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We study the J=ψ → ϕπþa0ð980Þ−ða−0 → π−ηÞ decay, evaluating the double mass distribution in terms
of the π−η and πþa−0 invariant masses. We show that the π−η mass distribution exhibits the typical cusp
structure of the a0ð980Þ seen in recent high statistics experiments, and the πþa−0 spectrum shows clearly a
peak around Minvðπþa−0 Þ ¼ 1420 MeV, corresponding to a triangle singularity. When integrating over the
two invariant masses we find a branching ratio for this decay of the order of 10−5, which is easily accessible
in present laboratories. We also call attention to the fact that the signal obtained is compatible with a bump
experimentally observed in the ηπþπ− mass distribution in the J=ψ → ϕηπþπ− decay and encourage
further analysis to extract from there the ϕπþa−0 and ϕπ−aþ0 decay modes.
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I. INTRODUCTION

Triangle singularities (TS), introduced in Refs. [1,2],
correspond to processes in which there is a triangle diagram
in the amplitude, where the three intermediate particles can
be placed simultaneously on shell, representing a reaction
that can occur at the classical level [3], in which case the
amplitude becomes infinite in the limit of zero width of the
intermediate particles. The issue has experienced a revival
in recent years, one of the reasons, among many, being the
fact that after early claims by the COMPASS Collaboration
of the “a1ð1420Þ” discovery [4], it was soon explained as a
consequence of a triangle singularity in which the a1ð1260Þ
resonance decays intoK�K̄; K� → πK, and thenKK̄ fuse to
give the f0ð980Þ resonance, the πf0ð980Þ being the
observed decay mode [5–8]. Earlier than that, there was
an interpretation of the isospin violating decay ηð1405Þ →

f0ð980Þπ0 [9] also in terms of a triangle singularity [10–12]
(see also Refs. [13,14] showing a reduction of the absolute
rate of the reaction when the width of the K� is considered),
and more recently the interpretation of the pp → πþd
reaction [15,16] in terms of a triangle singularity [17]. More
examples were given in the interpretation of the J=ψ →
ηπ0ϕ reaction in Ref. [18], and in the enhanced isospin
violation in Dþ

s → πþπ0a0ð980Þ½f0ð980Þ� or B̄0
s →

J=ψπ0a0ð980Þ½f0ð980Þ� [19,20]. A long list of reactions
showing effects of triangle singularities can be seen in
Table 1 of the review paper [21]. Also, a reformulation of
the TS has been provided in Ref. [22], which is at the same
time pedagogical and practical.
The issue has emerged once more due to the recent

BESIII paper [23], improving considerably on earlier
measurements of the J=ψ → ηπ0ϕ reaction, where the
ideas of Ref. [18] could be tested. Indeed, that reaction
develops a TS in the π0ϕmass distribution, peaking around
Mðϕπ0Þ ∼ 1400 MeV, where a clear signal is seen in
Ref. [23]. Yet, the interpretation of the peak is delicate,
because, as discussed in Ref. [18], the peak is masked by a
tree level contribution which also has a singular behavior.
Indeed, the TS mechanism proceeds via the diagrams of
Figs. 1(a) and 1(b), but the same final state is reached by the
tree level diagrams of Figs. 1(c) and 1(d). Then, Schmid
theorem [24] comes into play because if the triangle
diagrams develop a TS they can be reabsorbed into the

*xiaochw@gxnu.edu.cn
†jorgivan.mdias@itp.ac.cn
‡dailianrong@zjhu.edu.cn
§liangwh@gxnu.edu.cn
∥Oset@ific.uv.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 074033 (2024)

2470-0010=2024=109(7)=074033(11) 074033-1 Published by the American Physical Society

https://orcid.org/0000-0001-5303-8350
https://orcid.org/0000-0002-0354-4711
https://orcid.org/0000-0001-5847-2498
https://orcid.org/0000-0002-4462-7919
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.074033&domain=pdf&date_stamp=2024-04-29
https://doi.org/10.1103/PhysRevD.109.074033
https://doi.org/10.1103/PhysRevD.109.074033
https://doi.org/10.1103/PhysRevD.109.074033
https://doi.org/10.1103/PhysRevD.109.074033
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


tree level diagrams with a simple change of phase, and the
decay width is not affected by the TS diagrams. A thorough
review of this issue was done in Ref. [25], showing that the
theorem holds in the limit of the K� width (in the present
case) going to zero, and when there are no inelastic
channels. The message of Ref. [25] is that all diagrams
must be calculated, and that normally the tree level
diagrams are mostly responsible for the mass distributions,
with the effects of the TS diagrams being diluted in these
distributions.
In view of these problems we look now at a related

reaction where a TS develops, which is not masked by the
effects of the tree level and Schmid theorem. The reaction
is J=ψ → ϕπ−a0ð980ÞþðπþηÞ, ϕπþa0ð980Þ−ðπ−ηÞ. The
mechanism is similar to that in Figs. 1(a) and 1(b), with η
replaced by ϕ, but the intermediateKK̄ produce the a0ð980Þ
resonance which decays to πη. Then, the tree level diagrams
with KK̄ production do not interfere with the triangle
diagram, which also develops a singularity in the
πa0ð980Þmass distribution. It is easy to seewherewe should
expect the singularity by applying Eq. (18) of Ref. [22] (with
ma0 slightly larger than 2mK), and one finds that a singularity
should appear at Minvðπa0Þ ∼ 1417 MeV. The purpose of
the present work is to do a detailed study of the reaction and
make a realistic prediction of the shape and size of the
πa0ð980Þ mass distribution in that reaction.

II. FORMALISM

We look at the diagrams of Fig. 2. The diagrams of
Figs. 2(a) and 2(b) show the coalescence processes where
the a−0 ; a

þ
0 are produced, independent on the decay channel

in which the a0 resonances are observed. The diagrams of
Figs. 2(c) and 2(d) show the explicit reaction, with four
body final state when the a−=þ0 decay into π−=þη, the only
sizeable decay channel. We shall consider this final state,
but it is practical to consider first the coalescence processes,

with only three particles in the final state. We consider the
reactions J=ψ → ϕπþa−0 and J=ψ → ϕπ−aþ0 as different
reactions and will concentrate on the first one. The same
distributions would be obtained for the second reaction.
In order to be able to determine absolute rates for the

J=ψ → ϕπþa−0 ðJ=ψ → ϕπ−aþ0 Þ reaction we need informa-
tion on the J=ψ → ϕK�þK− reaction, which we take from
experiment. On the other hand, the dynamics of K� → Kπ
and KK̄ → a0 → πη are well known, and for the KK̄ →
a0 → πη amplitudes we shall use the chiral unitary
approach [26–29].

A. The J=ψ → ϕK�K̄ reaction

In the Particle Data Group (PDG) [30], we have the
branching ratio,

BrðJ=ψ → ϕK�ð892ÞK̄ þ c:c:Þ ¼ ð2.18� 0.23Þ × 10−3:

ð1Þ

However, we are only interested in J=ψ → ϕK�−Kþ. It is
easy to see the rate for this particular channel using isospin
andC parity arguments. With the isospin convention for the
multiplets ðKþ; K0Þ, ðK̄0;−K−Þ, ðK�þ; K�0Þ, ðK̄�0;−K�−Þ,
the K�K̄ isospin zero states demanded in the reaction of
Eq. (1) are given by

jK�K̄; I ¼ 0i ¼ −
1ffiffiffi
2

p ðK�þK− þ K�0K̄0Þ;

jK̄�K; I ¼ 0i ¼ 1ffiffiffi
2

p ðK̄�0K0 þ K�−KþÞ: ð2Þ

Knowing that CK�þ ¼ −K�−, CKþ ¼ K− etc., the right
combination for J=ψ → ϕK�K̄ þ c:c: is given by

J=ψ → ϕðK�þK− þ K�0K̄0 − K�−Kþ − K̄�0K0Þ; ð3Þ

(b)(a)

(d)(c)

FIG. 1. Mechanisms in J=ψ → ηπ0ϕðϕ → KK̄Þ: (a),(b) TS; (c),(d) the tree level.
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which means that the branching ratio of J=ψ → ϕK�þK−

will be one fourth of the one in Eq. (1),

BrðJ=ψ → ϕK�þK−Þ ¼ ð0.55� 0.06Þ × 10−3: ð4Þ

Furthermore, the structure of the amplitude in S wave is
given by

tJ=ψ ;ϕK�þK− ¼ Cϵ⃗J=ψ · ðϵ⃗ϕ × ϵ⃗K� Þ; ð5Þ

with C being a constant. We can determine C from the rate
of Eq. (4) using

dΓJ=ψ→ϕK�þK−

dMinvðK�þK−Þ ¼
1

ð2πÞ3
1

4M2
J=ψ

pϕp̃K−

X̄ X
jtj2; ð6Þ

with

pϕ ¼ λ1=2ðM2
J=ψ ;M

2
ϕ;M

2
invðK�þK−ÞÞ

2MJ=ψ
;

p̃K− ¼ λ1=2ðM2
invðK�þK−Þ;M2

K�þ ;M2
K−Þ

2MinvðK�þK−Þ ; ð7Þ

where λðx; y; zÞ is theKällén function defined as λðx; y; zÞ ¼
x2 þ y2 þ z2 − 2xy − 2xz − 2yz, and

P̄ P jtj2 stands for
the average and sum over the polarizations of J=ψ ,ϕ, andK�
mesons, with t defined in Eq. (5). Therefore,

X̄ X
jtj2 ¼ 2C2: ð8Þ

Then we find

C2

ΓJ=ψ
¼ BrðJ=ψ → ϕK�þK−ÞR

2
ð2πÞ3

1
4M2

J=ψ
pϕp̃K−dMinvðK�þK−Þ ; ð9Þ

from where we obtain

C2

ΓJ=ψ
¼ 1.381 × 10−2 ðMeV−1Þ; ð10Þ

which we will use to evaluate the strength of the triangle
mechanism.
The structure of the J=ψ → ϕK�K̄ vertex is given in

Eq. (5), but it assumes a nonrelativistic reduction. One can
induce such structure from a more general relativistic
formulation. A suitable operator is

εμναβϵμðJ=ψÞϵνðϕÞϵαðK�Þ½a1pβðJ=ψÞ þ a2pβðϕÞ
þ a3pβðK�Þ�; ð11Þ

with ai independent structures in principle. Assuming p=M
reasonably smaller than 1 in the average over phase space,
the dominant term comes from β ¼ 0, and we have,
neglecting the kinetic energies of the ϕ and K�,

ϵ⃗ðJ=ψÞ · ½ϵ⃗ðϕÞ × ϵ⃗ðK�Þ�½a1MJ=ψ þ a2Mϕ þ a3MK� �;

which means that, independently of the values of ai, there is
only one structure in this nonrelativistic limit, the one
assumed in Eq. (5). One can estimate the relativistic
corrections, assuming just for that purpose that a1 ¼
a2 ¼ a3. Since J=ψ is at rest, the μ index in Eq. (11) is
spatial. Hence, the zero index in εμναβ can be ν or α (apart

(b)(a)

(d)(c)

FIG. 2. Triangle diagrams for J=ψ → ϕπþa−0 decay (a) and J=ψ → ϕπ−aþ0 decay (b). (c) and (d) illustrate the processes of (a) and
(b) respectively, with a clear depiction of the decay channel of a−0 and aþ0 . In (a), the momenta of the particles are shown, where
P ¼ pJ=ψ − pϕ.
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from β already considered). By using

X
pol

ϵμϵν ¼ −gμν þ
pμpν

M2
; ð12Þ

we can look at the interference terms in
P

pol jtj2 between
the dominant β ¼ 0 term and the terms with ν ¼ 0 or
α ¼ 0, and we find a ratio of the interference term versus

the dominant one, ignoring the term of Oðp4

M4Þ,

−
2

3

�
p⃗2
K�

MK�
−

p⃗2
ϕ

Mϕ

�
1

MJ=ψ þMK� þMϕ
;

which basically vanishes over the phase space. The square
of the terms with ν ¼ 0 or α ¼ 0 gives contributions of the

order of Oðp4

M4Þ.
On the other hand, Eq. (8) is derived using

P
pol ϵiϵj ¼ δij.

If instead we use Eq. (12), we get some corrections of order

Oðp2

M2Þ relative to the dominant term

1

3

�
p⃗2
K�

M2
K�

þ p⃗2
ϕ

M2
ϕ

�
: ð13Þ

We have evaluated the average of Eq. (13) over the phase
space for J=ψ → ϕK�þK−, and we get a correction of 28%
over the dominant term. This uncertainty affects the absolute
value of the mass distributions, and it is assumable, since at
the end we compare our rates with an experimental one that
has 50% error [31]. As a consequence, the formalism is
greatly simplified by taking Eqs. (5) and (8).
One can look at this approximation done from a different

perspective. We can assume Eq. (5), with the constant C
fitted to experiment, as an average of a more complicated
structure over the phase space. Then the same average is
used in the evaluation of the amplitude of the triangle
singularity. Thus this latter decay width, with a similar
phase space for ϕ and K�, would be obtained with the same
relative accuracy.

B. The a−
0 → K −K0 coupling and K� → Kπ vertex

The K�þ → K0πþ coupling is easily obtained from the
standard Lagrangian,

L ¼ −igh½P; ∂μP�Vμi; ð14Þ
with P and V representing the SU(3) qq̄ matrix written in
terms of pseudoscalar and vector mesons, respectively [32].
The coupling g is defined as g ¼ MV

2f , where MV ¼
800 MeV and f ¼ 93 MeV. This yields the vertex

−it ¼ −igϵjðK�Þð2kþ qÞj; ð15Þ

which is evaluated in the frame where we take P⃗ ¼
p⃗J=ψ − p⃗ϕ ¼ 0. In this frame, we can neglect the ϵ0

component of the K�. Indeed, in that frame, and for
MinvðK�K̄Þ ∼ 1417 MeV where the TS appears, pK� ≃
150 MeV=c and the formula of Appendix A of Ref. [33]
give an error by neglecting ϵ0 of the order of 0.5%.
The coupling of a−0 → K−K0 needed in the evaluation of

the diagram of Fig. 2(a) without further decay of a−0 → π−η
can be accounted for in the following way. It is clear that if
we evaluate the J=ψ → ϕπþπ−η decay we would only need
the K−K0 → π−η amplitude. The coalescence decay
J=ψ → ϕπþa−0 should also be able to be calculated using
the KK̄ amplitudes, and this is formally done as dis-
cussed below.
Assuming that, close to the peak of the a0ð980Þ,

tK−K0;K−K0ðMinvÞ ¼
g2a0;K−K0

M2
inv −m2

a0 þ iMinvΓa0

; ð16Þ

with Γa0 considered constant for the formal derivation,
then, using Cauchy’s integration we find immediately

g2a0;K−K0 ¼ −
1

π

Z
dM2

invImtK−K0;K−K0ðMinvÞ; ð17Þ

which is also trivially obtained in the limit of Γa0 → 0 using

Im½ðM2
inv −m2

a0Þ þ iε�−1 ¼ −πδðM2
inv −m2

a0Þ: ð18Þ

In the coalescence process we will use Eq. (17) in the
evaluation of the jtTSj2 of the triangle diagram. We will
have

dΓJ=ψ ;→ϕπþa−
0

dMinvðπþa−0 Þ
¼ 1

ð2πÞ3
1

4M2
J=ψ

pϕp̃πþ
X̄

jtTSj2; ð19Þ

where

pϕ ¼ λ1=2ðM2
J=ψ ; m

2
ϕ;M

2
invðπþa−0 ÞÞ

2MJ=ψ
; ð20Þ

p̃πþ ¼ λ1=2ðM2
invðπþa−0 Þ; m2

πþ ; m
2
a−
0
Þ

2Minvðπþa−0 Þ
; ð21Þ

with tTS corresponding to the amplitude for the process of
Fig. 2(a). Since jtTSj2 contains g2a0;K−K0 , given in Eq. (17),

we can undo the dM2
inv integration in Eq. (19) and write

d2ΓJ=ψ ;→ϕπþa−
0
ðπ−ηÞ

dMinvðπ−ηÞdMinvðπþa−0 Þ
¼ −

1

π
2Minvðπ−ηÞImtK−K0;K−K0ðMinvðπ−ηÞÞ

×
1

ð2πÞ3
1

4M2
J=ψ

pϕp̃0
πþ
X̄

jt̃TSj2; ð22Þ
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where p̃0
πþ is given by Eq. (21) substituting ma−

0
by

Minvðπ−ηÞ, and jt̃TSj2 is the magnitude jtTSj2 where we
remove g2a0;K−K0 .

Equation (22) can be immediately reinterpreted. Indeed, in
the evaluation of jtTSj2 for the triangle diagram of Fig. 2(c),
wewill need jtK−K0;π−ηj2 along with the extra phase space for
π−ηwith respect to Fig. 2(a). But jtK−K0;π−ηj2 times the phase
space for a−0 → π−η decay is what is given by ImtK−K0;K−K0

via the optical theorem. The derivation done, however, has
served to go from the differential mass distribution in the
three body final state to the one of the four body in a simple
and intuitiveway. There is a caveat, however, since above the
KK̄ threshold ImtK−K0;K−K0 , via the optical theorem, also
contains the decay of a0 into KK̄. However, close to theKK̄
threshold where we move, this decay rate is very small and
we can safely rely on Eq. (22) for our purposes.1

C. The triangle amplitude

In Fig. 2(a), we show the momenta of the particles. Since
we are concerned about the triangle singularity, occurring
when the intermediate particles are all on shell, we can
simplify the calculation (see Ref. [22]) by taking the
positive energy part of the propagators, which is the one
that can go on shell. Hence for theK− propagator we would
write

1

q2−m2
Kþ iε

¼ 1

2ωðq⃗Þ
�

1

q0−ωKðq⃗Þþ iε
−

1

q0þωKðq⃗Þ− iε

�
;

ð23Þ

with ωKðq⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

K

p
, and with q0 positive only the

first term of the former equation can go on shell, and we
shall then keep this term alone. This simplifies the
expression for the loop amplitude which reads as, removing
the ga0;K−K0 vertex,

−it̃TS ¼ −iC
Z

d4q
ð2πÞ4 εijlϵiðJ=ψÞϵjðϕÞϵlðK

�Þð−iÞgϵmðK�Þ

× ð2kþ qÞmð−iÞ
1

2ωK−ðq⃗Þ
1

2ωK0ðq⃗þ k⃗Þ
×

1

2ωK�þðq⃗Þ
i

q0 − ωK−ðq⃗Þ þ iε

×
i

P0 − q0 − ωK�þðq⃗Þ þ i ΓK�
2

×
i

P0 − q0 − k0 − ωK0ðq⃗þ k⃗Þ þ iε
; ð24Þ

with ωK−ðq⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

K

p
, and ωK�þðq⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

K�
p

,
where we have explicitly taken into account theK� width in
the K� propagator, and P0, k0 are given by

P0 ¼ Minvðπþa−0 Þ;

k0 ¼ P02 þm2
πþ −M2

invðπ−ηÞ
2P0

: ð25Þ

Since we know that the TS gets its strength from placing the
intermediate particles of the loop on shell, we can rely upon
the arguments used after Eq. (10) and after Eq. (15) to keep
only the spatial components of the polarization vectors of
the vector mesons. We sum over the K� polarizations in the
loop,

P
pol ϵlðK�ÞϵmðK�Þ ¼ δlm, good for theK� with small

momenta that we have in the TS region, and integrating
analytically over q0 in Eq. (24) using Cauchy’s residues, we
obtain

t̃TS ¼ gCεijlϵiðJ=ψÞϵjðϕÞ
Z

d3q
ð2πÞ3 ð2kþ qÞl

×
1

2ωK−ðq⃗Þ
1

2ωK�þðq⃗Þ
1

2ωK0ðq⃗þ k⃗Þ
×

i

P0 − ωK−ðq⃗Þ − ωK�þðq⃗Þ þ i ΓK�
2

×
i

P0 − k0 − ωK−ðq⃗Þ − ωK0ðq⃗þ k⃗Þ þ iε
: ð26Þ

Next, considering that

Z
d3qFðq⃗; k⃗Þql ¼ kl

Z
d3qFðq⃗; k⃗Þ q⃗ · k⃗

k⃗2
; ð27Þ

we finally write t̃TS as

t̃TS ¼ gCϵijlϵiðJ=ψÞϵjðϕÞklt̃0TS; ð28Þ

with

t̃0TS ¼
Z

d3q
ð2πÞ3 θðqmax − jq⃗�jÞ

�
2þ q⃗ · k⃗

k⃗2

�
1

2ωK−ðq⃗Þ
×

1

2ωK�þðq⃗Þ
1

2ωK0ðq⃗þ k⃗Þ
×

i

P0 − ωK−ðq⃗Þ − ωK�þðq⃗Þ þ i ΓK�
2

×
i

P0 − k0 − ωK−ðq⃗Þ − ωK0ðq⃗þ k⃗Þ þ iε
; ð29Þ

and

1The PDG [30] reports ΓðKK̄Þ=ΓðπηÞ ≃ 0.17, but a relative
large span of energies above the KK̄ threshold is considered to
get that number.
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X̄
jt̃TSj2 ¼

2

3
k⃗2g2C2jt̃0TSj2: ð30Þ

In Eq. (29) we have introduced the factor θðqmax − jq⃗�jÞ,
where q⃗� is the K− momentum in the π−η rest frame given
by [22]

q⃗� ¼
��

Ea0

Minvðπ−ηÞ
− 1

�
q⃗ · k⃗

k⃗2
þ q0

Minvðπ−ηÞ
�
k⃗þ q⃗; ð31Þ

with Ea0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

inv þ k⃗2
q

, and q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ q⃗2
p

. The
θðqmax − jq⃗�jÞ factor is needed in Eq. (29) and is justified
as follows. The chiral unitary approach relies upon the
solution of the Bethe-Salpeter equation with coupled
channels. The usual on shell factorization of the loops
can be justified using dispersion relations as in Ref. [34],
but also in a simpler way that we outline below. Following
Ref. [35] we start from a separable potential in momentum
space of the type

Vðq⃗; q⃗0Þ ¼ Vθðqmax − jq⃗jÞθðqmax − jq⃗0jÞ;

from where we can see the meaning of qmax as measuring
the range of the interaction in momentum space. If one
constructs the T matrix from this potential,

Tðq⃗; q⃗0Þ ¼ Vðq⃗; q⃗0Þ þ i
Z

d4p
ð2πÞ4 Vðq⃗; p⃗Þ

1

p2 −m2
1 þ iε

×
1

ðP − pÞ2 −m2
2 þ iε

Tðp⃗; q⃗0Þ;

with P the total momentum and m1, m2 the masses of the
intermediate particles, one can immediately see that
Tðq⃗; q⃗0Þ is also separable as

Tðq⃗; q⃗0Þ ¼ Tθðqmax − jq⃗jÞθðqmax − jq⃗0jÞ;

and

T ¼ V
1 − VG

;

with G, after performing analytically the p0 integration,
given by

G ¼
Z
jp⃗j<qmax

d3p
ð2πÞ3

ω1ðp⃗Þ þ ω2ðp⃗Þ
2ω1ðp⃗Þω2ðp⃗Þ

×
1

P02 − ½ω1ðp⃗Þ þ ω2ðp⃗Þ�2 þ iε
;

with ωiðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

i

p
. The value of qmax is taken from

Refs. [36,37] as qmax ¼ 600 MeV=c.

D. KK̄ amplitudes

We need to calculate the tK−K0;K−K0 amplitude, for which
we use the chiral unitary approach. In this case, the
tK−K0;K−K0 amplitude is one of the T matrix elements, that
is extracted by solving the Bethe-Salpeter equation in
coupled channels,

T ¼ ½1 − VG�−1V; ð32Þ
with V the kernel encoding the Vij amplitudes from the i
channel to the j channel. The channels considered are KK̄,
πη, ππ, and ηη. The relevant Vij amplitudes among all the
channels in our case are taken from Ref. [37], using
explicitly the η − η0 mixing of Ref. [38] [Eq. (A.4) of
Ref. [37] ]. Furthermore, G is a diagonal matrix with its
elements Gl corresponding to the loop function for the lth
channel. We take theGl loop function regularized by means
of a cutoff qmax in the three-momentum,

Gl ¼
Z
jq⃗j<qmax

d3q
ð2πÞ3

ω1 þ ω2

2ω1ω2

1

s − ðω1 þ ω2Þ2 þ iε
: ð33Þ

Since, only the zero charged components are considered
in Ref. [37], we make use of the fact thatK−K0 is the I ¼ 1,
I3 ¼ −1 component of KK̄ and write

tK−K0;K−K0 ¼ 1

2
ðtK0K̄0;K0K̄0 þ tKþK−;KþK− − 2tK0K̄0;KþK−Þ:

ð34Þ
Following Refs. [36,37], we take qmax ¼ 600 MeV=c.

III. RESULTS

In Fig. 3, we show the factor A≡ ½− 2
πMinvðπ−ηÞ

ImtK−K0;K−K0ðMinvðπ−ηÞÞ�, which is involved in the double
differential decay width of Eq. (22). We can see a cusplike
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FIG. 3. Factor A≡ ½− 2
πMinvðπ−ηÞImtK−K0;K−K0ðMinvðπ−ηÞÞ� as

a function of Minvðπ−ηÞ.
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structure around Minvðπ−ηÞ ¼ ma0 ¼ 980 MeV, reflecting
the spectral function of the a0ð980Þ. The shape of Fig. 3 is
interesting, and it does not reflect jtKK̄;πηj2, because,
through the optical theorem, ImtK−K0;K−K0 contains a part
from the transition of K−K0 to π−η in which we are
interested, and also K−K0 → KK̄. This is the reason for the
flattening of the A factor as we go away from the KK̄
threshold. One guarantees to keep only the KK̄ → πη
transition in a region up to ∼1050 MeV.
Next, we discuss the amplitude t̃0TS of Eq. (29) and

1
ΓJ=ψ

d2ΓJ=ψ→ϕπþa0ð980Þ−
dMinvðπ−ηÞdMinvðπþa−0 Þ of Eq. (22), which are functions of

bothMinvðπ−ηÞ andMinvðπþa−0 Þ. Wewill present the results
in three cases: 1) fixing Minvðπ−ηÞ ¼ ma0 ¼ 980 MeV,
2) fixing Minvðπþa−0 Þ ¼ 1416 MeV, where the TS occurs
in the triangle loops of Figs. 2, and 3) integrating
1

ΓJ=ψ

d2ΓJ=ψ→ϕπþa0ð980Þ−
dMinvðπ−ηÞdMinvðπþa−0 Þ over Minvðπ−ηÞ.

A. Fixing Minvðπ − ηÞ=ma0 = 980 MeV

In Fig. 4, we show results for Ret̃0TS, Imt̃0TS and jt̃0TSj as a
function of Minvðπþa−0 Þ while keeping Minvðπ−ηÞ fixed.
The structure of the amplitude exhibits features typical of
triangle singularities observed in other cases (see Fig. 5 of
Ref. [33], Fig. 4 of Ref. [39], Fig. 3 of Ref. [19], Fig. 4 of
Ref. [40], Fig. 5 of Ref. [41], Fig. 4 of Ref. [42], and Fig. 19
of Ref. [43]). It has the imaginary part peaking around the
Minvðπþa−0 Þ, as provided by Eq. (18) of Ref. [22], and the
real part changes sign around the peak of the imaginary
part. It resembles much the structure of a resonance, and
hence the danger to identify these peaks as genuine
resonances, but as we can see, the origin of this structure
simply comes from the triangle diagram and is exclusively
tied to the combination of masses and invariant masses of
the particles involved. It does not have its origin in the

interaction of quarks or the interaction of hadrons. This is
why it is referred to as a kinematical singularity. The
modulus of this amplitude, jt̃0TSj, has a clear peak that
should manifest in the studied reaction.
In Fig. 5, we show the double differential decay width

normalized to the J=ψ width as a function of Minvðπþa−0 Þ,
while fixing Minvðπ−ηÞ ¼ ma0 ¼ 980 MeV. We see a clear
peak around Minvðπþa−0 Þ ¼ 1440 MeV, coming from jt̃0TSj
in Eq. (22). This is what one would observe in a devoted
experiment with a bin of 1 MeV for Minvðπþa−0 Þ, and
1 MeV for Minvðπ−ηÞ. Obviously, the accumulation of
events in bigger bins increases the statistics, as we shall see.

B. Fixing Minvðπ + a−
0 Þ= 1416 MeV

In Fig. 6, we now setMinvðπþa−0 Þ ¼ 1416 MeV and plot
t̃0TS as a function of Minvðπ−ηÞ. Once more, we display the
real and imaginary parts of the amplitude, as well as its
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FIG. 4. t̃0TS given by Eq. (29) as a function ofMinvðπþa−0 Þ when
fixing Minvðπ−ηÞ ¼ ma0 .
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FIG. 5. 1
ΓJ=ψ

d2ΓJ=ψ→ϕπþa0ð980Þ−
dMinvðπ−ηÞdMinvðπþa−0 Þ as a function of Minvðπþa−0 Þ

when fixing Minvðπ−ηÞ ¼ ma0 .
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FIG. 6. t̃0TS given by Eq. (29) as a function of Minvðπ−ηÞ when
fixing Minvðπþa−0 Þ ¼ 1416 MeV.
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modulus. We see again that the imaginary part and the
modulus delineate the shape of the a0ð980Þ resonance. The
real part changes sign at the peak of the a0ð980Þ, reflecting
a typical resonance behavior. It is interesting to see that
even if the a0ð980Þ appears as cusp, corresponding to a
nearly missed bound state, or virtual state, it still exhibits
the typical shape of a resonance amplitude. Such kinds of
behaviors for nearly missed bound states can be seen in
other cases. For instance, in the pd → 3Heη reaction [44]
(see Fig. 8 of that work), the amplitude exhibits a resonance
structure with a peak very close to and just below the 3Heη
threshold. However, there is no pole below threshold, and
technically, no bound state.
In Fig. 7, we show again 1

ΓJ=ψ

d2ΓJ=ψ→ϕπþa0ð980Þ−
dMinvðπ−ηÞdMinvðπþa−0 Þ as a

function of Minvðπ−ηÞ, fixing now Minvðπþa−0 Þ at the peak
of the TS amplitude. This comes from Eq. (22) and contains
jt̃0TSj2 along with the phase space. The shape of the a0ð980Þ
resonance shows up as a clear cusp structure, as seen in
recent experiments with high resolution [45–47].

C. Integrating 1
ΓJ=ψ

d2ΓJ=ψ→ϕπ + a0ð980Þ−
dMinvðπ − ηÞdMinvðπ + a−

0 Þ over Minvðπ − ηÞ

Fig. 8 shows 1
ΓJ=ψ

d2ΓJ=ψ→ϕπþa0ð980Þ−
dMinvðπ−ηÞdMinvðπþa−0 Þ as a function of

Minvðπþa−0 Þ, when integrating overMinvðπ−ηÞ in the ranges
of ma0 � 10 MeV, ma0 � 20 MeV, ma0 � 50 MeV, and
ma0 � 100 MeV, respectively.
In all the cases, we observe a peak corresponding to the

TS. By looking at Fig. 8, we can see that integrating the
double mass distribution over Minvðπ−ηÞ within the range
ma0 � 100 MeV accounts for the whole strength of the
a0ð980Þ resonance, although one is introducing a bit of the
KK̄ in the final state apart from π−η, as we discussed above
referring to Fig. 3. We interpret these results as indicative of
what should be observed in the experiments. The shape of
the TS is clearly observed.

For the case where Minvðπ−ηÞ∈ ½ma0 − 100; ma0þ
100� MeV, integrating over Minvðπþa−0 Þ in the range
½mπþ þma0 ;MJ=ψ −mϕ� gives the branching ratio

BrðJ=ψ → ϕπþa−0 Þ ¼ 1.07 × 10−5; ð35Þ

to which we would associate an error of about 30% from
the uncertainties discussed in Sec. II Awhen calculating the
constant C2 and the experimental error in the branching
ratio of Eq. (1) summing in quadrature. This estimate is
realistic, as the only unknown magnitude required to
evaluate the diagrams of Figs. 2(a) and 2(c) is the J=ψ →
ϕK�þK− amplitude, which we obtained from the exper-
imental data. This branching ratio is not small, given the
copious production of J=ψ at BESIII, which allows one to
detect decays with branching fractions as small as 10−7 [30].
In view of this, we can only encourage the measurement of
this reaction, which could also serve to clarify issues on
the J=ψ → π0ηϕðϕ → KK̄Þ reaction [23] and its interpre-
tation in Ref. [18] in terms of a TS. Actually, the J=ψ →
ϕπþπ−η reaction has already been measured at BESIII
[31]. However, the mass distributions that we propose here
were not investigated. Instead the production modes of
ηϕf0ð980Þ and ηϕf1ð1285Þ were investigated in that
work.
Yet, we would like to call attention to a feature of the

reaction of Ref. [31] of relevance to our work. Indeed, in
Fig. 5 of Ref. [31] there is a clear bump in the ηπþπ− mass
distribution stretching from 1400 MeV to 1530 MeV.
This bump was not unnoticed in Ref. [31] and was
associated to the excitation of ηð1405Þ, which has the
ηπþπ− as one of the decay modes. In Table III of Ref. [31],
the branching ratio of the bump was estimated to be
ð2.01� 0.58� 0.82Þ × 10−5. It is interesting to see that
twice our rate of Eq. (35), to account also for ϕπ−aþ0 decay,
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FIG. 7. 1
ΓJ=ψ

d2ΓJ=ψ→ϕπþa0ð980Þ−
dMinvðπ−ηÞdMinvðπþa−0 Þ as a function of Minvðπ−ηÞ when

fixing Minvðπþa−0 Þ ¼ 1416 MeV.
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FIG. 8. 1
ΓJ=ψ

d2ΓJ=ψ→ϕπþa0ð980Þ−
dMinvðπ−ηÞdMinvðπþa−0 Þ as a function of Minvðπþa−0 Þ

when integrating over Minvðπ−ηÞ in the ranges ma0 � 10 MeV,
ma0 � 20 MeV, ma0 � 50 MeV and ma0 � 100 MeV.
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with 30% uncertainty, gives ð2.14� 0.64Þ × 10−5, in
perfect agreement with the strength of the experimental
bump. This coincidence, and the position of the peak
compared to our Fig. 8 give us strong arguments to
encourage the reanalysis of this decay mode from the
perspective given in the present work. Let us recall that
from a resonance formation perspective, ηπþπ− cannot be
ηρ0, which would violate isospin conservation, but can be
a−0 π

þ (the mode studied here) and aþ0 π
− which would have

the same rate of production. The study of the J=ψ →
ϕπþa−0 → ϕπþπ−η and J=ψ → ϕπ−aþ0 → ϕπ−πþη decay
modes would allow one to make a comparison with the
predictions made here and eventually, conclude the pres-
ence of the triangle singularity discussed in this work.
One should also recall that the ηð1405Þ → πa0 → ππη and

the isospin forbidden mode πf0ð980Þ were also studied in
Refs. [10–14] and shown to be dominated by a TS like the
one discussed here, except that the ηð1405Þ → K�K̄ and the
J=ψ → ϕK�K vertices have different structures. It should be
thus possible to disentangle experimentally the ηð1405Þ
excitation mode from the mechanism suggested here. In
this respect, works are already coming, providingmethods to
disentangle structures due to a TS or a resonance pole [48].

IV. CONCLUSIONS

We have conducted a study of the J=ψ →
ϕπþa0ð980Þ−ða−0 → π−ηÞ decay, showing that it develops
a triangle singularity at Minvðπþa−0 Þ of about 1420 MeV.
The reaction proposed is motivated by the recent meas-
urement at BESIII of the J=ψ → ηπ0ϕðϕ → KK̄Þ reaction
[23], that according to the work of Ref. [18] also develops a
triangle singularity, however, blurred by the tree level
competing mechanisms and their interconnection with
the Coleman Norton theorem. In the reaction proposed,
there is no tree level competing mechanism, and then the
TS appearing can be clearly interpreted. We evaluate the
mass distributions in terms of Minvðπ−ηÞ and Minvðπþa−0 Þ.
In the π−η mass distribution we see a clear cusp structure,
as observed in recent high statistics experiments, and in the
πþa−0 mass distribution we observe the TS peak around
Minvðπþa−0 Þ ¼ 1420 MeV. By taking information for the
needed J=ψ → ηK�K̄ amplitude from experiment, we are
able to determine absolute rates for the reaction. Integrating

the double mass distribution in the range of the a0ð980Þ
mass and in the range of the πþa−0 mass distribution, we
predict a branching ratio for the reaction of the order of
10−5. Given the present rates of J=ψ production at BESIII,
where branching ratios of 10−7 can be measured, we
advocate for the measurement of these mass distributions,
that apart from showing a new example of a TS can also
shed light on the interpretation of the recent BESIII
measurements of the J=ψ → ηπ0ϕðϕ → KK̄Þ reaction.
The realization of this task is more appealing since the
J=ψ → ηπþπ−ϕ reactionwas already studied at BESIII [31],
although the decay modes discussed here were not
addressed there. We have discussed, however, that a peak
seen in the ηπþπ− mass distribution of this decay in the
region 1400–1530 MeV is compatible with the signal that
we have obtained from the TS, and encourage the
experimental teams to look into the ϕπþa−0 and ϕπ−aþ0
decay channels to further clarify this issue.
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