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We construct an extended version of the linear sigma model in such a way as to describe spin-1 hadrons
as well as spin-0 hadrons in two-color QCD (QC2D) by respecting the Pauli-Gürsey SUð4Þ symmetry.
Within a mean-field approximation, we therefrom examine a mass spectrum of the spin-1 hadrons at finite
quark chemical potential (μq) and zero temperature. Not only mean fields of scalar mesons and scalar-
diquark baryons but also of vector mesons and vector-diquark baryons are incorporated. As a result, we find
that, unless all of those four types of mean fields are taken into account, neither lattice result for the critical
μq that corresponds to the onset of baryon superfluidity nor for μq dependence of the pion mass can be
reproduced. We also find that a slight suppression of the ρ meson mass in the superfluid phase, which was
suggested by the lattice simulation, is reproduced by subtle mixing effects between spin-0 and spin-1
hadrons. Moreover, we demonstrate the emergence of an axial-vector condensed phase and possibly of a
vector condensed phase by identifying the values of μq at which the corresponding hadron masses vanish.
The possible presence of isotriplet 1− diquarks that may be denoted by a tensor-type quark bilinear field is
also discussed.
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I. INTRODUCTION

Revealing the characteristics of hadrons in cold dense
matter stands as a significant pursuit in quantum chromo-
dynamics (QCD), since these particles serve as good probes
to explore medium modifications of QCD symmetry
properties, such as chiral symmetry restoration. For this
reason, thus far, tremendous theoretical and experimental
effort has been devoted to shed light on the hadronic
properties in dense nuclear matter [1,2]. First-principles
lattice Monte Carlo simulations, however, are difficult to
apply to such a cold and dense regime due to the so-called
sign problem [3,4]. Hence, our understanding of how the

hadronic properties are modified in cold dense matter is
limited as compared to the case of hot QCD matter.
Although lattice simulations remain to be effective in

three-color QCD at finite quark chemical potential (μq),
exceptionally for two-color QCD (QC2D) with even num-
bers of quark flavors, the cumbersome sign problem dis-
appears and indeed the simulations turn out to be applicable
at nonzero μq [5]. So far, many lattice simulations have been
performed toward the delineation of hadronmodifications as
well as of the phase structure in cold dense QC2D [6–30]
(see Ref. [31] and references therein). In concert with those
numerical experiments, theoretical examinations have been
made for qualitative understanding by using hadronic and
microscopic models [32–60].
In QC2D, diquarks, i.e., bound states of two quarks,

emerge as color-singlet hadrons thanks to the pseudoreality
of SUð2Þc color group, unlike in three-color QCD. As a
consequence, diquarks and mesons can be embedded into
single multiplets and described collectively. Moreover, the
pseudoreality allows us to extend SUð2ÞL × SUð2ÞR chiral
symmetry to the so-called Pauli-Gürsey SUð4Þ symmetry
[32,33], and then, the chiral condensate induces the sym-
metry breaking of SUð4Þ → Spð4Þ. Thus, chiral models in
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QC2D are constructed based on this symmetry-breaking
pattern and, additionally, small violation of the Pauli-Gürsey
SUð4Þ symmetry to account for a finite pion mass.
Another noteworthy feature of QC2D is the emergence of

the diquark condensed phase; diquarks are bosonic hadrons
carrying the quark number in QC2D so that they start to
form a Bose-Einstein condensate (BEC) at certain μq
[32,33]. This distinctive phase violates Uð1ÞB baryon-
number symmetry spontaneously, and hence, the diquark
condensed phase is also referred to as the baryon superfluid
phase. Meanwhile, the stable phase at smaller μq, which no
longer contains BECs, is simply called the hadronic phase.
In the latter phase all thermodynamic quantities show no μq
dependence at zero temperature, and such a salient property
is called the Silver-Blaze property.
Recently, a mass spectrum of the low-lying spin-0

hadrons carrying negative and positive parities was simu-
lated on lattice at finite μq [61,62]. The simulation result
indicates that η mesons (isosinglet 0− mesons) are lighter
than pions in the superfluid phase, which is in contrast to
our naive expectation that η mesons are heavier than pions
due to the Uð1ÞA anomaly effects. Motivated by this
characteristic mass inversion, in Ref. [59] we constructed
the linear sigma model (LSM) based on the (approximate)
Pauli-Gürsey SUð4Þ symmetry, which is capable of
describing not only 0− mesons and 0þ (anti)diquark
baryons but also 0þ mesons and 0− (anti)diquark baryons.
Based on the LSM, indeed, we succeeded in explaining the
mass inversion by showing that the η mass is sufficiently
suppressed in the superfluid phase owing to mixing with 0−

(anti)diquark baryons, which is triggered by the Uð1ÞB
baryon-number violation.
In this paper, we extend the LSM by newly incorporating

spin-1 hadrons, i.e., 1� mesons and (anti)diquark baryons,
but still respecting the Pauli-Gürsey SUð4Þ symmetry.
Then, we demonstrate the importance of mixing effects
between spin-0 and spin-1 hadrons for the μq dependence
of physical quantities such as the diquark condensate and
the quark-number density. Besides, we present the pre-
dicted masses of spin-1 hadrons in cold matter and possible
novel phases triggered by mass-vanishing spin-1 hadrons
such as axial-vector and vector condensed phases.
The predictions given by the present study on how the

spin-1 hadrons have their masses modified in cold matter
are expected to be checked by future lattice QC2D
simulations. Ultimately, our comprehensive model, which
allows us to simultaneously describe the spin-0 and spin-1
hadrons without incorporating the quark degrees of free-
dom explicitly, even at high densities, could serve as a
guideline on how to use a hadronic model in cold matter. In
addition, as diquarks themselves are observable, QC2D
possesses an advantage over three-color QCD where
diquark dynamics can be solely seen through, e.g., singly
heavy baryons (SHBs) made of one heavy quark and one
diquark [63–71]. The SHBs are now under intensive

investigation in accordance with the recent development
of experimental techniques. In this regard, our findings
on the diquarks in QC2D would also serve as good
references for understanding the SHBs dynamics from
chiral symmetry.
This article is organized as follows. In Sec. II we

introduce quark-bilinear fields for spin-0 and spin-1
hadrons and construct an effective model describing these
hadrons based on the Pauli-Gürsey SUð4Þ symmetry. After
explaining, in Sec. III, our procedure to fix model param-
eters for later numerical calculations, we show, in Sec. IV,
μq dependence of the mean fields within the present model
and, in Sec. V, our main results, namely, the hadron mass
spectrum at finite μq. Besides, the chiral partner structure
for the spin-1 hadrons is demonstrated in Sec. VI.
Sections VII and VIII are devoted to discussions and
conclusions, respectively.

II. MODEL CONSTRUCTION

In this section, we construct our effective model describ-
ing both the spin-0 and spin-1 hadrons based on the linear
realization of the Pauli-Gürsey SUð4Þ symmetry.

A. Spin-0 hadron fields

For the purpose of constructing the effective Lagrangian,
we first introduce a useful building block of the spin-0
hadrons whose SUð4Þ symmetry properties are manifest,
following the previous work [59].
In two-flavor QC2D, SUð2ÞL × SUð2ÞR chiral symmetry

is extended to the Pauli-Gürsey SUð4Þ symmetry due to the
pseudoreal property of SUð2Þc gauge group, as shown in
Appendix A. The extended symmetry enables us to treat
mesons and diquark baryons in a unified way. Then, as
shown in Ref. [59], it is useful to introduce a 4 × 4matrix Σ
corresponding to both the spin-0 mesons and diquarks
baryons as defined by

Σ ¼
X5
a¼0

ðSa þ iPaÞXaE: ð1Þ

In this equation, Xa¼0 ¼ 1

2
ffiffi
2

p 14×4 and Xa¼1–5 are generators

belonging to the Lie algebra of SUð4Þ=Spð4Þ, the expres-
sions for which are given by Eq. (B5) in Appendix B.
Besides, E is the 4 × 4 symplectic matrix defined by

E ¼
�

0 1f
−1f 0

�
: ð2Þ

In Eq. (1) Sa and Pa represent a set of the spin-0 hadron
fields as
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σ ¼ S0; a00 ¼ S3; a�0 ¼ S1 ∓ iS2ffiffiffi
2

p ;

η ¼ P0; π0 ¼ P3; π� ¼ P1 ∓ iP2ffiffiffi
2

p ;

B ¼ S5 − iS4ffiffiffi
2

p ; B̄ ¼ S5 þ iS4ffiffiffi
2

p ;

B0 ¼ P5 − iP4ffiffiffi
2

p ; B̄0 ¼ P5 þ iP4ffiffiffi
2

p ; ð3Þ

where σ, a0, η, and π are mesons while B and B0 (B̄ and B̄0)
are (anti)diquark baryons. The quantum numbers carried by
those hadrons are summarized in Table I. With the
correspondence (3), the 4 × 4 matrix Σ reads,

Σ¼1

2

0
BBBBBB@

0 −B0 þ iB σ−iηþa0−iπ0ffiffi
2

p aþ− iπþ

B0− iB 0 a−− iπ− σ−iη−a0þiπ0ffiffi
2

p

−σ−iηþa0−iπ0ffiffi
2

p −a−þ iπ− 0 −B̄0 þ iB̄

−aþþ iπþ −σ−iη−a0þiπ0ffiffi
2

p B̄0− iB̄ 0

1
CCCCCCA
:

ð4Þ

In terms of the quark doublet operator ψ ¼ ðu; dÞT, the
hadrons are denoted by

σ ∼ ψ̄ψ ; a�0 ∼
1ffiffiffi
2

p ψ̄τ∓f ψ ; a00 ∼ ψ̄τ3fψ ;

η ∼ ψ̄iγ5ψ ; π� ∼
1ffiffiffi
2

p ψ̄ iγ5τ
∓
f ψ ; π0 ∼ ψ̄ iγ5τ3fψ ;

B ∼ −
iffiffiffi
2

p ψTCγ5τ2cτ2fψ ; B0 ∼ −
1ffiffiffi
2

p ψTCτ2cτ2fψ ;

B̄ ∼ −
iffiffiffi
2

p ψ†Cγ5τ2cτ2fψ
�; B̄0 ∼

1ffiffiffi
2

p ψ†Cτ2cτ2fψ
�; ð5Þ

where C ¼ iγ2γ0 is the charge-conjugation Dirac matrix
and τ�f ¼ τ1f � iτ2f. Using Eqs. (3) and (5), one can see that,
in terms of the four-component quark field Ψ defined by
Eq. (A6), the 4 × 4 matrix Σ, Eq. (4), reads

Σij ∼ ΨT
j σ

2τ2cΨi: ð6Þ

Thus, under the SUð4Þ transformation, Σ transforms as

Σ → UΣUT ð7Þ

with U∈ SUð4Þ. This symmetry property plays a signifi-
cant role in constructing the effective Lagrangian describ-
ing the spin-0 hadrons.
Here, it is well-known that the sigma field (σ) can

acquire its mean-field value; σ0 ≡ hσi, to mimic the chiral
condensate which results in the chiral symmetry breaking.
Within such a mean-field level, the matrix (4) is reduced to

Σ → Σ0 ≡ σ0
2

ffiffiffi
2

p E; ð8Þ

where E is the symplectic matrix, Eq. (2). In general, Σ0 is
not invariant under SUð4Þ: Σ0 → UΣ0UT . Only when the
element U is generated by h satisfying

hEhT ¼ E; ð9Þ

however, Σ0 turns out to be invariant. Equation (9) shows
that the spontaneous symmetry-breaking pattern triggered
by the chiral condensate is SUð4Þ → Spð4Þ in QC2D.
Before moving on to the spin-1 hadrons, we comment on

the properties of Sa and Pa. With the correspondence (3),
for instance, one can see that the pseudoscalar mesons (0−)
and scalar (anti)diquaks (0þ), parities of which are oppo-
site, are collectively denoted by Pa, i.e., these hadrons
belong to the same multiplet of the SUð4Þ algebra. The
difference of parities are understandable from their intrinsic
parities; the pseudoscalar mesons contain one quark and
one antiquark while the scalar (anti)diquarks contain two
(anti)quarks. Also, from this consideration it can be under-
stood that those hadrons are the ground states in the
hadronic phase because of their S wave nature in a
quark-model description. Likewise, the scalar mesons
(0þ) and pseudoscalar (anti)diquarks (0−) are collectively
represented by Sa, while they belong to the same multiplet.
Those hadrons can be identified as P-wave excited states.

B. Spin-1 hadron fields

In Sec. II A, we have introduced the 4 × 4 matrix Σ
corresponding to the spin-0 mesons and diquark baryons.
Next, in this subsection we consider another 4 × 4 matrix
Φμ, which is essential to describe the spin-1 hadrons toward
construction of our effective Lagrangian.
In two-flavor QC2D, the relevant low-lying spin-1

mesons and diquark baryons are

TABLE I. Quantum numbers of the spin-0 hadrons.

Hadron JP Quark number Isospin

σ 0þ 0 0
a0 0þ 0 1
η 0− 0 0
π 0− 0 1
B (B̄) 0þ þ2 (−2) 0
B0 (B̄0) 0− þ2 (−2) 0
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ωμ ∼ ψ̄γμψ ; fμ1 ∼ ψ̄γ5γ
μψ ;

ρ0;μ ∼ ψ̄τ3fγ
μψ ; ρ�;μ ∼

1ffiffiffi
2

p ψ̄τ∓f γμψ ;

a0;μ1 ∼ ψ̄τ3fγ5γ
μψ ; a�;μ

1 ∼
1ffiffiffi
2

p ψ̄τ∓f γ5γμψ ; ð10Þ

and

BIz¼0;μ
S ∼ −

iffiffiffi
2

p ψTCγμτ2cτ1fψ

BIz¼�1;μ
S ∼ −

i
2
ψTCγμτ2cð1f � τ3fÞψ ;

Bμ
AS ∼ −

1ffiffiffi
2

p ψTCγ5γμτ2cτ2fψ

B̄Iz¼0;μ
S ¼ ðBIz¼0;μ

S Þ†; B̄Iz¼�1;μ
S ¼ ðBIz¼∓1;μ

S Þ†;
B̄μ
AS ¼ ðBμ

ASÞ†; ð11Þ
respectively, in terms of the quark operator. The quantum
numbers for those states are summarized in Table II. Here,

for the spin-1 diquark baryons, the subscripts S and AS
denote the “symmetric” and “antisymmetric” structure of
the flavor contents, respectively, that is, the former is
isotriplet while the latter is isosinglet. Besides, the super-
script Iz ¼ 0;�1 for BS (B̄S) stands for the eigenvalues of
the isospin “z components”. We note that the axial-vector
and vector (anti)diquark baryons are isotriplet and iso-
singlet, respectively, as dictated by the Pauli principle.1

For spin-1 hadrons, it would be convenient to introduce a
4 × 4 matrix Φμ by the following assignment:

Φμ ¼ 1

2

0
BBBBBBBB@

ωþρ0−ðf1þa0
1
Þffiffi

2
p ρþ − aþ1

ffiffiffi
2

p
BIz¼þ1
S BIz¼0

S − BAS

ρ− − a−1
ω−ρ0−ðf1−a01Þffiffi

2
p BIz¼0

S þ BAS

ffiffiffi
2

p
BIz¼−1
Sffiffiffi

2
p

B̄Iz¼−1
S B̄Iz¼0

S þ B̄AS − ωþρ0þf1þa0
1ffiffi

2
p −ðρ− þ a−1 Þ

B̄Iz¼0
S − B̄AS

ffiffiffi
2

p
B̄Iz¼þ1
S −ðρþ þ aþ1 Þ − ω−ρ0þf1−a01ffiffi

2
p

1
CCCCCCCCA

μ

: ð12Þ

In fact, in terms of the four-component quark field Ψ,
Eq. (A6), and the interpolating fields, Eqs. (10) and (11),
Φμ can be simply rewritten in the form of

Φij ∼Ψ†
jσ

μΨi; ð13Þ

where σμ ¼ ð1; σiÞ (σi is the Pauli matrix in the two-
component spinor space). Thus, the matrix (12) fulfills the
following homogeneous SUð4Þ transformation law:

Φμ → UΦμU†; ð14Þ

which allows us to construct an effective Lagrangian
straightforwardly. For this reason, in what follows we
employ Φμ as a building block of the spin-1 hadrons.
We note that, with the help of Uð4Þ generators Xa and Si,
Eqs. (B5) and (B4), the spin-1 hadron matrix Φμ can be
expressed as

Φμ ¼
�X10

i¼1

ViSi −
X5
a¼0

V 0aXa

�μ

; ð15Þ

where

ω ¼ V0; ρ� ¼ V1 ∓ iV2ffiffiffi
2

p ; ρ0 ¼ V3;

f1 ¼ V 00; a�1 ¼ V 01 ∓ iV 02ffiffiffi
2

p ; a01 ¼ V 03;

BIz¼0
S ¼ V9 þ iV10ffiffiffi

2
p ; B̄Iz¼0

S ¼ V9 − iV10ffiffiffi
2

p ;

BIz¼�1
S ¼ ðV5 þ iV6Þ � ðV7 þ iV8Þ

2
;

B̄Iz¼�1
S ¼ ðV5 − iV6Þ ∓ ðV7 − iV8Þ

2
;

BAS ¼
V 05 − iV 04ffiffiffi

2
p ; B̄AS ¼

V 05 þ iV 04ffiffiffi
2

p : ð16Þ

The reduced form (15) is useful to see symmetry
properties of the spin-1 hadrons. For instance, from

TABLE II. Quantum numbers of the spin-1 hadrons.

Hadron JP Quark number Isospin

ω 1− 0 0
ρ 1− 0 1
f1 1þ 0 0
a1 1þ 0 1
BS (B̄S) 1þ þ2 (−2) 1
BAS (B̄AS) 1− þ2 (−2) 0

1In three-color QCD, the diquarks are translated into SHBs.
Indeed, the axial-vector and vector diquarks, BS and BAS, would
correspond to Σcð2455Þ [and its heavy-quark spin partner
Σcð2520Þ] and Λcð2595Þ [and Λcð2625Þ], respectively.
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Eq. (15) one can see that the vector mesons (1−) and axial-
vector (anti)diquarks (1þ), parities of which are opposite,
belong to the Spð4Þ algebra proportional to Si and hence to
the same multiplet. Likewise, the axial-vector mesons (1þ)
and vector (anti)diquarks (1−) are the elements of the
remaining algebra. The difference of parities between the
mesons and (anti)diquarks in a single multiplet can be
understood from their intrinsic parities as in the case of the
spin-0 hadrons. We note that Vi and V 0a are the ground and
excited states, respectively, in the hadronic phase, since the
former and latter are identifiable as S-wave and P-wave
states, respectively.

C. Extended linear sigma model

In Sec. II A and Sec. II B, the 4 × 4matrices correspond-
ing to the spin-0 and spin-1 hadrons in two-flavor QC2D, Σ
andΦμ, have been introduced. In this subsection, bymaking
the most of these building blocks, we construct an effective
Lagrangian to describe interactions among those hadrons.
The SUð4Þ transformation laws for Σ and Φμ are

given by Eqs. (7) and (14). Toward construction of the
effective Lagrangian, in addition to the SUð4Þ properties
it is necessary to examine the discrete symmetries; par-
ity and charge conjugation invariance. Those discrete

transformation laws of Σ and Φμ can be read off from
the interpolating fields (6) and (13). From Eq. (A6) the
four-component quark field Ψ transforms as

ΨðxÞ→P Ωτ2cσ2Ψ�ðxPÞ; Ψ→
C
iETτ2Ψ; ð17Þ

under parity and charge conjugation with xP ¼ ðx0;−xÞ,
where E is the symplectic matrix (2) and Ω is defined by

Ω ¼
�

0 1f
1f 0

�
: ð18Þ

Thus, the resultant transformation laws of Σ and Φμ read

ΣðxÞ→P ΩΣ†ðxPÞΩ; Σ→
C
ETΣE;

ΦμðxÞ→P − ΩΦT
μ ðxPÞΩ; Φμ →

C
ETΦμE: ð19Þ

Using the transformation laws given by Eqs. (7), (14),
and (19), one can construct the following effective
Lagrangian in such a way as to preserve the Pauli-
Gürsey SUð4Þ symmetry as well as parity and charge-
conjugation invariance:

LeLSM ¼ tr½DμΣ†DμΣ� −m2
0tr½Σ†Σ� − λ1ðtr½Σ†Σ�Þ2 − λ2tr½ðΣ†ΣÞ2� þ tr½H†Σþ Σ†H� þ cðdetΣþ detΣ†Þ

−
1

2
tr½ΦμνΦμν� þm2

1tr½ΦμΦμ� þ ig3tr½Φμν½Φμ;Φν�� þ h1tr½Σ†Σ�tr½ΦμΦμ� þ h2tr½ΣΣ†ΦμΦμ�
þ h3tr½ΦT

μΣ†ΦμΣ� þ g4tr½ΦμΦνΦμΦν� þ g5tr½ΦμΦμΦνΦν� þ g6tr½ΦμΦμ�tr½ΦνΦν� þ g7tr½ΦμΦν�tr½ΦμΦν�: ð20Þ

In this Lagrangian,

Φμν ≡DμΦν −DνΦμ ð21Þ

is the field strength ofΦμ and the covariant derivatives read,

DμΣ≡ ∂μΣ − iGμΣ − iΣGT
μ − ig1ΦμΣ − ig2ΣΦT

μ ;

DμΦν ≡ ∂μΦν − i½Gμ;Φν�; ð22Þ

where Gμ is an external field, the transformation law of
which is Gμ → UGμU† − i∂μUU†. One systematic way to
introduce the chemical potential μq is to replace the time
component of the Uð1ÞB baryon-number part of Gμ

appropriately. Here, from Eq. (A8) and the interpolating
fields (6) and (13), the Uð1ÞB baryon-number part is
proportional to J defined by

J ≡
�
1f 0

0 −1f

�
: ð23Þ

Hence, we replace Gμ by

Gμ → μqδμ0J; ð24Þ

to access a finite-density system. Besides, in constructing
the model, we have included contributions allowed by the
relevant symmetries up to fourth order in Σð†Þ and Φμ. We
note that the 4 × 4 matrix H in Eq. (20) is responsible for
explicit breaking of the Pauli-Gürsey SUð4Þ symmetry to
yield the finite pion mass, which takes the form of

H ¼ hqE: ð25Þ

The Lagrangian (20) can be understood as an extension
of the previous LSM established in Ref. [59] where only
spin-0 hadrons are treated. For this reason we call this
model the extended linear sigma model (eLSM). We note
that this eLSM is the QC2D version of the one invented for
three-color QCD by the Frankfurt group [72] and applied to
the case of finite density by one of the present authors [73].
In the eLSM Lagrangian (20), with the help of the

antisymmetric property: ΣT ¼ −Σ, the kinetic term for Σ
can be expanded as
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tr½DμΣ†DμΣ� ¼ tr½∂μΣ†
∂
μΣ� þ ðg1 þ g2Þtr½ΣΣ†ðΦμGμ

þGμΦμÞ� þ 2ðg1 þ g2Þtr½ΦT
μΣ†GμΣ�

þ iðg1 þ g2Þtr½Φμð∂μΣΣ† − Σ∂μΣ†Þ�
þ ðg21 þ g22Þtr½ΣΣ†ΦμΦμ�
þ 2g1g2tr½ΦT

μΣ†ΦμΣ�: ð26Þ

The trace structure of the last two pieces in the right-hand
side is equivalent to the h2 and h3 terms in Eq. (20), while
the remaining interactions are proportionally dependent on
the combination of g1 þ g2 alone. Hence, the four param-
eters g1, g2, h2, and h3 can be absorbed into three new
combinations,

C1 ≡ g1 þ g2;

C2 ≡ g21 þ g22 þ h2;

C3 ≡ 2g1g2 þ h3: ð27Þ

When the spectrum includes spin-1 hadrons, it is well-
known that the Zweig rule, i.e., the large Nc suppression of
the interactions, works phenomenologically. In other
words, diagrams that are not linked by a single quark line
are not expected to play significant roles as far as the spin-1
hadrons are concerned. In the following analysis, therefore,
we will leave only terms including a single trace for Φμ’s,
which allows us to work with the following reduced eLSM:

Lred
eLSM ¼ tr½DμΣ†DμΣ� −m2

0tr½Σ†Σ� − λ1ðtr½Σ†Σ�Þ2 − λ2tr½ðΣ†ΣÞ2� þ tr½H†Σþ Σ†H� þ cðdetΣþ detΣ†Þ − 1

2
tr½ΦμνΦμν�

þm2
1tr½ΦμΦμ� þ ig3tr½Φμν½Φμ;Φν�� þ h2tr½ΣΣ†ΦμΦμ� þ h3tr½ΦT

μΣ†ΦμΣ� þ g4tr½ΦμΦνΦμΦν�
þ g5tr½ΦμΦμΦνΦν�: ð28Þ

As we will see, the masses of the hadrons can be read off
from quadratic terms of the corresponding fields on top of
the appropriate mean fields.

III. INPUTS

In Sec. II C we have constructed the eLSM to describe
both the spin-0 and spin-1 hadrons at arbitrary μq. In this
section, before numerical investigation of μq dependence of
the mean fields and the hadron masses, we explain our
procedure to determine various parameters of the reduced
eLSM.
The reduced eLSM (28) includes 12 parameters;m2

0,m
2
1,

λ1, λ2, hq, c, g3, g4, g5, C1, C2, and C3. In this exploratory
study, we try to reduce the number of the parameters as
much as possible to avoid unnecessary complexities in the
following numerical analysis. First, as discussed in
Ref. [59], contributions from the λ1 and c terms, which
only affect the mass spectrum of the spin-0 hadrons, are
expected to be small from the Nc counting. Thus, we take
λ1 ¼ c ¼ 0. The main aim of the present paper is to
delineate the behavior of the spin-1 hadrons at finite μq,
so that this simplification does not affect the following
arguments considerably. Next, as for the couplings among
the spin-1 hadrons, there is no a priori way to determine all
of the parameters due to the currently limited lattice data.
When we derive the present eLSM from theOðp2Þ hidden-
local-symmetry (HLS) Lagrangian [41], however, it is
expected that the interactions among the spin-1 hadrons
satisfy the following “gauge-principle parametrization”:

g3 ¼ gΦ; g4 ¼ −g5 ¼ g2Φ: ð29Þ

From this consideration, we assume Eq. (29) to employ
only a single parameter gΦ instead of g3, g4, and g5. In
addition, one can see from Eq. (27) that the roles of C1, C2,
and C3 are essentially the same; these three parameters
control the interaction strength between the spin-0 and
spin-1 hadrons. For this reason we assume

C1 ¼ C2 ≡ C ð30Þ
for simplicity. In Eq. (30) we have not includedC3 to define
the common coupling, since C3 is uniquely fixed by inputs
as will be explained below.
Now the number of the model parameters is reduced to

seven: m2
0, m

2
1, λ2, hq, gΦ, C, and C3. The present study is

devoted to unveiling properties of the spin-1 hadrons, and
hence, we take C and gΦ, which control couplings related to
the spin-1 hadrons, as free parameters. In order to determine
the remaining five parameters, as the first four inputs, we use
themasses ofπ,B0ðB̄0Þ,ρ, anda1 at vanishingμq simulated in
Refs. [61,62]. In these lattice simulations, the mass ratio of

the pion and the ρmeson readsmðHÞ
π =mðHÞ

ρ ≈ 0.81.2Whenwe
fix the physics scale such that the pseudocritical temperature
of the chiral phase transition becomes Tc ¼ 200 MeV at
μq ¼ 0 [24], the input mass values are given by [61,62]

mðHÞ
π ¼ 738 MeV; mðHÞ

B0ðB̄0Þ

���
μq¼0

¼ 1611 MeV;

mðHÞ
ρ ¼ 908 MeV; mðHÞ

a1 ¼ 1614 MeV: ð31Þ

2The superscript (H) is attached to emphasize that the
quantities are defined in the hadronic phase where no diquark
condensates emerge.
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While the pionmass is considerably heavier than the physical
value, we employ these inputs in the present work to
consistently provide predictions for future lattice simula-
tions. As for the last input, following Ref. [59] we take the
mean field value of σ as

σðHÞ0 ¼ 250 MeV; ð32Þ

which gives a typical strength of the chiral symmetry
breaking. Using analytic expressions for the hadron masses
derived in Appendix D, together with Eqs. (31) and (32), the
remaining parameters can finally be determined as

m2
0 ¼ −

1

2
½ðmðHÞ

a0 Þ2 − 3Z−2
π ðmðHÞ

π Þ2�;

m2
1 ¼

1

2
½ðmðHÞ

ρ Þ2 þ ðmðHÞ
a1 Þ2� − C

8
ðσðHÞ0 Þ2;

λ2 ¼
2

ðσðHÞ0 Þ2
½ðmðHÞ

a0 Þ2 − Z−2
π ðmðHÞ

π Þ2�;

hq ¼
σðHÞ0

2
ffiffiffi
2

p Z−2
π ðmðHÞ

π Þ2;

C3 ¼
4

ðσðHÞ0 Þ2
½ðmðHÞ

a1 Þ2 − ðmðHÞ
ρ Þ2�; ð33Þ

for a given C, where the renormalization factor Zπ is of the
form

Zπ ¼
�
1 −

C2ðσðHÞ0 Þ2
8ðmðHÞ

a1 Þ2
�−1=2

: ð34Þ

We note that the analytic expression for hq, which links the
magnitude of explicit breaking of chiral symmetry to the pion
mass, can be derived from a stationary condition of the

effective potential with respect to σðHÞ0 .
In the following analysis, we will regard gΦ and C as free

parameters to explore how the mean fields as well as
hadron masses behave at finite μq. Recall that gΦ is the
coupling constant that controls the interaction strength
among only spin-1 hadrons. Meanwhile, C is particularly
responsible for the transition between the spin-0 and spin-1
hadrons through derivative couplings, as indicated by
Eq. (26). Thus, C can be regarded as a parameter that
measures the magnitude of the spin-0 and spin-1 mixing
effect. For instance, in the hadronic phase, nonzero C
induces π—a1 mixing and η—f1 mixing, which can be
captured by the renormalization constants, Zπ and Zη, as
derived in Appendix D.

IV. MEAN FIELDS

In this section, employing a mean-field approximation,
we numerically explore μq dependence of the mean fields at

zero temperature from the reduced eLSM (28) with the
inputs presented in Sec. III.
At finite μq, not only the sigma meson σ but also the

(anti)diquark baryon B (B̄) can acquire a nonzero mean-
field value, resulting in the appearance of the baryon
superfluid phase [32,33]. Following Ref. [59] we take Δ≡
hB5i to express the mean field of the (anti)diquark. In
addition to those spin-0 hadrons, violation of the Lorentz
invariance yields a mean field of the ω meson [74].
Assuming the parity invariance, only the time component
of ω can have a nonzero mean-field value: ω̄≡ hωμ¼0i.
Furthermore, in the baryon superfluid phase, one can
expect that the ωmeson mixes with the vector (anti)diquark
BAS (B̄AS) due to the baryon-number violation. Thus, these
diquarks are also capable of acquiring nonzero mean-field
values. When the phase of Δ is chosen according to
Δ ¼ hB5i, only V̄ ≡ hV 04

μ¼0i becomes nonzero.3 To sum-
marize, in the present analysis we take into account the
following four mean fields without loss of generality:

σ0 ¼ hσi; Δ ¼ hB5i;
ω̄ ¼ hωμ¼0i; V̄ ≡ hV 04

μ¼0i: ð35Þ

The μq dependence of these mean fields can be determined
by solving the corresponding stationary conditions.
Depicted in Fig. 1 is the resultant μq dependence of the

mean fields: σ0, Δ, ω̄, and V̄, normalized by σðHÞ0 . In
obtaining this plot, the strength of the spin-0 and spin-1
mixing effect is chosen as C ¼ 12. As shown in Sec. V B,

FIG. 1. μq dependence of the mean fields: σ0, Δ, ω̄, and V̄, with
C ¼ 12. The value indicated by the arrow represents the

asymptotic constant value of Δ; Δ ∼ 0.34m1 ¼ 1.74σðHÞ0 .

3In this phase choice, one can indeed prove that hV 05
μ¼0i must

be always zero by solving the stationary conditions explicitly.
Inversely, if we choose the phase of Δ such that hB4i ≠ 0 but
hB5i ¼ 0, then hV 04

μ¼0i ¼ 0 but hV 05
μ¼0i ≠ 0 is obtained for V̄.
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this value leads to a slight reduction of the ρ mass in the
superfluid phase, a feature consistent with the lattice
data [61,62]. We note that the stationary conditions hold
independently of gΦ, so that the resultant μq dependence of
the mean fields is not affected by gΦ. Figure 1 implies that
the baryon superfluid phase is triggered by the onset of
nonzero Δ at a critical chemical potential μq ¼ μcrq with

μcrq ≡mðHÞ
π =2; ð36Þ

which is irrespective of whether or not the spin-1 hadrons
are present. This critical value is universal in the sense that
it is also derived from chiral effective models involving
only spin-0 hadrons [32,33,36,59]. At the same time as the
onset, both V̄ and ω̄ begin to acquire nonzero values.
Detailed analyses in the vicinity of the phase transition will
be provided in Sec. VII A. At asymptotically high μq, σ0
and V̄ vanish. Meanwhile, Δ converges to a constant (see
the arrow in Fig. 1) whose value can be evaluated as

Δ=σðHÞ0 ≈ 0.34ðm1=σ
ðHÞ
0 Þ ¼ 1.74 for the present values of C

and C3, whereas ω̄ grows in the negative direction with a
power of μq.
Here, we note that the onsets of nonzero ω̄ and V̄ do not

necessarily coincide with the critical chemical potential
(36), since those mean fields are unphysical, in other words,
they are gauge-dependent quantities within the gauge-field
description. In fact, the mean field of ω was found to be
proportional to μq in the hadronic phase within the HLS
formalism [41].
The converging behavior of Δ is distinct from the result

within the conventional LSM in the absence of spin-1
hadrons [59]. To take a closer look at this difference, we
depict the μq dependence of σ0 and Δ with and without the
spin-0 and spin-1 mixing effect, C ¼ 12 and C ¼ 0, in the
top panel of Fig. 2. The figure indicates that σ0 does not
have its μq dependence corrected considerably by the
mixing while Δ has its μq dependence significantly
modified by the mixing; the asymptotically converging
behavior of Δ is induced only when the spin-0 and spin-1
mixing takes effect. In fact, the asymptotic constant value
of Δ with the mixing effect is essentially determined by the
bare mass of the spin-1 hadrons, m1, together with a factor
stemming from the mixing strength C and C3. The
diverging behavior of Δ in the absence of the mixing is
lost, but instead the negatively diverging growth of ω̄
appears as indicated in Fig. 1. We note that spin-1 mean
fields ω̄ and V̄ are always zero when C ¼ 0,

ω̄ ¼ 0 and V̄ ¼ 0 ðat any μq for C ¼ 0Þ; ð37Þ

as will be argued in Sec. VII A. We also note that, when we
take C to be negative, the signs of the induced ω̄ and V̄
in the superfluid phase become positive and negative,
respectively.

The emergence of ω̄ induced by the mixing makes the
growth ofΔ suppressed everywhere in the superfluid phase.
Here, we recall that in three-color QCD, the repulsive
contributions from ω mesons play a significant role in
stabilizing nuclear matter against the attractive ones from σ
mesons [74]. In this regard, the hindered evolution of Δ in
the present QC2D matter would also be understood by such
repulsive effects.4

The significant corrections due to the spin-0 and spin-1
mixing effect are also reflected by μq dependence of the
quark-number density as displayed in the bottom panel of
Fig. 2. In this figure we have plotted the normalized density

ñq ¼
nq

16f2πm
ðHÞ
π

; ð38Þ

where nq is the ordinary quark-number density given by

FIG. 2. μq dependence of σ0 and Δ (top) and of the quark-
number density ñq (bottom) with and without spin-0 and spin-1
mixing, C ¼ 12 and C ¼ 0.

4For another notable effect of ω̄, this mean field will be found
to suppress the chemical potential of the diquark baryons
effectively as 2μq → 2μq þ ðC=2 ffiffiffi

2
p Þω̄ with ðC=2 ffiffiffi

2
p Þω̄ < 0,

as shown in, e.g., Eq. (C16). This negative effect is consistent
with the case for nucleons in three-color QCD.
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nq ¼
∂Lred:

eLSM

∂μq

����
mean field

¼ 4Δ2μq þ
CΔffiffiffi
2

p ðΔω̄ − V̄σ0Þ ð39Þ

with the mean fields (35), and fπ ¼ σðHÞ0 =
ffiffiffi
2

p
is the pion-

decay constant. The figure shows that the asymptotic
growth that is proportional to μ3q as can be derived in
the absence of the mixing is changed into the m2

1μq
dependence due to the mixing. As a result, increment in
the density gets milder. It should be noted that the Silver-
Blaze property for the quark-number density is obvious
since nq is proportional to Δ.5

Before moving on to evaluation of the hadron masses at
finite μq, we give comments on roles of the spin-1 mean
fields ω̄ and V̄ in controlling the onset of the baryon
superfluid phase. As indicated in Fig. 1, the superfluid
phase emerges once μq reaches the critical chemical
potential (36), which is exactly what lattice simulations
suggest [8,17,21]. Note, however, that this is only when we
include all the four mean fields: σ0, Δ, ω̄, and V̄. If any of
the mean fields were dropped, the critical chemical poten-
tial would not coincide with Eq. (36) in the presence of the
spin-0 and spin-1 mixing effect. We have checked this
property by choosing various parameter sets.6 In fact, if ω̄
or V̄ is neglected while keeping C ¼ 12, then the critical
chemical potential is found to change to approximately

0.379mðHÞ
π , which is lower than μcrq ¼ mðHÞ

π =2 suggested by
lattice simulations. Accordingly, one can show that the pion
mass in the superfluid phase is not given by mπ ¼ 2μq
that other chiral effective models commonly predict
[32,33,36,59]. Furthermore, the Nambu-Goldstone (NG)
boson associated with the breakdown of Uð1ÞB symmetry
does not emerge in this case. From these observations, we
conclude that ω̄ and V̄ as well as σ0 and Δ play important
roles in cold and dense QC2D matter when the spin-0 and
spin-1 mixing effect is present.

V. MASS SPECTRUM

In this section we examine a mass spectrum of the spin-1
hadrons at finite μq by expanding the Lagrangian (28) on
top of the mean fields obtained in the previous section.

A. General properties

Before showing numerical results for the μq dependence
of the spin-1 hadron masses, we start with general proper-
ties of such hadrons in a medium. In what follows, we
consider the rest frame of the medium.

The quantum numbers carried by (axial-)vector mesons
are identical to those of (pseudo)scalar mesons with a
derivative, e.g., aa;μ1 and ∂

μπa, so that such two kinds of
mesons can mix with each other even in the hadronic phase
with nonzero C. Similarly, (anti)baryons can mix with the
corresponding spin-1 (anti)baryons through a derivative. In
the rest frame of the hadronic medium, therefore, the
following four mixings appear:

ð∂0π;at1Þ; ð∂0η;ft1Þ; ð∂0B;Bt
ASÞ; ð∂0B̄; B̄t

ASÞ; ð40Þ

where each bracket represents the mixing partners and
the isospin indices are suppressed for simplicity. Here, the
superscript “t” stands for the time component (μ ¼ 0) of the
respective spin-1 hadrons. The time components of the
spin-1 hadrons are unphysical, so the mixings in Eq. (40)
only lead to modifications of π, η, B, and B̄, while the
physical components, i.e., the spatial components of the
spin-1 hadrons remain unaffected. We note that the remain-
ing spin-0 hadrons: σ, a0, B0, and B̄0, are not contaminated
by any mixing.
Meanwhile, in the baryon superfluid phase the mixings

get more complicated due to the Uð1ÞB baryon-number
violation as well as the creation of a baryonic medium.
Taking into account the unbroken SUð2ÞI isospin sym-
metry, one can see that the following six mixings are
possible:

ð∂0a0; ρtÞ;
ð∂0B0; ∂0B̄0; ∂0η; ft1Þ;
ð∂0π; Bt

S; B̄
t
S; a

t
1Þ; ðBs

S; B̄
s
S; a

s
1Þ

ð∂0B; ∂0B̄; ∂0σ; Bt
AS; B̄

t
AS;ω

tÞ; ðBs
AS; B̄

s
AS;ω

sÞ; ð41Þ

where each bracket again represents the mixing partners.
That is, all of the spin-0 hadronic states are corrected by the
corresponding unphysical spin-1 states. Besides, the physi-
cal components of BS, B̄S, a1, and of BAS, B̄AS, ω, are also
corrected by the mixings. A schematic picture of the
mixings among the hadrons both in the hadronic and
superfluid phases are shown in Fig. 3.
In the present paper, the hadron masses are evaluated at

tree level in the presence of the mean fields (35). The
analysis is straightforward but is complicated and lengthy
since, particularly in the superfluid phase, we need to find
pole positions of the respective propagator matrix for the
mixed states in Eq. (41). For this reason, we leave the
detailed procedure to compute the hadron masses to
Appendix C.

B. Numerical results for the hadron masses
at nonzero μq

In this subsection, based on the expressions derived in
Appendix C we numerically elucidate μq dependence of the

5Although the present eLSM predicts nq ∝ μq for larger μq, at
some point, such a hadronic description would be violated and
quark matter would appear, which leads eventually to nq ∝ μ3q.

6In Sec. VII A, we, indeed, analytically prove that Eq. (36)
holds as long as all of σ0, Δ, ω̄, and V̄ are included based on a
certain assumption on their critical behaviors.
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masses of spin-1 hadrons. As for the free parameters gΦ and
C, we first take ðgΦ; CÞ ¼ ð10; 12Þ to draw a typical
prediction of the mass spectrum of the spin-1 hadrons.
Next, we vary the value of C with gΦ kept fixed to unveil
how the spin-0 and spin-1 mixing affects the mass
spectrum. More concretely we take ðgΦ; CÞ ¼ ð10; 16Þ
and ðgΦ; CÞ ¼ ð10; 8Þ. Finally, we also choose ðgΦ; CÞ ¼
ð5; 12Þ to see influence of the coupling gΦ on the mass
spectrum.
Depicted in Fig. 4 is the resultant μq dependence of the

spin-1 hadron masses at ðgΦ; CÞ ¼ ð10; 12Þ. As can be seen
from this figure, at vanishing chemical potential, the masses
of ω, ρ, BS, and B̄S degenerate and so do those of f1, a1,

BAS, and B̄AS. In the hadronic phase, as μq increases, all the
meson masses do not change and the (anti)baryon masses
simply modified linearly. These stable behaviors are
reminiscent of the Silver-Blaze property. Here, the slopes
of the linear decrement (increment) of diquark (antidi-
quark) baryons can be understood by their baryon numbers.
More explicitly, their mass formulas are given by Eqs. (D3)
and (D4). In the baryon superfluid phase, on the other hand,
due to the Uð1ÞB baryon-number violation, ω-BAS-B̄AS

mixing and a1-BS-B̄S mixing take place, leading to non-
monotonic μq dependence of the masses of the resulting
mixed states. Most remarkably, the a1-BS-B̄S mixing has
been observed by the recent lattice simulation [62].

FIG. 4. μq dependence of the masses of negative-parity (left) and positive-parity (right) spin-1 hadrons for ðgΦ; CÞ ¼ ð10; 12Þ. In this

figure the masses are normalized by mðHÞ
π .

FIG. 3. Schematic picture of corrections to the hadron masses from various mixings.

SUENAGA, MURAKAMI, ITOU, and IIDA PHYS. REV. D 109, 074031 (2024)

074031-10



Meanwhile, the ρ and f1 mesons are not contaminated by
any mixing so that those masses depend on μq fairly
monotonically. We note that the present parameter set
yields a slight reduction of the ρ meson mass in the
superfluid phase, which is consistent with the lattice
data [61,62].
In the presence of the spin-0 and spin-1mixing effect, it is

worth examining themass spectrum of the spin-0 hadrons in
addition to that of the spin-1 hadrons as depicted in Fig. 4. In
Fig. 5, we thus draw the resultant μq dependence of the
spin-0 hadron masses at ðgΦ; CÞ ¼ ð10; 12Þ. In this figure,
the hadron masses are again shown to depend on μq
monotonically in the hadronic phase, which is consistent
with the Silver-Blaze property. Besides, in the superfluid
phase, the left panel indicates that a massless mode emerges
in the σ-B-B̄ mixed state. This mode corresponds to a NG
boson associated with the spontaneous breakdown ofUð1ÞB
baryon-number symmetry. Moreover, from the right panel,
the pion mass is found to increase linearly in the superfluid
phase; this numerical result can be reproduced by a simple
formula,

mπ ¼ 2μq; ð42Þ

which is consistent with other chiral models [32,33,36,59].
We again emphasize that all these reasonable results stem
from the present correct treatment of the four mean fields
(35) within the eLSM.

C. C dependence of the mass spectrum

The mass spectrum of the spin-1 hadrons presented in
Fig. 4 is just a typical example. In this case, the value ofC is
fixed such that the slight reduction of the ρ meson mass in
the superfluid phase suggested by lattice simulations is
successfully reproduced. Next, we change the value of C
while keeping gΦ ¼ 10. When we take C to be larger, e.g.,
C ¼ 16, the μq dependence of the spin-1 hadron masses is
obtained as depicted in Fig. 6. From this figure one can find
that the mass spectrum in the hadronic phase is identical to
the one with ðgΦ; CÞ ¼ ð10; 12Þ, Fig. 4, as long as all the
other parameters are the same. In the superfluid phase, the ρ
meson mass slightly increases with μq, which is clearly
different from the lattice result. This suggests that the

FIG. 6. Same as Fig. 4 but for ðgΦ; CÞ ¼ ð10; 16Þ.

FIG. 5. μq dependence of the masses of positive-parity (left) and negative-parity (right) spin-0 hadrons for ðgΦ; CÞ ¼ ð10; 12Þ. In this

figure the masses are normalized by mðHÞ
π .
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relevant value of the parameter C that controls the magni-
tude of the spin-0 and spin-1 mixing effect could not be so
large. We note that, since the renormalization factor Zπ (or
Zη), Eq. (D11), must be real, the inputs presented in Sec. III
already constrains C as C ≲ 18.3.
When we take C to be smaller, e.g., C ¼ 8, the mass

spectrum is evaluated as in Fig. 7. The right panel indicates
that, in this parameter choice, the mass of the lowest-lying

a1-BS-B̄S mixed state reaches zero at μq ≈ 0.88mðHÞ
π , as the

chemical potential increases in the superfluid phase. Since
this mode includes an isotriplet axial-vector component, it
is reasonable to argue that above this chemical potential,
an axial-vector condensed phase where SUð2ÞI isospin
symmetry is broken emerges on top of the baryon super-
fluidity [34], as exhibited by the shaded area in Fig. 7.
Thus, the true mass spectrum in this phase is obscure
although we have still plotted the numerical result. For a
self-consistent analysis, however, it would be necessary to
include another mean field that is responsible for the axial-
vector condensed phase.
Above the critical chemical potential μq ≈ 0.88mðHÞ

π , the
mass of the lowest-lying ω-BAS-B̄AS mixed state also

converges to zero at μq ≈ 0.95mðHÞ
π as indicated in the left

panel of Fig. 7. Besides, the ρ meson mass also becomes

zero at μq ≈ 1.1mðHÞ
π . These critical chemical potentials lie

in the axial-vector condensed phase, so that more precise
determination of their values would require extension of the
present exploratory analysis. From those findings, however,
at least one could expect the existence of the vector
condensed phase. We note that the axial-vector condensa-
tion occurs prior to the vector condensation, reflecting the
fact that the BS mass is invariably lighter than the BAS one
at μq ¼ μcrq , since BS is an S-wave state.
From the above analysis, one can infer that when C is

small enough, the appearance of the axial-vector (and
vector) condensate in the superfluid phase is favored. To
see this tendency more clearly, in Fig. 8, we plot the critical
chemical potential for the appearance of the axial-vector

condensed phase as a function of the mixing strength C. In
this figure, the pure baryon superfluid phase lies below the
curve, while in the above shaded area the axial-vector
condensate emerges in the superfluid phase. The figure
indeed indicates that the smaller value of C triggers the
axial-vector condensation at lower μq. In other words, the
spin-0 and spin-1 mixing controlled byC acts as a stabilizer
to avoid emergence of the axial-vector condensate, i.e.,
onset of the Bose-Einstein condensation of parity-even
spin-1 hadrons, in the low density regime. We note that,
even when we take a value ofC as large as possible, we find
the critical chemical potential for the axial-vector conden-
sation at a certain value, which could be too high for the
present model to be valid.

D. gΦ dependence of the mass spectrum

Thus far we have only varied the value of C, while
keeping gΦ ¼ 10, to focus on the spin-0 and spin-1
mixing effects on the hadron mass spectrum. Let us now
examine effects of the coupling gΦ. When we employ
ðgΦ; CÞ ¼ ð5; 12Þ, the mass spectrum is obtained as in
Fig. 9. This figure exhibits appearance of the axial-vector

FIG. 8. Critical chemical potential for the axial-vector con-
densation as a function of mixing strength C. We take gΦ ¼ 10.

FIG. 7. Same as Fig. 4 but for ðgΦ; CÞ ¼ ð10; 8Þ.
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condensate and possibly of the vector condensate similarly
to Fig. 7. One obvious distinction is the qualitative behavior
of the ρ meson mass. The μq dependence of the ρ meson
mass in Fig. 9 does not change from that in Fig. 4 in the
sense that both show the same gradual decrease with μq,
whereas the ρ meson mass in Fig. 7 decreases rapidly to
zero. This characteristic behavior can be understood by the
fact that the ρ meson mass has no dependence on gΦ, as
shown in Eq. (C6). Thus, gΦ plays a role in changing the μq
dependence of the ω-BAS-B̄AS mixed states and the
a1-BS-B̄S mixed states, particularly the lowest one for
each. Detailed consideration of th ρ meson mass in the
superfluid phase will be done in Sec. VII B.
Depicted in Fig. 10 is the gΦ dependence of the critical

chemical potential for the axial-vector condensation. In this
figure the axial-vector condensed phase is indicated by the
shaded area. Figure 10 implies that the smaller value of gΦ
leads to the appearance of the axial-vector condensate at
lower μq. Moreover, one can see that reentrant axial-vector
condensation occurs in a regime of large gΦ in such a way
that the intervening pure superfluid region shrinks with
increasing μq.

E. Signs of C and gΦ
We conclude this section by giving comments on the

signs of C and gΦ. Throughout the above numerical
analysis, we have assumed C > 0 and gΦ > 0. When the
signs are taken to be C < 0 and gΦ < 0, we can obtain
qualitatively similar results for the mass spectrum although
the detailed numerical values are slightly changed. For
instance, a negatively larger value of C acts to prevent the
axial-vector condensation and possible vector condensation
from occurring in the superfluid phase. On the other hand,
when we take C > 0 and gΦ < 0 or C < 0 and gΦ > 0, the
resultant mass spectrum always exhibits both types of

condensation in the range of mðHÞ
π =2 < μq ≲ 2mðHÞ

π .

VI. CHIRAL PARTNER STRUCTURE

From the numerical analysis in Sec. V, we have suc-
ceeded in gaining insights into roles of the mixing strength
C and the coupling gΦ in determining the spin-1 hadron
masses at finite μq. In this section, by focusing on a high μq
regime where chiral symmetry is sufficiently restored, we
demonstrate the so-called chiral partner structure of the
spin-1 hadrons by identifying the pairs of 1þ and 1−

hadrons that are degenerate in mass.
At sufficiently high μq, the four mean fields would

asymptotically behave as σ0 → σ∞μ
−2
q , Δ → Δ∞,

ω̄ → ω̄∞μq, and V̄ → V̄∞μ
−1
q , as expected from the numeri-

cal results in Fig. 1, where σ∞, Δ∞, ω̄∞, and V̄∞ are
constants. Using these asymptotic behaviors and the mass
formulas derived in Appendix C, first, one can easily show
mω ¼ mf1 and mρ ¼ ma1 at μq → ∞, where ω and a1
mesons are decoupled from the respective mixings with the
(anti)diquark baryons.7 That is, (ω; f1) and (ρ; a1) can be
regarded as the chiral partners even in the presence of the
mean fields Δ and ω̄ in a high density region. Next, as for

FIG. 9. Same as Fig. 4 but for ðgΦ; CÞ ¼ ð5; 12Þ.

FIG. 10. Critical chemical potential for the axial-vector con-
densation as a function of the coupling gΦ. We take C ¼ 12.

7Here, the superscript “s” for the hadron masses representing
the spatial component is omitted for simplicity. The same
abbreviation applies to Eq. (54) to refer to the ρ meson mass.
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the remaining (anti)diquark baryons, BS, B̄S, BAS, and B̄AS,
the asymptotic behaviors of the mean fields tell that the
mixing structures for the V9-V10 system and the V 0

4-V
0
5

system become identical while the remaining bare masses
satisfy mV9

¼ mV 0
4
and mV10

¼ mV 0
5
at μq → ∞, as can be

seen from Appendix C. Thus, ðBS; BASÞ and ðB̄S; B̄ASÞ are
also regarded as the chiral partners.
The above analytic consideration of the chiral partner

structure is, indeed, numerically confirmed as shown in
Fig. 11. In this figure we have taken ðgΦ; CÞ ¼ ð10; 16Þ to
see the mass degeneracy clearly. Figure 11 indicates that
the mass degeneracy occurs between the following 1þ and
1− hadrons, ðBS; BASÞ, ðρ; a1Þ, ðω; f1Þ, and ðB̄S; B̄ASÞ
from below, at high μq. We note that the chiral partner
structure for the spin-0 hadrons in the absence of the
Uð1ÞA anomaly was examined in Ref. [59], where mass
degeneracy was demonstrated for ðB;B0Þ, ðσ; πÞ, ða0; ηÞ,
and ðB̄; B̄0Þ.

VII. DISCUSSIONS

A. Analytic derivation of μcrq =mðHÞ
π =2 in the eLSM

In Sec. IV, we have numerically seen that the phase
transition from the hadronic phase to the baryon superfluid
phase takes place just when μq coincides with mðHÞ

π =2,
similarly to other chiral models ignoring spin-1 hadrons
[32,33,36,59]. In this section we analytically prove such a
universal property within our present eLSM based on a
reasonable assumption.
The μq dependence of the mean fields, σ0, Δ, ω̄, and V̄,

has been determined by stationary conditions in Sec. IV.
These conditions can be derived from Eq. (28) as

σ0∶
2

ffiffiffi
2

p
hq

σ0
−

Cffiffiffi
2

p
σ0

μqΔV̄ −
C3

4σ0
ΔV̄ ω̄þC3

8
ðV̄2 − ω̄2Þ

þ C
8
ðV̄2 þ ω̄2Þ −m2

0 −
λ2
4
ðσ20 þ Δ2Þ ¼ 0; ð43Þ

Δ∶ −
Cffiffiffi
2

p
Δ
μqV̄σ0 −

C3

4Δ
V̄σ0ω̄þ 4μ2q þ

ffiffiffi
2

p
Cμqω̄

−
C3

8
ðV̄2 − ω̄2Þ þ C

8
ðV̄2 þ ω̄2Þ −m2

0

−
λ2
4
ðσ20 þ Δ2Þ ¼ 0; ð44Þ

ω̄∶
Cffiffiffi
2

p
ω̄
μqΔ2 −

C3

4ω̄
ΔV̄σ0 −

C3

8
ðσ20 − Δ2Þ

þ C
8
ðσ20 þ Δ2Þ þm2

1 ¼ 0; ð45Þ

and

V̄∶ −
Cffiffiffi
2

p
V̄
μqΔσ0 −

C3

4V̄
Δσ0ω̄þ C3

8
ðσ20 − Δ2Þ

þ C
8
ðσ20 þ Δ2Þ þm2

1 ¼ 0: ð46Þ

The numerical solutions imply that emergence of ω̄ and V̄
is accompanied by nonzero Δ, i.e., by the onset of the
baryon superfluidity and that the phase transition is of
second order. Let us now suppose that the critical exponents
of Δ and V̄ are þ1=2 while that of ω̄ is þ1. Indeed, these
exponents are suggested by the numerical result. Then, Δ
and V̄ take the form of

Δ ∼ Δcrðμq − μcrq Þ1=2;
V̄ ∼ V̄crðμq − μcrq Þ1=2;
ω̄ ∼ ω̄crðμq − μcrq Þ1; ð47Þ

in the vicinity of the phase transition, where Δcr > 0,
V̄cr > 0, and ω̄cr < 0. From these exponents, one finds that
in the limit of μq → μcrq , Δ2=ω̄, ΔV̄=ω̄, and Δ=V̄ approach
nonzero values, whileΔω̄=V̄ → 0. Thus, the first and second
terms of Eq. (45) and the first term in Eq. (46), which remain
finite at the critical chemical potential, act as catalyzers to
yield nonzero ω̄ and V̄ above μq ¼ μcrq , respectively.
Given the critical behavior (47), at μq ¼ μcrq , the sta-

tionary conditions, Eqs. (43)–(46), are reduced to

2
ffiffiffi
2

p
hq

σðHÞ0

− Z−2
π ðmðHÞ

π Þ2 ¼ 0; ð48Þ

−
Cμcrq σ

ðHÞ
0ffiffiffi

2
p

x
þ 4ðμcrq Þ2 − Z−2

π ðmðHÞ
π Þ2 ¼ 0; ð49Þ

FIG. 11. μq dependence of all the 1þ and 1− hadron masses for
ðgΦ; CÞ ¼ ð10; 16Þ. The chiral partner structures are clearly
shown by the degeneracy.
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Cμcrq yffiffiffi
2

p −
C3σ

ðHÞ
0 y

4x
þ ðmðHÞ

ρ Þ2 ¼ 0; ð50Þ

and

−
Cμcrq σ

ðHÞ
0 xffiffiffi
2

p þ ðmðHÞ
f1

Þ2 ¼ 0; ð51Þ

respectively, where we have used the hadron mass formulas
in Appendix D and defined

x≡ Δcr

V̄cr > 0; y≡ ðΔcrÞ2
ω̄cr < 0: ð52Þ

From Eqs. (49) and (51) as well as the renormalization
factor (D11), therefore, one can analytically prove

μcrq ¼ mðHÞ
π

2
; ð53Þ

which was numerically confirmed in Fig. 1. We note that C
cannot be zero from the stationary condition for V̄ at
μq ¼ μcrq , Eq. (51), as long as Eq. (47) holds. In other
words, V̄ always vanishes when C ¼ 0, and similarly, from
Eq. (50) one can see ω̄ ¼ 0 at any μq when C ¼ 0.

B. Comments on the ρ mass reduction

Here we provide comments on the ρ meson mass
reduction in the superfluid phase.
As derived in Eq. (C6), the ρ meson mass is evaluated as

m2
ρ ¼ m2

1 þ
C − C3

8
ðσ20 þ Δ2Þ; ð54Þ

in both the hadronic and superfluid phases. This universal
structure stems from the fact that the ρ meson is not
contaminated by any mixing with other hadrons, even in
the presence of the superfluidity. Then, if the combination
σ20 þ Δ2 is enhanced in the superfluid phase while C < C3,
the mρ reduction observed on the lattice can be reproduced
within the present eLSM. From Fig. 2, however, one can
see that the enhancement of the combination σ20 þ Δ2 in the
superfluid phase gets mild as the spin-0 and spin-1 mixing
effect becomes prominent. That is whymρ is relatively hard
to change for a larger value of C.
Since μq dependence of the combination σ20 þ Δ2 in the

superfluid phase is rather monotonic as can be inferred from
Fig. 2, the resultant mρ also changes almost linearly as a
function of μq. On the other hand, the lattice data would
imply a rather abrupt reduction of mρ just above μq ¼ μcrq ,
although there remain error bars; μq dependence of mρ

measured by the lattice simulation would look convex
downward [61,62]. One promising mechanism to yield such

a downward-convex behavior of mρ could be additional
mixing with other states that are associated with the super-
fluidity but have yet to be considered in the present analysis.
The ρ meson, which is an isotriplet state carrying JP ¼ 1−,
may strongly mix with an isotriplet and JP ¼ 1− diquark
B̃i ∼ ϵijk½ψTCΣjkτ2cψ �sym, where Σμν ¼ i

2
½γμ; γν� is the anti-

symmetric tensor and the subscript “sym.” means the flavor
symmetric structure. Inclusion of this new diquark state,
however, requires us to introduce another quark bilinear
operator Φ̃μν

ij ∼ΨT
j σ

2σ̄μντ2cΨi, where σ̄μν ¼ i
2
ðσ̄μσν − σ̄νσμÞ

with σ̄μ ¼ ð1;−σiÞ, which is beyond the scope of the present
study. Thus, we leave detailed examination of the B̃i-ρ
mixing in the superfluid phase for future study.

VIII. CONCLUSIONS

In summary, for denseQC2D at zero temperature, we have
constructed the extended linear sigma model, eLSM, in such
a way as to respect the Pauli-Gürsey SUð4Þ symmetry and to
describe both the spin-0 and spin-1 hadrons. Then, based on
the eLSM, richness of the mass spectrum of the spin-1
hadrons in dense QC2D has been explored.
In the baryon superfluid phase where the diquark

condensate emerges, we have found that not only the
scalar meson and scalar diquark baryon but also the time
components of the vector meson and vector diquark baryon
possess their mean field values, in the presence of spin-0
and spin-1 mixing. These mean fields are induced by
violation of the Lorentz invariance as well as of Uð1Þ
baryon-number conservation. Besides, we have analytically
shown that the onset condition of superfluidity corresponds

to μq ¼ mðHÞ
π =2 (mðHÞ

π is the pion mass in the hadronic
phase) and that the pion mass in the superfluid phase reads
mπ ¼ 2μq. Moreover, the appearance of the NG boson
associated withUð1ÞB violation has been confirmed. Those
self-consistent properties, which were numerically indi-
cated by lattice simulations, are derived only when the
above four types of mean fields are included.
Inclusion of the vector-meson and vector-diquark mean

fields has led to suppression of the otherwise substantial
increase of the scalar-diquark mean field in the superfluid
phasevia the spin-0 and spin-1mixing. Simultaneously, it has
been found that the slight reductionof theρmesonmass in the
superfluid phase suggested by the lattice data is successfully
reproduced in the presence of the significant spin-0 and spin-
1 mixing. Furthermore, by varying the magnitude of this
mixing and of coupling among the spin-1 hadrons, we have
demonstrated the emergence of the axial-vector condensate
and the possible vector condensate. Those novel condensates
are induced when the masses of the corresponding modes
reach zero. Given such condensates, therefore, it is inevitable
to investigate the in-medium masses of the spin-1 hadrons
from the first-principles lattice calculation of dense QC2D
toward further delineation of the phase structures.
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In addition, we have also discussed a possible existence
of an isotriplet 1− diquark, motivated by the possible
downward-convex behavior of the ρ meson mass reduction
in the superfluid phase as suggested by the lattice simu-
lations [61,62]. This diquark is denoted by a tensor-type
quark bilinear field, while no examination has been done so
far. Therefore, it would be challenging to pursue properties
of such a new diquark state from both effective theories and
first-principles numerical studies.
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APPENDIX A: THE PAULI-GÜRSEY SUð4Þ
SYMMETRY IN TWO-FLAVOR QC2D

In this appendix, we briefly show emergence of the
Pauli-Gürsey SUð4Þ symmetry in QC2D with two fla-
vors [32,33].
The QC2D Lagrangian for massless u and d quarks is of

the form,

LQC2D ¼ ψ̄iDψ ; ðA1Þ

where ψ ¼ ðu; dÞT is the quark doublet and Dμψ ¼ ∂μψ −
igcAa

μTa
cψ is the covariant derivative describing interactions

between the quarks ψ and gluons Aa
μ. The 2 × 2 matrix

Ta
c ¼ τac=2 is the SUð2Þc generator (τac is the Pauli matrix

for colors). Adopting the Weyl representation for the Dirac
matrices, the Lagrangian (A1) can be expressed in terms of
left-handed and right-handed quarks as

LQC2D ¼ ψ†
Ri∂μσ

μψR − gcψ
†
RA

a
μTa

cσ
μψR

þ ψ†
Li∂μσ̄

μψL − gcψ
†
LA

a
μTa

c σ̄
μψL: ðA2Þ

In this Lagrangian, u ¼ ðuR; uLÞT and d ¼ ðdR; dLÞT in the
Weyl representation, and the 2 × 2 matrices in the spinor
space are defined by σμ ¼ ð1; σiÞ and σ̄μ ¼ ð1;−σiÞ with
the Pauli matrix σi. Here, we make use of the pseudoreal
property of the Pauli matrix. Namely, using relations

Ta
c ¼ −τ2cðTa

cÞTτ2c; σi ¼ −σ2ðσiÞTσ2; ðA3Þ

and accordingly introducing the “conjugate quark fields”

ψ̃R ≡ σ2τ2cψ
�
R; ψ̃L ≡ σ2τ2cψ

�
L; ðA4Þ

the Lagrangian (A2) can be expressed in a unified form as

LQC2D ¼ Ψ†i∂μσμΨ − gΨ†Aa
μσ

μΨ: ðA5Þ

Here, we have described the quark fields by using a four-
component column vector defined as

Ψ≡
�
ψR

ψ̃L

�
¼

0
BBB@

uR
dR
ũL
d̃L

1
CCCA: ðA6Þ

The Lagrangian (A5) is obviously invariant under an
SUð4Þ transformation of

Ψ → UΨ with U∈ SUð4Þ; ðA7Þ

rather than SUð2ÞL × SUð2ÞR chiral transformation. Such
an extended symmetry is sometimes referred to as the
Pauli-Gürsey SUð4Þ symmetry [32,33]. As can be seen
from Eq. (A6), the Pauli-Gürsey SUð4Þ symmetry is
realized by treating ψ and ψ̃ in a single multiplet, reflecting
the fact that mesons and diquark baryons can be described
in a unified way in two-flavor QC2D. It should be noted that
the Uð1ÞB baryon-number transformation is generated by

Ψ → e−iθqJΨ with J ≡
�
1 0

0 −1

�
; ðA8Þ

where e−iθqJ belongs to a subgroup of the Pauli-Gürsey
SUð4Þ group.

APPENDIX B: GENERATORS
OF Uð4Þ LIE ALGEBRA

In this appendix, we list the generators of Uð4Þ Lie
algebra.
The number of the Uð4Þ generators is 4 × 4 ¼ 16. It is

convenient to separate these 16 generators into two sets Si

(i ¼ 1–10) and Xa (a ¼ 0–5) that satisfy,

SUENAGA, MURAKAMI, ITOU, and IIDA PHYS. REV. D 109, 074031 (2024)

074031-16



EðSiÞT ¼ −SiE; EðXaÞT ¼ XaE; ðB1Þ

with the symplectic matrix,

E ¼
�

0 1f
−1f 0

�
: ðB2Þ

That is, the elements generated by Si, h ¼ e−iθ
i
SS

i
, exhibit

the following relation:

hEhT ¼ E: ðB3Þ

This relation means that h belongs to the Spð4Þ group,
which is the subgroup of the original Uð4Þ group.
More concretely, the generators Si belonging to the Lie

algebra of Spð4Þ read

Si¼1−4 ¼ 1

2
ffiffiffi
2

p
� τif 0

0 −ðτifÞT
�
;

Si¼5−10 ¼ 1

2
ffiffiffi
2

p
�

0 Bi

ðBiÞ† 0

�
; ðB4Þ

with τ4f ¼ 1f, B5 ¼ 1f, B6 ¼ i1f, B7 ¼ τ3f, B8 ¼ iτ3f,
B9 ¼ τ1f, and B10 ¼ iτ1f. Meanwhile, the remaining gen-
erators belonging to the algebras ofUð1Þ and SUð4Þ=Spð4Þ
are given by

Xa¼0−3 ¼ 1

2
ffiffiffi
2

p
� τaf 0

0 ðτafÞT
�
;

Xa¼4;5 ¼ 1

2
ffiffiffi
2

p
�

0 Da

ðDaÞ† 0

�
; ðB5Þ

where τa¼0
f ¼ 1f is the 2 × 2 unit matrix and τa¼1–3

f are the
Pauli matrices in the flavor space. Besides, D4 ¼ τ2f and
D5 ¼ iτ2f.

APPENDIX C: MASS FORMULAS

In this appendix, we derive hadron mass formulas from
the reduced eLSM Lagrangian (28).
The mass formulas are derived by picking up quadratic

terms of the hadron fields in the Lagrangian (28) on top of
the mean fields σ0, Δ, ω̄, and V̄ defined by Eq. (35). The
eLSM describes the mass spectrum of 16 hadrons in total,
namely, eight spin-0 hadrons, η, π, B, B̄, σ, a0, B0, and B̄0,
and eight spin-1 hadrons, ω, ρ, BS, B̄S, f1, a1, BAS, and
B̄AS. As explained in Sec. VA, those 16 hadrons are
separated into the following four systems due to different
mixing patterns:
(1) a0-ρ system;
(2) η-B0-B̄0-f1 system;

(3) π-a1-BS-B̄S system;
(4) σ-B-B̄-ω-BAS-B̄AS system.

Then, in what follows we show the mass formulas for these
four systems separately.

1. a0-ρ system

As for the a0-ρ system, the relevant Lagrangian is
obtained as

Lð1Þ ¼ La0 þ Lρ þ La0ρ; ðC1Þ

where each term reads

La0 ¼
1

2
∂μa0∂μa0 −

m2
a0

2
a20; ðC2Þ

Lρ¼−
1

4
ð∂μρν−∂νρμÞ2þ

ðmt
ρÞ2
2

ðρ0Þ2þðms
ρÞ2
2

ρiρ
i; ðC3Þ

and

La0ρ ¼
C − C3

4
ðΔV̄4 þ σ0ω̄Þa0ρ0: ðC4Þ

In these terms, we have suppressed the isospin indices for
simplicity, and have defined the mass parameters by

m2
a0 ¼ m2

0 þ
3λ2
4

ðσ20 þ Δ2Þ − C − C3

8
ðV̄2 þ ω̄2Þ; ðC5Þ

and

ðmt
ρÞ2 ¼ ðms

ρÞ2 ¼ m2
1 þ

C − C3

8
ðσ20 þ Δ2Þ; ðC6Þ

where the superscripts “t” and “s” are attached to distin-
guish between time-component (unphysical) and spatial-
component (physical) masses.
Thus, from Eq. (C4) one can see that the a0 meson mixes

with the time component of the ρmeson due to the violation
of the Lorentz invariance. For this reason, the mass of the
a0 meson does not coincide with ma0 provided by Eq. (C5)
but is determined by a pole of the propagator matrix for the
a0-ρ0 system at vanishing momentum p ¼ 0. The inverse of
the propagator matrix iD−1

ð1Þðp0; 0Þ can be derived as

iD−1
ð1Þðp0; 0Þ ¼

�
Ma0a0 Ma0ρ

Mρa0 Mρρ

�
; ðC7Þ

with

Ma0a0 ¼ p2
0 −m2

a0 ; ðC8Þ

Ma0ρ ¼ Mρa0 ¼
C − C3

4
ðΔV̄ þ σ0ω̄Þ; ðC9Þ
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and

Mρρ ¼ ðmt
ρÞ2: ðC10Þ

Therefore, the mass of a0 at arbitrary μq is evaluated by
numerically solving det ½iD−1

ð1Þðp0; 0Þ� ¼ 0. Meanwhile, the
spatial components of the ρ meson, i.e., the physical states
of ρ do not join any mixing, and hence, the ρmeson mass is
identical to ms

ρ, Eq. (C6).

2. η-B0-B̄0-f 1 system

Employing a similar procedure demonstrated in
Appendix C 1, the mass spectrum of the η-B0-B̄0-f1 system
can be evaluated. In this case, η, B0, B̄0 (or B04, B05) and the
time component of f1 can mix. The inverse propagator
of these four states at vanishing momentum p ¼ 0:
iD−1

ð2Þðp0; 0Þ, is given by

iD−1
ð2Þðp0;0Þ¼

0
BBBBB@

Mηη MηB0
4

MηB0
5

Mηf1

MB0
4
η MB0

4
B0
4
MB0

4
B0
5
MB0

4
f1

MB0
5
η MB0

5
B0
4
MB0

5
B0
5
MB0

5
f1

Mf1η Mf1B0
4
Mf1B0

5
Mf1f1

1
CCCCCA
; ðC11Þ

where each matrix element reads

Mηη ¼ p2
0 −m2

η þ
C2

8
V̄2; ðC12Þ

MηB0
4
¼ −MB0

4
η ¼ −i

Cffiffiffi
2

p V̄p0; ðC13Þ

MηB0
5
¼MB0

5
η¼−

2λ2
4

σ0Δþ Cffiffiffi
2

p V̄μqþ
C3

4
V̄ ω̄; ðC14Þ

Mηf1 ¼ −Mf1η ¼ −i
C

2
ffiffiffi
2

p σ0p0; ðC15Þ

MB0
4
B0
4
¼ p2

0 −m2
B0
4
þ C2

8
V̄2 þ

�
2μq þ

C

2
ffiffiffi
2

p ω̄

�
2

; ðC16Þ

MB0
4
B0
5
¼ −MB0

5
B0
4
¼ 2i

�
2μq þ

C

2
ffiffiffi
2

p ω̄

�
p0; ðC17Þ

MB0
4
f1 ¼Mf1B0

4
¼CþC3

4
ðσ0V̄−Δω̄Þ−

ffiffiffi
2

p
CΔμq; ðC18Þ

MB0
5
B0
5
¼ p2

0 −m2
B0
5

þ
�
2μq þ

C

2
ffiffiffi
2

p ω̄

�
2

; ðC19Þ

MB0
5
f1 ¼ −Mf1B0

5
¼ i

C

2
ffiffiffi
2

p Δp0; ðC20Þ

and

Mf1f1 ¼ ðmt
f1
Þ2; ðC21Þ

with the mass parameters,

m2
B0
4
¼ m2

0 þ
3λ2
4

ðσ20 þ Δ2Þ

−
C − C2 þ C3

8
ðV̄2 þ ω̄2Þ; ðC22Þ

m2
B0
5

¼ m2
0 þ

λ2
4
ð3σ20 þ Δ2Þ

−
C − C2 þ C3

8
ω̄2 −

C − C3

8
V̄2; ðC23Þ

m2
η ¼ m2

0 þ
λ2
4
ðσ20 þ 3Δ2Þ

−
C − C3

8
ω̄2 −

C − C2 þ C3

8
V̄2; ðC24Þ

and

ðmt
f1
Þ2 ¼ m2

1 þ
C
4
ðσ20 þ Δ2Þ: ðC25Þ

In the presence of the mixing, the mass spectrum of the
η-B0-B̄0 system is evaluated by numerically solving
det ½iD−1

ð2Þðp0; 0Þ� ¼ 0. Meanwhile, the space components

of f1 are decoupled, which allows us to simply obtain the
physical f1 meson mass as

ðms
f1
Þ2 ¼ m2

1 þ
Cþ C3

8
ðσ20 þ Δ2Þ: ðC26Þ

3. π-a1-BS-B̄S system

Here, we derive the mass formulas for the π-a1-BS-B̄S
system. In this case, π and the time components of a1, BS,
B̄S (or V9, V10) can mix. In addition, the space components
of a1, BS, B̄S (or V9, V10) also mix with each other.
First, we consider the mixing among π and the time

components of a1, BS, and B̄S. The inverse propagator
of these four states at vanishing momentum p ¼ 0,
iD−1

ð3Þðp0; 0Þ, is given by

iD−1
ð3Þðp0; 0Þ ¼

0
BBBBB@

Mππ Mπa1 MπV9
MπV10

Ma1π Ma1a1 0 Ma1V10

MV9π 0 MV9V9
0

MV10π MV10a1 0 MV10V10

1
CCCCCA
;

ðC27Þ

where each matrix element reads
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Mππ ¼ p2
0 −m2

π; ðC28Þ

Mπa1 ¼ −Ma1π ¼ −i
C

2
ffiffiffi
2

p σ0p0; ðC29Þ

MπV9
¼ MV9π ¼

C3

4
σ0V̄ −

Cffiffiffi
2

p Δμq −
C3

4
Δω̄; ðC30Þ

MπV10
¼ −MV10π ¼ i

C

2
ffiffiffi
2

p Δp0; ðC31Þ

Ma1a1 ¼ ðmt
a1Þ2; ðC32Þ

Ma1V10
¼ MV10a1 ¼ −

C3

4
σ0Δ; ðC33Þ

MV9V9
¼ ðmt

V9
Þ2; ðC34Þ

and

MV10V10
¼ ðmt

V10
Þ2; ðC35Þ

with the mass parameters

m2
π ¼m2

0 þ
λ2
4
ðσ20 þΔ2Þ−C−C3

8
ðV̄2 þ ω̄2Þ; ðC36Þ

ðmt
a1Þ2 ¼ m2

1 þ
C
8
ðσ20 þ Δ2Þ þ C3

8
ðσ20 − Δ2Þ; ðC37Þ

ðmt
V9
Þ2 ¼ m2

1 þ
C − C3

8
ðσ20 þ Δ2Þ; ðC38Þ

and

ðmt
V10

Þ2 ¼ m2
1 þ

C
8
ðσ20 þ Δ2Þ − C3

8
ðσ20 − Δ2Þ: ðC39Þ

In the presence of the mixing, the pion mass is evaluated by
numerically solving det ½iD−1

ð3Þðp0; 0Þ� ¼ 0.
Next, we consider the mixing among the spatial com-

ponents of a1, BS, and B̄S. In this case, the correspond-
ing inverse propagator at vanishing momentum p ¼ 0,
iD̃−1

ð3Þðp0; 0Þ, is given by

iD̃−1
ð3Þðp0; 0Þ ¼

0
BBB@

M̃a1a1 M̃a1V9
M̃a1V10

M̃V9a1 M̃V9V9
M̃V9V10

M̃V10a1 M̃V10V9
M̃V10V10

1
CCA; ðC40Þ

where each matrix element reads

M̃a1a1 ¼ −p2
0 −

g2Φ
2
V̄2 þ ðms

a1Þ2; ðC41Þ

M̃a1V9
¼ −M̃V9a1 ¼

ffiffiffi
2

p
igΦV̄p0; ðC42Þ

M̃a1V10
¼ M̃V10a1

¼ −
C3

4
σ0Δ −

ffiffiffi
2

p
gΦV̄μq −

g2Φ
2
V̄ ω̄; ðC43Þ

M̃V9V9
¼−p2

0−
g2Φ
2
V̄2−

�
2μqþ

gΦffiffiffi
2

p ω̄

�
2

þðms
V9
Þ2; ðC44Þ

M̃V9V10
¼ −M̃V10V9

¼ −2i
�
2μq þ

gΦffiffiffi
2

p ω̄

�
p0; ðC45Þ

and

M̃V10V10
¼ −p2

0 −
�
2μq þ

gΦffiffiffi
2

p ω̄

�
2

þ ðms
V10

Þ2; ðC46Þ

with the mass parameters

ðms
a1Þ2 ¼ m2

1 þ
C
8
ðσ20 þ Δ2Þ þ C3

8
ðσ20 − Δ2Þ; ðC47Þ

ðms
V9
Þ2 ¼ m2

1 þ
C − C3

8
ðσ20 þ Δ2Þ; ðC48Þ

and

ðms
V10

Þ2 ¼ m2
1 þ

C
8
ðσ20 þ Δ2Þ − C3

8
ðσ20 − Δ2Þ: ðC49Þ

In the presence of the mixing, the mass spectrum for the
a1-BS-B̄S system is evaluated by numerically solving
det ½iD̃−1

ð3Þðp0; 0Þ� ¼ 0.

4. σ-B-B̄-ω-BAS-B̄AS system

Here, we derive the mass formulas for the
σ-B-B̄-ω-BAS-B̄AS system. In this case, σ, B, B̄ (or B4,
B5) and the time components of ω, BAS, B̄AS (or V 04, V 05)
can mix. In addition, the space components of ω, BAS, B̄AS

(or V 04, V 05) also mix with each other.
First, we consider the mixing among σ, B, B̄ (or B4, B5)

and the time components of ω, BAS, B̄AS. The inverse
propagator of these six states at vanishing momentum
p ¼ 0, iD−1

ð4Þðp0; 0Þ, is given by
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iD−1
ð4Þðp0; 0Þ ¼

0
BBBBBBBBBB@

Mσσ MσB4
MσB5

Mσω MσV 0
4

MσV 0
5

MB4σ MB4B4
MB4B5

MB4ω MB4V 0
4

MB4V 0
5

MB5σ MB5B4
MB5B5

MB5ω MB5V 0
4

MB5V 0
5

Mωσ MωB4
MωB5

Mωω MωV 0
4

0

MV 0
4
σ MV 0

4
B4

MV 0
4
B5

MV 0
4
ω MV 0

4
V 0
4

0

MV 0
5
σ MV 0

5
B4

MV 0
5
B5

0 0 MV 0
5
V 0
5

1
CCCCCCCCCCA
; ðC50Þ

where each matrix element reads

Mσσ ¼ p2
0 þ

C2

8
V̄2 −m2

σ; ðC51Þ

MσB4
¼ −MB4σ ¼ i

Cffiffiffi
2

p V̄p0; ðC52Þ

MσB5
¼ MB5σ ¼ −

Cffiffiffi
2

p V̄μq −
λ2
2
σ0Δ −

C3ω̄

4
V̄; ðC53Þ

Mσω ¼ Mωσ ¼
C − C3

4
ω̄σ0 −

C3

4
ΔV̄; ðC54Þ

MσV 0
4
¼MV 0

4
σ¼

CþC3

4
σ0V̄−

Cffiffiffi
2

p Δμq−
C3

4
Δω̄; ðC55Þ

MσV 0
5
¼ −MV 0

5
σ ¼ i

C

2
ffiffiffi
2

p Δp0; ðC56Þ

MB4B4
¼ p2

0 þ
C2

8
V̄2 þ

�
2μq þ

C

2
ffiffiffi
2

p ω̄

�
2

−m2
B4
; ðC57Þ

MB4B5
¼−MB5B4

¼2i

�
2μqþ

C

2
ffiffiffi
2

p ω̄

�
p0; ðC58Þ

MB4ω ¼ −MωB4
¼ i

C

2
ffiffiffi
2

p Δp0; ðC59Þ

MB4V 0
4
¼ −MV 0

4
B4

¼ −i
C

2
ffiffiffi
2

p σ0p0; ðC60Þ

MB4V 0
5
¼ MV 0

5
B4

¼ C3

4
ðΔV̄4 þ σ0ω̄Þ þ

Cffiffiffi
2

p σ0μq; ðC61Þ

MB5B5
¼ p2

0 þ
�
2μq þ

C

2
ffiffiffi
2

p ω̄

�
2

−m2
B5
; ðC62Þ

MB5ω ¼ MωB5

¼
ffiffiffi
2

p
CμqΔþ Cþ C3

4
Δω̄ −

C3

4
σ0V̄; ðC63Þ

MB5V 0
4
¼ MV 0

4
B5

¼ C − C3

4
ΔV̄ −

C3

4
σ0ω̄ −

Cffiffiffi
2

p σ0μq; ðC64Þ

MB5V 0
5
¼ −MV 0

5
B5

¼ −i
C

2
ffiffiffi
2

p σ0p0; ðC65Þ

Mωω ¼ ðmt
ωÞ2; ðC66Þ

MωV 0
4
¼ MV 0

4
ω ¼ −

C3

4
σ0Δ; ðC67Þ

MV 0
4
V 0
4
¼ ðmt

V 0
4
Þ2; ðC68Þ

and

MV 0
5
V 0
5
¼ ðmt

V 0
5

Þ2; ðC69Þ

with the mass parameters,

m2
σ ¼ m2

0 þ
λ2
4
ð3σ20 þ Δ2Þ

−
C − C3

8
ω̄2 −

C − C2 þ C3

8
V̄2; ðC70Þ

m2
B4

¼ m2
0 þ

λ2
4
ðσ20 þ Δ2Þ

−
C − C2 þ C3

8
ðV̄2 þ ω̄2Þ; ðC71Þ

m2
B5

¼ m2
0 þ

λ2
4
ðσ20 þ 3Δ2Þ

−
C − C2 þ C3

8
ω̄2 −

C − C3

8
V̄2; ðC72Þ

ðmt
ωÞ2 ¼ m2

1 þ
C
8
ðσ20 þ Δ2Þ − C3

8
ðσ20 − Δ2Þ; ðC73Þ

ðmt
V 0
4
Þ2 ¼ m2

1 þ
C
8
ðσ20 þ Δ2Þ þ C3

8
ðσ20 − Δ2Þ; ðC74Þ

and
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ðmt
V 0
5

Þ2 ¼ m2
1 þ

Cþ C3

8
ðσ20 þ Δ2Þ: ðC75Þ

In the presence of the mixing, the mass spectrum for
the σ-B-B̄ system is evaluated by numerically solving
iD−1

ð4Þðp0; 0Þ ¼ 0.
Next, we consider the mixing among the spatial com-

ponents of ω, BAS, and B̄AS. In this case, the correspond-
ing inverse propagator at vanishing momentum p ¼ 0,
iD̃−1

ð4Þðp0; 0Þ, is given by

iD̃−1
ð4Þðp0; 0Þ ¼

0
BB@

M̃ωω M̃ωV 0
4

M̃ωV 0
5

M̃V 0
4
ω M̃V 0

4
V 0
4

M̃V 0
4
V 0
5

M̃V 0
5
ω M̃V 0

5
V 0
4

M̃V 0
5
V 0
5

1
CCA; ðC76Þ

where each matrix element reads

M̃ωω ¼ −p2
0 −

g2Φ
2
V̄2 þ ðms

ωÞ2; ðC77Þ

M̃ωV 0
4
¼M̃V 0

4
ω¼−

C3

4
σ0Δþ

ffiffiffi
2

p
gΦV̄μqþ

g2Φ
2
V̄ ω̄; ðC78Þ

M̃ωV 0
5
¼ −M̃V 0

5
ω ¼

ffiffiffi
2

p
igΦV̄p0; ðC79Þ

M̃V 0
4
V 0
4
¼ −p2

0 −
�
2μq þ

gΦffiffiffi
2

p ω̄

�
2

þ ðms
V 0
4
Þ2; ðC80Þ

M̃V 0
4
V 0
5
¼ −M̃V 0

5
V 0
4
¼ −2i

�
2μq þ

gΦffiffiffi
2

p ω̄

�
p0; ðC81Þ

and

M̃V 0
5
V 0
5
¼−p2

0−
g2Φ
2
V̄2−

�
2μqþ

gΦffiffiffi
2

p ω̄

�
2

þðms
V 0
5

Þ2; ðC82Þ

with the mass parameters,

ðms
ωÞ2 ¼ m2

1 þ
C
8
ðσ20 þ Δ2Þ − C3

8
ðσ20 − Δ2Þ; ðC83Þ

ðms
V 0
4
Þ2 ¼ m2

1 þ
C
8
ðσ20 þ Δ2Þ þ C3

8
ðσ20 − Δ2Þ; ðC84Þ

and

ðms
V 0
5

Þ2 ¼ m2
1 þ

Cþ C3

8
ðσ20 þ Δ2Þ: ðC85Þ

In the presence of the mixing, the mass spectrum for the
ω-BAS-B̄AS system is evaluated by numerically solving
det ½iD̃−1

ð4Þðp0; 0Þ� ¼ 0.

APPENDIX D: MASSES IN THE
HADRONIC PHASE

As derived in Appendix C, in general, the hadron masses
are evaluated by pole positions of the appropriate propa-
gator matrices, which would be obtained numerically.
When we focus on the hadronic phase, the mass formulas
can be evaluated analytically. In this appendix, we exhibit
the resultant mass formulas for all hadrons.
Such formulas can simply be obtained by taking Δ ¼ 0

and accordingly ω̄ ¼ V̄ ¼ 0, while keeping σ0 ≠ 0, in the
mass formulas in Appendix C. In this limit, one can find

mðHÞ
ω ¼ mðHÞ

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ
C − C3

8
ðσðHÞ0 Þ2

r
; ðD1Þ

mðHÞ
f1

¼ mðHÞ
a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ
Cþ C3

8
ðσðHÞ0 Þ2

r
; ðD2Þ

mðHÞ
BS

¼ mðHÞ
ω − 2μq;

mðHÞ
B̄S

¼ mðHÞ
ω þ 2μq; ðD3Þ

mðHÞ
BAS

¼ mðHÞ
f1

− 2μq;

mðHÞ
B̄AS

¼ mðHÞ
f1

þ 2μq; ðD4Þ

for the spin-1 hadrons, while

mðHÞ
π ¼ Zπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
λ2
4
ðσðHÞ0 Þ2

r
; ðD5Þ

mðHÞ
η ¼ Zη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
λ2
4
ðσðHÞ0 Þ2

r
; ðD6Þ

mðHÞ
a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
3λ2
4

ðσðHÞ0 Þ2
r

; ðD7Þ

mðHÞ
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 3
λ2
4
ðσðHÞ0 Þ2

r
; ðD8Þ

mðHÞ
B ¼ mðHÞ

π − 2μq;

mðHÞ
B̄ ¼ mðHÞ

π þ 2μq; ðD9Þ

mðHÞ
B0 ¼ mðHÞ

a0 − 2μq;

mðHÞ
B̄0 ¼ mðHÞ

a0 þ 2μq; ðD10Þ

for the spin-0 hadrons. In Eqs. (D6) and (D5), the
renormalization factors Zπ and Zη are defined by
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Zπ ¼
�
1 −

C2ðσðHÞ0 Þ2
8ðmðHÞ

a1 Þ2
�−1=2

;

Zη ¼
�
1 −

C2ðσðHÞ0 Þ2
8ðmðHÞ

f1
Þ2
�−1=2

; ðD11Þ

which stems from the π-a1 mixing and the η-f1 mixing,
respectively. It should be noted that Zπ ¼ Zη follows from

mðHÞ
f1

¼ mðHÞ
a1 . These types of mixing originate from the

spontaneous breakdown of chiral symmetry since Zπ ¼
Zη ¼ 1 when ðσðHÞ0 Þ ¼ 0, as in the three-color eLSM [72].
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