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We investigate the impact of the magnetic field generated by colliding nuclei on heavy quark-antiquark
interactions and heavy quark dynamics in the quark-gluon plasma (QGP). By means of the hard-thermal-
loop resummation technique combined with dimension-two gluon condensates, the static heavy quark
potential and heavy quark momentum diffusion coefficient, which incorporate both perturbative and
nonperturbative interactions between heavy quarks and the QGP medium, are computed beyond the lowest
Landau level approximation. We find that the imaginary part of the heavy quark potential in the magnetic
field exhibits significant anisotropy. Specifically, the absolute value of the imaginary part is larger when the
quark-antiquark separation is aligned perpendicular to the magnetic field direction, compared to when it is
aligned parallel to the magnetic field direction. The heavy quark momentum diffusion coefficient in the
magnetized QGP medium also becomes anisotropic. As the temperature rises, the influence of higher
Landau levels becomes increasingly significant, resulting in a decrease in the anisotropy ratio of the heavy
quark momentum diffusion coefficient to values even below 1. At sufficiently high temperatures, this ratio
ultimately approaches 1. The nonperturbative interactions are indispensable for understanding heavy quark
dynamics in the low-temperature region. We also study the response of viscous quark matter to the
magnetic field and explore its implications for heavy quark potential, thermal decay widths of quarkonium
states, as well as heavy quark momentum diffusion coefficient.
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I. INTRODUCTION

In the past two decades, heavy-ion collision (HIC)
experiments at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC) have
provided convincing evidence to reveal that a deconfined
state of quarks and gluons—quark-gluon plasma (QGP)
described by quantum chromodynamics (QCD)—can be
generated at high temperatures [1–3]. During these heavy-
ion collisions, the strong transient magnetic field also can
be generated in the direction perpendicular to the reaction
plane due to the relativistic motion of the positively charged
colliding heavy ions. The estimated value of the field
strength in the primary stage (< 0.5 fm) can reach eB ∼m2

π

in Auþ Au collisions at the RHIC energies and eB ∼ 15m2
π

in Pbþ Pb collisions at the LHC energies [4–9], where mπ

is pion mass. The existence of such intense magnetic fields
in HICs opens a new frontier of high-energy physics and
induces novel quantum transport phenomena like the chiral
magnetic effect [9–11].
Heavy quarks, which are produced from the early stage

of HICs via hard scattering processes and are difficult to
thermalize, can offer valuable insights into the properties of
the medium they cross [12,13]. Since the formation times
of heavy quarks are comparable to the timescale of the
maximum magnetic field, heavy quarks propagating
through the QCD medium are profoundly influenced by
the magnetic field, which will be inherited by the final
heavy-flavor hadrons. The difference in the directed flow
v1 between open charm mesons D0 and D̄0, arising from
the competing Faraday and Hall effects caused by the
decreasing magnetic field, can serve as a direct probe of the
initial electromagnetic (EM) field created in HICs.
Theoretical predictions based on the Langevin transport
equation within the relativistic hydrodynamics [14,15] have
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indicated that the v1 of open charm mesons is larger than
that of charged light hadrons, and Δv1 ¼ v1ðD0Þ − v1ðD̄0Þ
is nonzero, which is also confirmed by the STAR exper-
imental results at RHIC [16]. However, at LHC energies,
the Langevin transport model coupled to the hydrodynam-
ics model [14] with a constant electrical conductivity
extracted from lattice QCD calculation [17,18] predicts a
qualitative behavior of Δv1 opposite to the experimental
result [19]. Recently, the authors of Ref. [20] have adopted
the EM field evolution model from Ref. [21] instead of the
direct solution of the Maxwell equation with a constant
electric conductivity to enhance the effect of Lorentz force
relative to Coulomb force, thereby obtaining qualitative
results consistent with the experimental results at LHC.
Even so, there are many aspects to improve the theoretical
calculation. On the one hand, the (viscous) hydrodynamic
model coupled with the dynamical electromagnetic fields,
such as the relativistic magnetohydrodynamics (RMHD)
[22–25], is anticipated to provide a proper description of
the dynamical evolution of the created magnetized QCD
matter. So far, there still remain many challenges to be
addressed within the RMHD approach used in relativistic
heavy-ion collisions (see [26] for details). On the other
hand, the heavy quark (HQ) momentum diffusion coef-
ficient as a vital input parameter in the Langevin transport
model, is only affected by the thermal random force, while
the EM field effects are treated as external forces in the
transport equation. In principle, the HQ momentum dif-
fusion coefficient is also influenced by the EM field
through interacting with magnetized light (anti)quarks;
investigating the response of heavy quark dynamics to
the magnetic field could offer insight into the transport
properties of the QGP. In the presence of a magnetic field
oriented along the z axis (B ¼ Bẑ), the dispersion relation
for light (anti)quarks due to the Landau level quantization is

obtained as [27,28] Ef
k;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þm2

f;n

q
with mf;n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
f þ 2njqfeBj

q
, where the index n ¼ 0; 1; 2;… labels

the quantum number of the Landau levels; qfe is electric
charge of the fth flavor quark;mf is current mass of the fth
flavor (anti)quark. The estimation of HQ momentum
diffusion coefficients in the lowest Landau level (LLL)
approximation has been carried out based on hard-thermal-
loop (HTL) perturbative theory in the static limit [29] and
beyond the static limit [30]. In Refs. [31,32], the scattering
rate of heavy quarks with LLL massless quarks derived in
Ref. [29] was utilized to explore the effect of higher Landau
level (HLL) on HQ dynamics. Actually, the heavy quark
scattering rate with thermal HLL quarks differs signifi-
cantly from that with LLL massless quarks. Therefore,
more careful calculations of the HQ momentum diffusion
coefficient beyond the LLL approximation are necessary
for obtaining a more robust qualitative result. Very recently,
the HQ momentum diffusion coefficient has also been
estimated for arbitrary Landau level beyond the static
limit [33].

In addition to HQ dynamics, another particular interest
regarding the physics of heavy flavor is the heavy quark-
antiquark potential, which is the starting point for the
nonrelativistic approaches to study the in-medium static
properties of heavy quarkonia. The real (imaginary)
part of in-medium HQ potential determines the binding
energy (thermal decay width) of quarkonium states. In
Refs. [34,35], Bonati et al. utilized the lattice QCD method
to investigate the impact of magnetic field on the real part of
HQ potential, ReV, in the vacuum and below the pseudoc-
ritical temperature. To our best knowledge, there are no
lattice QCD studies for the imaginary part of the HQ
potential, ImV, in the magnetic field. On the other hand,
phenomenological studies based on potential models [36–
38] have attempted to derive stable qualitative properties of
heavy quarkonia in the magnetic fields. In Ref. [38], the in-
medium HQ potential, accommodating both short-range
Yukawa (perturbative) interaction and large-range string-
like (nonperturbative) interaction, was derived using the
dielectric permittivity that encodes the effects of the decon-
fined medium in the LLL approximation. Here, the gluon
self-energy was obtained using the imaginary-time formal-
ism. The results in Ref. [38] indicated that both the ReV and
the ImV in a strongmagnetic field exhibit isotropy. Recently,
Ghosh et al. have also explored the ImV at finite temperature
and magnetic field utilizing dielectric permittivity [39],
where all Landau level summation has been considered in
the gluon self-energy calculation with imaginary-time for-
malism. The associated results in Ref. [39] showed that the
magnetic field leads to anisotropy in the ImV. Nevertheless,
it is noteworthy that, in the literature, the contribution of the
LLL massless quark loop to the gluon self-energy was
usually overlooked, which might result in incomplete
expressions for the imaginary part of the effective gluon
propagator and the subsequent ImV.
Furthermore, current computations of HQ potential and

HQ momentum diffusion coefficient are mostly performed
using the assumption that the collision partners from the
QGP medium are in thermal equilibrium. For a more
realistic perspective, the QGP medium created in HICs
behaves like a fluid with viscosity. Because of the existence
of a magnetic field breaking the spatial rotational sym-
metry, the viscous coefficients of the QGP medium are no
longer isotropic, giving rise to anisotropic transport coef-
ficients [26]. As a result of Landau level quantization, the
motions of light (anti)quarks are primarily restricted to the
longitudinal direction. In the strong magnetic field limit
(T2 ≪ eB) with the LLL approximation, the viscous effect
from quark matter is dominant, and the light (anti)quarks
only contribute to the longitudinal pressure, which leads to
a nonzero longitudinal bulk viscosity ζk [40]. The theo-
retical calculations of ζk in both the LLL and HLL
approximations have indicated that the ratio of longitudinal
bulk viscosity to entropy density ζk=s in the magnetic field
is much larger than that in the zero magnetic fields [40–43].
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Therefore, it is crucial to investigate the impact of these
nonequilibrium effects on the HQ potential and HQ trans-
port coefficient to gain a deeper understanding of the
properties of the out-of-equilibrium QGP medium.
In the present work, the numerical calculations are

performed based onweak coupling perturbative QCD theory
in the hierarchies of scale ðαsT2; αseBÞ ≪ ðT2; eBÞ with αs
being a strong coupling constant. In the one-loop calculation,
the typical momenta of thermal quarks and gluons, compris-
ing the internal lines of the gluon self-energy diagrams, are
hard scales (∼T for gluon loop, ∼T;

ffiffiffiffiffiffi
eB

p
for quark loop).

The momentum transfers for quarks and gluons via an
exchanged gluon, comprising the external lines of the gluon
self-energy diagrams, are soft scales (∼αseB and ∼αsT2).
The inequalities ðαsT2; αseBÞ ≪ T2 justify the application
of the hard-thermal-loop technique [30,44,45]. We consider
that the magnetic field can be comparable to the square of
temperature; theHLLeffects becomenon-negligible [31,44].
We first utilize a widely used HQ potential model, which is
defined through the Fourier transform of the static effective
gluon propagator, to investigate the influence of magnetic
field on both static HQ potential and thermal decay widths of
quarkonium states in the QGP. Such an effective gluon
propagator incorporates both perturbative QCD effects and
nonperturbative effects from dimension-two gluon conden-
sates [46–48]. Both the LLLquark-loop andHLLquark-loop
contributions to the gluon self-energy are carefully consid-
ered in the effective gluon propagator. Using the imaginary
part of the effective gluon propagator mentioned above, we
also compute the magnetic field-dependent scattering rate
between heavy quark and thermal partons. Subsequently, we
calculate the HQ momentum diffusion coefficients beyond
the LLL approximation. The calculation of the HQ momen-
tum diffusion coefficient is performed in the static limit.
Furthermore, the response of hot and viscous quark matter to
the magnetic field is studied within the kinetic theory under
the relaxation time approximation (RTA). By employing the
derived longitudinal viscous modified distribution function
of thermal quarks, we extend the HTL perturbation theory to
such a nonequilibrium scenario, aiming to further explore the
longitudinal viscous correction on HQ potential, thermal
decay width of quarkonium states, and HQ momentum
diffusion coefficient.
The layout of this work is as follows. In Sec. II, we

provide a detailed derivation of the gluon self-energy at the
magnetic field in the real-time thermal field theory, utilizing
the HTL resummation technique. The HTL resummed
effective gluon propagator is evaluated in Sec. III. In
Sec. IV, we derive the longitudinal bulk viscous modified
distribution function of light (anti)quarks, and subsequently
extend the HTL resummation technique to the magnetized
viscous QGP. Besides the usual perturbative resummed
gluon propagator, a phenomenological gluon propagator

that includes the nonperturbative effects from dimension-
two gluon condensates is introduced in Sec. V. The HQ
potential is constructed by the Fourier transform of the
effective gluon propagator in the static limit. Based on the
gluon propagators derived in Secs. III and IV, we present
the formulas for anisotropic HQ momentum diffusion
coefficients in Sec. VI. In Sec. VII, we discuss the impacts
of temperature, magnetic field, the HLL effect as well as
longitudinal bulk viscous correction on the HQ potential,
quarkonium state’s thermal decay width, and HQ momen-
tum diffusion coefficients. We summarize our findings in
Sec. VIII.

II. GLUON SELF-ENERGY IN MAGNETIZED
QGP MEDIUM

To estimate the HQ potential and leading order HQ
scattering rate with thermal partons from the magnetized
QGP medium, it is imperative to evaluate the gluon self-
energy. Throughout this work, we employ the real-time
formalism of thermal field theory, which is more appro-
priate when dealing with a nonequilibrium situation and
can immediately split the computations of gluon self-
energy into a zero-temperature part and a temperature-
dependent part, by virtue of the split in real-time propa-
gators. Unless otherwise stated, all calculations are for
massless QCD at zero chemical potential. In the Landau
level representation, the free quark propagators for the fth
flavor can be represented by 2 × 2 matrices [49–52]:

Sfðk;mf;nÞ ¼ ie
−

k2⊥
jqfeBj

X∞
n¼0

ð−1ÞnDf
nðkÞ

×

" 1
k2k−m

2
f;nþiϵ 0

0 −1
k2k−m

2
f;n−iϵ

!

þ i2πδðk2k −m2
f;nÞ

×

�
X X − Θð−k0Þ

X − Θðk0Þ X

�#
: ð1Þ

The metric is defined as gμν ¼ gμνk þ gμν⊥ , where gμνk ¼
diagð1; 0; 0;−1Þ and gμν⊥ ¼ diagð0;−1;−1; 0Þ are the pro-
jectors onto the longitudinal subspace and transverse (with
respect to the direction of magnetic field) subspace,
respectively. For four-vectors kμ, its associated notations
can be written as kμk ¼ ðk0; 0; 0; kzÞ and kμ⊥ ¼ ð0; kx; ky; 0Þ
with k2 ¼ k2k − k2⊥, where k2k ¼ k20 − k2z and k2⊥ ¼ k2x þ k2y.
The abbreviations X and Y in Eq. (1) are respectively given
by X ¼ Θðk0Þfþðk0Þ þ Θð−k0Þf−ð−k0Þ, where Θðk0Þ is
the Heaviside function. In global equilibrium, f�ðxÞ ¼
f0�ðxÞ ¼ ½eðjxj�μÞ=T þ 1�−1 represents the Fermi-Dirac
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thermal distribution function, where the subscript “�”
corresponds to antifermions and fermions, separately; μ is
quark chemical potential. The Df

nðkÞ in Eq. (1) can be
expressed as

Df
nðkÞ ¼ 2ðkk þmfÞ

�
Pf

þLn

�
2k2⊥

jqfeBj
�

− Pf
−Ln−1

�
2k2⊥

jqfeBj
��

þ 4k⊥L1
n−1

�
2k2⊥

jqfeBj
�
; ð2Þ

with Pf
� ¼ ½1� iγxγysgnðqfeBÞ�=2 being the projection

operator into a state with spin aligning with magnetic field
direction. Here, Lm

n ðxÞ are the generalized Laguerre poly-
nomials, LnðxÞ ¼ L0

nðxÞ and L−1ðxÞ ¼ 0. Now, we convert
to a more convenient representation, the Keldysh represen-
tation. The retarded, advanced, and symmetric propagators
can be obtained from the Keldysh representation (which
satisfies S11 − S12 − S21 þ S22 ¼ 0) via [53,54]

SR ¼ S11 − S12; SA ¼ S11 − S21; SF ¼ S11 þ S22:

ð3Þ
Similarly, the retarded (R), advanced (A), and symmetric (F)
gluon self-energies are given as

ΠR¼Π11þΠ12; ΠA ¼Π11þΠ21; ΠF ¼Π11þΠ22;

ð4Þ

and hold Π11 þ Π12 þ Π21 þ Π22 ¼ 0. Furthermore, the
symmetric gluon self-energy ΠF in an equilibrium QGP
within the massless limit also can be obtained through the
Kubo-Martin-Schwinger (KMS) condition [55,56]

ΠFðkÞ ¼ ð1þ 2f0Bðk0ÞÞsgnðk0ÞðΠRðkÞ − ΠAðkÞÞ; ð5Þ

where f0Bðk0Þ is the Bose-Einstein distribution function. The
validity of Eq. (5) in the magnetized viscous QGP medium
needs further verification.

A. Quark-loop contribution to
retarded gluon self-energy

According to the relations in Eq. (4) and Fig. 1, the one
quark-loop contribution to the retarded gluon self-energy
tensor in a magnetic field using the standard Feynman rules
can read as

Πμν
R;quarkðQÞ ¼ Πμν

11;quarkðQÞ þ Πμν
12;quarkðQÞ;

¼ −ig2s
Z

d4k
ð2πÞ4

× Tr½tbγμSf11ðk;mf;nÞtaγνSf11ðp;mf;lÞ
− tbγμS

f
21ðk;mf;nÞtaγνSf12ðp;mf;lÞ�; ð6Þ

where the minus sign in the square bracket originates from
the vertex of type-2 field [57]. TrðtatbÞ ¼ δab

2
, where ta;b refer

to the generators of the color group. In order to simplify
Eq. (6), the transverse part can be written in the following
form:

Lμν ¼
Z

d2k⊥
ð2πÞ2 ð−1Þ

nþle
−k2⊥−p2⊥
jqfeBj Tr½γμDf

nðkÞγνDf
l ðpÞ�

¼
Z

d2k⊥
ð2πÞ2 e

−k2⊥−p2⊥
jqfeBj ð−1Þnþl

�
8ðkμkpν

k þ kνkp
μ
k − gμνk ðkk · pk −m2

fÞÞ
�
Ln

�
2k2⊥

jqfeBj
�
Ll

�
2p2⊥

jqfeBj
�

þ Ln−1

�
2k2⊥

jqfeBj
�
Ll−1

�
2p2⊥

jqfeBj
��

þ 64ðkμ⊥pν⊥ þ kν⊥p
μ
⊥ − ðk⊥ · p⊥ÞgμνÞL1

l−1

�
2k2⊥

jqfeBj
�
L1
n−1

�
2p2⊥

jqfeBj
�

þ 8gμν⊥ ðkk · pk −m2
fÞ
�
Ln

�
2k2⊥

jqfeBj
�
Ll−1

�
2p2⊥

jqfeBj
�
þ Ln−1

�
2k2⊥

jqfeBj
�
Ll

�
2p2⊥

jqfeBj
��

þ 16ðkμkpν⊥ þ kνkp
μ
⊥Þ
�
Ln

�
2k2⊥

jqfeBj
�
L1
l−1

�
2p2⊥

jqfeBj
�
− Ln−1

�
2k2⊥

jqfeBj
�
L1
l−1

�
2p2⊥

jqfeBj
��

þ 16ðpμ
kk

ν⊥ þ pν
kk

μ
⊥Þ
�
Ll

�
2p2⊥

jqfeBj
�
L1
n−1

�
2k2⊥

jqfeBj
�
− Ll−1

�
2p2⊥

jqfeBj
�
L1
n−1

�
2k2⊥

jqfeBj
���

; ð7Þ
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with ðk⊥ · p⊥Þ ¼ kxpx þ kypy. By utilizing the integral
identities listed in the Appendix, the tensor Lμν can be

further simplified as Lμν ¼ ð−1Þnþl expð −q2⊥
2jqfeBjÞ

jqfeBj
π ×

½4jqfeBjnδn−1l−1 g
μν
k þ ðδnl þ δn−1l−1 Þ½kμkpν

k þ kνkp
μ
k − gμνk ðkk ·pk−

m2
fÞ�− ðδn−1l þ δnl−1Þðkk ·pk−m2

fÞgμν⊥ �, where q2⊥ denotes
the squared momentum transfer transverse to the magnetic

field direction, and expð −q2⊥
2jqfeBjÞ represents the asymmetry

factor. Since we are working in the soft momentum transfer
limit with the hierarchies of scale m2

f ≪ αsT2; αseB ≪ eB,
the perturbative QCD interactions cannot induce the Landau
level transition for light (anti)quarks because they do not
have enough energy to jump across the energy gap separating
the Landau levels that is proportional to

ffiffiffiffiffiffi
eB

p
. Take

n ¼ l, then Lμν is reduced as Lμν ¼ expð −q2⊥
2jqfeBjÞ

qfeB
π α0n×

½2njqfeBjgμνk þ ðkμkpν
k þ kνkp

μ
kÞ − gμνk ðkk · pk −m2

fÞ�, with

α0n ¼ ð2 − δ0;nÞ being the Landau level-dependent spin
degeneracy. It is effective to obtain the retarded gluon
self-energy from the quark loop by calculating only the
physical “11” component. This component can be written as

Πμν
11;quark ¼ i

X
f

X∞
n¼0

g2s
2

Z
d2kk
ð2πÞ2 L

μν

��
1

ðk2k −m2
f;n þ iϵÞ

þ 2πiðΘðk0Þfþðk0Þ þ Θð−k0Þf−ð−k0ÞÞ

× δðk2k −m2
f;nÞ
�
×

�
1

ðp2
k −m2

f;n þ iϵÞ
þ 2πiðΘðp0Þfþðp0Þ þ Θð−p0Þf−ð−p0ÞÞ

× δðp2
k −m2

f;nÞ
��

: ð8Þ

The strong coupling strength gs in this work is obtained
from [58]

αsðΛ2; eBÞ ¼ g2s
4π

¼ αsðΛ2Þ
1þ 11Nc−2Nf

12π αsðΛ2Þ lnð Λ2

Λ2þeBÞ
; ð9Þ

where the strong coupling constantαs for vanishingmagnetic

field is given by αsðΛ2Þ ¼ 12π
11Nc−2Nf

ln
Λ2

MS
Λ2 at ΛMS ¼

176 MeV for Nf ¼ Nc ¼ 3 [59], and the scale Λ is chosen
as Λ ¼ 2πT.

1. Vacuum LLL quark-loop contribution
to retarded gluon self-energy

In the magnetic field, the vacuum contribution to gluon
self-energy should be maintained even at high temper-
atures, unlike in the absence of a magnetic field. In Eq. (8),
the term exclusively related to vacuum quark propagators is
given as Πμν

11;quark;T¼0, which can be written as

Πμν
11;quark;T¼0 ¼

X
f

X∞
n¼0

ig2s jqfeBj
2π

α0n

Z
d2kk
ð2πÞ2 e

−
q2⊥

2jqfeBj

×
kμkp

ν
k þ kνkp

μ
k − gμνk ðkk · pk −m2

f;nÞ
ðk2k −m2

f;n þ iϵÞðp2
k −m2

f;n þ iϵÞ : ð10Þ

Using the Feynman’s parametrization (see details in
Refs. [60,61]), Eq. (10) can be rewritten as

Πμν
11;quark;T¼0 ¼ g2s

X
f

X∞
n¼0

α0njqfeBj
4π2

� q2kg
μν
k − qμkq

ν
k

ðq0 þ iϵÞ2 − q2z

�

× e
−

q2⊥
2jqfeBj

Z
1

0

dx
xykð1 − xÞ

−1þ xð1 − xÞyk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IðykÞ

; ð11Þ

with yk ¼ q2k=m
2
f;n. We can see the light quarks in a

magnetic field at zero temperature do not couple to the
transverse subspace spanned by gμν⊥ and qμ⊥. In the spacelike
region q2k ≤ 0, the function IðykÞ is given as [61,62]

IðykÞ ¼ 1 −
4 arctan


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yk=ð4 − ykÞ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yk=ð4 − ykÞ

q ; ð12Þ

where the first term corresponds to the massless Schwinger
model [63] and the second term accounts for mass
correction. The function IðykÞ has two limiting behaviors
[61,62], i.e.,

Ið0Þ ¼ 0; Ið∞Þ ¼ 1: ð13Þ

FIG. 1. The one-loop diagram for quark contribution to the
retarded gluon self-energy Πμν

R;quark. The solid (curly) line repre-
sents a quark (gluon) propagator, where the quark can occupy
different Landau levels. k and p ¼ kþQ are the loop momenta.
Q ¼ ðq0; qÞ is the external momentum and denotes the four-
momentum transfer. The bottom row corresponds to the retarded
gluon self-energy, with indices “1” and “2” being two types of
vertices. μ; ν are Lorentz indices, a, b are color indices.
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When the light quarks occupy the LLL (n ¼ 0), yk → ∞, it
results in IðykÞ ¼ 1. Note the mass correction (mf ≠ 0) in
Eq. (12) can safely be neglected due to the HTL approxi-
mation with m2

f ≪ jq2kj ≪ eB. To compute the HQ poten-

tial, we need the temporal (“00”) component of the gluon
self-energy. Specializing the Lorentz indices as μ ¼ ν ¼ 0,
the vacuum LLL quark-loop contribution to the real part of
the retarded gluon self-energy is computed as

ReΠ00
R;quark;T¼0;n¼0 ¼ ReΠ00

11;quark;T¼0;n¼0 ¼ −
q2z
q2k

sfðq⊥Þ;

ð14Þ

where the abbreviation sfðq⊥Þ ¼ αs
jqfeBj

π expð− q2⊥
2jqfeBjÞ is

used for the reader’s convenience. Subsequently, the
imaginary part of the retarded gluon self-energy can be
obtained by utilizing the relation ImΠ00

R ¼ tanh j q0
2T jImΠ00

11

[64–66]. Thus, the vacuum LLL quark-loop contribution to
the imaginary part of the retarded gluon self-energy is
computed as

ImΠ00
R;quark;T¼0;n¼0 ¼ ImΠ00

11;quark;T¼0;n¼0

¼
X
f

πq0
2

sfðq⊥Þ½δðq0 þ qzÞ þ δðq0 − qzÞ�: ð15Þ

Here, Eqs. (14) and (15) are consistent with the results in
Ref. [29]. Notice that the delta functions in Eq. (15) are
related to the chiral dispersion of LLL with δðq0 � qzÞ
corresponding to right-handed and left-handed chiral fer-
mions or massless quarks. These LLL chiral fermions have
the linear dispersion relations, ELLLðkzÞ ¼ �kz, where the
sign “þ” and the sign “−” correspond to right-handed
chirality and left-handed chirality, respectively. Since the
chirality of chiral fermions cannot be flipped in the
presence of perturbative QCD interaction, the four-momen-
tum transfer from the LLL chiral fermions is given as
ðΔE;ΔkzÞ ¼ ðq0; qzÞ, and must satisfy q0 ¼ �qz. In the
static limit q0 → 0, the longitudinal momentum transfer qz
is kinematically prohibited and there is no scattering along
the magnetic field direction for LLL massless quarks.

2. Vacuum HLL quark-loop contribution
to retarded gluon self-energy

When light quarks occupy the higher Landau levels
(n ≥ 1), yk ≈ 0 due to the condition m2

f ≪ jq2kj ≪
m2

f;n ∼ njqfeBj. Consequently, in Eq. (12), IðykÞ ¼ 0,
indicating that quark excitations are suppressed in the
vacuum. Therefore, the vacuum HLL quark loop does
not contribute to the retarded gluon self-energy, i.e.,

ReΠ00
R;quark;T¼0;n≥1 ¼ 0; ð16Þ

ImΠ00
R;quark;T¼0;n≥1 ¼ 0: ð17Þ

3. Medium LLL quark-loop contribution
to retarded gluon self-energy

Next, we proceed with the computation of the terms
related to temperature-dependent quark propagators in
Eq. (8). Using δ−1−1 ¼ 0, we can express the temporal
component of Lμν as L00 ¼ α0nðk0p0 þ kzpz þm2

fþ
2njqfeBjÞ expð −q2⊥

2jqfeBjÞ
jqfeBj

π . Subsequently, the real part of

Π00
11;quark at finite temperature and magnetic field in equi-

librium can be derived as

ReΠ00
11;quark;T≠0 ¼ −

X
f

X∞
n¼0

g2s
2

Z
dkz
2π

×

�
f0þðk0ÞL00ðk0 ¼ Ef

p;n − q0Þ
2Ef

p;n½ð−q0 þ Ef
p;nÞ2 − ðEf

k;nÞ2�

þ f0−ð−k0ÞL00ðk0 ¼ −Ef
p;n − q0Þ

2Ef
p;n½ð−q0 − Ef

p;nÞ2 − ðEf
k;nÞ2�

þ f0þðk0ÞL00ðk0 ¼ Ef
k;nÞ

2Ef
k;n½ðq0 þ Ef

k;nÞ2 − ðEf
p;nÞ2�

þ f0−ð−k0ÞL00ðk0 ¼ −Ef
k;nÞ

2Ef
k;n½ðq0 − Ef

k;nÞ2 − ðEf
p;nÞ2�

�
: ð18Þ

Here, L00ðk0 ¼ �Ef
k;nÞ ¼ ½2ðEf

k;nÞ2 � q0E
f
k;n þ qzkz�×

expð −q2⊥
2jqfeBjÞ

jqfeBj
π and L00ðk0 ¼ −q0 � Ef

p;nÞ ¼ ½ðEf
p;nÞ2 ∓

q0E
f
p;n þ ðEf

k;nÞ2 þ kzqz� expð −q2⊥
2jqfeBjÞ

jqfeBj
π . For vanishing

chemical potential, f0−ðk0Þ ¼ f0þðk0Þ, and putting the first
two (last two) integrands in the right-hand side of Eq. (18)
over a common denominator, which is given by

ðq2k − 2q0E
f
k;n − 2kzqzÞðq2k þ 2q0E

f
k;n − 2kzqzÞ

¼ ðq20 − 2q0E
f
p;n þ 2kzqz þ q2zÞ

× ðq20 þ 2q0E
f
p;n þ 2kzqz þ q2zÞ

¼ −4
�
q2k

�
kz þ

qz
2

�
2

−
1

4
q20ðq2k − 4m2

f;nÞ
�
: ð19Þ

The two numerators except the distribution functions in
Eq. (18) respectively read as

−8kzqz

��
kz þ

qz
2

�
2

−
q20
4

�
− 4m2

f;nðq2z þ 2kzqzÞ; ð20Þ
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and

8pzqz

��
kz þ

qz
2

�
2

−
q20
4

�
þ 4m2

f;nðq2z þ 2kzqzÞ: ð21Þ

In the massless limit, the integration over kz leads to a
cancellation of the two terms [Eqs. (20) and (21)] in the
LLL, as a result, the medium correction to the real part of
Π00

11;quark vanishes.
For the LLL massive light quarks, Eq. (18) within the

static limit (q0 → 0) is proportional to m2
f and can be

expressed as

ReΠ00
11;quark;T≠0;n¼0 ∝

m2
f

q2z

Z
dkz

ðq2z þ 2qzkzÞ
ðkz þ qz=2Þ2

×

�
f0þðEf

k;nÞ þ f0−ðEf
k;nÞ

Ef
k;n

−
f0þðEf

p;nÞ þ f0−ðEf
p;nÞ

Ef
p;n

�
; ð22Þ

which is also consistent with the result presented in
Refs. [29,61]. In the present work, we focus on the massless
limit, thus, the medium LLL quark-loop contribution to the
real part of the retarded gluon self-energy vanishes, i.e.,

ReΠ00
R;quark;T≠0;n¼0 ¼ ReΠ00

11;quark;T≠0;n¼0 ¼ 0: ð23Þ

For the medium quark-loop contribution to the imaginary part of the Π00
11;quark, it in equilibrium can be given as

ImΠ00
11;quark;T≠0 ¼

X
f

X∞
n¼0

g2s
2

Z
dkz
2π

2π

2Ef
k;n4E

f
p;n

f½f0þðEf
k;nÞ þ f0þðq0 þ Ef

k;nÞ − 2f0þðEf
k;nÞf0þðq0 þ Ef

k;nÞ�

× L00ðk0 ¼ Ef
k;nÞ½δðq0 þ Ef

k;n − Ef
p;nÞ þ δðq0 þ Ef

k;n þ Ef
p;nÞ�

þ ½f0−ðEf
k;nÞ þ f0−ð−q0 þ Ef

k;nÞ − 2f0−ðEf
k;nÞf0−ð−q0 þ Ef

k;nÞ�
× L00ðk0 ¼ −Ef

k;nÞ½δð−q0 − Ef
k;n − Ef

p;nÞ þ δð−q0 − Ef
k;n þ Ef

p;nÞ�g: ð24Þ

In the above four delta functions, only δðq0 þ Ef
k;n −

Ef
p;nÞ and δðq0 − Ef

k;n þ Ef
p;nÞ (decay processes) contribute

to the final result of interest. In the static limit q0 → 0,
the delta function of our interest can be worked out
explicitly as

δðEf
k;n − Ef

p;nÞ ¼ δðEf
k;n − Ef

k0;nÞ

¼ ðEf
qz=2;n

=jqzjÞδ
�
kz þ

qz
2

�
; ð25Þ

where k0z ¼ kz þ qz is defined and Ef
qz=2;n

¼ ðm2
f;nþ

q2z=4Þ1=2. This indicates that a backward scattering with
kz ¼ −k0z ¼ qz=2 is satisfied for the HLL quarks. Such a
backward scattering process is not allowed for LLL
massless quarks. Consequently, in the static limit, the
medium quark-loop contribution to the imaginary part of
the retarded self-energy, ImΠ00

R;quark;T≠0, can be computed as
follows:

ImΠ00
R;quark;T≠0

q0

����
q0→0

¼ tanh

���� q02T
����ImΠ00

11;quark;T≠0

q0

����
q0→0

; ð26Þ

¼
X
f

X∞
n¼0

α0nπsfm2
f;n

2TEf
qz=2;n

jqzj
H0

f;n: ð27Þ

Here, we have defined the function: H0
f;nðT;eB;qzÞ¼

f0þðEf
qz=2;n

Þð1−f0þðEf
qz=2;n

ÞÞþf0−ðEf
qz=2;n

Þð1−f0−ðEf
qz=2;n

ÞÞ.
For massless light quarks in the LLL, Eq. (27) vanishes
strictly. For massive light quarks in the LLL, the presence
of a small termm2

f=ðjqzjEf
qz=2;n

Þ in Eq. (27) makes the LLL
massive quark-loop contribution to the imaginary part of
the retarded gluon self-energy negligible compared to the
HLL quark-loop contribution. Since our focus is on the
massless limit (mf ¼ 0), the medium LLL quark-loop
contribution to the imaginary part of the retarded self-
energy is zero, i.e.,

ImΠ00
R;quark;T≠0;n¼0 ¼ 0: ð28Þ

4. Medium HLL quark-loop contribution
to retarded gluon self-energy

When light quarks occupy higher Landau level states
(n ≥ 1), the current mass of the quark becomes
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insignificant because of neB ≫ m2
f. Taking q0 ¼ 0 and

qz → 0, Eq. (18) can easily reduce as

ReΠ00
11;quark;T≠0;n≥1 ¼

X
f

X∞
n¼1

g2s jqfeBj
4πT

e
−q2⊥

2jqfeBj
Z

dkz
π

× ½f0þðEf
k;nÞð1 − f0þðEf

k;nÞÞ
þ f0−ðEf

k;nÞð1 − f0−ðEf
k;nÞÞ�: ð29Þ

Therefore, the medium HLL quark-loop contribution to the
real part of retarded gluon self-energy in the magnetized
QGP medium is given as

ReΠ00
R;quark;T≠0;n≥1 ¼ ReΠ00

11;quark;T≠0;n≥1: ð30Þ

Using Eqs. (27) and (28), the medium HLL quark-loop
contribution to the imaginary part of the retarded gluon
self-energy can be computed as follows:

ImΠ00
R;quark;T≠0;n≥1

q0

����
q0→0

¼
X
f

X∞
n¼1

πsfm2
f;n

TEf
qz=2;n

jqzj
H0

f;n: ð31Þ

Finally, the total quark-loop contribution to the retarded
gluon self-energy is expressed as

Π00
R;quark ¼ Π00

R;quark;T¼0;n¼0 þ Π00
R;quark;T≠0;n≥1: ð32Þ

Here, the first term presents the vacuum contribution from
the LLL quark loop, and the second term corresponds to the
medium contribution from the HLL quark-loop.

B. Gluon-loop contribution to retarded
gluon self-energy

Since gluons are not directly influenced by magnetic
fields, following Refs. [38,67–70], the gluon-loop contri-
bution to the retarded gluon self-energy in a magnetized
QGP medium is computed as follows:

Π00
R;gluon ¼ m2

D;g

�
1 −

q0
2jqj

�
ln

���� q0 þ jqj
q0 − jqj

���� − iπΘð−Q2Þ
��

;

ð33Þ

wherem2
D;g ¼ g2sT2. In Eq. (33), the gluon self-energy from

the gluon-loop contribution also possesses an imaginary
part in the spacelike region. In the static limit q0 → 0, one
gets

ImΠ00
R;gluon

q0

����
q0→0

¼ m2
D;gπ

2jqj : ð34Þ

III. HTL RESUMMED GLUON PROPAGATOR IN
MAGNETIZED QGP MEDIUM

Utilizing the results from Sec. II, the HTL resummed
effective gluon propagator in the magnetized QGP medium
can be determined by the Dyson-Schwinger equation,

G�00
R=A ¼ G00

R=A þ G00
R=AΠ

00
R=AG

�00
R=A; ð35Þ

with G00
R=A being the temporal component of bare retarded/

advanced gluon propagator. The superscript “�” denotes the
resummed effect gluon propagator. Consequently, the HTL
resummed retarded/advanced gluon propagator in the
Coulomb gauge is expressed as follows:

G�00
R=A ¼ 1

q2 þ ReΠ00
R � iImΠ00

R
: ð36Þ

The total real and imaginary parts of the retarded gluon
self-energy are given as

ReΠ00
R ¼ ReΠ00

R;quark þ ReΠ00
R;gluon; ð37Þ

¼
X
f

X
n¼0

∞ g2sα0njqfeBj
4πT

e
−q2⊥

2jqfeBj
Z

dkz
2π

× ½f0þðEf
k;nÞð1 − f0þðEf

k;nÞÞ
þ f0−ðEf

k;nÞð1 − f0−ðEf
k;nÞÞ� þm2

D;g: ð38Þ

ImΠ00
R ¼ ImΠ00

R;quark;T¼0;n¼0 þ ImΠ00
R;quark;T≠0;n≥1

þ ImΠ00
R;gluon: ð39Þ

When zq⊥ → 0, ReΠ00
R ¼ m2

D is nothing but the Debye
screening mass. Thus, the real and imaginary parts of the
HTL resummed retarded gluon propagator in the static limit
q0 → 0 are expressed as follows:

ReG�00
R ¼ 1

q2 þ ReΠ00
R
; ð40Þ

ImG�00
R ¼ −

ImΠ00
R

ðq2 þ ReΠ00
R Þ2 ; ð41Þ

¼ −
q0
P

fπsf
2ðq2 þ ReΠ00

R Þ2 ½δðqzÞ þ δð−qzÞ�

−
X
f

X∞
n¼1

q0πsfm2
f;nH

0
f;n

Tðq2 þ ReΠ00
R Þ2jqzjEf

qz=2;n

−
q0πm2

D;g

2jqjðq2 þ ReΠ00
R Þ2 : ð42Þ

Notice that Eq. (42) is the crucial formula of our work.
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The resummed symmetric gluon propagator can be
determined through the KMS condition in equilibrium
medium [69]

G�00
F ðQÞ ¼ ð1þ 2f0Bðq0ÞÞsgnðq0ÞðG�00

R ðQÞ −G�00
A ðQÞÞ:

ð43Þ

In the static limit q0 → 0, the imaginary part of Eq. (43) is
computed as

ImG�00
F ¼ 2T

q0
2ImG�00

R ¼ −
2T
q0

2ImΠ00
R

ðq2 þ ReΠ00
R Þ2 : ð44Þ

IV. GLUON SELF-ENERGY AND RESUMMED
GLUON PROPAGATOR IN MAGNETIZED

VISCOUS QGP MEDIUM

A. Magnetized viscous correction
on light quark distribution function

To investigate the properties of nonequilibrium QGP
medium, we take into account the viscous effect and study
the responses of viscous QGP medium to the magnetic
field. Subsequently, we explore how the magnetized
viscous effect impacts both the HQ potential and momen-
tum diffusion coefficient. In the strong magnetic limit
within the LLL approximation, Landau level quantization
ensures that only the longitudinal component of bulk
viscosities, arising from the contributions of LLL (anti)
quarks, exists [40]. The response of viscous quark matter to
the magnetic field is manifested in the longitudinal bulk
viscous modified distribution function of light (anti)quarks,
which can be obtained using the Boltzmann kinetic theory.
In the presence of a magnetic field, the dynamical evolution
of the light (anti)quark distribution function is described by
the 1þ 1 dimensional relativistic Boltzmann equation
[40,71],

kμk∂kμf�ðx; kzÞ ¼ C½f��; ð45Þ

where the covariant derivative ∂kμ is given by
∂kμ ¼ uμDþ∇kμ, with D ¼ uμ∂μ and ∇μ

k ¼ Δμν
k ∂ν corre-

sponding to the time derivative and spatial gradient
operator in the local rest frame, respectively. uν is the
fluid four-velocity, and is normalized to uνuν ¼ 1. Δμν

k ¼
gμνk − uμuν is the longitudinal projection operator. The

right-hand side of Eq. (45) is the collision term, which
describes the change rate of the single-particle distribution
induced by scatterings. Given that the system slightly
deviates from the local thermal equilibrium due to external
perturbation, the relaxation time approximation (RTA) can
be reasonably employed to obtain an analytic solution for
the distribution function. In the RTA, the collision term is
given as

C½f�� ¼ −ðu · kkÞ
δf�
τR

; ð46Þ

where τR denotes the relaxation time which quantifies
how fast the system reaches the equilibrium again. The
perturbative term for the distribution functions δf� can be
written as

δf� ¼ f� − f0�: ð47Þ

The local equilibrium distribution functions of light (anti)
quarks in a magnetic field have the following form:

f0� ¼ 1

1þ exp½βðkk · u� αÞ� ; ð48Þ

where β ¼ 1=T is inverse local temperature, and
u · kk≡ ¼ Ef

k;n. The notation α ¼ μβ represents the ratio
of quark chemical potential to temperature. By inserting
Eq. (48) into the left-hand side of Eq. (45), the solution for
nonequilibrium correction to the phase-space distribution
function can be expanded as

δf� ¼ τR
u · kk

½kμkkνkβ∂kμuν þ kμkðu · kkÞ∂kμβ � kμk∂kμα�

f0�ð1 − f0�Þ: ð49Þ

Considering a small gradient expansion around ideal
hydrodynamics, we can ignore the higher-order gradient
corrections and employ leading-order equations of motion
for thermodynamic parameters:

Dβ ¼ χβθk; ∇μ
kβ ¼ −βDuμ þ nq

ϵk þ Pk
∇μ

kα; ð50Þ

Dα ¼ χαθk: ð51Þ

The dimensionless coefficients χβ and χα in Eqs. (50)
and (51) are, respectively, given as

χβ ¼
�
L0þ
10 ðϵk þ PkÞ − L0−

20 nq
L0þ
30 L

0þ
10 − ðL0−

20 Þ2
�
;

χα ¼
�
L0−
20 ðϵk þ PkÞ − L0þ

30 nq
L0þ
30 L

0þ
10 − ðL0−

20 Þ2
�
; ð52Þ

where ϵk and Pk are longitudinal energy density and
longitudinal pressure, respectively, nq denotes net density.
We also introduce the thermodynamic function in the
magnetic field, which is defined as
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Lγ�
jm ¼ Nc

X
f

jqfeBj
2π

X∞
n¼0

α0n

Z
dkz
π

ðEf
k;nÞj−2m−γ−1

k2mz ð−1Þm½f0−ð1 − f0−Þ þ f0þð1 − f0þÞ�: ð53Þ

For vanishing chemical potential, χβ=β≡ c2ks ¼
∂Pk
∂εk

, which is

the squared speed of sound in the longitudinal direction. In
the description of kinetic theory, the longitudinal bulk
viscous correction to momentum-energy tensor is given
by [40]

δTμν ¼ −ΠkΔ
μν
k : ð54Þ

The longitudinal bulk viscous pressure, Πk, in the magnet-
ized QGP medium is computed as [26]

Πk ¼ −Nc

X
f

X∞
n¼0

jqfeBj
2π

Z
dkzα0n
2πEf

k;n

Δμν
k kμkνðδf− þ δfþÞ:

ð55Þ

By substituting Eq. (49) into Eq. (55), the leading-order
longitudinal bulk viscous pressure can be rewritten as

Πk ¼ −τRβΠkθk; ð56Þ

where θk ≡ ∂kμuμ denotes the longitudinal fluid expansion
rate. Here, we have introduced the longitudinal bulk viscous
coefficient βΠk , which is defined as

βΠk ¼ β

�
χβ
β
L0þ
31 þ L1þ

42 −
χα
β
L0−
21

�
: ð57Þ

By comparing Eq. (56) with the Naiver-Stokes equation for
the dissipative quantities in a magnetic field up to the first
order in derivative expansion, namely, Πk ¼ −ζkθk, with ζk
being the longitudinal bulk viscosity, we can obtain the
longitudinal bulk viscous modified distribution functions for
light (anti)quarks:

δf� ¼ βΠk
βΠk ðu · kkÞ

f0�ð1 − f0�Þ

×

�
−ðu · kkÞ2

χβ
β
þ k2z � ðu · kkÞ

χα
β

�
: ð58Þ

In the local rest frame of fluid, Eq. (58) takes the following
form:

δf� ¼ s
βΠkτ

�
ζk
s

�
β

Ef
k;n

�
ðEf

k;nÞ2
χβ
β
− k2z ∓ Ef

k;n
χα
β

�
× f0�ð1 − f0�Þ; ð59Þ

where the expansion parameter θk is given by θk ¼ 1=τ with
τ being proper time parameter, and we adopt τ ¼ 0.3 fm=c,
as utilized in Ref. [31]. It is clear that δf� vanishes for LLL
massless quarks. The LLL massless quarks along the
magnetic field direction cannot suffer any dissipative effect
from the medium because the scatterings are strictly for-
bidden according to chirality conservation and the linear
dispersion relation in the LLL [72].

B. Magnetized viscous correction on gluon self-energy
and HTL resummed gluon propagator

To clarify the impact of longitudinal bulk viscous effects
on both the heavy quark potential and momentum diffusion
coefficients, it is imperative to generalize the HTL resum-
mation technique to the nonequilibrium scenario related to
this investigation. Given that the nonequilibrium effects in
the absence of a magnetic field violate the KMS condition
expressed in Eq. (5) or Eq. (43) [73–75], it is necessary to
examine the validity of the KMS condition in the magnet-
ized viscous QGP medium. Following Ref. [74], the
temporal component of the resummed retarded/advanced
gluon propagator in the nonequilibrium system can still be
derived through the Dyson-Schwinger equation (35). The
longitudinal bulk viscous correction is incorporated into
the retarded/advanced gluon self-energy by just replacing
the thermal equilibrium distribution functions in Eq. (29)
with longitudinal bulk viscousmodified ones. Consequently,
the real part of the longitudinal bulk viscous modified
retarded gluon self-energy is computed as

ReΠ00
R ¼ m2

D;g þ
X
f

X
n¼0

∞ g2sα0njqfeBj
4πT

e
−q2⊥

2jqfeBj

×
Z

dkz
2π

½f0þðEf
k;nÞð1 − f0þðEf

k;nÞÞ þ FþðEf
k;nÞ

þ f0−ðEf
k;nÞð1 − f0−ðEf

k;nÞÞ þ F−ðEf
k;nÞ�; ð60Þ

where we have defined the notation: F�ðEf
k;nÞ¼

δf�ðEf
k;nÞð1−2f0�ðEf

k;nÞÞ. By taking q⊥ → 0 in Eq. (60),
we can derive the longitudinal bulk viscous modified Debye
mass, which is denoted as m̃2

D. The resummed symmetric
gluon propagator in the nonequilibrium scenario is also
obtained through the Dyson-Schwinger equation,

G�00
F ¼ G00

F þG00
R Π00

R G�00
F þ G00

F Π00
A G�00

A þ G00
R Π00

F G�00
A :

ð61Þ

By utilizing G00
F ¼ ð1þ 2fBÞsgnðq0ÞðG00

R − G00
A Þ, which

remains valid in nonequilibrium conditions as well [73],
the solution for the G�00

F can be formulated as
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G�00
F ¼ ð1þ 2fBðq0Þsgnðq0ÞÞðG�00

R −G�00
A Þ þ G�00

R ½Π00
F

− ð1þ 2fBðq0Þsgnðq0ÞÞðΠ00
R − Π00

A Þ�G�00
A : ð62Þ

In the equilibrium state, the second term on the right-hand
side of Eq. (62) vanishes. We only focus on the viscous
effect from quark contribution; fB retains its equilibrium
form. By utilizing the relations in Eq. (4), after tedious
calculation, the longitudinal bulk viscous modified symmet-
ric gluon self-energy from the quark loop within the static
limit is computed as

Π00
F;quark;T≠0 ¼ i

X
f

X∞
n¼0

4m2
f;nsf

Ef
qz=2;n

jqzj
Hf;n: ð63Þ

Here, Hf;nðT; eB; qzÞ ¼ H0
f;n þ δHf;n with δHf;n ¼

F−ðEf
qz=2;n

Þ þ FþðEf
qz=2;n

Þ. Similarly, we can derive the
longitudinal bulk viscous modified imaginary part of
retarded gluon self-energy from medium quark-loop
contribution in a magnetic field, which is given as

ImΠ00
R;quark;T≠0=q0 ¼

P
f

P
n¼1

∞ πm2
f;nsf

TEf
qz=2;n

jqzj
Hf;n. It is evident

that the square bracket term on the right-hand side of Eq. (62)
cancels out precisely in the static limit q0 → 0, revealing that
the KMS condition is still valid in the magnetized viscous
quark matter. Therefore, in our calculations of gluon self-
energies and resummed gluon propagators, we substitute the
equilibrium distribution functions of the light (anti)quark
with the longitudinal viscous modified ones to further
explore the impact of the longitudinal bulk viscous effect
on various quantities.

V. HQ POTENTIAL AND THERMAL DECAY
WIDTH IN MAGNETIZED VISCOUS QGP

MEDIUM

In this section, we employ the HTL resummed gluon
propagators derived in Secs. III and IV to compute the static
heavy quark (HQ) potential in a magnetized viscous QGP
medium. In the vacuum, the static HQ potential studied by
lattice QCD can be well parametrized by the Cornell
potential: VðrÞ ¼ −CFαs=rþ σrþ c [76,77], with r≡
jrj being the heavy quark-antiquark separation distance.
Here, σ is string tension [78], and c is an additive
calibration parameter. This potential captures both the
short-range Coulomb interaction and long-range color
confinement. In the thermal bath without a magnetic field,
many phenomenological HQ potential descriptions have
been proposed to investigate the in-medium properties of
heavy quarkonium states [36–38,46,79]. Given the success
of these potential models, we proceed to explore how a
magnetic field influences in-medium heavy quark-anti-
quark interactions. To achieve this, we adopt the approach
reported in Refs. [46,47], where the in-medium HQ
potential is defined via the Fourier transform of the physical

11 (time-ordered) component of the temporal effective
gluon propagator in the static limit (for brevity, the super-
script 00 will hereinafter be omitted):

VðrÞ ¼ −CFg2s

Z
d3q
ð2πÞ3 ðe

iq·r − 1Þ

× ½G�
11ðq0 → 0; qÞ þG�String

11 ðq0 → 0; qÞ�: ð64Þ

Here, G�
11 is the temporal component of the 11 part of the

HTL resummed gluon propagator, it can be decomposed
as G�

11 ¼ 1
2
ðG�

R þG�
A þ G�

FÞ. The G�String
11 ¼ 1

2
ðG�String

R þ
G�String

A þG�String
F Þ is a phenomenological gluon propagator

to account for the nonperturbative effects arising from
dimension-two gluon condensates [46–48]. Since the rota-
tional symmetry is broken by themagnetic field,without loss
of generality, we take r ¼ ðρ; 0; zÞ and the three-momentum
transfer is written as q ¼ jqjðsin θ cosϕ; sin θ sinϕ; cos θÞ.
Then, the real part and imaginary part of HQ potential in
Eq. (64) can be computed as

ReVðρ; zÞ ¼ −
CFαs
2π

Z
∞

0

dq2⊥
Z

dqz½J0ðq⊥ρÞeiqzz − 1�

× ½ReG�
R þ ReG�String

R �; ð65Þ

ImVðρ; zÞ ¼ −
CFαs
4π

Z
∞

0

dq2⊥
Z

dqz½J0ðq⊥ρÞeiqzz − 1�

×
4T
q0

½ImG�
R þ ImG�String

R �; ð66Þ

where the azimuthal integration gives rise to a first kind of
Bessel function JnðxÞ. Guided by the simple prescription
outlined in Refs. [46–48], a minimal extension of HTL
resummed retarded/advanced gluon propagator, a nonper-
turbative gluon propagator induced by the dimension-two
gluon condensates is defined as [46,47]

G�String
R=A ¼ m2

G

ðq2 þ Π00
R=AÞ2

; ð67Þ

where m2
G ¼ 2σ=ðCFαsÞ is a dimensionful constant related

to the dimension-two gluon condensates.

A. Real part of HQ potential

According to Eq. (67), the real part of the nonperturba-
tive effective retarded gluon propagator is given as

ReG�String
R ¼ m2

G

ðq2 þ ReΠ00
R Þ2 : ð68Þ

We expect the longitudinal bulk viscous correction also to
impact the nonperturbative effective gluon propagator.
Inserting Eqs. (38) and (68) into Eq. (65), and removing
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the asymmetry factor expð −q2⊥
2jqfeBjÞ from the denominator of

Eq. (68), the real part of in-medium HQ potential in the
magnetized viscous QGP medium finally is computed as

ReVðrÞ ¼ −CFαs

�
e−r̂

r
þ m̃D

�
−

σ

m̃D
ðe−r̂ − 1Þ; ð69Þ

where r̂ ¼ m̃Dr. This result has the same form as the result
under zero magnetic field [46] except for the Debye mass. In
the small distance limit, r → 0, it approaches the Cornell
potential. It is noteworthy that the lattice QCD studies in
Refs. [34,35] have indicatedReV in themagnetic field at zero
temperature is anisotropic, and the authors proposed an
effective phenomenological description of the ReV by using
the Cornell potential that incorporates angular dependent
strong coupling constant and string tension: αðθÞ¼ᾱsð1−P

n¼1c
α
2ncosð2nθÞÞ and σðθÞ ¼ σ̄ð1 −Pn¼1 c

σ
2n cosð2nθÞÞ.

Here, θ denotes the angle between the quark-antiquark
separation and the magnetic field direction, and the param-
eters cα2n and cσ2n are determined by lattice data at T ¼ 0.
Consequently, by utilizing the angular-dependent strong
coupling constant αsðθÞ and string tension σðθÞ from
Refs. [34,35], the in-medium real part of the potential is
no longer isotropic, which will be discussed later.

B. Imaginary part of HQ potential

In addition to the color screening effect preventing the
formation of quarkonium states, the imaginary part of the
HQ potential ImV can also trigger the dissociation and
suppression of in-medium quarkonium. The ImV at least
comes from two distinct mechanisms [67,69,80]: gluodis-
sociation (dissociation of quarkonium by absorbing a
timelike gluon from thermal bath) or called the singlet
to octet thermal breaking-up and inelastic parton scattering
(dissociation of quarkonium by scattering with gluons and
light quarks in the medium) or called Landau damping. In
this paper, we focus on the Landau damping phenomenon
which relates to the imaginary part of the gluon self-energy
in a spacelike region. Extracting the imaginary part of the
potential in lattice QCD simulations is challenging and, as
far as we know, there are currently no lattice results
available regarding ImV in the presence of a magnetic
field. Therefore, we employ the potential model for
phenomenological research to gain a stable qualitative
understanding. By mimicking the q0 dependence of the
HTL resummed gluon propagator, the imaginary part of the
effective retarded gluon propagator induced by dimension-
two gluon condensates is specified as

ImG�String
R ¼ −

ImΠ00
R

ðq2 þ ReΠ00
R Þ2

2m2
G

q2 þ ReΠ00
R
: ð70Þ

Since the imaginary parts of the retarded gluon self-energy
from LLL quark loop, HLL quark loop, and gluon loop

presented in Eq. (42) have strikingly different forms, we
will separately discuss these corresponding imaginary parts
of the potential to better clarify their respective features.

1. Imaginary part of HQ potential related to gluon-loop
contribution of gluon self-energy

Inserting Eq. (42) into Eq. (70) and utilizing Eq. (66), we
can first get the imaginary part of the HQ potential related
to the gluon-loop contribution of the gluon self-energy,
denoted as ImVgluon, which is computed as

ImVgluonðrÞ¼CFαs

Z
d3q
2π2

ðeiq·r−1Þ2T
q0

×

�
ImΠ00

R;gluon

ðq2þReΠ00
R Þ2þ

2m2
GImΠ00

R;gluon

ðq2þReΠ00
R Þ3

�
; ð71Þ

¼ CFαs

Z
d3q
2π2

ðeiq·r − 1Þ

×

�
πTm2

D;g

jqjðq2 þ m̃2
DÞ2

þ 2πTm2
Gm

2
D;g

jqjðq2 þ m̃2
DÞ3
�

¼ −
CFαsTm2

D;g

m̃2
D

ϕ2ðr̂Þ −
4σTm2

D;g

m̃4
D

ϕ3ðr̂Þ; ð72Þ

where the longitudinal bulk viscous correction is encoded
in the Debye mass, the functions ϕ2 and ϕ3 are defined by

the formula ϕðxÞn ¼ 2
R∞
0

zdz
ðz2þ1Þn ½1 −

sinðzxÞ
zx �.

2. Imaginary part of HQ potential related to
LLL quark-loop contribution of gluon self-energy

Next,we shall study the imaginary part of theHQpotential
related to the quark-loop contribution of gluon self-energy.
We first study the imaginary part of the potential related to the
LLL quark-loop contribution of the gluon self-energy
(ImΠ00

R;quark;T¼0;n¼0), denoted as ImVLLLquark, which is usu-
ally overlooked in previous studies [38,39]. By incorporating
the second term of Eq. (42) into Eq. (70), and utilizing
Eq. (66), we can get

ImVLLLquarkðρÞ

¼ CFαs

Z
d3q
2π2

ðeiq·r − 1Þ 2T
q0

×

�
ImΠ00

R;quark;T¼0;n¼0

ðq2 þ ReΠ00
R Þ2 þ 2m2

GImΠ00
R;quark;T¼0;n¼0

ðq2 þ ReΠ00
R Þ3

�
ð73Þ

¼ CFαs
2π

Z
∞

0

dx
Z

dqzðJ0ð
ffiffiffi
x

p
ρÞeiqzz − 1Þ;

×

P
fπsfT

ðq2z þ xþ m̃2
DÞ2
�
1þ 2m2

G

q2z þ xþ m̃2
D

�
× ½δðqzÞ þ δð−qzÞ�; ð74Þ
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¼ CFαs
π

Z
∞

0

dxðJ0ð
ffiffiffi
x

p
ρÞ − 1Þ

×

P
fπsfðxÞT

ðxþ m̃2
DÞ2

�
1þ 2m2

G

xþ m̃2
D

�
; ð75Þ

with x ¼ q2⊥ for convenience. We note that when the light
quarks occupy the LLL, the presence of the delta function
δð�qzÞ results in the heavy quark-antiquark dipole axis
being aligned only in the plane perpendicular to themagnetic
field direction.

3. Imaginary part of HQ potential related to HLL quark-
loop contribution of gluon self-energy

By inserting the first term of Eq. (42) into Eq. (70) and
utilizingEq. (66), we can obtain the imaginary part of theHQ
potential related to the HLL quark-loop contribution of the
gluon self-energy (ImΠ00

R;quark;T≠0;n≥1), denoted as
ImVHLLquark. Because of the presence of factor jqzjEf

qz=2;n

in the denominator of Eq. (42), we need to carefully consider
the longitudinal and transverse momentum components
during the Fourier transform; the ImVHLLquark can be
computed as

ImVHLLquarkðρ; zÞ

¼ CFαs

Z
d3q
2π2

ðeiq·r − 1Þ 2T
q0

×

�
ImΠ00

R;quark;T≠0;n≥1

ðq2 þ ReΠ00
R Þ2 þ 2m2

GImΠ00
R;quark;T≠0;n≥1

ðq2 þ ReΠ00
R Þ3

�
; ð76Þ

¼CFαs
2π

Z
∞

0

dx
Z

dqzðJ0ð
ffiffiffi
x

p
ρÞeiqzz−1Þ

×

P
f

P∞
n¼1 4πsfm

2
f;nHf;n

ðq2z þxþ m̃2
DÞ2jqzjEf

qz=2;n

�
1þ 2m2

G

q2z þxþ m̃2
D

�
: ð77Þ

Finally, the imaginary part of the potential related to the total
quark-loop contributions of the gluon self-energy is given as

ImVquark ¼ ImVLLLquark þ ImVHLLquark: ð78Þ

The imaginary part of the total HQpotential can bewritten as

ImV ¼ ImVquark þ ImVgluon: ð79Þ

C. Thermal decay widths of quarkonium states

The presence of the imaginary part of the HQ potential
indicates that the heavy quarkonium has a medium-induced
decay width, and therefore a finite lifetime. By applying
the obtained HQ potential into the time-independent
Schrödinger equation, we can estimate the thermal decay

widths of quarkonium states using the simple Coulomb
wave functions jΨ0i [81],

Γdecay ¼ −hΨ0jImVðr;T; B; ζk=sÞjΨ0i: ð80Þ

After performing the integration in coordinate space by
folding with probability density, the thermal decay widths
of quarkonium states are given by

Γdecay ¼ −
Z

d3rðhrjΨ0iÞ2ImVðr;T; B; ζk=sÞ: ð81Þ

We are only interested in the ground states of charmonium
J=ψð1SÞ and bottomonium ϒð1SÞ, the associated wave
function is hrj1Si¼ 1ffiffiffiffiffiffi

πa3
0

p e−r=a0 , where a0¼2=ðCFmHQαsÞ.
In the numerical calculation, the charm and bottom masses
are taken as mc ¼ 1.275 GeV and mb ¼ 4.66 GeV,
respectively.

VI. HQ MOMENTUM DIFFUSION COEFFICIENT
IN MAGNETIZED VISCOUS QGP MEDIUM

A. Formalism

As mentioned in the Introduction, a crucial input
parameter in the Langevin transport equation is the HQ
momentum diffusion coefficient κ, which encodes the
interaction information between heavy quark and the
QGP medium [12]. Because of the breaking of the rota-
tional symmetry induced by the magnetic field, it is
necessary to separate longitudinal (denoted as k) and
transverse (denoted as ⊥) HQ momentum diffusion coef-
ficients. These can be expressed as follows:

κk ¼
Z

d3q
dΓðqÞ
d3q

q2z ; κ⊥ ¼ 1

2

Z
d3q

dΓðqÞ
d3q

q2⊥; ð82Þ

where dΓ=d3q represents the HQ scattering ratewith thermal
partons per unit volume of momentum transfer q. For the
slowly moving heavy quarks, the dominant interactions in
the magnetized QGP medium arise from Coulomb scatter-
ings, i.e., HQðpÞ þ q=q̄=gðkÞ → HQðp0Þ þ q=q̄=gðk0Þ (t
channel), as depicted in the upper panel of Fig. 2. The general
expression for thedifferentialHQscattering ratewith thermal
light quarks and gluons is given by

dΓ
d3q

¼ dΓquark

d3q
þ dΓgluon

d3q
: ð83Þ

In leading order perturbative QCD calculations, the HQ
scattering rate the QGP constituents via one-gluon exchange
can be derived by evaluating the imaginary part of the HQ
self-energy with the effective gluon propagator in the space-
like region [29,82], as illustrated in Fig. 2. As a consequence,
we need to consider the imaginary part of the effective
gluon propagator, i.e., Eq. (42). Following Ref. [29], the
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contribution from perturbative QCD interactions to the HQ
scattering rate with light quarks in the magnetic field is
computed as

dΓquark
HTL

d3q
¼ dΓLLLquark

HTL

d3q
þ dΓHLLquark

HTL

d3q
; ð84Þ

¼ CHQ
R g2s
ð2πÞ3 lim

q0→0

2T
q0

�
ImΠ00

R;quark;T¼0;n¼0

ðq2 þ ReΠ00
R Þ2

þ ImΠ00
R;quark;T≠0;n≥1

ðq2 þ ReΠ00
R Þ2

�
; ð85Þ

whereCHQ
R ¼ N2

c−1
2Nc

is the Casimir factor of heavy quark. The
first (second) term in Eqs. (84) and (85) corresponds to the
HQ scattering rate with the thermal LLL (HLL) quarks.
Utilizing the nonperturbative term of the effective gluon
propagator in Eq. (70), we can also obtain the contribution
from the nonperturbative interactions to the HQ scattering
rate with thermal LLL (HLL) quarks,

dΓLLLquark
String

d3q
¼ dΓLLLquark

HTL

d3q
2m2

G

q2 þ ReΠ00
R
; ð86Þ

dΓHLLquark
String

d3q
¼ dΓHLLquark

HTL

d3q
2m2

G

q2 þ ReΠ00
R
: ð87Þ

In the magnetic field, the gluon-loop contribution to the
imaginary part of the retarded gluon self-energy (ImΠ00

R;gluon)
remains the same as in the absence of a magnetic field. The
contribution from the perturbative QCD interactions to the
HQ scattering rate with thermal gluons in the magnetic field
has the same form as that in the zero magnetic field [12],
except for the screenedCoulomb amplitude, and it is given as

dΓgluon
HTL

d3q
¼ 4α2sNcC

HQ
R

Z
d3k
ð2πÞ3 δðjkj − jk − qjÞ

×
1

ðq2 þ ReΠ00
R Þ2 ð1þ cos2θkk0 Þ

× fBðjkjÞð1þ fBðjk0jÞÞ: ð88Þ

Accordingly, the contribution from the nonperturbative
interactions to the HQ scattering rate with thermal gluons
is given as

dΓgluon
String

d3q
¼ dΓgluon

HTL

d3q
2m2

G

q2 þ ReΠ00
R
: ð89Þ

B. Quark contribution to HQ momentum
diffusion coefficient

1. LLL quark contribution to HQ momentum
diffusion coefficient

By incorporating the first term from Eq. (85) into
Eq. (82), we can investigate the magnetic field effect
and longitudinal bulk viscous correction on the LLL quark
contribution to the HQ momentum diffusion coefficient. At
the perturbative level, the LLL quark-loop contribution to
the imaginary part of gluon self-energy arises only from the
vacuum component (ImΠ00

R;quark;T¼0;n¼0), and the delta
function in Eq. (15) results in a nonzero transverse HQ
momentum diffusion coefficient from the LLL quark
contribution, denoted as κLLLquark⊥;HTL , which is computed as

κLLLquark⊥;HTL ¼ 1

2

Z
d3q

dΓLLLquark
HTL

d3q
q2⊥; ð90Þ

¼ 1

2
αsC

HQ
R T

Z
∞

0

dx

P
fxsfðxÞ

ðxþ m̃2
DÞ2

: ð91Þ

Inserting Eq. (86) into Eq. (82), the LLL quark contribution
to the nonperturbative term of transverse HQ momentum
diffusion coefficient, denoted as κLLLquark⊥;String , is computed as

κLLLquark⊥;String ¼ 1

2

Z
d3q

dΓLLLquark
String

d3q
q2⊥; ð92Þ

¼ 4σ

2
T
Z

∞

0

dx

P
fxsfðxÞ

ðxþ m̃2
DÞ3

: ð93Þ

The physical explanation behind Eqs. (90)–(93) is that, due
to the chirality conservation, the scattering process between
heavy quarks and the LLL quarks is forbidden along the
magnetic field direction; as a result, the LLL quarks will
pass through the heavy quarks without transferring momen-
tum. If the heavy quarks are moving along the direction

FIG. 2. Upper panel: the t-channel scatterings between heavy
quarks (blue lines) and thermal partons (light quarks and gluons)
from QGP medium. Lower panel: the corresponding squared
scattering amplitude is directly related to the imaginary part of the
HQ self-energy with the effective propagator of the exchanged
gluon between a heavy quark and a thermal parton from the QGP
medium. Both quark-loop and gluon-loop contributions to the
gluon self-energy are considered in the computation of the
effective gluon propagator. The blue blob denotes the HTL
resummation.
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perpendicular to the magnetic field, the transverse HQ
diffusion coefficient becomes nonzero.

2. HLL quark contribution to HQ momentum
diffusion coefficient

Next, we consider the HLL quark contribution to the HQ
momentum diffusion coefficient. By inserting the second
term fromEq. (85) into Eq. (82), the HLL quark contribution
to the perturbative term of transverse HQ momentum
diffusion coefficient, denoted as κHLLquark⊥;HTL , is computed as

κHLLquark⊥;HTL ¼ 1

2

Z
d3q

dΓHLLquark
HTL

d3q
q2⊥; ð94Þ

¼
X
f

X∞
n¼1

CHQ
R αs
2

Z
∞

0

dxm2
f;nsfðxÞ

×
Z

dqz
2

jqzjEf
qz=2;n

xHf;nðT; eB; qzÞ
½q2z þ xþ m̃2

D�2
: ð95Þ

Similarly, by incorporating Eq. (87) into Eq. (82), the HLL
quark contribution to the nonperturbative term of transverse
HQmomentum diffusion coefficient, denoted as κHLLquark⊥;String , is
computed as

κHLLquark⊥;String ¼ 1

2

Z
d3q

dΓHLLquark
String

d3q
q2⊥; ð96Þ

¼
X
f

X∞
n¼1

4σ

2

Z
∞

0

dxm2
f;nsfðxÞ

×
Z

dqz
2

jqzjEf
qz=2;n

xHf;nðT; eB; qzÞ
½q2z þ xþ m̃2

D�3
: ð97Þ

Beyond the LLL approximation, theHLL quark contribution
to the longitudinal HQ momentum diffusion coefficient is
nonzero, and its perturbative term can be written as

κHLLquarkk;HTL ¼
Z

d3q
dΓHLLquark

HTL

d3q
q2z ; ð98Þ

¼
X
f

X∞
n¼1

CHQ
R αs

Z
∞

0

dxm2
f;nsfðxÞ

×
Z

dqz
q2z

jqzjEf
qz=2;n

Hf;nðT; eB; qzÞ
½q2z þ xþ m̃2

D�2
: ð99Þ

The HLL quark contribution to the nonperturbative term of
longitudinalHQmomentumdiffusion coefficient, denoted as
κHLLquarkk;String , is also computed as

κHLLquarkk;String ¼
Z

d3q
dΓHLLquark

String

d3q
q2z ; ð100Þ

¼
X
f

X∞
n¼1

4σ

Z
∞

0

dxm2
f;nsfðxÞ

×
Z

dqz
q2z

jqzjEf
qz=2;n

Hf;nðT; eB; qzÞ
½q2z þ xþ m̃2

D�3
: ð101Þ

C. Gluon contribution to HQ momentum
diffusion coefficient

Compared to the quark contribution, the estimation of the
thermal gluon contribution to the HQ momentum diffusion
coefficient is relatively straightforward, as the effect of
magnetic field and the longitudinal bulk viscous correction
are only incorporated through the screened Coulomb ampli-
tude in Eq. (88). Therefore, utilizing the relation δðk−jk−
qjÞ¼jqj−1δ½cosθkq−jqj=ð2jkjÞ�Θðjkj−jqj=2Þ and cos θkk0 ¼
1 − jqj2=ð2jkj2Þ into Eq. (88), the gluon contribution to the
perturbative term of longitudinal or transverse HQ momen-
tum diffusion coefficient, denoted as κgluonk=⊥;HTL, can bewritten

as follows:

κgluonk=⊥;HTL ¼ 1

3

Z
d3q

dΓgluon
HTL

d3q
q2; ð102Þ

¼ 4

3π
α2sNcC

HQ
R

Z
∞

0

jkj2djkj
Z

2jkj

0

jqjdjqjf0BðjkjÞ

× ð1þ f0BðjkjÞÞ
jqj2

ðq2 þ m̃2
DÞ3

×

�
2 −

jqj2
jkj2 þ

jqj4
4jkj4

�
: ð103Þ

By inserting Eq. (89) into Eq. (82), the gluon contribu-
tion to the nonperturbative term of longitudinal or trans-
verse HQ momentum diffusion coefficient, denoted as
κgluonk=⊥;String, can also be computed as

κgluonk=⊥;String ¼
1

3

Z
d3q

dΓgluon
String

d3q
q2; ð104Þ

¼ 16σ

3
παsNc

Z
∞

0

jkj2djkj
Z

2jkj

0

jqjdjqjf0BðjkjÞ

× ð1þ f0BðjkjÞÞ
jqj2

ðq2 þ m̃2
DÞ3

×

�
2 −

jqj2
jkj2 þ

jqj4
4jkj4

�
: ð105Þ

Here, we employ q2z ¼ jqj2=3 due to the approximated
rotational symmetry for thermal gluons. Later, we would
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see that the temperature-dependent form of string tension
(σ) plays a pivotal role in determining the thermal evolution
of the nonperturbative contribution to the HQ momentum
diffusion coefficient.

VII. NUMERICAL RESULTS AND DISCUSSIONS

In this work, all numerical calculations are performed in
the massless limit, i.e., mu ¼ md ¼ ms ¼ 0 at zero chemi-
cal potential. We first focus on the characteristics of the
Debye mass, which can help us better understand the
qualitative behaviors of both HQ potential and HQ
momentum diffusion coefficient. In the left panel of
Fig. 3, we illustrate the temperature dependence of squared
Debye mass m2

D at a fixed magnetic field eB ¼ 15m2
π for

different numbers of the maximum Landau levels (nmax).
Consistent with most pioneering studies, we observe that
the screening effect of the QGP medium increases with the
temperature. The increase of nmax can induce a decrease in
screening length (or equivalently, an increase in the

screening mass), which accelerates the dissociation of
the quarkonia states. When the Landau levels exceed 50,
subsequent increases in nmax have an invisible impact on
m2

D. To further investigate the longitudinal bulk viscous
correction to both HQ potential and HQ momentum
diffusion coefficient, we consider several scaled longi-
tudinal bulk viscosities (ζk=s ¼ 0, 0.03, 0.06). From the
middle panel of Fig. 3, we observe that the longitudinal
bulk viscous correction can suppress the color screening
effect. Furthermore, as the magnetic field increases, the
longitudinal bulk viscous correction to the Debye mass
becomes more pronounced, as demonstrated in the right
panel of Fig. 3.

A. Results of HQ potential

By incorporating the HTL resummed gluon propagator
and the gluon propagator induced by dimension-two gluon
condensates, we investigate the characteristics of in-
medium HQ potential in the magnetic field. Because of
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FIG. 3. Left panel: temperature (T) dependence of squared Debye mass m2
D for different numbers of maximum Landau level (nmax) at

eB ¼ 15m2
π . Middle panel: temperature dependence of m2

D for different values of scaled longitudinal bulk viscosities (ζk=s) at eB ¼
15m2

π and nmax ¼ 3. Right panel: the variation of m2
D with magnetic field (eB) for different values of ζk=s at fixed T ¼ 0.2 GeV

and nmax ¼ 3.
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FIG. 4. Left panel: the variation of the real part of the HQ potential ReV with quark-antiquark separation distance (r) for different
numbers of maximum Landau level (nmax) and different temperatures (T) at eB ¼ 15m2

π . Middle panel: the variation of the ReV with r
for different scaled longitudinal bulk viscosities (ζk=s)and different magnetic fields (eB) at fixed T ¼ 0.2 GeV and nmax ¼ 3. Right
panel: the variation of the ReV with r for several values of the angle (θ) between the quark-antiquark separation and the magnetic field
direction, where the parametrized forms of the angular-dependent strong coupling constant and string tension are quoted from Ref. [34].
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uncertainty in the exact temperature, magnetic field, and
angular-dependent form of string tension (σ), we first
employ a constant σ, i.e., σ ¼ 0.44 GeV2 [83], for sim-
plicity. In the left panel of Fig. 4, we present the variation of
the real part of the potential, ReV, with respect to the quark-
antiquark separation distance (r) for different numbers of
maximum Landau level (nmax). The numerical calculation
is performed at T ¼ 0.2 GeV and eB ¼ 15m2

π . We see that
the ReV flattens with increasing r. Neglecting the asym-
metry factor in Eq. (68), there is no additional source of
anisotropy in the ReV apart from the string tension σ and
strong coupling constant αs. Furthermore, as both nmax and
T increase, ReV decreases; as a consequence, the binding
energy of heavy quark bound states decreases, thereby the
formation of quarkonia states is suppressed. The longi-
tudinal bulk viscous correction significantly depresses the
screening effect, thereby enhancing the ReV as shown in
the middle panel of Fig. 4. We also attempt to utilize the
parametrization of angular-dependent strong coupling con-
stant αsðθÞ and string tension σðθÞ proposed in Ref. [34], to
explore the anisotropic response of the ReV to the magnetic
field. As depicted in the right panel of Fig. 4, the ReV
exhibits anisotropic behavior. In particular, at large sepa-
ration distances, the ReV when the quark-antiquark dipole
axis is parallel to the magnetic field direction (i.e., θ ¼ 0) is
smaller than when it is perpendicular to the magnetic field
direction, (i.e., θ ¼ π=2).
In the left panel of Fig. 5 we present the variation of the

imaginary part of the HQ potential related to gluon-loop
contribution of the gluon self-energy, ImVgluon, with respect
to quark-antiquark separation distances (r) for different
numbers of maximum Landau level (nmax) at eB ¼ 15m2

π

and T ¼ 0.2 GeV. It is observed that the magnitude of
ImVgluon decreases with increasing nmax, which qualita-
tively agrees with the studies of the HQ potential using

dielectric permittivity [39].1 Since the longitudinal bulk
viscous correction to the ImVgluon only manifests through
the Debye mass, increasing ζk=s enhances the magnitude of
ImVgluon, as depicted in the right panel of Fig. 5.
Different from the original argument in Ref. [38], which

states that the imaginary part of the HQ potential in the LLL
approximation completely originates from the gluon-loop
contribution of the gluon self-energy and exhibits isotropy,
we observe in the left panel of Fig. 6 a nonzero imaginary
part of the potential related to the LLL quark-loop con-
tribution of the gluon self-energy, ImVLLLquark, when the
heavy quark-antiquark dipole is aligned orthogonal to
magnetic field direction, i.e., r ¼ ðρ ≠ 0; z ¼ 0Þ. As the
numbers of maximum Landau level (nmax) increase, the
magnitude of ImVLLLquark decreases. In the middle panel of
Fig. 6, we present the variation of the imaginary part of the
HQ potential related to HLL quark-loop contribution of the
gluon self-energy, ImVHLLquark, with respect to the quark-
antiquark separation distances for various nmax. We con-
sider two special cases: first, the heavy quark-antiquark
separation is parallel to the magnetic field direction, i.e.,
r ¼ ðρ ¼ 0; z ≠ 0Þ, and second, it is perpendicular to the
magnetic field direction, i.e., r ¼ ðρ ≠ 0; z ¼ 0Þ. As shown
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FIG. 5. Left panel: the variation of the imaginary part of the HQ potential related to gluon-loop contribution of the gluon self-energy
ImVgluon with quark-antiquark separation distance (r) for different numbers of maximum Landau level (nmax) at fixed T ¼ 0.2 GeV and
eB ¼ 15m2

π . Right panel: the variation of the ImVgluon with r for different scaled longitudinal bulk viscosities (ζk=s) and different
magnetic fields at fixed T ¼ 0.2 GeV.

1In the appendix of Ref. [39], the result of ImVgluon should be
corrected by multiplying an overall factor m2

D;g=m
2
D instead of

just replacing the Debye mass in the expression of ImVgluon for
the zero magnetic field with a magnetic field-dependent Debye
mass. Consequently, the expression of ImVgluon in a nonzero
magnetic field should be rewritten as

ImVgluonðrÞ¼−CFαsT
m2

D;g

m2
D
ϕ2ðmDrÞ−

2σTm2
D;g

m4
D

χðmDrÞ; ð106Þ

with χðxÞ ¼ 2
R
∞
0 dz 1

zðz2þ1Þ2 ð1 −
sinðzxÞ
zx Þ.
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in middle panel of Fig. 6, the ImVHLLquark for r ¼ ðρ ≠
0; z ¼ 0Þ at T ¼ 0.2 GeV is steeper than that for
r ¼ ðρ ¼ 0; z ≠ 0Þ. As nmax increases, there is an overall
enhancement in the magnitude of ImVHLLquark. When we
combine ImVLLLquark and ImVHLLquark, as shown in the
right panel of Fig. 6, we observe that when the quark-
antiquark dipole axis is perpendicular to magnetic field
direction, i.e., r ¼ ðρ ≠ 0; z ¼ 0Þ, the imaginary part of HQ
potential associated with the total quark-loop contributions
to the gluon self-energy, denoted as ImVquark, increases in
magnitude as nmax increases.
From the left and middle panels of Fig. 7, we observe

that the longitudinal bulk viscous correction enhances the
magnitude of ImVLLLquark whereas suppresses the magni-
tude of ImVHLLquark. In particular, when the heavy quark-
antiquark dipole axis is perpendicular to the magnetic field
direction, i.e., r ¼ ðρ ≠ 0; z ¼ 0Þ, the increasing trend of
jImVLLLquarkj with ζk=s dominates over the decreasing
trend of jImVHLLquarkj with ζk=s. Consequently, at large
separation distances, jImVquarkj becomes a notably increas-
ing function of ζk, as shown in the right panel of Fig. 7.

Except for the two special cases mentioned above, the left
panel of Fig. 8 shows a spatial contour plot of the imaginary
part of the HQ potential related to HLL quark-loop con-
tribution of gluon self-energy, ImVHLLquark. We observe that,
although the strong coupling constant and string tension are
angular independent, the ImVHLLquark displays significant
anisotropy and elongates along the magnetic field direction.
When the contribution from the ImVLLLquark is taken into
account, the imaginary part of HQ potential related to total
quark-loop contributions of the gluon self-energy, denoted as
ImVquark ¼ ImVLLLquark þ ImVHLLquark, becomes more
anisotropic, as illustrated in the middle panel of Fig. 8.
Furthermore, we present a spatial contour plot of the total
imaginary part of HQ potential, ImV ¼ ImVquarkþ
ImVgluon, in Fig. 8. Compared to the shape of the
ImVquark, the anisotropy degree of the ImV can beweakened
due to the significant magnitude of the isotropic ImVgluon.
Note that the anisotropic feature of the ImV has also been
observed in the previous computations [39]. In Ref. [39], the
gluon self-energy was computed in imaginary time formal-
ism of thermal field theory and the stringlike term of the ImV
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FIG. 6. Left panel: the variation of the imaginary part of the HQ potential related to the LLL quark-loop contribution of the gluon self-
energy ImVLLLquark with respect to quark-antiquark separation distances for different numbers of maximum Landau level (nmax). Middle
panel: the variation of the imaginary part of the HQ potential related to the HLL quark-loop contribution of the gluon self-energy
ImVHLLquark with separation distances for different nmax, where the solid lines and dotted lines represent the cases for the quark-antiquark
separations perpendicular (ρ ≠ 0, z ¼ 0) and parallel (ρ ¼ 0, z ≠ 0) to the magnetic field direction, respectively. Right panel: the
variation of the imaginary part of the HQ potential related to total quark-loop contributions of the gluon self-energy ImVquark ¼
ImVLLLquark þ ImVHLLquark with quark-antiquark separation distances for different nmax in the case of ρ ≠ 0, z ¼ 0. All of the
computations are performed at fixed T ¼ 0.2 GeV and eB ¼ 15m2

π .
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FIG. 7. Similar to Fig. 6 but for different scaled longitudinal bulk viscosities (ζk=s) at fixed nmax ¼ 3.
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was constructed by using the dielectric permittivity encoding
the effects of the medium, although the contribution from
ImVLLLquark was overlooked in that computation. It is worth
mentioning that for a fixed separation distance and temper-
ature, the magnetic field dependence of ImVLLLquark is
opposite to that of ImVHLLquark. As the magnetic field
increases, an increasing number of light quarks occupy
the LLL. When the magnetic field is strong enough and
the hierarchy of scale T2 ≪ eB is satisfied, the contribution
from ImVgluon can be neglected. Consequently, the
anisotropy of ImV arises solely from the LLL quark-loop
contribution to the gluon self-energy.

B. Results of thermal decay widths
of quarkonium states

Utilizing the derived ImV, we can further evaluate
thermal decay widths for heavy quarkonia. Since the spatial
anisotropy of ImV is integrated into the estimation of
thermal decay widths, we can compare the thermal widths

with and without taking into account the contribution from
ImVquark, to clarify how the magnetic field-induced
anisotropy effect affects thermal decay widths. In Fig. 9,
we show the thermal decay widths for charmonium J=Ψ
and bottomonium ϒ as functions of the magnetic field at
T ¼ 0.2 GeV and T ¼ 0.25 GeV for nmax ¼ 3. We observe
that thermal decay widths increase with increasing temper-
ature, and the thermal decay width for ϒ is quantitatively
smaller than that for J=Ψ. From Fig. 9, we observe that, if
excluding the contribution from the ImVquark in the esti-
mation, the thermal decay widths for both J=Ψ andϒ states
decrease with increasing magnetic field. After incorporat-
ing the contribution from the ImVquark, the anisotropy effect
becomes more pronounced as the magnetic field increases,
and the decreasing trend of thermal decay widths of
quarkonia is largely mitigated. As a result, the variation
of thermal decay widths for J=Ψ and ϒ states with the
magnetic field becomes inappreciable. Furthermore, the
longitudinal bulk viscous correction significantly broadens
the thermal widths. This broadening arises from the
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(eB) at different scaled longitudinal bulk viscosities (ζk=s) and different temperatures (T). The magenta lines are the thermal decay
width results without considering the imaginary part of the HQ potential from the quark-loop contribution.

RESPONSES OF QUARK-ANTIQUARK INTERACTIONS AND … PHYS. REV. D 109, 074034 (2024)

074034-19



dominant contribution of ImVgluonðr; ζk=sÞ, which con-
trasts with the decreasing trend of m2

Dðζk=sÞ observed
in Fig. 3.

C. Results of HQ momentum diffusion coefficients

We proceed to explore the impacts of temperature,
magnetic field, HLL effect, and longitudinal bulk viscous
correction on the HQ momentum diffusion coefficients.
First, we display the temperature dependence of the quark
contribution to the perturbative term of the scaled longi-
tudinal and transverse HQ momentum diffusion coeffi-
cients at eB ¼ 15m2

π for different numbers of maximum
Landau level. As shown in Fig. 10, the LLL quark
contribution to the perturbative term of scaled transverse
HQ momentum diffusion coefficient, κLLLquark⊥;HTL =T3, the
HLL quark contribution to the perturbative term of
scaled transverse HQ momentum diffusion coefficient,
κHLLquark⊥;HTL =T3, as well as the HLL quark contribution to the
perturbative term of scaled longitudinal HQ momentum
diffusion coefficient, κHLLquarkk;HTL =T3, are decreasing functions

of temperature. At low temperatures, the κLLLquark⊥;HTL =T3 is

larger than κHLLquark⊥;HTL =T3. As nmax increases, the κ
HLLquark
⊥;HTL =T3

has a pronounced enhancement, while the κLLLquark⊥;HTL =T3

undergoes slight suppression. It is noted that the HLL effect
on the HQ momentum diffusion coefficient has also been
studied inRef. [32]. The obtained results indicate that there is
no quark contribution to the longitudinal HQ momentum
diffusion coefficient beyond the LLL approximation,
which is strikingly different from our results. The discrep-
ancy can be understood from the following two aspects.
First, the expression for the HQ scattering rate with the
HLL quarks in Ref. [32] still utilized the form for the HQ
scattering rate with the LLL quarks. In contrast, our
Eqs. (84) and (85) clearly show that the HQ scattering
rate with the HLL quarks is related to the imaginary part of
retarded gluon self-energy from the HLL quark-loop
contribution, ImΠ00

R;quark;T≠0;n≥1, rather than the LLL

quark-loop contribution, ImΠ00
R;quark;T¼0;n¼0. Second, dif-

ferent from the estimation in Ref. [32], where only the
quark-loop contribution to the Debye mass is considered,
our work incorporates both gluon-loop and quark-loop
contributions to the Debye mass. From Fig. 11, we can
observe that as ζk=s increases, both κHLLquark⊥;HTL =T3 and

κHLLquarkHTL =T3 decrease at low temperatures, whereas the
κLLLquark⊥;HTL =T3 slightly increases.
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FIG. 10. The LLL quark contribution to the perturbative term of scaled transverse HQ momentum diffusion coefficient κLLLquark⊥;HTL =T3

(left panel), the HLL quark contribution to the perturbative term of scaled transverse HQ momentum diffusion coefficient κHLLquark⊥;HTL =T3

(middle panel), as well as the HLL quark contribution to the perturbative term of scaled longitudinal HQ momentum diffusion
coefficient κHLLquarkk;HTL =T3 (right panel) as functions of T for different nmax at eB ¼ 15m2

π .
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FIG. 11. Similar to Fig. 10 but for different scaled longitudinal bulk viscosities (ζk=s) at fixed nmax ¼ 3.
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In the above computation of the HQ momentum dif-
fusion coefficient, only the contribution from perturbative
QCD interactions is considered, we also attempt to explore
the thermal behavior of the nonperturbative term of the
heavy quark momentum diffusion coefficient. In Eqs. (93),
(97), (101), and (105), the string tension, which in principle
decreases with increasing temperature, plays a crucial role
in determining the temperature dependence of nonpertur-
bative term of the HQ momentum diffusion coefficient.
Inspired by Ref. [79], we parametrize the temperature
dependent σ in this work as σðTÞ=σðT1Þ ¼ aT2

1=T
2, where

the a is temporarily set to 1 and σðT1Þ ¼ 0.215 GeV2 for
T1 ¼ 0.113 GeV [84]. For comparison, we also employ the

T-dependent form of σðTÞ ¼ σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − πT2

3σ0

q
with σ0 ¼

0.45 GeV2 as reported in Refs. [85,86]. In Fig. 12, we
present the temperature dependence of the quark contri-
bution to the nonperturbative term of HQ momentum
diffusion coefficient κquark, utilizing different string ten-
sions, and compare it with the perturbative term. We note
that, in the low temperature region, the nonperturbative
term of κquark is nonignorable compared to its perturbative
counterpart. The inclusion of the contribution from non-
perturbative interactions to κquark at low temperatures can
help heavy quark obtain larger elliptic flow v2 from the
later stage of the QGP [87].
In Fig. 13, we display the gluon contribution to the

perturbative term of scaled longitudinal HQ momentum
diffusion coefficient κgluonk;HTL=T

3 as a function of temperature
for the different numbers of maximum Landau level (nmax)
and different longitudinal scaled bulk viscosities (ζk=s).
Similar to the κgluonk;HTL=T

3, the HLL effect (longitudinal bulk

viscous correction) influences κgluonk;HTL=T
3 solely through the

Debye mass in the Coulomb amplitude, resulting in a
decrease (increase) in its value. Additionally, in the right
panel of Fig. 13, we observe that, when accounting for
temperature-dependent string tensions, the nonperturbative
contribution is indispensable for the κgluonk;HTL=T

3 in the low
temperatures region.
To better demonstrate the anisotropic response of the HQ

momentum diffusion coefficient to the magnetic field, an
anisotropy ratio of the HQ momentum diffusion coefficient
is defined as

κ⊥
κk

¼ κLLLquark⊥;HTL þ κHLLquark⊥;HTL þ κgluon⊥;HTL

κHLLquarkk;HTL þ κgluonk;HTL
; ð107Þ

where only the perturbative terms are considered. As shown
in Fig. 14, the anisotropy ratio in the LLL exceeds 1 at low
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FIG. 12. The comparison between the perturbative terms of
κquark and the nonperturbative terms of κquark at nmax ¼ 3 and
eB ¼ 15m2

π . The solid lines and dotted lines are the transverse
and longitudinal parts of κquark, respectively. “String” and

“String2” represent the nonperturbative terms employing σðTÞ ¼
σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − πT2

3σ0

q
[85,86] and employing σðTÞ ¼ aT2

1=T
2σðT1Þ,

respectively.
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FIG. 13. The gluon contribution to the perturbative term of scaled longitudinal HQ momentum diffusion coefficient κgluonk;HTL=T
3 as a

function of temperature for different numbers of maximum Landau level (left panel) and different scaled longitudinal bulk viscosities
(right panel) at eB ¼ 15m2

π . In the right panel, we also display the nonperturbative terms of the gluon contribution to the scaled
longitudinal HQ momentum diffusion coefficient κgluonk;String=T

3, utilizing different T-dependent string tensions.
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temperature due to the dominant LLL quark contribution,
i.e., κLLLquark⊥;HTL , and with increasing temperature, the rapid

decrease in κLLLquark⊥;HTL leads to a decline in the anisotropy
ratio, which ultimately approaches 1. As the number of
maximum Landau level increases, the HLL quark contri-
bution becomes increasingly significant at moderate tem-
peratures, surpassing the LLL quark contribution. Because
of the significant anisotropy feature of κHLLquarkk;HTL being

greater than κHLLquark⊥;HTL depicted in Fig. 15, consequently, the
anisotropy ratio first exceeds 1 at low temperatures but then
gradually falls below 1, ultimately approaching 1 at
sufficiently high temperatures. We also note that the
longitudinal bulk viscous correction can increase the
anisotropy ratio.

VIII. SUMMARY

In this work, we systematically investigate how magnetic
fields and the longitudinal bulk viscous effect influence
both the static HQ potential and HQ momentum diffusion
coefficient in the QGP, beyond the LLL approximation. To
account for possible nonperturbative effects, a phenom-
enological gluon propagator induced by the dimension-two
gluon condensates is introduced, based on the HTL
resummed effective gluon propagator. The response of
the viscous quark matter to the magnetic field, manifesting
in the longitudinal bulk viscous modified distribution
function of light quarks, is obtained by solving the
relativistic 1þ 1 dimensional Boltzmann equation under
the RTA. Subsequently, the magnetic field and longitudinal
bulk viscous correction enter into the Debye screening and
Landau damping, further influencing HQ potential and HQ
momentum diffusion coefficient. Our main findings can be
summarized as follows.

(i) The increase in temperature, magnetic field, and
number of Landau levels can enhance the screening
effect of the QGP medium, which accelerates the
dissociation of quarkonium states. However, the
longitudinal bulk viscous correction can mitigate
the screening effect.

(ii) The anisotropic feature of the real part of the HQ
potential in the magnetic field is primarily encoded
in the strong coupling constant and string tension. In
contrast, significant anisotropy can be observed in
the imaginary part of the potential even without
taking into account angular-dependent strong cou-
pling constant and string tension. In particular, the
imaginary part of the potential gets steeper in the
direction perpendicular to the magnetic field direc-
tion and flatter in the parallel one.

(iii) Thermal decay widths of quarkonium states broaden
significantly with increases in both temperature and
longitudinal bulk viscous correction, whereas they
are almost insensitive to the variation of the mag-
netic field.

(iv) At low temperatures, the contribution of LLL quarks
to the anisotropy of HQ momentum diffusion co-
efficient is dominant, resulting in the anisotropy
ratio greater than 1. With the increase of T, the
significance of the LLL quark contribution dimin-
ishes, while the contribution from HLL quarks
increases, causing the anisotropy ratio to decrease
and even fall below 1. As T increases further, the
influence of the magnetic field gradually weakens,
ultimately leading to the anisotropy ratio approach-
ing 1.

(v) While the heavy quark momentum diffusion coeffi-
cient at high temperatures is dominated by the
perturbative QCD interactions, nonperturbative
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FIG. 14. Temperature dependence of the anisotropy ratio of the
HQ momentum diffusion coefficient κ⊥=κk for different numbers
of maximum Landau level (nmax) at eB ¼ 15m2

π . The red dotted
line is the result incorporating finite longitudinal bulk viscous
effect i.e., ζk=s ¼ 0.03 at nmax ¼ 3.
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interactions are indispensable for understanding
heavy quark dynamics in the low-temperature region.

Studying the anisotropic response of the HQ potential and
HQ momentum diffusion coefficients to the magnetic field
is crucial for understanding static heavy quark-antiquark
interactions and heavy quark dynamics in the magnetized
QGP medium. Additionally, this research is essential for
the theoretical description of heavy quarkonia spectra and
the collective flow coefficients of heavy flavor hadrons in
heavy-ion collision experiments.
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