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In this paper, we compute αs corrections to the matching coefficients of the dimension-six operators in
the heavy quark expansion of the inclusive semileptonic heavy hadron decay rate and leptonic invariant
mass spectrum with a massless quark and both a massive or massless lepton in the final state, analytically.
The obtained results can be applied to the inclusive semileptonic B → Xulν̄l (l ¼ e, μ, τ) and D → Xlν̄l
(l ¼ e, μ) decays. The main application of our results is the background subtraction of the B → Xulν̄l
decay in the measurement of the B → Xclν̄l decay, which is important for the precise extraction of Vcb and
RðDð�ÞÞ. They also play a role in the computation of lifetimes of heavy hadrons.
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I. INTRODUCTION

The heavy quark expansion (HQE) [1–4], as the standard
tool for the description of inclusive heavy hadron decay
rates and distributions [5–9], has been subject to intensive
progress since its birth around 30 years ago and it is
expected to improve further in the near future, motivated
by the precise determination of jVcbj [10–14], obta-
ining precise predictions for B-hadron lifetimes [15–22],
exploring its applicability and nonperturbative effects in D
decays [23–29], and exploring semitauonic decays from an
inclusive perspective [30] in light of the RðDð�ÞÞ anomaly
present in the exclusive channels [31–36].
The main assumption in the construction of the HQE is

that the heavy hadron momentum pHQ
¼ pQ þ k is equal

to the heavy quark momentum pQ up to fluctuations k of
the order of the QCD hadronization scale ΛQCD. In other
words, due to its large mass mQ the heavy quark inside the
heavy hadron is almost on shell.
By taking advantage of the fact that mQ ≫ ΛQCD, one

can construct an operator product expansion, the so-called
HQE. As a result, one obtains the decay width and
distributions as a power expansion in ΛQCD=mQ, whose
coefficients have a perturbative expansion in the strong
coupling αsðmQÞ. A systematic improvement is possible by
calculating higher orders in the two expansion parameters.
The HQE has proven to be a reliable tool to describe

inclusive B (mQ ¼ mb) and, to some extent, D (mQ ¼ mc)
decays.
In this paper, we consider higher order corrections in the

HQE of the inclusive semileptonic B → Xulν̄l decay rate
and distribution in the dilepton invariant mass q2, with
l ¼ e, μ, τ. A precise experimental measurement of the
differential rate ofB → Xulν̄l relies on experimental cuts to
suppress the overwhelming contamination of the B →
Xclν̄l decay. From the theory side, these cuts have the
troublesome consequence that, on the remaining phase
space, where the decay is measured, perturbation theory
breaks down and it is not possible to use the HQE. A
theoretical description in such a region relies on nonpertur-
bative methods involving shape functions [37], which is
important to extract jVubj from inclusive decays. Contrarily,
a precise theoretical description of the B → Xulν̄l decay
in the region where the HQE is applicable is important
for reliably modeling this channel as a background in
the measurement of the B → Xclν̄l decay, used for the
precise extraction of jVcbj from inclusive decays [10–12,38]
(l ¼ e, μ) and RðDð�ÞÞ (l ¼ τ) [35].
The total rate ofB → Xulν̄l is themost inclusive quantity

and it can be computed within the HQE with impact on
the predictions for B-hadron lifetimes, even though this
decay channel is Cabibbo-Kobayashi-Maskawa (CKM)
suppressed, and therefore the impact is low. However, its
precise determination is very appealing in light of the recent
preliminary measurement by the Belle II Collaboration of
the ratioΓðB → Xulν̄lÞ=ΓðB → Xclν̄lÞ [39], which allows
one to extract the ratio jVub=Vcbj [40]. This ratio also enters
as a normalization factor in the branching ratio of B → Xsγ
and B → Xslþl− [41].
Also the inclusive semitauonic decay B → Xuτν̄τ could

be measured in the near future by Belle II [34,35]. For
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example, the collaboration has already set the first bound
on a b → uτν̄τ mediated decay [42].
The expressions obtained for the B → Xulν̄l (l ¼ e, μ)

decay can be directly applied to the inclusive semileptonic
D → Xlν̄l decay. Unlike in the case of bottom, for charm
the results can be applied to the CKM favored decay
channel c → slν̄l, and therefore they will have a larger
impact. The q2 spectrum in D mesons also offers an
opportunity to test the HQE for D decays beyond the
total rate.
The current status of the HQE for inclusive semileptonic

decay rates and distributions (we mainly refer to the q2

distribution) is the following:
(i) B → Xclν̄l: The leading power coefficient is known

for the total rate and a variety of moments at next-to-
next-to-next-to-leading order (N3LO) [43–50] and
at N2LO [51–55] in the case of a massless and
massive lepton in the final state, respectively. The
1=m2

b and 1=m
3
b corrections are known for the width

and some distributions at next-to-leading order
(NLO) [34,36,56–67] in both cases. Finally, the
1=m4

b and 1=m5
b corrections are known at leading

order (LO) [68–70] in the massless lepton case.
(ii) B → Xulν̄l: In the case of a massless quark in the

final state (with either massive or massless leptons)
the coefficients up to order 1=m2

b can be straightfor-
wardly obtained from the B → Xclν̄l decay by
taking the limit mc → 0.1 This statement requires
some caveats concerning the N3LO corrections as
they have been estimated by taking an expansion at
small δ ¼ 1 −mc=mb [47–49] with δ → 1. However,
the expansion shows a good convergence even for
δ → 1 [72]. The N3LO corrections have been also
computed in the leading-color approximation [73],
the latter including results for the q2 spectrum. The
subset of five-loop diagrams containing closed fer-
mionic loops have been computed without any
approximations in [72]. Starting at order 1=m3

b
onward it is not possible to extrapolate mc → 0,
which is related to the appearance of four-quark
operators in the operator basis of the HQE. At 1=m3

b
the coefficients of the total rate for the two- and four-
quark operators are known at LO [74–76] and NLO
[77,78], respectively.

This paper is a follow-up to Refs. [66,67], where the
coefficients of the 1=m3

b terms were computed at NLO for
the B → Xclν̄l decay rate and q2 distribution, i.e., for the
case of a massive quark in the final state. This includes the

Darwin and spin-orbit operator coefficients, where the latter
is related to coefficients of lower orders in the ΛQCD=mb

expansion by reparametrization invariance [79,80]. We
extend our previous calculation to the B → Xulν̄l decay,
where the final-state quark is massless. We consider both
cases, a massless and a massive lepton in the final state. In
this case, the operator basis of theHQEat 1=m3

b also includes
four-quark operators. As already mentioned, for the Darwin
coefficient, the limit mc → 0 cannot be straightforwardly
obtained from the results of these papers, since for mc ¼ 0
the coefficient is infrared singular, pointing out the operator
mixing of the Darwin operator with four-quark operators
under renormalization. In turn, we also obtain results for the
coefficients of the four-quark operators of the differential
rate at NLOwhich, to the best of my knowledge, have never
been presented in previous studies. Moments of the spec-
trum with arbitrary cuts can be obtained by integrating the
differential rate with the corresponding weight function in
the desired range.
We provide aMathematica file [81] containing analytical

results for the NLO coefficients of the Darwin operator and
four-quark operators appearing at 1=m3

Q for both, the total
width, and the q2 spectrum of the B → Xulν̄l decay
(l ¼ e, μ, τ).
We organize the paper as follows. In Sec. II we give our

main definitions for the HQE of inclusive heavy hadron
decays. In Sec. III we outline the calculation,with Secs. III A
and III B devoted to the computation of the four-quark
operator coefficients and the Darwin operator coefficient,
respectively. In Sec. IV we discuss the use of evanescent
operators. Finally, we discuss the impact of our results
in Sec. V.

II. HQE FOR INCLUSIVE DECAYS
OF HEAVY FLAVORED HADRONS

This section provides a brief overview of the theoretical
framework employed for the computation of inclusive
semileptonic decays of heavy hadrons and outlines key
definitions.
When the momentum transfer is considerably lower than

the W-boson mass, the heavy quark decay Q → qlν̄l,
which is mediated by a charged current interaction, is
described by an effective Fermi Lagrangian,

Leff ¼ 2
ffiffiffi
2

p
GFVqQðQ̄LγμqLÞðν̄l;LγμlLÞ þ H:c:; ð1Þ

where the subscript L stands for left-handed fermion fields,
GF is the Fermi constant, and VqQ is the corresponding
element of the CKM matrix. We denote the heavy quark
mass by mQ and define the dimensionless quantity
η ¼ m2

l=m
2
Q, where ml is the lepton mass. The light quark

q in the final state is considered to be massless.
The inclusive decay rate of the heavy hadron HQ made

of the heavy quark Q is then obtained, by virtue of the

1This statement is generally true for the decay rate and the q2
spectrum, but not for other distributions like the lepton energy
spectrum [35]. Nevertheless, methods have been developed and
applied to take the limit mc → 0 also for such distributions up to
order αs=m2

b [71].

DANIEL MORENO PHYS. REV. D 109, 074030 (2024)

074030-2



optical theorem, from the imaginary part of the forward
hadronic matrix element of the transition operator T ,

T ¼ i
Z

dDxTfLeffðxÞLeffð0Þg;

ΓðHQ → Xqlν̄lÞ ¼
1

MHQ

ImhHQjT jHQi; ð2Þ

where the heavy hadron is represented by a full QCD state
jHQi with mass MHQ

, velocity v, and momentum
pHQ

¼ MHQ
v. We regularize both ultraviolet and infrared

divergences in Eq. (2) in standard dimensional regulariza-
tion with D ¼ 4 − 2ϵ spacetime dimensions.
Since mQ ≫ ΛQCD, the above equation contains contri-

butions that can be computed within perturbation theory.
These contributions can be factorized from the nonpertur-
bative ones by using theHQE,where the imaginary part ofT
is matched to an expansion inΛQCD=mQ by employing local
operators in heavy quark effective theory (HQET) [82,83],

ImT ¼ Γ0jVqQj2
�
C0O0þCv

Ov

mQ
þCπ

Oπ

2m2
Q
þCG

OG

2m2
Q

þCD
OD

4m3
Q
þCLS

OLS

4m3
Q
þChl

1

Ohl
1

4m3
Q
þChl

2

Ohl
2

4m3
Q

þChl
3

Ohl
3

4m3
Q
þChl

4

Ohl
4

4m3
Q
þChl

5

Ohl
5

4m3
Q
þChl

6

Ohl
6

4m3
Q

�
; ð3Þ

where Γ0 ¼ G2
Fm

5
Q=ð192π3Þ and Ci ¼ CiðηÞ are the match-

ing coefficients, which can be computed as a perturbative
expansion in the strong coupling αsðμÞ. In the text, we will
refer to the different orders in the ΛQCD=mQ expansion as
leading power, next-to-leading power, and so on. Similarly,
wewill refer to the different orders in the αsðμÞ expansion as
LO, NLO, and so on. Finally, Oi denotes the HQET
operators, which we list as follows:

O0 ¼ h̄vhv ðleading power operatorÞ; ð4Þ

Ov ¼ h̄vv · πhv ðEOM operatorÞ; ð5Þ

Oπ ¼ h̄vπ2⊥hv ðkinetic operatorÞ; ð6Þ

OG¼
1

2
h̄v½γμ;γν�π⊥μπ⊥νhv ðchromomagnetic operatorÞ;

ð7Þ

OD ¼ h̄v½π⊥μ; ½πμ⊥; v · π��hv ðDarwin operatorÞ; ð8Þ

OLS¼
1

2
h̄v½γμ;γν�fπ⊥μ;½π⊥ν;v ·π�ghv ðspin-orbit operatorÞ;

ð9Þ

Ohl
1 ¼ðh̄vγμPLqÞðq̄γμPLhvÞ ðvector singlet operatorÞ;

ð10Þ

Ohl
2 ¼ðh̄vPLqÞðq̄PRhvÞ ðscalar singlet operatorÞ; ð11Þ

Ohl
3 ¼ðh̄vγμPLTaqÞðq̄γμPLTahvÞ ðvector octet operatorÞ;

ð12Þ

Ohl
4 ¼ ðh̄vPLTaqÞðq̄PRTahvÞ ðscalar octet operatorÞ;

ð13Þ

Ohl
5 ¼ ðh̄vγμγνPLTaqÞðq̄γμγνPRTahvÞ

ðrank-2 tensor octet operatorÞ; ð14Þ

Ohl
6 ¼ ðh̄vγμγνγαPLTaqÞðq̄γμγνγαPLTahvÞ

ðrank-3 tensor octet operatorÞ; ð15Þ

with PR=L ¼ ð1� γ5Þ=2 being the right-/left-handed pro-
jectors, πμ ¼ iDμ ¼ i∂μ þ gsAa

μTa as the QCD covariant
derivative, aμ⊥ ¼ aμ − vμðv · aÞ, and hv as the HQET field
whose momentum is of the order of ΛQCD and whose
dynamics is determined by the HQET Lagrangian [83].
Since the quark q is considered to be massless, it remains

a dynamical degree of freedom in the effective theory, and
therefore it must be used in the construction of the operator
basis of the HQE. This degree of freedom shows up first as
the four-quark operators in Eqs. (10)–(15). We use the
index “hl” to denote such operators, which we will also
refer as heavy-light operators.
Note that in D ¼ 4 the operators Ohl

5;6 can be reduced to
the operators Ohl

3;4. This is no longer true if we work in
dimensional regularization where the operator basis is
formally infinite dimensional. In such a case, four-quark
operators with arbitrarily long strings of γ matrices con-
tracted in two different fermion lines must be included as
elements of the basis. Nevertheless, at a fixed order in
perturbation theory only a finite number of four-quark
operators appear. To the order we are working on, only the
ones explicitly written above are relevant. Despite this, it is
also possible to make a connection of a D-dimensional
operator basis like the one we have chosen to the four-
dimensional operator basis. However, this requires the
introduction of evanescent operators. We will devote
Sec. IV to a detailed discussion on the topic.
Finally, operators that are of higher dimension after

using the equation of motion (EOM) of HQET have been
neglected in Eq. (3). However, the matching calculation is
done off shell, and such operators affect the extraction of
the Darwin operator coefficient, i.e., the projector to the
corresponding coefficient. Only after the matching calcu-
lation are the operators removed by using the EOM.
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Since we are also interested in the spectrum in the
dilepton invariant mass q2, we perform the matching at the
differential level [84]. This can be achieved, on the one
hand, by writing the HQE of the ImT in differential form,

ImT ¼ Γ0jVqQj2
Z

1

η
dr

�
C0O0 þ Cv

Ov

mQ
þ Cπ

Oπ

2m2
Q

þ CG
OG

2m2
Q
þ CD

OD

4m3
Q
þ CLS

OLS

4m3
Q

þ Chl1
Ohl

1

4m3
Q
þ Chl2

Ohl
2

4m3
Q
þ Chl3

Ohl
3

4m3
Q
þ Chl4

Ohl
4

4m3
Q

þ Chl5
Ohl

5

4m3
Q
þ Chl6

Ohl
6

4m3
Q

�
; ð16Þ

by defining the coefficients of the differential rate Ciðr; ηÞ
through the coefficients of the total rate,

CiðηÞ ¼
Z1

η

drCiðr; ηÞ; ð17Þ

where r ¼ q2=m2
Q (η ≤ r ≤ 1) is the dilepton invariant

mass normalized to the heavy quark mass. On the other
hand, this can be achieved by using a dispersion repre-
sentation defined in dimensional regularization [85] for the
lepton-antineutrino loop on the QCD side, i.e., in Eq. (2).
Note that the use of such a representation is always possible
because the leptonic part is not affected by QCD correc-
tions and therefore appears factorized from the hadronic
part. For a massive lepton and a massless antineutrino, the
dispersive relation reads

i
Z

dDk
ð2πÞD

−TrðγσPLið=kþ =lþmlÞγρPLi=kÞ
k2ððkþ lÞ2 −m2

lÞ

¼
Z

∞

m2
l

dðq2Þ 1

q2 − l2 − iη
1

ð4πÞD=2

ΓðD=2 − 1Þ
ΓðD − 2Þ

D − 2

D − 1

× ðq2ÞD=2−2
�
1 −

m2
l

q2

�
D−2

��
1þ D

D − 2

m2
l

q2

�
lρlσ

−
�
1þ 1

D − 2

m2
l

q2

�
l2gρσ

�
; ð18Þ

where l is the four-momentum flowing through the
leptons. Note that there is no need for subtractions in
the dispersion relation above since singularities are regu-
larized by dimensional regularization. Also observe that by
employing the dispersion representation above the leptonic
part becomes, at the differential level, a massive propagator
of mass q and the dependence on ml factorizes from the
hadronic part. In particular, it implies that the differential
rate is a polynomial in η of degree 3. Therefore, the master
integrals needed for the computation of the differential rate

are the same in both cases, for a massive or a massless
lepton in the final state. The corresponding master integrals
can be found in [84].
Exchanging the leading term operator O0 in Eq. (16) by

the local QCD operator Q̄=vQ is advantageous, since its
forward hadronic matrix element [see Eq. (24)] is com-
pletely normalized. To that end, we need the HQE of the
Q̄=vQ operator up to the desired order

Q̄=vQ ¼ O0 þ C̃v
Ov

mQ
þ C̃π

Oπ

2m2
Q
þ C̃G

OG

2m2
Q
þ C̃D

OD

4m3
Q

þ C̃LS
OLS

4m3
Q
þ C̃hl

1

Ohl
1

4m3
Q
þ C̃hl

2

Ohl
2

4m3
Q
þ C̃hl

3

Ohl
3

4m3
Q

þ C̃hl
4

Ohl
4

4m3
Q
þ C̃hl

5

Ohl
5

4m3
Q
þ C̃hl

6

Ohl
6

4m3
Q
; ð19Þ

where the matching coefficients C̃i are pure numbers. The
coefficients of the four-quark operators C̃hl

i are of Oðα2sÞ
and therefore beyond the precision of the calculation, so
they can be neglected.
The operator Ov in Eq. (16) can also be removed by

using the EOM of the HQET Lagrangian,

Ov ¼ −
1

2mQ
ðOπ þ cFOGÞ −

1

8m2
Q
ðcDOD þ cSOLSÞ

−
1

8m2
Q

�
chl1 O

hl
1 þ chl2 O

hl
2 þ chl3 O

hl
3 þ chl4 O

hl
4

þ chl5 O
hl
5 þ chl6 O

hl
6

�
; ð20Þ

where

cFðμÞ¼1þαsðμÞ
2π

�
CFþCA

�
1þ ln

�
μ

mQ

���
; ð21Þ

cDðμÞ ¼ 1þ αsðμÞ
π

�
CF

�
−
8

3
ln

�
μ

mQ

��

þ CA

�
1

2
−
2

3
ln

�
μ

mQ

���
ð22Þ

are the coefficients of the chromomagnetic and Darwin
operators in theHQETLagrangianwithNLOprecision [83].
The coefficient of the spin-orbit operator cS ¼ 2cF − 1 is
linked to the one of the chromomagnetic operator due to
reparametrization invariance [86]. Again, the coefficients
chli of the four-quark operators are of Oðα2sÞ and therefore
they can be neglected. The parameter μ is the renormaliza-
tion scale and CF ¼ 4=3, CA ¼ 3 are color factors.
After all these considerations, the HQE for the inclusive

semileptonic decay rate and q2 spectrum is finally written as
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ΓðHQ → Xqlν̄lÞ ¼
Z

1

η
dr

dΓðHQ → Xqlν̄lÞ
dr

¼ Γ0jVqQj2
Z

1

η
dr

�
C0

�
1−

C̄π − C̄v
C0

μ2π
2m2

Q

�
þ
�
C̄G
cF

− C̄v

�
μ2G
2m2

Q
−
�
C̄D
cD

−
1

2
C̄v

�
ρ3D
2m3

Q
−
�
C̄LS
cS

−
1

2
C̄v

�
ρ3LS
2m3

Q

þ Chl1
ρhl31

2m3
Q
þ Chl2

ρhl32

2m3
Q
þ Chl3

ρhl33

2m3
Q
þ Chl4

ρhl34

2m3
Q
þ Chl5

ρhl35

2m3
Q
þ Chl6

ρhl36

2m3
Q

�

≡ Γ0jVqQj2
Z

1

η
dr

�
C0 − Cμπ

μ2π
2m2

Q
þ CμG

μ2G
2m2

Q
− CρD

ρ3D
2m3

Q
− CρLS

ρ3LS
2m3

Q

þ Chl1
ρhl31

2m3
Q
þ Chl2

ρhl32

2m3
Q
þ Chl3

ρhl33

2m3
Q
þ Chl4

ρhl34

2m3
Q
þ Chl5

ρhl35

2m3
Q
þ Chl6

ρhl36

2m3
Q

�
; ð23Þ

where the coefficients C̄i ≡ Ci − C0C̃i are defined as the
difference between the coefficients Ci of the HQE of the
transition operator in Eq. (16) and the current in Eq. (19)
multiplied by C0. Note that reparametrization invariance also
relates coefficients of higher-dimensional operators to
coefficients of lower-dimensional operators in the HQE
of the rate and q2 spectrum, in particular, C0 ¼ Cμπ and
cFCμG ¼ cSCρLS [79,80,87,88].

2 The coefficients of the total
rate Ci (i ¼ 0; μπ; μG; ρD; ρLS) are defined in analogy to
Eq. (17). TheHQE hadronic parameters μ2π , μ2G, ρ

3
D, ρ

3
LS, and

ρhl3i (i ¼ 1;…; 6) are defined as the following forward
matrix elements of local HQET operators taken between
full QCD states [87]:

hHQðpHQ
ÞjQ̄=vQjHQðpHQ

Þi ¼ 2MHQ
; ð24Þ

−hHQðpHQ
ÞjOπjHQðpHQ

Þi ¼ 2MHQ
μ2π; ð25Þ

cFhHQðpHQ
ÞjOGjHQðpHQ

Þi ¼ 2MHQ
μ2G; ð26Þ

−cDhHQðpHQ
ÞjODjHQðpHQ

Þi ¼ 4MHQ
ρ3D; ð27Þ

−cShHQðpHQ
ÞjOLSjHQðpHQ

Þi ¼ 4MHQ
ρ3LS; ð28Þ

hHQðpHQ
ÞjOhl

i jHQðpHQ
Þi¼ 4MHQ

ρhl3i ði¼ 1;…;6Þ:
ð29Þ

III. COMPUTATIONAL OVERVIEW

In this section, we address the computation of the
coefficients of the Darwin and four-quark operators for
the differential and total rates at NLO and obtain analytical
results. The coefficients of lower dimension operators are
known and their expressions can be found within the
definitions of this paper in [67].

For the computation, we follow [66,84]. As a first step,
we compute the matching coefficients for the q2 spectrum
by using the spectral representation given in Eq. (18) and
matching to Eq. (23). As a second step, we integrate over
the dilepton invariant mass to obtain the coefficients of the
total rate.
Since Eqs. (3), (19), and (20) hold at the operator level,

the matching coefficients can be computed by using quarks
and gluons. In general, the matching is performed by
comparing off shell amplitudes and later using the EOM of
HQET to remove operators that vanish on shell. For the
leading power coefficient and the dimension-six four-quark
operators, the matching is done by considering on shell
heavy quarks. For power corrections, the matching coef-
ficients are computed by using a small momentum expan-
sion near the heavy quark mass shell [62,64].
The LO and NLO contributions to the Darwin coefficient

of the differential rate are given by one- and two-loop heavy
quark to gluon-heavy quark (Q → gQ) scattering ampli-
tudes. The LO and NLO contributions to the four-quark
operator coefficients of the differential rate are given by tree
level and one-loop heavy-light quark to heavy-light quark
(Qq → Qq) scattering amplitudes.
We perform the calculation in the Feynman gauge and

use standard dimensional regularizationwith anticommuting
γ5 to treat both UV and IR divergences. The scattering
involving a gluon is computed in the external gluonic field
by using the background fieldmethod.We use LiteRed [89,90]
to reduce the corresponding amplitudes to a combination of
the master integrals given in [84]. Algebraic manipulations
are carried out in TRACER [91].
We use the MS renormalization scheme for the strong

coupling αsðμÞ and the HQET operators. The heavy quark
is renormalized on shell,

QB ¼ ðZOS
2 Þ1=2Q; mQ;B ¼ ZOS

mQ
mQ;

ZOS
2 ¼ 1 − CF

αsðμÞ
4π

�
3

ϵ
þ 6 ln

�
μ

mQ

�
þ 4

�
; ð30Þ2Note that this relation was incorrectly extracted from [79] in

Refs. [66,67]. Now the relation is consistent with [79].
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where the subscript B stands for bare quantities, and the
ones without subscript stand for renormalized. To the order
we are working on ZOS

mQ
¼ ZOS

2 . Therefore, the results for
the coefficients are conveniently presented in the on shell
scheme.
Note that in phenomenological applications one typi-

cally uses a short distance mass for the heavy quark in order
to obtain more precise theoretical predictions, like the 1S
mass [92–96] or the kinetic mass [97,98]. Changing the
mass scheme is possible by using the known one-loop
relation between the different schemes.
After renormalization of the QCD couplings and fields

there still remain IR divergences in the coefficient functions
that point out the local operators in the effective theory
develop UV divergences or, in other words, an anomalous
dimension. These divergences cancel out after renormali-
zation of the corresponding operators in the HQE. In
particular, operators of different dimensions may mix under
renormalization, as is the case for the Darwin operator. The
details on the renormalization of the effective operators
including the discussion about the operator mixing is left to
Secs. III A and III B, where the computations of the four-
quark operator coefficients and the Darwin operator coef-
ficient are addressed, respectively.
For the presentation of results, we split the Darwin

coefficient of the differential and total rate in the following
way:

CDðr; ηÞ ¼ CLOD þ αs
π

	
CFC

NLO;A
D þ CAC

NLO;A
D



; ð31Þ

CDðηÞ ¼ CLO
D þ αs

π

	
CFC

NLO;F
D þ CAC

NLO;A
D



: ð32Þ

We provide analytical results for the Darwin and four-
quark operator coefficients of the differential and total rate
in Supplemental Material [81]. The differential rate is
expressed in terms of δ and plus distributions, where the
latter is defined as

Z
1

η
drfðrÞ

�
1

1 − r

�
þ
≡

Z1

η

dr
fðrÞ − fð1Þ

1 − r
; ð33Þ

where fð1Þ must be understood as expanded.

A. Four-quark operator coefficients

Four-quark operators are most responsible for lifetime
differences between hadrons containing the same heavy
quark but a different spectator quark [23,26], as they
explicitly involve the light quark field. In addition, they
are phase space enhanced by a factor 16π2, overwhelming,
in general, SUð3Þ breaking effects in matrix elements of
two-quark operators.

The coefficients of the dimension-six four-quark oper-
ators for the inclusive semileptonic HQ → Xqlν̄l decay
rate are known up to NLO [23,77,78,99–102]. To the best
of my knowledge, explicit expressions have never been
presented to this order for the q2 spectrum since previous
studies are focused on their effects to the lifetime
differences. The four-quark operators may have a sizable
impact due to their phase space enhancement. The com-
putation of the four-quark operator coefficients up to NLO
is also necessary for the computation of the Darwin
coefficient at NLO, since the corresponding operators
mix under renormalization.
For the computation, we take the QðpÞqðkÞ →

QðpÞqðkÞ scattering amplitude with heavy quark momen-
tum p, with p2 ¼ m2

Q, and vanishing light quark momen-
tum k ¼ 0. The diagrams that contribute to the coefficients
of the differential rate are shown in Fig. 1. The first three
diagrams only contribute to the singlet operators, whereas
the remaining diagrams contribute only to the octet
operators. The renormalized coefficients of the four-quark
operators are then given by

Chli ¼ Chli;B þ δChlMS
i ði ¼ 1;…; 6Þ; ð34Þ

where Chli;B is defined as the sum of all diagrams of Fig. 1

including Z2, and δChlMS
i is the contribution due to the one-

loop mixing under renormalization of the effective oper-
ators, in particular, the mixing of four-quark operators with
themselves. The coefficients Chli are finite and the cancel-
lation of poles provides a solid check of the calculation. To
OðαsÞ, the four-quark operators only mix with Ohl

1;2 since
these are the only operators whose coefficients get LO
contributions. The corresponding anomalous dimensions
are obtained by computing the UV divergent part of the
diagrams shown in Fig. 2. In this case, the UV divergences
can be computed by taking external heavy and light quarks
with zero four-momenta and regulating IR divergences by
using a gluon mass, which also sets a scale for the
calculation. In Fig. 2, the heavy and light wave function
renormalization constants are

ZMS
h ¼ 1þ 2CF

αs
4π

1

ϵ
; ZMS

l ¼ 1 − CF
αs
4π

1

ϵ
; ð35Þ

respectively. We find the following counterterms due to
operator mixing:

δChlMS
1 ¼ 3Chl1 CF

αs
4π

1

ϵ
; δChlMS

2 ¼ 3Chl2 CF
αs
4π

1

ϵ
;

δChlMS
3 ¼ Chl1

αs
4π

1

ϵ
; δChlMS

4 ¼ −2Chl2
αs
4π

1

ϵ
;

δChlMS
5 ¼ −

1

4
Chl2

αs
4π

1

ϵ
; δChlMS

6 ¼ −
1

4
Chl1

αs
4π

1

ϵ
: ð36Þ
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FIG. 1. QðpÞqð0Þ → QðpÞqð0Þ scattering diagrams contributing to the LO and NLO four-quark operator coefficients Chli (i ¼ 1;…; 6)
in the HQE of the HQ → Xqlν̄l decay spectrum, Eq. (23). Circles with crosses stand for insertions of Leff and the thick line stands for
the lepton-antineutrino propagator with mass q.

FIG. 2. hvð0Þqð0Þ → hvð0Þqð0Þ scattering diagrams contributing to the operator mixing of four-quark operators with themselves at
NLO. Circles with crosses stand for insertions of Ohl

1;2.
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In the massive lepton case, the four-quark operator coef-
ficients of the differential rate read

Chl1 ¼ −256π2ð1 − ηÞ2ð2þ ηÞ

×

�
1 − CF

αs
π

�
2þ 3

2
ln

�
μ

mQ

���
δð−1þ rÞ; ð37Þ

Chl2 ¼ 256π2ð1− ηÞ2
�
2ð1þ 2ηÞ−CF

αs
π

×

�
4þ 5ηþ 3ð1þ 2ηÞ ln

�
μ

mQ

���
δð−1þ rÞ; ð38Þ

Chl3 ¼ −
αs
π
64π2

�
2

3r3
ðr− ηÞ2½2ηþ rð1þ 9ηÞ þ 3r2ð5− 2ηÞ

− 2r3ð3þ ηÞ− 4r4�
�

1

1− r

�
þ

þ ð1− ηÞ2
�
15þ 9ηþ 2ð2þ ηÞ lnð1− ηÞ

− 2ð2þ ηÞ ln
�

μ

mQ

��
δð−1þ rÞ

�
; ð39Þ

Chl4 ¼ αs
π
128π2

�
2

3r3
ðr − ηÞ2½2ηþ rð1 − 8ηÞ − r2ð1þ 8ηÞ

− 2r3ð5 − ηÞ þ 4r4�
�

1

1 − r

�
þ

þ ð1 − ηÞ2
�
3ð3þ 4ηÞ − 4ð1þ 2ηÞ lnð1 − ηÞ

þ 4ð1þ 2ηÞ ln
�

μ

mQ

��
δð−1þ rÞ

�
; ð40Þ

Chl5 ¼ −
αs
π
32π2

�
2

3r3
ðr − ηÞ2½10ηþ rð5 − ηÞ þ r2ð1 − ηÞ

þ r3ð1 − 2ηÞ − 4r4�
�

1

1 − r

�
þ

þ ð1 − ηÞ2
�
2þ ηþ 2ð1þ 2ηÞ lnð1 − ηÞ

− 2ð1þ 2ηÞ ln
�

μ

mQ

��
δð−1þ rÞ

�
; ð41Þ

Chl6 ¼ αs
π
32π2

�
1

3r2
ðr−ηÞ2ð5− r−r2Þðηþ2rÞ

�
1

1− r

�
þ

þð1−ηÞ2ð2þηÞ
�
lnð1−ηÞ− ln

�
μ

mQ

��
δð−1þ rÞ

�
;

ð42Þ

whereas in the massless lepton case (η ¼ 0), they read

Chl1 ¼ −512π2
�
1 − CF

αs
π

�
2þ 3

2
ln

�
μ

mQ

���
δð−1þ rÞ;

ð43Þ

Chl2 ¼ 512π2
�
1 − CF

αs
π

�
2þ 3

2
ln

�
μ

mQ

���
δð−1þ rÞ;

ð44Þ

Chl3 ¼ −
αs
π
64π2

�
2

3
ð1þ 15r − 6r2 − 4r3Þ

�
1

1 − r

�
þ

þ
�
15 − 4 ln

�
μ

mQ

��
δð−1þ rÞ

�
; ð45Þ

Chl4 ¼ αs
π
128π2

�
2

3
ð1 − r − 10r2 þ 4r3Þ

�
1

1 − r

�
þ

þ
�
9þ 4 ln

�
μ

mQ

��
δð−1þ rÞ

�
; ð46Þ

Chl5 ¼ −
αs
π
64π2

�
1

3
ð5þ rþ r2 − 4r3Þ

�
1

1 − r

�
þ

þ
�
1 − ln

�
μ

mQ

��
δð−1þ rÞ

�
; ð47Þ

Chl6 ¼ αs
π
64π2

�
1

3
rð5 − r − r2Þ

�
1

1 − r

�
þ

− ln

�
μ

mQ

�
δð−1þ rÞ

�
: ð48Þ

The coefficients of the total rate are obtained from
Eq. (17) by integrating the coefficients of the differential
rate over r in the whole range. In the massive lepton case,
we obtain

Chl
1 ¼−256π2ðη−1Þ2ðηþ2Þ

�
1−CF

αs
π

�
2þ3

2
ln

�
μ

mQ

���
;

ð49Þ

Chl
2 ¼ 256π2ðη − 1Þ2

�
2ð2ηþ 1Þ − CF

αs
π

×

�
5ηþ 4þ 3ð2ηþ 1Þ ln

�
μ

mQ

���
; ð50Þ

Chl
3 ¼−

αs
π

64

9
π2
�
ðη−1Þð19η2þ118η−143Þ

−6ð5η−6Þη2 lnðηÞ

þ18ðη−1Þ2ðηþ2Þ
�
lnð1−ηÞ− ln

�
μ

mQ

���
; ð51Þ
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Chl
4 ¼ αs

π

128

9
π2
�
ðη − 1Þð128η2 − 7η − 133Þ

þ 12η2ð7η − 6Þ lnðηÞ − 36ð2ηþ 1Þðη − 1Þ2

×

�
lnð1 − ηÞ − ln

�
μ

mQ

���
; ð52Þ

Chl
5 ¼αs

π

32

9
π2
�
ðη−1Þð65η2−88ηþ47Þþ24η2ð2η−3ÞlnðηÞ

−18ð2ηþ1Þðη−1Þ2
�
lnð1−ηÞ− ln

�
μ

mQ

���
; ð53Þ

Chl
6 ¼−

αs
π

16

9
π2
�
25η3 − 54η2þ 9ηþ 20þ 24η3 lnðηÞ

− 18ðη− 1Þ2ðηþ 2Þ
�
lnð1− ηÞ− ln

�
μ

mQ

���
: ð54Þ

Finally, in the massless lepton (η ¼ 0) case, we obtain

Chl
1 ¼ −512π2

�
1 − CF

αs
π

�
2þ 3

2
ln

�
μ

mQ

���
; ð55Þ

Chl
2 ¼ 512π2

�
1 − CF

αs
π

�
2þ 3

2
ln

�
μ

mQ

���
; ð56Þ

Chl
3 ¼ −

αs
π

64

9
π2
�
143 − 36 ln

�
μ

mQ

��
; ð57Þ

Chl
4 ¼ αs

π

128

9
π2
�
133þ 36 ln

�
μ

mQ

��
; ð58Þ

Chl
5 ¼ −

αs
π

32

9
π2
�
47 − 18 ln

�
μ

mQ

��
; ð59Þ

Chl
6 ¼ −

αs
π

64

9
π2
�
5þ 9 ln

�
μ

mQ

��
: ð60Þ

Note that in the massless lepton case the singlet operators
combine in perpendicular form Ohl⊥ ≡Ohl

1 −Ohl
2 . Matrix

elements of such an operator are zero in thevacuum insertion
approximation (VIA). Likewise, in such an approximation
the matrix elements of octet operators over singlet states are
also zero. Even though the computation of these matrix
elements by using HQET sum rules [26,103] show devia-
tions from VIA, it works well as a first approximation [18].
Therefore, in this particular case, the phase space enhance-
ment can be easily canceled by the small value of the matrix
elements themselves. It is quite remarkable that in the
massive lepton case the singlet operators do not combine
in Ohl⊥ , and therefore their matrix elements are not sup-
pressed. Therefore, the four-quark operators will have a
more visible impact in semitauonic decays than in their
electron or muon counterparts.

After changing the operator basis to the evanescent
operator basis used in [77,104], the NLO results for the
total width agree with [77,78]. The change in the operator
basis and the corresponding comparison is discussed in
more detail in Sec. IV. Note that in [77,78] the coefficients
were computed by directly using an operator basis with
evanescent operators, whereas we have chosen a basis with
arbitrarily long strings of γ matrices and later we have done
the change of basis. That constitutes a strong check of the
calculation and confirms the former results.

B. Darwin operator coefficient

The Darwin coefficient of the total rate in inclusive
semileptonic decays with a massless final-state quark can
be extracted to LO from the corresponding calculation in
nonleptonic decays [74,75,105]. To the best of my knowl-
edge it has never been computed for the differential rate to
this order. We address the computation of the Darwin
coefficient at NLO for both the total rate and the q2

spectrum, which has never been considered before in the
literature.
For the computation we follow [66,67] and take the

Qðpþ k1Þ → Qðpþ k2Þgðk1 − k2Þ scattering amplitudeA
in QCD with hard momentum p, with p2 ¼ m2

Q, and two
soft momenta k1, k2, and expand it to quadratic order in the
small momenta (the loop momenta are hard),

A ¼ I0 þ Iαk1k1α þ Iαk2k2α þ Iαβ
k2
1

k1αk1β þ Iαβ
k2
2

k2αk2β

þ Iαβk1k2k1αk2β þ…; ð61Þ

where dots stand for higher orders in the expansion. The
diagrams that contribute are shown in Fig. 3. The coef-
ficient of the Darwin operator is obtained by projecting the
amplitude to the corresponding operator. This is achieved
by taking the contribution proportional to k1αk2β in Eq. (61)
and using the projector POD

¼ ðgαβ − vαvβÞPþ such that

CD ∼ Tr½vλðgαβ − vαvβÞIλαβk1k2
Pþ�; ð62Þ

where Pþ ¼ ð1þ =vÞ=2. This projection ensures that the
contribution to the Darwin coefficient is disentangled from
the spin-orbit operator and operators that contribute to
higher orders in the power expansion after using the EOM,
but which nevertheless merge with the Darwin operator
before using the EOM (see, e.g., [66] for more details).
In practice, we directly compute the difference between

the HQE of the transition operator and the current,

C̄D ≡ CD − C0C̃D

¼ ZOS
2 ZOD

ðCD;B − C0;BC̃D;BÞ þ δCMS;2qð1Þ
D

þ δCMS;4qð1Þ
D þ δCMS;4qð2Þ

D ; ð63Þ
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where

ZOD
¼ −

1

6
CA

αs
π

1

ϵ
; ð64Þ

δCMS;2qð1Þ
D ¼

�
CF

�
4

3
C̄π;B−

2

3
C̄v;B

�

þCA

�
5

12
C̄G;Bþ

1

12
C̄π;B−

1

4
C̄v;B

��
αs
π

1

ϵ
; ð65Þ

δCMS;4qð1Þ
D ¼

�
2Chl1;B−Chl2;Bþð2Chl3;B−Chl4;B−4Chl5;Bþ32Chl6;BÞ

×

�
CF−

CA

2

��
−1

96π2ϵ
μ̄−2ϵ; ð66Þ

δCMS;4qð2Þ
D ¼

�
5

6
CAð2Chl1;B − Chl2;BÞ

1

ϵ2
þ
�
CFð2Chl1;B − 5Chl2;BÞ

þ 5

6
CA

�
31

3
Chl1;B −

1

6
Chl2;B

��
1

ϵ

�
αs
4π

−1
192π2

μ̄−2ϵ

ð67Þ

are the renormalization factor of the Darwin operator and
the contributions to the Darwin coefficient due to operator

mixing under renormalization given by the one-loop
mixing of the two-quark operators, the one-loop mixing
of the four-quark operators, and the two-loop mixing of the
four-quark operators with the Darwin operator, respec-
tively. The quantity C̄D is finite and the cancellation of poles
provides a solid check of the calculation. Finally, μ̄−2ϵ ¼
μ−2ϵðeγE=ð4πÞÞ−ϵ is the MS renormalization scale.
The one-loop operator mixing due to two-quark operators

is known [106–114]. The quantities ZOD
and δCMS;2qð1Þ

D are
taken from [66,67]. The one-loop operator mixing due to
four-quark operators can be extracted from [75,105]. Note
that the first two terms of Eq. (66) contributes to the
renormalization of Darwin coefficient at LO andNLOwhen
the coefficients Chl1−2;B are taken at LO and NLO, respec-
tively. Indeed, this is the only contribution due to operator
mixing needed to renormalize the Darwin coefficient at LO.
The bare coefficientsChli;B are defined as inEq. (34).Note that
the coefficients Chl3−6;B contribute to the renormalization of
the Darwin operator at NLO only through the one-loop
operator mixing due to the corresponding coefficients are of
OðαsÞ. The two-loop operator mixing due to four-quark
operators is not known and the corresponding contribution
to the Darwin coefficient is inferred from the cancellation of
the poles, which is achieved for a single combination of the

FIG. 3. Qðpþ k1Þ → Qðpþ k2Þgðk1 − k2Þ scattering diagrams contributing to the LO and NLO coefficients C̄i of power corrections
in the HQE of theHQ → Xqlν̄l decay spectrum, Eq. (23). Black squares stand for v insertions, circles with crosses for insertions of Leff ,
thick lines for the lepton-antineutrino propagator with mass q, and gray dots for possible one gluon insertions with outgoing momentum
k1 − k2. After accounting for all one gluon insertions, there are 5 diagrams at LO and 41 diagrams at NLO.
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coefficients Chl1−2, which are the only coefficients that are
nonzero at LO and, therefore, the only ones that contribute at
two loops. This cancellation is not straightforward due to the
nontrivial dependence of the coefficients Chl1−2 in η and r. We
find there is actually a unique combination that cancels the
poles,whichprovides a check of the calculation. Finally, note
that the structure of the 1=ϵ2 pole in Eq. (67) is the same that
appears in the 1=ϵ pole in the first two terms of Eq. (66), i.e.,
the corresponding poles are proportional to 2Chl1;B − Chl2;B.
This is to be expected due to the link between the 1=ϵ and
1=ϵ2 poles in the one- and two-loop anomalous dimensions
and provides an additional check of the computation.
Renormalization can be performed for the differential

rate, as it holds at the level of the hadronic tensor. However,
it is more involved than for the case of a massive final-state
quark due to the operator mixing with four-quark operators.
The cancellation of poles at the differential level requires
the use of plus distributions due to the apparently different
functional structure of the contribution coming from Q →
Qg scattering diagrams and the contribution coming from
the operator mixing with four-quark operators. Whereas the
former gives contributions proportional to ð1 − rÞ−1−nϵ,
which generate poles only after integration over r, the
latter gives singular (1=ϵ) contributions proportional to
δð−1þ rÞ. The cancellation of poles is achieved after using

Z
1

η
dr

fðr;ϵÞ
ð1− rÞ1þnϵ≡

Z
1

η
drfðr;ϵÞð1− rÞ−nϵ

�
1

1− r

�
þ

þ
Z

1

η
dr

−1
nϵ

ð1−ηÞ−nϵfð1;ϵÞδð−1þ rÞ;

ð68Þ

where the singular δ term that is generated produces
the required contribution to cancel the one coming from
the operator mixing. Note that the right-hand side of the
equation above can be safely expanded in ϵ before
integration. Also note the close connection between dimen-
sionally regularized IR singular integrals at the end point
and δ functions sitting at that end point.
Finally, the Darwin coefficient of the differential rate CρD

is obtained from

CρD ¼ C̄D
cDðμÞ

−
1

2
C̄v: ð69Þ

In the massive lepton case, the Darwin operator coefficient
of the differential rate reads

CLOρD ¼ 2

3r3
ðr − ηÞ2ð11 − 9rþ 9r2 þ 5r3Þð2ηþ rð1þ ηÞ þ 2r2Þ

�
1

1 − r

�
þ

þ 16

3
ð1 − ηÞ2

�
5þ 4ηþ 6ð1þ ηÞ lnð1 − ηÞ − 6ð1þ ηÞ ln

�
μ

mQ

��
δð−1þ rÞ; ð70Þ

CNLO;FρD ¼ 1

18r5
ðr − ηÞ2

�
64rη − 8r2ð2 − 73ηÞ þ r3ð217 − 797ηÞ − 11r4ð71þ 7ηÞ − 7r5ð25 − 39ηÞ þ r6ð273þ ηÞ þ 2r7

þ 2ð32η − rð8þ 5ηÞ − r2ð28þ 487ηÞ − r3ð221 − 101ηÞ
− r4ð293þ 547ηÞ − r5ð419 − 4ηÞ þ r6ð29þ 38ηÞ þ 76r7Þ lnð1 − rÞ
− 4r3ð42ηþ 3rð7 − 36ηÞ − r2ð108 − 59ηÞ þ r3ð61þ 19ηÞ þ 38r4Þ lnðrÞ

þ 32r2ð22ηþ rð11þ 26ηÞ þ r2ð43þ 9ηÞ þ r3ð9þ 10ηÞ − 4r4ð1 − 2ηÞ þ 16r5Þ ln
�

μ

mQ

�

− 6ð1 − rÞr2�14ηþ rð7 − 29ηÞ − 4r2ð7þ 5ηÞ − 5r3ð5þ ηÞ − 10r4
�

×
�
π2 − 2Li2ð1 − rÞ þ 2Li2ðrÞ

��� 1

1 − r

�
þ

−
1

9
ð1 − ηÞ2

�
159þ 81ηþ 88π2ð1þ ηÞ þ 24ð10 − ηÞ lnð1 − ηÞ

þ 432ð1þ ηÞln2ð1 − ηÞ − 40ð13þ 5ηÞ ln
�

μ

mQ

�

− 1200ð1þ ηÞ lnð1 − ηÞ ln
�

μ

mQ

�
þ 768ð1þ ηÞln2

�
μ

mQ

��
δð−1þ rÞ; ð71Þ
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CNLO;AρD ¼ −
1

27r5
ðr − ηÞ2

�
48rη − 4r2ð3 − 38ηÞ þ r3ð67þ 91ηÞ þ 2r4ð91þ 72ηÞ

− r5ð117 − 431ηÞ þ 2r6ð209þ 74ηÞ þ 296r7

þ 6ð8η − rð2þ 17ηÞ − r2ð7þ 20ηÞ − r3ð28þ 39ηÞ þ r4ð21 − 46ηÞ
− 10r5ð11 − 4ηÞ þ 2r6ð19þ 7ηÞ þ 28r7Þ lnð1 − rÞ
þ 6r3ð6ηþ 3r − r2ð18þ 7ηÞ þ 14r3ð2 − ηÞ − 28r4Þ lnðrÞ

− 36r2ð4ηþ 2rð1 − 4ηÞ − 2r2ð5þ 3ηÞ þ r3ð9þ 7ηÞ − r4ð13 − 9ηÞ þ 18r5Þ ln
�

μ

mQ

�

þ 9ð1 − rÞr2�2ηþ rð1þ ηÞ þ 2r2ð1þ 2ηÞ þ 8r3
�

×
�
π2 − 2Li2ð1 − rÞ þ 2Li2ðrÞ

��� 1

1 − r

�
þ

−
1

108
ð1 − ηÞ2

�
5381þ 4743η − 360π2ð1þ ηÞ þ 24ð139þ 169ηÞ lnð1 − ηÞ

− 720ð1þ ηÞln2ð1 − ηÞ − 24ð219þ 233ηÞ ln
�

μ

mQ

�

− 864ð1þ ηÞ lnð1 − ηÞ ln
�

μ

mQ

�
þ 1584ð1þ ηÞln2

�
μ

mQ

��
δð−1þ rÞ; ð72Þ

where Li2ðxÞ is the dilogarithm. In the massless lepton case (η ¼ 0), it reads

CLOρD ¼ 2

3
ð11þ 13r − 9r2 þ 23r3 þ 10r4Þ

�
1

1 − r

�
þ
þ
�
80

3
− 32

�
μ

mQ

��
δð−1þ rÞ; ð73Þ

CNLO;FρD ¼ −
1

18r2

�
16r − 217r2 þ 781r3 þ 175r4 − 273r5 − 2r6

þ 2ð8þ 28rþ 221r2 þ 293r3 þ 419r4 − 29r5 − 76r6Þ lnð1 − rÞ

þ 4r3ð21 − 108rþ 61r2 þ 38r3Þ lnðrÞ − 32r2ð11þ 43rþ 9r2 − 4r3 þ 16r4Þ ln
�

μ

mQ

�

þ 6r2ð7 − 35rþ 3r2 þ 15r3 þ 10r4Þ�π2 − 2Li2ð1 − rÞ þ 2Li2ðrÞ
��� 1

1 − r

�
þ

−
1

9

�
159þ 88π2 − 520 ln

�
μ

mQ

�
þ 768ln2

�
μ

mQ

��
δð−1þ rÞ; ð74Þ

CNLO;AρD ¼ 1

27r2

�
12r − 67r2 − 182r3 þ 117r4 − 418r5 − 296r6

þ 6ð2þ 7rþ 28r2 − 21r3 þ 110r4 − 38r5 − 28r6Þ lnð1 − rÞ

− 6r3ð3 − 18rþ 28r2 − 28r3Þ lnðrÞ þ 36r2ð2 − 10rþ 9r2 − 13r3 þ 18r4Þ ln
�

μ

mQ

�

− 9r2ð1þ rþ 6r2 − 8r3Þ�π2 − 2Li2ð1 − rÞ þ 2Li2ðrÞ
��� 1

1 − r

�
þ

−
1

108
½5381 − 360π2 − 5256 ln

�
μ

mQ

�
þ 1584ln2

�
μ

mQ

��
δð−1þ rÞ: ð75Þ

Again, the coefficient of the total rate is obtained from Eq. (17) by integrating the coefficient of the differential rate over r in
the whole range. In the massive lepton case, we obtain
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CLO
ρD ¼ 1

3
ðη − 1Þð5η3 − 43η2 þ 29ηþ 45Þ þ 4ð1 − 4ηÞη2 lnðηÞ þ 32ðηþ 1Þðη − 1Þ2

�
lnð1 − ηÞ − ln

�
μ

mQ

��
; ð76Þ

CNLO;F
ρD ¼ 1

216
ð6η4 − 14546η3 þ 22967η2 þ 5338η − 13765Þ − 1

54
π2ð30η4 − 356η3 − 192η2 þ 144ηþ 147Þ

þ 1

108
ηð57η3 − 6868η2 þ 4710ηþ 996Þ lnðηÞ − 1

108
ð57η4 − 9976η3 þ 15768η2 þ 888η − 6737Þ lnð1 − ηÞ

þ 8

9
ð8η4 − 155η3 þ 216η2 þ 31η − 100Þ ln

�
μ

mQ

�
þ 16

3
ð14 − 19ηÞη2 lnðηÞ ln

�
μ

mQ

�

−
16

3
ðηþ 1Þðη − 1Þ2

�
9 ln2ð1 − ηÞ − 25 lnð1 − ηÞ ln

�
μ

mQ

�
þ 16 ln2

�
μ

mQ

��

−
1

9
ð15η4 − 4η3 − 60η2 þ 132η − 83Þ lnð1 − ηÞ lnðηÞ − 1

9
ð30η4 þ 772η3 − 480η2 − 48η − 47ÞLi2ðηÞ

−
20

9
η2ð2η − 3Þ�π2 lnðηÞ þ 9Li3ðηÞ − 3 lnðηÞLi2ðηÞ − 9ζð3Þ�; ð77Þ

CNLO;A
ρD ¼ −

1

108
ð296η4 þ 55η3 − 1055η2 þ 1189η − 485Þ − 1

27
π2ð41η3 − 69η − 24Þ

þ 1

27
ð42η3 þ 812η2 − 441ηþ 6Þη lnðηÞ − 2

27
ð21η4 þ 571η3 − 525η2 − 591ηþ 524Þ lnð1 − ηÞ

þ 2

9
ð27η4 þ 57η3 − 139η2 − 61ηþ 116Þ ln

�
μ

mQ

�
þ 40

3
η3 lnðηÞ ln

�
μ

mQ

�

þ 4

3
ðη − 1Þ2ðηþ 1Þ

�
5 ln2ð1 − ηÞ þ 6 lnð1 − ηÞ ln

�
μ

mQ

�
− 11 ln2

�
μ

mQ

��

þ 2

9
ð11η3 − 33η2 þ 21ηþ 1Þ lnð1 − ηÞ lnðηÞ þ 2

9
ð115η3 − 162η2 − 15ηþ 10ÞLi2ðηÞ

þ 8

9
η3
�
π2 lnðηÞ þ 9Li3ðηÞ − 3 lnðηÞLi2ðηÞ − 9ζð3Þ�; ð78Þ

where Li3ðxÞ is the trilogarithm and ζðxÞ is the Riemann ζ
function. In the massless lepton (η ¼ 0) case, we obtain

CLO
ρD ¼ −15 − 32 ln

�
μ

mQ

�
; ð79Þ

CNLO;F
ρD ¼−

13765

216
−
49π2

18
−
800

9
ln

�
μ

mQ

�
−
256

3
ln2

�
μ

mQ

�
;

ð80Þ

CNLO;A
ρD ¼ 485

108
þ8π2

9
þ232

9
ln

�
μ

mQ

�
−
44

3
ln2

�
μ

mQ

�
: ð81Þ

The LO coefficients given in Eqs. (76) and (79) agree
with [74,75,105]. The NLO results are new.

IV. EVANESCENT OPERATORS

The coefficient functions presented in Sec. III A are
expressed in terms of the operator basis,

Ohl
3 ¼ ðh̄vγμPLTaqÞðq̄γμPLTahvÞ; ð82Þ

Ohl
4 ¼ ðh̄vPLTaqÞðq̄PRTahvÞ; ð83Þ

Ohl
5 ¼ ðh̄vγμγνPLTaqÞðq̄γμγνPRTahvÞ; ð84Þ

Ohl
6 ¼ ðh̄vγμγνγαPLTaqÞðq̄γμγνγαPLTahvÞ: ð85Þ

In D ¼ 4 the operators Ohl
5;6 are redundant and they can be

straightforwardly reduced to the operators Ohl
3;4 thereby

reducing the number of operators in the basis. However,
this is no longer true for arbitrary D. Despite this, it is
possible to make a closer connection to a four-dimensional
basis by choosing an operator basis with evanescent
operators [75,77,104,115,116],

Ohl
3E ¼ ðh̄vγμPLTaqÞðq̄γμPLTahvÞ; ð86Þ

Ohl
4E ¼ ðh̄vPLTaqÞðq̄PRTahvÞ; ð87Þ
Ehl
1 ¼ ðh̄vγμγνγαPLTaqÞðq̄γμγνγαPLTahvÞ

− ð16 − aϵÞðh̄vγμPLTaqÞðq̄γμPLTahvÞ; ð88Þ
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Ehl
2 ¼ ðh̄vγμγνPLTaqÞðq̄PRγ

μγνTahvÞ
− ð4 − bϵÞðh̄vPLTaqÞðq̄PRTahvÞ; ð89Þ

where Ehl
1;2 are the so-called evanescent operators and a, b

are arbitrary numbers, which makes the choice of the
evanescent operators ambiguous. This ambiguity is con-
nected to the freedom in the choice of the renormalization
scheme. Eventually, the scheme dependence of the Wilson
coefficients must cancel against the scheme dependence of
the matrix elements of the corresponding operators. It is
conventional to use a ¼ 4 and b ¼ −4 with D ¼ 4 − 2ϵ.
This choice is motivated by the preservation of Fierz
symmetry at one-loop order [77,104], and we will refer
to this choice as the “canonical” basis of four-quark
operators. In this basis only matrix elements of Ohl

3E;4E

are nonzero, whereas matrix elements of evanescent oper-
ators vanish, showing in this way a close connection to
D ¼ 4. The two bases are related by

Ohl
3 ¼ Ohl

3E; ð90Þ

Ohl
4 ¼ Ohl

4E; ð91Þ

Ohl
5 ¼ Ehl

2 þ ð4 − bϵÞOhl
4;E; ð92Þ

Ohl
6 ¼ Ehl

1 þ ð16 − aϵÞOhl
3;E: ð93Þ

In the new basis, the imaginary part of the transition
operator in differential form becomes

ImT ¼ Γ0jVqQj2
Z

1

η
dr

�
…þ Chl3E

Ohl
3E

4m3
Q
þ Chl4E

Ohl
4E

4m3
Q

þ ChlE1

Ehl
1

4m3
Q
þ ChlE2

Ehl
2

4m3
Q

�
; ð94Þ

where the ellipsis stands for the terms in Eq. (16) excluding
the operators Ohl

i (i ¼ 3;…; 6). The corresponding con-
tribution to the decay width changes to

ΓðHQ → Xqlν̄lÞ ¼ Γ0jVqQj2
Z

1

η
dr

�
…þ Chl3E

ρhl33E

2m3
Q

þ Chl4E
ρhl34E

2m3
Q
þ Chl

E1

ρhl3E1

2m3
Q
þ Chl

E2

ρhl3E2

2m3
Q

�
;

ð95Þ

where the ellipsis stands for the terms in Eq. (23) excluding
the matrix elements ρhl3i (i ¼ 3;…; 6). The new matrix
elements are defined by following Eq. (29). The relation
between the coefficients of the differential rate in the two
bases reads

Chl3E ¼ Chl3 þ ð16 − aϵÞChl6 ; ð96Þ

Chl4E ¼ Chl4 þ ð4 − bϵÞChl5 ; ð97Þ

ChlE2
¼ Chl5 ; ð98Þ

ChlE1
¼ Chl6 : ð99Þ

Note that the only coefficients that depend on the numbers
a, b parametrizing the ambiguity on the definition of the
evanescent operators are Chl3E and Chl4E.
The operator mixing between four-quark operators

changes to

δChlMS
1 ¼ 3ChlB1 CF

αs
4π

1

ϵ
; δChlMS

2 ¼ 3ChlB2 CF
αs
4π

1

ϵ
;

δChlMS
3E ¼−3ChlB1

αs
4π

1

ϵ
; δChlMS

4E ¼−3ChlB2

αs
4π

1

ϵ
;

δChlMS
E1

¼−
1

4
ChlB1

αs
4π

1

ϵ
; δChlMS

E2
¼−

1

4
ChlB2

αs
4π

1

ϵ
; ð100Þ

which is independent of a, b. For the differential rate, a
different choice of a, b corresponds to the following shift in
the coefficients of the four-quark operators:

Chl3Eða1; b1Þ− Chl3Eða2; b2Þ ¼
αs
π
16π2ð1− ηÞ2ð2þ ηÞ

× ða1 − a2Þδð−1þ rÞ; ð101Þ

Chl4Eða1; b1Þ− Chl4Eða2; b2Þ ¼ −
αs
π
32π2ð1− ηÞ2ð1þ 2ηÞ

× ðb1 − b2Þδð−1þ rÞ: ð102Þ
For the canonical choice of evanescent operators, we obtain

Chl3Eð4;−4Þ ¼ −
αs
π
64π2

�
2

3r3
ðr − ηÞ2ð2ηþ rð1 − 11ηÞ

− r2ð25þ 2ηÞ þ 2r3ð1þ ηÞ þ 4r4Þ
�

1

1 − r

�
þ

þ ð1 − ηÞ2
�
13þ 8η − 6ð2þ ηÞ

�
lnð1 − ηÞ

− ln

�
μ

mQ

���
δð−1þ rÞ

�
; ð103Þ

Chl4Eð4;−4Þ ¼
αs
π
128π2

�
−

2

3r3
ðr − ηÞ2ð8ηþ rð4þ 7ηÞ

þ r2ð2þ 7ηÞ þ r3ð11 − 4ηÞ − 8r4Þ
�

1

1 − r

�
þ

þ ð1 − ηÞ2
�
8þ 13η − 6ð1þ 2ηÞ

�
lnð1 − ηÞ

− ln

�
μ

mQ

���
δð−1þ rÞ

�
: ð104Þ
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For the total rate, a different choice of a, b corresponds to
the following shift in the coefficients of the four-quark
operators:

Chl
3Eða1;b1Þ−Chl

3Eða2;b2Þ¼
αs
π
16π2ðη−1Þ2ðηþ2Þða1−a2Þ;

ð105Þ

Chl
4Eða1; b1Þ − Chl

4Eða2; b2Þ ¼ −
αs
π
32π2ðη − 1Þ2

× ð2ηþ 1Þðb1 − b2Þ: ð106Þ
For the canonical choice of evanescent operators, we obtain

Chl
3Eð4;−4Þ ¼ −

αs
π

64

9
π2
�
ðη − 1Þð110η2 − 7η − 205Þ

þ 6ð11ηþ 6Þη2 lnðηÞ − 54ðη − 1Þ2ðηþ 2Þ

×

�
lnð1 − ηÞ − ln

�
μ

mQ

���
; ð107Þ

Chl
4Eð4;−4Þ ¼

αs
π

128

9
π2
�
211η3 − 315η2 þ 9ηþ 95

þ 12η2ð11η− 12Þ lnðηÞ− 54ðη− 1Þ2ð2ηþ 1Þ

×

�
lnð1− ηÞ− ln

�
μ

mQ

���
: ð108Þ

The two expressions above are in agreement with [77,78].
The massless lepton case can be straightforwardly obtained
from the equations above by taking η ¼ 0.
Let us discuss now the effect that the choice of an

operator basis with evanescent operators has over the
Darwin coefficient. The one-loop operator mixing of
four-quark operators with the Darwin operator in
Eq. (66) changes to

δCMS;4qð1Þ
D ¼ −

�
2Chl1;B − Chl2;B þ �

2Chl3E;B − Chl4E;B þ 2aϵChlE1;B

− bϵChlE2;B

��
CF −

CA

2

��
1

96π2ϵ
μ̄−2ϵ: ð109Þ

Note that the bare coefficients Chl
E1;B

and Chl
E2;B

contain a
1=ϵ pole that cancels the explicit ϵ in front of them in

Eq. (109). The anomalous dimension gives an extra 1=ϵ
factor, generating in this way a contribution due to operator
mixing of evanescent operators with the Darwin operator.

However, the whole contribution δCMS;4qð1Þ
D remains

unaltered. In particular, the explicit dependence on a, b
in Eq. (109) cancels against the dependence on a, b of the
coefficients Chl3E;B and Chl4E;B. In other words, we find that
the Darwin coefficient is independent of the choice of the
evanescent operators.

V. NUMERICAL ESTIMATES

In this section, we evaluate the numerical impact of the
new results by inserting illustrative values for the non-
perturbative matrix elements and the parameters entering in
the Wilson coefficients. The numerical values are provided
in Tables I and II. Note that there is a tension between the
numerical value of ρD for B decays estimated from [10,11]
with a factor 6–9 difference. We take the largest value in
order to estimate an upper bound for the size of these
corrections. We use the HQE in the canonical basis of four-
quark operators and consider the total rate and moments of
the q2 distribution, which are defined in analogy to the
HQE of the width by

MnðHQ→Xqlν̄lÞ¼
Z

1

η
drrn

dΓðHQ→Xqlν̄lÞ
dr

¼Γ0jVqQj2
�
Mn;0−Mn;μπ

μ2π
2m2

Q

þMn;μG

μ2G
2m2

Q
−Mn;ρD

ρ3D
2m3

Q

−Mn;ρLS

ρ3LS
2m3

Q
þMhl

n;1
ρhl31

2m3
Q
þMhl

n;2
ρhl32

2m3
Q

þMhl
n;3E

ρhl33E

2m3
Q
þMhl

n;4E
ρhl34E

2m3
Q

�
: ð110Þ

Note that in the expression above we have already
neglected matrix elements of evanescent operators and
that the zeroth moment corresponds to the total width. The
coefficients of the moments are related to the coefficients of
the spectrum by

TABLE I. Numerical values for the matrix elements used to estimate the size of corrections. The values are taken from [18,25] and
translated to our notation by using the numerical values for the meson masses and decay constants also provided in these references.

(GeV3) Bþ B0 Bs Dþ D0 Ds

ρhl31
0.0107 2.77 × 10−5 3.98 × 10−5 1.37 × 10−5 1.37 × 10−5 8.73 × 10−3

ρhl32
0.0106 −1.92 × 10−5 −2.86 × 10−5 −1.01 × 10−5 −1.01 × 10−5 8.70 × 10−3

ρhl33E −1.76 × 10−4 −4.26 × 10−6 −6.36 × 10−6 −2.38 × 10−6 −2.38 × 10−6 −9.06 × 10−5

ρhl34E −4.26 × 10−6 3.19 × 10−6 4.77 × 10−6 1.79 × 10−6 1.78 × 10−6 −8.71 × 10−7

ρ3D 0.408 0.408 0.607 0.174 0.174 0.256
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Mn;iðηÞ ¼
Z

1

η
drrnCiðr; ηÞ: ð111Þ

The low q2 is difficult to detect and experimentalists use
cuts and integrate up to the available q2 [38]. Moments with
low cuts can be obtained from the expression above by
integrating in the desired range. For simplicity, we consider
the width and the first two moments without cuts. In
Tables III–V we compare the size of the Darwin and four-
quark terms at LO and NLO relative to the leading
power term.
We observe that corrections due to the Darwin term are,

in general, more important for semitauonic decays than for
semileptonic decays of B mesons. For the B semitauonic
decay width, the LO and NLO represent ∼15% and ∼5%
corrections, respectively. For the B semileptonic decay
width, the LO and NLO represent ∼5% and ∼1% correc-
tions, respectively. For semileptonic D decays, the

corrections due to the Darwin term are very large, endan-
gering the convergence of the HQE. For example, at LO
and NLO they represent ∼50% and ∼30% correction to
the width.
As for moments of the spectrum, the convergence of the

HQE worsens for higher moments. The reason is that
moments enhance the region of the phase space where
perturbation theory and the HQE break down. The con-
vergence is better for semileptonic decays than for semi-
tauonic decays of B mesons and for lower moments.
Considering that the value of ρD must be clarified and
that it might become a factor 6–9 smaller, the convergence
of the first moments in B decays seems to be good, but it is
unclear to what extent without clarifying the value of ρD. In
general terms, the 1=m3

b corrections can be safely used to
improve the precision of the HQE for the B → Xulν̄l
decay. On the contrary, the Darwin term of moments for D
decays becomes even larger than the leading term pointing
out the breakdown of the HQE, and therefore, the 1=m3

c
corrections cannot be used to improve the precision in the
D-meson spectrum.
Finally, we observe that, in general, the NLO corrections

to the Darwin term are rather large, as they correspond to
∼20% correction to the coefficient.
We also observe that the semitauonic decay of Bþ

receives large corrections from four-quark operators, unlike
how it happens in the other decays. The reason is that, due

TABLE II. Numerical values of parameters entering in the
Wilson coefficients.

Parameter Numerical value Parameter Numerical value

μ mQ mτ 1.777 GeV
mb 4.7 GeV αsðmbÞ 0.217
mc 1.6 GeV αsðmcÞ 0.340

TABLE V. Relative contribution of the Darwin operator and four-quark operators to the leading term for the second moment.

n ¼ 2 Bþτν̄τ (%) B0τν̄τ (%) Bsτν̄τ (%) Bþeν̄e (%) B0eν̄e (%) Bseν̄e (%) Dþeν̄e (%) D0eν̄e (%) Dseν̄e (%)

ρ3D (LO) 90 90 135 67 67 100 808 808 1185
ρ3D (NLO) 21 21 31 15 15 23 288 288 423
ρhl3i (LO) 53 −1 −2 −1 −1 −1 −14 −14 −20
ρhl3i (NLO) −3 0.3 0.4 1 0.2 0.3 5 5 30

TABLE IV. Relative contribution of the Darwin operator and four-quark operators to the leading term for the first moment.

n ¼ 1 Bþτν̄τ (%) B0τν̄τ (%) Bsτν̄τ (%) Bþeν̄e (%) B0eν̄e (%) Bseν̄e (%) Dþeν̄e (%) D0eν̄e (%) Dseν̄e (%)

ρ3D (LO) 38 38 57 23 23 34 280 280 410
ρ3D (NLO) 9 9 14 6 6 8 106 106 155
ρhl3i (LO) 28 −0.7 −1 −0.4 −0.4 −0.7 −6 −6 −9
ρhl3i (NLO) −2 0.2 0.2 0.5 0.1 0.1 2.3 2.3 12

TABLE III. Relative contribution of the Darwin operator and four-quark operators to the leading term for the total width.

n ¼ 0 Bþτν̄τ (%) B0τν̄τ (%) Bsτν̄τ (%) Bþeν̄e (%) B0eν̄e (%) Bseν̄e (%) Dþeν̄e (%) D0eν̄e (%) Dseν̄e (%)

ρ3D (LO) 12 12 17 4 4 5 43 43 63
ρ3D (NLO) 3 3 5 1 1 2 25 25 37
ρhl3i (LO) 13 −0.3 −0.5 −0.1 −0.1 −0.2 −2 −2 −3
ρhl3i (NLO) −0.9 0.07 0.1 0.1 0.03 0.04 0.7 0.7 3

DANIEL MORENO PHYS. REV. D 109, 074030 (2024)

074030-16



to the τ mass, the four-quark operatorsOhl
1;2 do not combine

in perpendicular form Ohl⊥ , unlike how it happens in the
massless case. The matrix elements of such perpendicular
combinations are very much suppressed. Also, matrix
elements of octet operators or of operators involving
different spectator quarks in the operator and the state
are suppressed. In particular, all these matrix elements are
exactly zero in VIA. Therefore, the HQE of the Bþ

semitauonic decay is the only one where Ohl
1;2 do not

combine in Ohl⊥ and whose matrix elements involve the
same spectator quark in the operators and the state. For the
decay width, the LO and NLO terms represent ∼13% and
∼ − 0.9% corrections, respectively. For moments, the
corrections become larger as it happens with the Darwin
term. In general, deviations from VIA give rise to very
small corrections compared to the Darwin term. Therefore,
we predict the Bþ → Xuτν̄τ decay width to be ∼10% larger
than the B0 → Xuτν̄τ decay. This observation still has to be
confirmed by experiment because its measurement is very
challenging.
Overall, we find the Darwin term to be the dominant

dimension-six contribution except in the semitauonic
decay of Bþ, where four-quark operators give a similar
contribution.

VI. CONCLUSIONS

In this work, we have presented analytical results for the
αs corrections to the coefficients of the Darwin operator and
four-quark operators appearing at order 1=m3

Q in the HQE
of the HQ → Xqlν̄l decay for both the total width and the
spectrum on the dilepton invariant mass in the case of a
massless quark and both a massless (l ¼ e, μ) or massive
(l ¼ τ) lepton in the final state. The results can be applied
to the CKM suppressed B → Xulν̄l decay or, to some
extent, to the CKM favored D → Xlν̄l (l ≠ τ) decay.
We have observed that the newly computed NLO

corrections to the Darwin term are rather large, as they
typically correspond to ∼20% correction to the Darwin
term at LO. For the semitauonic and semileptonic decay
rate of B mesons, the NLO corrections represent ∼5% and
∼1% corrections to the leading term. For the semileptonic
decay rate of D mesons, they correspond to ∼25%
correction to the leading term, showing a much slower
convergence of the HQE for D than for B.
The convergence of the HQE worsens for higher

moments. For B mesons, it is crucial to clarify the value
of ρ3D in order to make a clear statement about the
convergence of the HQE for higher moments. For moments
of the D meson spectrum, the convergence is very bad,

pointing out that the 1=m3
c corrections cannot be used to

improve the precision of the HQE.
We conclude that the 1=m3

Q corrections can be used to
improve the precision of the HQE for the B → Xulν̄l
decay rate and the first few moments and, to a lesser extent,
for the D → Xlν̄l decay rate.
We have also observed that, unlike what happens in the

other decay channels, the semitauonic decay width and
moments of Bþ receive large corrections from four-quark
operators and they are similar in size to that of the Darwin
term. In particular, we expect the ΓðBþ → Xuτν̄τÞ∼
1.1ΓðB0 → Xuτν̄τÞ. This prediction still has to be con-
firmed by the experiment.
Overall, we find the Darwin term to be the dominant

dimension-six contribution except in the semitauonic
decay of Bþ, where four-quark operators give a similar
contribution.
The main application of our results is for the background

subtraction of the B → Xulν̄l decay in the measurement of
B → Xclν̄l decay, used for the precise extraction of jVcbj
from q2 moments and the precise measurement of RðDð�ÞÞ.
Other important applications are for the lifetimes of B and
D hadrons, the study of the D-hadron spectrum, and the
extraction of the ratio jVub=Vcbj. A rigorous phenomeno-
logical analysis updating the predictions for the different
observables is left to future publications.
Finally, the computation carried out in this paper

represents a step toward the computation of the Darwin
coefficient at NLO for the nonleptonic decay width, which
is sought at present [18,21]. In particular, the current work
can be used to understand how the operator mixing works
when there is also two-loop mixing with four-quark
operators in a much simpler scenario than for nonleptonic
decays, where a large proliferation of four-quark operators
occurs.
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