlation observable for slip-flip processes.

(d) There are two broad classes of GTMDs, the first set
that survives in the forward limit and the second set
that does not survive in the forward limit. The second
class of GTMDs is realized only in the off-forward
limit Δ⊥ ≠ 0. The present paper is the first result on
the small-x asymptotics of any gluon GTMDs that
belong to the second class.
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APPENDIX

1. Derivation of eigenvalue χ 1;2
The eigenvalue χ1;2 defined as

1

π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
��

2ðk⊥:k0⊥Þ2 − k2⊥k02⊥
k4⊥

�
k02ðγ−1Þ⊥ einϕk0Δ

−
k2⊥
2k02⊥

k2ðγ−1Þ⊥ einϕkΔ

�
¼ χ1;2ðn; γÞk2ðγ−1Þ⊥ einϕkΔ : ðA1Þ

Below we present an outline to evaluate the eigenvalue
χ1;2ðn; γÞ,
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χ1;2ðn; γÞ ¼
1

π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
��

k02⊥
k2⊥

�ðγ−1Þ
einðϕk0Δ−ϕkΔÞ −

k2⊥
2k02⊥

�

þ 1

π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
2ðk⊥:k0⊥Þ2 − k2⊥k02⊥ − k4⊥

k4⊥

��
k02⊥
k2⊥

�ðγ−1Þ
einðϕk0Δ−ϕkΔÞ; ðA2Þ

≡χBFKLðn; γÞ þ χ�1;2ðn; γÞ: ðA3Þ

The first term in the above equation is the eigenvalue for the BFKL kernel,

χBFKLðn; γÞ ¼ 2ψð1Þ − ψ

�
γ þ jnj

2

�
− ψ

�
1 − γ þ jnj

2

�
: ðA4Þ

We now solve the second term of the above equation as

χ�12ðn; γÞ ¼
1

π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
2ðk⊥:k0⊥Þ2 − k2⊥k02⊥ − k4⊥

k4⊥

��
k02⊥
k2⊥

�ðγ−1Þ
einðϕk0Δ−ϕkΔÞ: ðA5Þ

We now define t ¼ k02⊥=k2⊥ for convenience and rewrite the first term of Eq. (A2) as

χ�1;2ðn; γÞ ¼
1

2π

Z
dt

Z
dϕk0

2t cos2ðϕk0Δ − ϕkΔÞ − t − 1

1þ t − 2
ffiffi
t

p
cosðϕk0 − ϕkΔÞ

einðϕk0Δ−ϕkΔÞtγ−1; ðA6Þ

which can be further written, taking z ¼ expðiðϕk0 − ϕkÞÞ, as

χ�1;2ðn; γÞ ¼
i
2π

Z
dtffiffi
t

p
Z

dz
tðz2 þ 1Þ2=2 − tz2 − z2

z2ðz − ffiffi
t

p Þðz − 1ffiffi
t

p Þ zjnjtγ−1: ðA7Þ

The first term of Eq. (A2) has IR singularity at k0⊥ ¼ k⊥ and also at k⊥ ¼ 0. Both will be mapped in Eq. (A7) as singularities
at t ¼ 1 and at t ¼ ∞, respectively. The z integral runs clockwise along a unit circle around the origin in the complex z
plane. Also, as the angular integration is an even function of n, therefore, it can be written only as a function of jnj. We now
perform the z integral by methods of residue for poles at z ¼ ffiffi

t
p

and also at z ¼ 1=
ffiffi
t

p
. We note here that, for n ¼ 0 and

n ¼ 1, there is one more pole at z ¼ 0. Contributions from the z ¼ 0 pole are, however, found to be zero for all values of γ.
After performing z integration and t integration, one finally arrives at

χ�12ðn; γÞ ¼
�

γ

ðn=2Þ2 − γ2
þ γ þ 1

ðn=2Þ2 − ðγ þ 1Þ2
�
: ðA8Þ

The complete eigenvalue can now be written by adding χBFKLðn; γÞ and χ�12ðn; γÞ together as

χ1;2ðn; γÞ ¼ 2ψð1Þ − 1

2
ψ

�
γ þ jnj

2

�
−
1

2
ψ

�
γ þ jnj

2
þ 2

�
−
1

2
ψ

�
−γ þ jnj

2
− 1

�
−
1

2
ψ

�
−γ þ jnj

2
þ 1

�
: ðA9Þ

While calculating χ1;2ðn; γÞ, all IR divergences are mutually canceled leading to IR finite, divergence-free χ1;2ðn; γÞ. This
also shows that the equation under consideration is IR finite.

2. Saddle point at γ = − 1=2
To identify the saddle point, one needs to find the maxima of χ1;2,

d
dγ

χ1;2ðn; γÞ ¼ −
1

2
ψ ð1Þ

�
γ þ jnj

2

�
−
1

2
ψ ð1Þ

�
γ þ jnj

2
þ 2

�
þ 1

2
ψ ð1Þ

�
−γ þ jnj

2
− 1

�
þ 1

2
ψ ð1Þ

�
−γ þ jnj

2
þ 1

�
¼ 0: ðA10Þ

From Eq. (A10), one may observe that the saddle point of χ1;2ðn; γÞ is at ReðγÞ ¼ −1=2 for all n. Taking γ ¼ −1=2þ iν,
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χ1;2

�
n;−

1

2
þ iν

�
¼ 2ψð1Þ − Re

�
ψ

�
−
1

2
þ jnj

2
þ iν

�

þ ψ

�
3

2
þ jnj

2
− iν

��
; ðA11Þ

we may now expand χ1;2ðn; γÞ around ν ¼ 0. Below, we
have jotted down expansion of χ1;2ðn;− 1

2
þ iνÞ for some

initial values of n:

jnj χ1;2ðn;− 1
2
þ iνÞ

0 −4ð1 − ln 2Þ − ½14ζð3Þ − 16�ν2
1 −1 − ½2ζð3Þ − 1�ν2
2 ð4 ln 2 − 8=3Þ − 14½ζð3Þ − 16=27�ν2
3 −3=2 − ½2ζð3Þ − 9=8�ν2

3. Saddle point integration over ν for n= 0, 1, 2

If the transverse momentum of gluons is not too large,
i.e., k⊥ ∼ Λ, which still is larger than ΛQCD, one may
evaluate the ν integral, in the diffusion approximation, and
get the amplitude,

F ðnÞ
1;2ðx; k2⊥Þ ¼

Z
dγ
2πi

�
1

x

�
ᾱsχ12ðn;γÞ k2γ⊥

k2⊥
: ðA12Þ

(i) Special case jnj ¼ 0:

χ1;2

�
0;−

1

2
þ iν

�
¼−4ð1− ln2Þ− ½14ζð3Þ− 16�ν2:

ðA13Þ

The first or “radial” harmonic (corresponds to n ¼ 0) amplitude is found to be

F ð0Þ
1;2ðx; k2Þ ¼

Λ
jk⊥j3

�
π

ð14ζð3Þ − 16Þᾱs ln ð1=xÞ
�

1=2
�
1

x

�
−4ð1−ln 2Þᾱs

exp

�
−

ln2ðk⊥=ΛÞ
ð14ζð3Þ − 16Þᾱs lnð1=xÞ

�
: ðA14Þ

As the leading behavior of F ð0Þ
1;2 is ∼x4ð1−ln 2Þᾱs , this term will also not survive in the high energy.

(ii) Special case jnj ¼ 1 and all other odd harmonics: For jnj ¼ 1, the expansion of χ1;2 is

χ1;2

�
1;−

1

2
þ iν

�
¼ −1 − ½2ζð3Þ − 1�ν2: ðA15Þ

This will lead to

F ð1Þ
1;2ðx; k2Þ ¼

Λ
jk⊥j3

�
π

ð2ζð3Þ − 1Þᾱs ln ð1=xÞ
�

1=2
�
1

x

�
−ᾱs

exp
�
−

ln2ðk⊥=ΛÞ
ð2ζð3Þ − 1Þᾱs lnð1=xÞ

�
: ðA16Þ

Again, the leading small-x behavior of F ð1Þ
1;2 is ∼xᾱs , so therefore this term will not survive in the high energy. In fact,

as the function f1;2 is even under the transformation Δ⊥ → −Δ⊥ or equivalently it depends on the azimuthal angle
θkΔ only through jk⊥:Δ⊥j, all the odd harmonics, jnj ¼ 1, 3, will vanish identically from the very beginning.

(iii) Special case jnj ¼ 2: For n ¼ 2 the expansion around ν ¼ 0 is

χ1;2

�
2;−

1

2
þ iν

�
¼

�
4 ln 2 −

8

3

�
− 14

�
ζð3Þ − 16

27

�
ν2: ðA17Þ

This will lead to the following amplitude for F ð2Þ
1;2ðx; k2Þ,

F ð2Þ
1;2ðx; k2Þ ¼

1

π

Λ
jk⊥j3

�
π

14ðζð3Þ − 16
27
Þᾱs ln ð1=xÞ

�
1=2

�
1

x

�
ᾱsð4 ln 2−8=3Þ

exp

�
−

ln2ðk⊥=ΛÞ
14ðζð3Þ − 16

27
Þᾱs lnð1=xÞ

�
: ðA18Þ

Unlike jnj ¼ 0 and jnj ¼ 1, one may observe that

F ð2Þ
1;2ðx; k2Þ ∼

�
1

x

�ð4 ln 2−8=3Þᾱs
: ðA19Þ

As 4 ln 2 − 8=3 ¼ 0.106 is positive, the term will survive in the small-x and govern the leading small-x behavior
of F 1;2ðx; k⊥Þ.
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4. Evolution of f 1;3
Unlike F 1;2, the evolution of F 1;3 not just depends on itself but also depends on F 1;2 as well,

∂

∂Y
F 1;3ðk⊥Þ ¼

ᾱs
π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
F 1;3ðk0⊥Þ −

k2⊥
2k02⊥

F 1;3ðk⊥Þ −
ðk⊥:k0⊥Þ2 − k2⊥k02⊥

k2⊥M2
F 1;2ðk0⊥Þ

�
: ðA20Þ

We assume that F 1;3 has the following form:

F 1;3ðx; k⊥Þ ¼ C1ϕ1ðx; k⊥Þ þ C2
k2⊥
M2

ϕ2ðx; k⊥Þ; ðA21Þ

where both ϕ1 and ϕ2 are some regular functions of x and k⊥. The coefficients C1;2 are dimensionless constants. Substituting
Eq. (A21) in Eq. (A20) and rearranging,

C1
∂

∂Y
ϕ1ðx; k⊥Þ − C1

ᾱs
π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
ϕ1ðx; k0⊥Þ −

k2⊥
2k02⊥

ϕ1ðx; k⊥Þ
�

þ k2⊥
M2

�
C2

∂

∂Y
ϕ2ðx; k⊥Þ −

ᾱs
π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
C2

k02⊥
k2⊥

ϕ2ðx; k0⊥Þ −
ðk⊥:k0⊥Þ2 − k2⊥k02⊥

ðk2⊥Þ2
F 1;2ðx; k0⊥Þ

− C2
k2⊥
2k02⊥

ϕ2ðx; k⊥Þ
��

¼ 0: ðA22Þ

In the above equation, equating the coefficients of the mass-independent part to zero, we can write

∂

∂Y
ϕ1ðx; k⊥Þ −

ᾱs
π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
ϕ1ðx; k0⊥Þ −

k2⊥
2k02⊥

ϕ1ðx; k⊥Þ
�
¼ 0: ðA23Þ

Clearly the evolution of ϕ1 is BFKL type, and thus, we identify ϕ1 to be F 1;1 with C1 ¼ 1. Now, equating the coefficient of
the mass-dependent part to zero,

C2
∂

∂Y
ϕ2ðx; k⊥Þ −

ᾱs
π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
C2

k02⊥
k2⊥

ϕ2ðx; k0⊥Þ −
ðk⊥:k0⊥Þ2 − k2⊥k02⊥

ðk2⊥Þ2
F 1;2ðx; k0⊥Þ − C2

k2⊥
2k02⊥

ϕ2ðx; k⊥Þ
�

¼ 0: ðA24Þ

One may observe that ϕ2 ¼ F 1;2 and C2 ¼ −1=2 would satisfy the above equation since

∂

∂Y
F 1;2ðx; k⊥Þ −

ᾱs
π

Z
d2k0⊥

ðk⊥ − k0⊥Þ2
�
2ðk⊥:k0⊥Þ2 − k2⊥k02⊥

ðk2⊥Þ2
F 1;2ðx; k0⊥Þ −

k2⊥
2k02⊥

F 1;2ðx; k⊥Þ
�

¼ 0: ðA25Þ

Therefore,

F 1;3ðx; k⊥Þ ¼ F 1;1ðx; k⊥Þ −
k2⊥
2M2

F 1;2ðx; k⊥Þ: ðA26Þ
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