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Hadronic structure on the light front. VIII. Light scalar and vector mesons
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We use the QCD instanton vacuum model to discuss the emergence of the light scalar and vector
mesons on the light front. We take into account both the instanton and anti-instanton single and molecular
interactions on the light quarks, in the form of nonlocal effective interactions. Although the molecular
induced interactions are suppressed by a power of the packing fraction, they are still sufficient to bind the
vector mesons, while keeping most of the scalar spectrum relatively unchanged. We explicitly derive the
light front distribution amplitudes and partonic functions for the scalar and vector mesons, and compare
them after pertinent QCD evolution, to the available empirical and lattice measured counterparts. The
Dirac electric form factors for both the pion and p meson are derived, and shown to compare well with

current data.
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I. INTRODUCTION

Parton distribution functions (PDFs) are used to assess
most processes at high energy, whenever factorization
holds. They are important for the description of inclusive
and exclusive processes alike, and play an essential role
in precision measurements at the current Large Hadron
Collider (LHC).

The PDFs capture the longitudinal distribution of partons
(quarks and gluons) in a given hadron in the light front
frame, at a given resolution. These unimodular distributions
are inherently nonperturbative and lightlike. The leading
twist PDFs are currently accessible from experiments
through pertinent parametrizations [1], or using lattice
simulations following the Large Momentum Effective
Field Theory (LaMET) procedure [2,3] or some
variations [4,5].

The determination of the PDFs, whether empirically or
through numerical simulations, does not provide a compre-
hensive understanding of their content for physicists, nor on
the basic mechanism(s) at the origin of their composition.
For that, an understanding of the QCD vacuum at some
preferably low resolution is required.
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At low resolution, detailed cooled lattice configurations
show that the QCD vacuum is populated by instantons and
anti-instantons [6]. Their effects in the formation of both
the scalar and vector mesons on the light front will be the
main subject of this paper. Some essential aspects of this
vacuum are captured by the instanton vacuum model,
which allows for a semiclassical description based on a
drastically reduced set of gauge configurations [7—11].

However, the QCD instanton vacuum is inherently
spacelike and is more naturally formukated in Euclidean
space. In a recent series of work [12—16], two of us have
shown that some of the nonperturbative aspects of the QCD
instanton vacuum can be exported to the light front via an
analytical continuation not in the fields but in the boost
parameter. The results are a variety of central and spin-
dependent potentials on the light front that provide for the
emergence of a nonperturbative constituent quark type
model. Similar approaches more rooted in phenomenology
have been also suggested in [5,17-37].

On the light front, hadrons at low resolution are
described by their lowest constituent quark and gluon
Fock components. The underlying nonperturbative gluonic
content is mostly packaged in the emerging constituent
mass and effective interactions between the constituents,
following mostly from the spontaneous breaking of chiral
symmetry [12—16]. However, the description of the emerg-
ing Goldstone modes (pions and kaons) requires special
care on the light front, but otherwise parallels the descrip-
tion in the rest frame [13,38].

Another important subtlety of the light front formulation
is the apparent breaking of SO(1,3) to SO(1,2), following
from the use of the infinite momentum frame. We will
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address this issue analyzing the formation of the low-lying
vector mesons in the QCD instanton vacuum. On the light
front, the longitudinal and transverse vector mesons follow
from different constitutive equations, with apparently differ-
ent characteristics. The purpose of this work is twofold:
first, we will follow up on our suggestion in [12], that the
light vector mesons in the QCD instanton vacuum receive
sizable contributions from the instanton-anti-instanton
molecular configurations; second, we will explicitly show
that despite the explicit breaking of Lorentz symmetry on
the light front, the rest frame SO(1,3) symmetric vector
spectra and decay constants are recovered dynamically. For
completeness, we note that a number of phenomenological
studies of the light mesons have been carried by many using
the covariant formulation in [39—44], relativistic equal-time
formulation in [45-48], and variants of the light cone
formulation in [36,49-53].

The organization of the paper is as follows. In Sec. II we
briefly review the emergent 't Hooft nonlocal fermionic
interactions in the two-flavor QCD instanton vacuum,
induced by both the single instantons and anti-instantons,
and the instanton-anti-instanton molecules. The latter are
chirality preserving and contribute in leading order in the
vector channels. In Sec. III we show how these emerging
interactions yield to the spontaneous breaking of chiral
symmetry, and a running constituent quark mass. In Sec. [V
we construct the pertinent light front Hamiltonian using the
bookkeeping in 1/N. and the diluteness of the QCD
instanton vacuum. The bound states equations in the scalar
and vector channels are made explicit and solved. We also
show how these solutions are related to covariant formu-
lations. In Sec. V, all scalar and vector light front wave
functions in the QCD instanton vacuum with nonlocal
interactions are detailed. In Sec. VI we derive the parton
distribution functions for the scalar and vector mesons, and
analyze their partonic content both for the unpolarized and
polarized states. In Sec. VII the meson distribution ampli-
tudes are discussed, and the results compared to existing
empirical measurements and current lattice simulations. In
Sec. VIII we use the light front wave functions, to derive the
electromagnetic form factors for the pion and p and w
mesons. The results are compared to the available mea-
surements and lattice results. Our conclusions are in Sec. IX.
A number of Appendixes are included to complement some
of the derivations.

II. GENERALIZED T HOOFT INDUCED
INTERACTIONS

The QCD vacuum at low resolution is populated
by mostly topologically active instantons and anti-
instantons, Euclidean tunneling configurations between
vacua with different topological charges [11] (and refer-
ences therein). Light quarks scattering through these

topological configurations develop zero modes with fixed
handedness. For instance, a massless left-handed quark
tunneling through an instanton can emerge as a right-handed
massless quark, with the handedness flipped through an
anti-instanton.

For a single quark species, this mechanism is at the origin
of the explicit breaking of U, (1) symmetry. For many light
quark species this mechanism can account for the dual
breaking of the U, (1) (explicitly) and chiral symmetry
(spontaneously). This is manifested through the emergent
multiflavored interactions, between the light quarks
zero modes.

A. Local approximation

In the noninteracting instanton vacuum, these multi-
flavored interactions are the well-known ’t Hooft determi-
nantal interactions. In the local approximation where the
instanton size is taking to zero, the induced interactions
from single instantons plus anti-instantons give

G, P .
5128(N3—1){ ]\2]1\16. [(pw)? = (we"w)? = (ir'y)
+ (l/_/i751‘11//)2] +% |:(l/_/o'ﬂy1//)2 — (1170/4,,1“1//)2] } (1)

which are seen to mix LR chiralities. The effective coupling

N o, et g 0w (L)Y
G, = [ dpn(p)p"s (2mp)*Ns 27(4” )N ——

m*p
(2)

is fixed by the mean-instanton density
ny4d s
"~ [ apntp) [ 3)
1=1

with m} the induced determinantal mass [54]. At low

resolution, the instanton distribution is sharply peaked
around the average instanton size p =~ 0.31 fm, with a
mean density 7,7 ~ 1 fm™.

In the interacting instanton vacuum, additional multi-
flavor interactions are expected. Given the diluteness of the
tunneling processes in the QCD vacuum at low resolution,
the natural interactions are molecular in the form of binary
instanton-anti-instanton configurations. When maximally
locked in color, they induce flavor mixing interactions of
the form [55]
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Cu = Gu{ s 0P + WPl = e 22w = (v
" % [(w)? + (@) + (Fir'y)* + Wiy’ y)’]
- m (@7 y)® + (per'y)® + (pr'ry)* + (l/‘/f“y"ysw)z]} (4)

which are LL and RR chirality preserving, in contrast to (1). The effective molecule-induced coupling is defined as

N N
G = / dp,dp; / dud* R— (47°p7) (47 p7)n(pr)n(pp) T 7 (. R)*Nrpy " py (5)

Here R = z; — z; is the relative molecular separation, u, =

(Uit U ") is the relative molecular orientation with the
locked color with 7, = (7,—i), and T; is the hopping
quark matrix. Equation (5) is readily understood as the
unquenched tunneling density for a molecular configura-
tion, whereby a pair of quark lines is removed by the
division T?; to account for the induced four-Fermi inter-
action. The strength of the induced molecular coupling G;
to the single coupling G is

G2
GII 1287 4 25 (6)

where the dimensionless and positive hopping parameter is
defined as

G,

|
1 4 (u N2
f=o / dud RIpT (e, R)PV2, )

In summary, we will use the effective action
=p(ig—myy + L+ Ly (®)

to describe light quark interactions in the QCD vacuum at
low resolution. The smallness of the density n;,; allows us
to consider the complex many-body dynamics, by organiz-
ing it around the dilute limit. Throughout, we will use the
1/N, counting for bookkeeping, with n;,; ~ N, and both
G, and G;; of the same order in 1/N., but with a
parametrically small ratio G;;/G; from the diluteness.
With this in mind, the leading contributions in 1/N,. in
(8) are

L= lw)? = @e'w)* = wiry)? + (wir's'w)?],
G _ _ . _.
Lip = |4Gw)* + (ew)* + (ir'w)* + (wir'ew)’]

— [(@yw)* + (v w)? = 3r'rw)* + (e rw)?| . )

The induced ’t Hooft interaction £; does not operate in the light vector channels, but the molecular induced interaction £;;
does. The molecular interaction is equally attractive in the scalar ¢, a and pseudoscalar z,#' channels. Since the instanton
molecules are topologically neutral, the molecular interactions are U(1), symmetric. Note that this Lagrangian predicts no
splitting between the isoscalar (@) and isovector (p) vector channels.

For later use, we rewrite (8) in leading order in 1/N, as

_ . Ga_ Ga S G’_. Gn- _ . a
L= (i = M)y +—=7(pw)* + > (') + - (Fir'y) + 5 (Fir'ey)?
G, G, _ G Go 5.
- (rw)* — 7” (py,w)* - —zf L@y rw)? — - (Fyrvy)? (10)

with the effective couplings
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G,=Gs, G, =-Gg+8Gy,
G,=Gs, Gy=—-Gs+8Gy,
G,=Gy. G,=Gy,

G, =Gy, Gy =-3Gy,

where Gg = 4N2 + 432” and Gy = N2 are from the QCD

instanton vacuum.

B. Nonlocal approximation

Each instanton and anti-instanton configuration carries a
finite size, which is fixed on average to be around 1 fm.
This size is not small in comparison to the size of the light
hadrons and cannot be ignored. More importantly, this size
fixes the UV scale and provides for a natural cutoff both in

Euclidean and light front signature. Finite-sized instantons
yield finite-sized zero modes, and therefore nonlocal
effective interactions between the light quarks. The net
effect is captured by the substitution

w(x) = VF (i) (x) (11)

in the local approximation. Here F(id) is the zero mode
profile, that acts as a form factor. In singular gauge its form
is more user friendly in momentum space

= [(zF'(2))*] (12)

Z:T

F (k)

where F(z) =1(z)Ky(z) —1;(z)K;(z) are spherical Bessel
functions, and k = VK2 is the Euclidean 4-momentum.

Inserting (11) into (8) yields the nonlocal form of the effective action in the QCD instanton vacuum in leading order

in 1/N,
L =ylid— Mk l,l/-‘r—l//\/ (i0) /F (o)) — =2 (5 \/F (i) °\/F (id)y)?
G G
S 1//\/3’-' i0) iy>/F(id)y +75(l/7 ]:(ia)inT“ F(i0)y)? — = (f /F(i0) v,/ F (id)y)?

I,U\/ (i0) yﬂ

III. GAP EQUATION IN QCD INSTANTON
VACUUM

Before analyzing (13) in the light front frame, we briefly
discuss the bulk vacuum properties following from (13) in
the center-of-mass frame. In leading order in 1/N. or
mean-field approximation, the light quarks develop a
running constituent mass

d'q  4M(q)
(27)* ¢* + M?*(q)

M(K) = m + 295 F (k) / Flg) (14)

where g¢ = N .Gy is the coupling strength for the isosinglet
scalar channel in a ’t Hooft Lagrangian. In the same
approximation, the chiral quark condensate is

[k
) == | e TSk
dk 4M(k)
—2N, /( v A G

In the low momentum limit (k < 1/p), M(k) ~ MF (k)
with M the zero-momentum constituent mass, (14) and (15)
simplify to

F(io)y)? +3— (7 \/F(i9) y,r°\/ F(io w)z——(w\/ (i0) vy’ e/ F(io)w)*.  (13)

&'k F(K)

:1—
(27)* k2 + M?

(16)

NE

with M = m — Gg¢(pw). We have approximated the run-
ning quark mass M (k) in the loop integration in both (14)
and (15) by its zero momentum limit. This is numerically
justified by the cutoff form factor F (k) with a range of
about the inverse instanton size 1/p.

More explicitly,

i _ﬂ/o“dz%@mz))‘* (17)

m
M ﬂzpz 2 4 p

with M fixed by the scalar 't Hooft coupling strength g for
fixed p. In the chiral limit, the constituent mass is nonzero
only when the scalar coupling is stronger than the critical
coupling ¢¢, which is set by

© -1
@& = 2% p? {8/ dzz(zF’(z))“} ~2.9817°p°. (18)
0

The small size expansion reduces the solution of the gap
equation back to the point interaction limit, with both the
quadratic 1/p and logarithmic dependence in 1/p,
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p=0313fm, g¥ =2.981 %0

— gs5/85=0.6

— gs/gg=1
8s/gs=1.4

— gs/gg=18

0.1 0.2 0.3 04 0.5 0.6
FIG. 1. Constituent mass as a function of the current mass

with different scalar couplings gy for a fixed instanton size
p =031 fm.

—1--5 [8 /oo dzz(zF'(2))* + p*M? In p> M?
0

m
M 212 p?

+ 0(p2M2)] . (19)

This is to be compared to the cutoff scheme in the zero
size limit, where the instanton size p in the QCD instanton
vacuum provides a natural cutoff. Similarly, we have for the
chiral quark condensate

_ 4N, o 2
pw) == oM [T de TP @R (20)
T 0 z +/T

In the standard 2-flavor QCD instanton vacuum with
p~ (636 MeV)™!, & is approximately 72.64 GeV~. In
Fig. 1 we show the constituent mass versus the current
quark mass in units of the instanton size, for different scalar
couplings ggs/¢<. In Fig. 2 the constituent mass is shown
versus gs/g§ for different current quark masses, with a
clear onset of the spontaneously broken chiral phase. In
Fig. 3 we show the chiral condensate versus gs/g§ for
different current quark masses.

The effect of the instanton molecular contributions with
G7 # 0 but parametrically small in comparison to Gj is
seen to enhance the onset of the spontaneous breaking of

p=0313 fm, g§ =2.981 %

pM
0.7 ;
06}
f — m=0MeV
~—— m=5MeV
m =10 MeV
— m=15MeV

gs/gs

0.0 0.2 0.4 0.6 0.8 1.0 12 14

FIG. 2. Constituent quark mass versus the scalar coupling gs.

p=0313 fm, g¥ =2.981 2* o

7 )
0.14
012}
— m=0MeV
—— m=5MeV
m= 10 MeV
— m=15MeV

0.102»
008;
0.06;
0.04

0.02}

0.00 -3
0.1 0.2 04 0.6 0.8 1.0 1.2 1.4 &s /gS
FIG. 3. Quark condensate as a function of the scalar

coupling gs.

chiral symmetry. This is readily seen by noting that (18) is
now changed to

G, G
— (1 +-—=5—¢] > ¢¢ ~2.9812%p? 21
4Nc < + 871'2,02Nc 5) 2 Js np ( )

with the positive hopping parameter £ given in (7). In Fig. 4
we show the constituent quark mass versus the instanton
density, for increasing values of the hopping parameter, in
the chiral limit. The larger & the smaller the instanton
density required for the onset of chiral symmetry breaking.
This effect is also illustrated in Fig. 5, where we show that a

p=0313 fm, m=0

pM
25
2.0: — §=0
15/ ——¢=10
£=20
10} — £=30
05}
0.0+ { . . /‘ -4
1 2 3 4 5 1 (fm™)

FIG. 4. Quark constituent mass in chiral limit as a function of
instanton density in the presence of different &.

p=0313fm, myy = 173.54 MeV

gslgs
20 y
’ &
4 P g —— mean field approximation
£ molecules included , ¢ =40.25
10} /
05 e
-
— -4
0.2 0.4 06 0.8 1.0 npy (™)
FIG. 5. The effective coupling gg in o channel as a function of

instanton density.
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lower instanton density is needed for a fixed scalar coupling
in the presence of the molecular component.

IV. LIGHT FRONT FORMALISM OF NONLOCAL
T HOOFT LAGRANGIAN

On the light front, the spontaneous breaking of chiral
symmetry in QCD follows from the emergent 't Hooft
induced interactions, when the constrained part of the
fermion field is eliminated [38]. This observation was
initially made in the context of the NJL model in [56-58].
The projected fermion field along the light front yields a
good plus bad component, with the latter nonpropagating
or constrained. The elimination of the nonpropagating
degrees of freedom induces the resummation of the multi-
fermion interactions in terms of the good component. These

interactions account for the spontaneous breaking of chiral
symmetry on the light front through tadpoles.
More specifically, the fermionic constraint can be organ-
ized in 1/N,
+

Yyt
vyt 70_(’}1@' ~ M)y, +0(Gs.Gy)  (22)

to render it manageable. The pair of fermion bilinears are of
order O(y/N,), compensating the O(1/N,) contribution
from the ’t Hooft coupling Gy = gg/N. and Gy = gy /N.,.
In leading order, the interactions on the light front are of
order NO. The light front effective theory follows from the
integration of the bad component to the same order,

L = y(ig = M)y - V(x) (23)
|
with the local kernels (zero size instantons) after integration
V(x) = Vo(x) + Vo (x) + V*(x) + %8 (x) + VO (x) + VP (x) + V4 (x) + V1 (x); (24)
1soscalar ¢ channel:
G 1
Vo(x) = ——Z iy Y (25)
2 T 1+ G (ot T )
isovector scalar channel:
G 1
Vo (x) = =2ty Ty (26
( 2 1+ G, (pr" 5t w) )

pion channel:

1

o_

G _

7' meson channel:

G

_. . _—i \_
(l//lysf“l// +iG,, <wa—v/>w+ysf“w> ; (27)

vyt Siw)

1

/ U . _ —i _ _ . . _ —i _
Vi(x) = - (l//n/sl// + le1<!//0—1//>4/7+751//> TG ) <w175l//+ le1<1//()—1//>1//7+751//>; (28)
; _

isoscalar vector channel:

0_

G, _ . 1 —i
) = Gy sl o e e
() = WllerGw(lM*gf’wWM wytw ey vrY Ty (29)
p meson channel:
VP(x) = &v‘/yi Ty L Py 'y + Gy Tty [l/‘/y‘f“l// +G <l/77/‘ _—iw>l/7y*f“w} ; (30)
27 TGt sty g ANEAF) :

isovector axial vector channel:
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G, . 1 —i
Va — Ly 25 a _ P, g G-+5a D, g} G T~ P S ] : 31
() = W“'TW1+Gal<lpy+5—_'w>”’7‘”“’/+ « VY VTW[V/Y iy + al<w a_w>w J’TW] (31)
isoscalar axial vector channel:
G, . 1 —i
v/ _ =i 5 ' S G v 3w a3 G =" v ySur | 32
(x) == wriy wHGfI@ﬁ%wwmy v+ Grr Ty Wy G (9T 5w o (32)

For finite-sized instantons, the tadpole contributions in the emerging nonlocal kernels follow from the substitutions

<u‘/y+;—_iw> - <u7f<ia>y+;—_"f<ia>w>, (33)
(w3t) = (w0 T Fliow). (34)
<l/77/‘;—_iw> - <v7f(i0)y‘g—_if(i6>w>, (35)

which amount to the loop integrations in momentum space

dk*dPk,  e(k™)

o (prtor S o) — o) = [ TS F e - b, (30
—i + 72 e(k™
s (P 5 F o] ) = walp) = [ FEt s F AP - b, )

dktd?k, (K2 + M?)e(k™)
(27)* 2(k*)*(PT —k¥)

<1/7]:(i0)7/_;—i [.7:(1'0)1//]> - w_(PT) = / F(k)F (P —k). (38)

2N,

The fermionic tadpole functions w, (P") are even in P, while wy(P*) are odd in PT.

A. Light front Hamiltonian

The emergent light front Hamiltonian for the QCD instanton vacuum with molecular contributions follows from the
effective action (30) in the form

p= [1en, [0, L g via s k-

+ [1en, [wa, [1@nl, [1@0.00 0+ k-g- )0 VFRFQFDFOV kg1 (9

with the shorthand notations

Jien, =[Gt sw = ok (40)

The interaction kernel in (39) is given by

V(k’ q, p’l) = Z Vsl,sz,s’],s’z(k’ q, p’l)bjl (k)czrz(Q)cs/z(p)bs/] (l> (41)

/ !
S158,52,85

with the transition amplitude Vsl.,sz,s’l 5 (k,q, p,1) summing over the eight meson channels,
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(kg p ) +VE (g p )V (kg p.d)
(koq.p. ) +VI' o (kg p.l);  (42)

XSTIX

Vsl sz.s’l,s’z(k’ q, p’l) Ve (k q,p; l) +V’Z] 57,87.5%

S1 32*1 v

VY k@ p DV (kg p DV

$1,82,87.5%

isoscalar scalar o channel:

Vb2 D) = = 8, (1 (0) g (D ) @3)
isovector scalar a; channel:
Vo kgp )= =20 L g (ks (q)p (Dt (p): (44)
e N 1+2g,w (PT) ’ ’ :
pion channel:
V8 s (b 22 D) = = s [0, (01751, (0) + 200 (P () 7540, 0]
x [0 (Diy>t*uy (p) = 2iga, wo(PT) oy (Dy Ty 2 uy (p); (45)
7' meson channel:
” 9y 1 _ .5 . - 5
Vi s (K@ P 1) = = N1+ 2w (P) [iy, (K)iy> vy, (q) + 2igs, wo (P 1)y, (k)y v, (q)]
x [0y, (Diy’ug (p) = 2igs,wo(P) oy (Dy* 7 ug (p); (46)
isoscalar vector channel:
Yo 1 _
Ve sy kg pl) = N m 5 (k)Y 05, (@)D, (i ug (p)
+ N_C it, (k)y s, (@) [0, (D75, (P) + 290w (PT) 0, (D Tus, (p)]
e 8 (K770 (0) 20,0 (P (R 0, ()]s (D7 () (47)
p meson channel:
Vst bt p ) =2 (0720, ()0 (D ()
s152,51",52 N, 1+2gpw+(P+) 2 2 !
+ ]‘i],—’ i, (K)y "2y, (q) [0, (Dy~tus () + 29,w_(PF)0s, (D7 us,(p)]
oy s (R0 () + 20 (P, (K7 oo, (@) (D7 e () (48)
isotriplet axial vector channel:
Vb p ) =0 L (0 e, (@) (D e ()
S1:52:51:52 N 1+2g,wy(P) " 2 !

Ya, - a 5 —,5a 7 a
oyl (R 7705, (@) [Py (D777 5 (P) + 290, w- (P ) sy (D7 7 us, (p)]

Yy - s _
+ N7[ (k)]/ yST vsz(Q) + Zgalw—(PJr)Msl

+.,5 -0

(K)y v, (@), (Dr Ty e u, (p): (49)
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1soscalar axial vector channel:

g L5
N.1+2g4, w+(P+)

95, _ _ _ _
+ﬁusl(k)ﬁy V5, (@) [0y (Dy P us (p) + 29, w-(PH) s, (1)y 7 us, (p)]

c

V:]' sy K@ P 1) =

252

o ()Y v, (@) 0y (Dyiny us, (p)

+ % [y, (k)7 vy, (q) + 297, w_(P )iy, (K)y 7 vy, (q)] 05 (D7 Vs, (p), (50)

where gy = N.Gy.

B. Bound state equations

The light scalar and vector eigenstates to the light front Hamiltonian (39) can be formally sought in the following form

I d 4’k
IMeson X, A, P) :A \/T)jc—x (%g Zcpﬂ (x. k.. 51, 52)bE (k) (P = K)[0) (51)

with 4 = = (transverse) and 4 = 0 (longitudinal) polarizations of the X-vector mesons. The polarization label is absent for
the X-scalar mesons. In the QCD instanton vacuum, the pertinent eigenequation for the X-meson on the light front is

1

2xX

my @y (x, ky.s1,5,) = T‘Dl (x.ky,s1,8) +

F(k)F(P—k)

/1 dy [dq, Vi (kP =k g P—q)®%(y.q1,5.5)VF(@)F(P-q) (52)
Vo) @y &b P o lod XL

using the 1/N, bookkeeping.

Throughout, we will be mostly interested in the vector (spin-1) mesons, as the scalar (spin-0) mesons were already
discussed in [38], to which we refer the reader to for further details. Here, the scalars are kept solely for the purpose of
comparison to the vector results. Also, the diluteness of the instanton tunneling rate in the QCD vacuum yields a
parametrically small Gy /Gy ratio, with minor changes in the vacuum parameters as we discussed earlier. Hence, only the
leading contribution in Gy in the bound state problem will be kept. As a result, the (pseudo)scalar-axial-vector mixing of
order Gy /Gg will be ignored. With this in mind, we now detail the interaction kernels for the scalar and vector channels and
their corresponding bound state equations.

1. Scalar channels

Z 4g, ai + (v =3)’M? _
/ / AN 4 /
Vss 151,52 q qvkvk>q)o‘(.yv qJ_,S,S) - 1 +290.W+(P+) < y)—) ¢o‘(y’ql)u51(k)vsz(k)’ (53)
4ga ('Ii+(y_)_})2M2 - a
E V” 51,52 q q/, k, k’)q)ag(ya qi,S, S’) = - g 2ga0‘;+([)+) < 5 ¢a0(y’ qL)usl (k)T Usz(k,)a (54)

where g, = gs and g,, = —gs + 8gy.

2. Pseudoscalar channels

91+ M
yy

4
DV (@ KDy, g1 5,8') = = " (

1 —|—2gﬂw+(P+) )¢ﬂ(y’ ql)ﬁsl(k)iﬁravsz(k/)’ (55)

5,8
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ZV” 51, (@4 KK )D

with g, = gg and g, = —gs + 8gy.

Transverse polarization states:

n’()’v q.,s,8') =~

49,

4 g,,/

T+ 29w (PT)

3. Vector channels

—2y5q%

<cu + M2 (56)

i, (k)i v, (K
= >¢,,<y 008, (R)ir*o,, (k).

(k.K.q.q" )5 (y.q1.5.5") =~

V{H
51582588

1 + 29ww+ (P+

<qi + M2
) yy

)qsw(y,ql)e?(mus,(k)yivh(k/); (57)

4g a1 +M* = 2yyq] :
+ _ P 1L 1L + - a,,i .
ZVS] 5p.58" k kuq,q/)@p ()CQL,S,s’) =-7 —}—2gpw+(P+) < 5 ¢p(yv‘IL)€i (P)“sl (k)‘L' vio,, (k’), (58)
longitudinal polarization states:
sz; (N RO ACRIIND
2 2 2 2
q; +M _ q +M m,,
= =g [T g ()P 3 (14 T2 g 00 - e (0 (P - 1)
i3 + M A, M e
8, [ g )2 3 (14 T2 g ) |- e (0 PR (59)
m;yy 2P
Zvn oy (KK q. )P0y, g1, 5,5")
= -8 M—4 w_(PT)(PY)?|yy 1+M¢( ) | =5 i, (k)y %0, (P — k)
- g/) yy gp - yy m%y)_} P Y. q.1 2P+ 4 K
K+ _ g% + M?
0, [ =g 2P o3 (14 ) 0,00 [ @y e p-0) . (@0
with g,, = g, = gy. The minus component of the spinor wave function can be traded for the plus component
eﬂ _ my k2 + M2
O(P)”sl(k)yﬂvsz (P - k) = _2P+ I+ m%(xx (k>}/ U, (P k) (61)
thanks to the longitudinal Ward identity
1 k5 +M
i, (k)y v, (P—k)=— —iy (k P—k 62
i (R0, (P =) = = s i (R 0 (P = B) (2)

On the light front, the longitudinal and transverse polarizations appear decoupled, yet underlying this is hidden Lorentz
symmetry. This will be recovered below in details both in the spectrum and ensuing longitudinal wave functions.
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4. Bound state equations for each channel
Scalar channels:

k2+M2 4954, / F (k)F (P - k)
aa ¢aa X, k ¢o‘a ’k - =
oFoaolkr) = ) R+ 2w (PT)
JZ‘]L( + (y - y)*M?

g )%ao(y,m F@FP—q): (63)

v

pseudoscalar channels:

K2 +M2 4920 F(K)F(P—k)
2 ~MLT .
mﬂyn/cbn.n (xv kJ_) ¢7rr/ ()C kJ_) \/2)6_)_6 1 + 297”7/W+ (P+)

szL (ql + M?

/\/W 2”)3 vy )qﬁn,n’(Yv‘]l) f(q)}—(P—q); (64)

transverse vector channels:

i +M2 490, T (K)F (P — k)
a)p¢wp(x kl.) ¢wp( kJ_) \/__1+2.gwpw+(P+)
d*q, <ql + M2 - 2y&611)
- w.p (Vs Fq)F(P-q); 65
/¢27 — ) . 4 )VF@F P =) (65)
longitudinal vector channels:
bustock) = LM k) - oo SRR
(u NALON 1 w.p 1 \/2)(_)(
dfu

54 2+ M? P—gq). 66
« [ = (2 + M), 3.4 )V F D F (P~ ) (66)

The derivation of the bound state equation for the longitudinal channel is more challenging, with the details given in
Appendix B. The asymmetry between the longitudinal and transverse channels reflects on the lack of manifest Lorentz
symmetry on the light front. However, a closer analysis shows that the longitudinal and transverse mass eigenstates are
equal, and that the longitudinal and transverse distribution amplitudes are tied by covariance.

C. Meson spectrum

The eigenvalues to the bound state equations for each of the meson channels determine the mass spectrum in the light
front formalism. In fact, the eigenvalue problem can be recast into an integral equation for the mass spectrum. For this, we
note that the tadpole function w, (P") controlling the emergent vertices can be recast as follows

wiir = [ Ak ‘i“f,@ﬂkw—w
/ / dz’ﬂ F(P—k) - /%e(]ﬁ) F(P = k)F(k)
F(P-k) —zigs (1 —%) (67)
where we used
JE LA (e ) =5 (1-2) (68)
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With this in mind, the eigenvalue equations (63)—(66) can be recast in the form of gaplike equations, much like the vacuum
parameters discussed earlier. More specifically, we obtain the following:
scalar modes:

| o (4 _ -2 —4M?) / / dsz : F(k)F (P = k); (69)
Js gaao aao xxmgao (k2 +M2) 5
pseudoscalar modes:
9 d’k l 1
1—=11- -2 d F(k)F(P—k); 70
< (1-50) = 2oy [ [ PR (P - 70
transverse modes:
| - Jur -2 / d / dzkl m“”’ 5 (k)F(P —k) (71)
_Zopr X —K);
Js Jor 3xxm2, , — (K3 + M?)
longitudinal modes:
d*k L K2 + M?
-8 d F(k)F(P—k). 72
=8, [ ar [ R FOF(P k) (72

Despite the apparent difference between the longitudinal and transverse kernels, the mass solutions are the same.

D. Meson spectrum in covariant formalism

For comparison, we now briefly derive the mass spectra for the light mesons in the covariant frame, by using the standard
Bethe-Salpeter construction for bound states. Using the 1/N, bookkeeping, we can resum the leading contributions to the
4-point function diagrammatically as follows:

The diagrammatic rules follow from the effective action detailed in Appendix A. Since we are chiefly interested in the mass
eigenvalue equation for scalar and vector mesons in this covariant formulation, it is sufficient to note that the on-shell
condition P? = m§( of the intermediate meson state X = o, ay, @, p, 17, 7 is respectively,

a)>
o)
)

1= Ga,aOHSS( 12)'
1= Gw.pHVV(m(%)

1= Gn'ﬁHPP(mf/ﬂ ) (73)
where each vacuum polarization function is defined as
[gg = 4N (P> — 4M?)1,(P?) 4+ 8N I,(P?),
pp = 4N P211(P?) + 8N 1, (P?),
My, = %Nc (P2 +2M*)1,(P?) + ?Nclz(Pz), (74)

with the one-loop integrals
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F(k—P/2)F(k+ P/2),

4 i
L(P?) = / %m;ﬁ(mﬂp — k). (75)

Equation (73) defines implicitly the mass spectra in a covariant frame. We note that in the pseudoscalar channel, the
resumation of the vacuum polarization in the pion channel can receive additional contributions from 7 — a; and ' — f;
mixing. However, these mixing contributions are suppressed in 1/N, or Gy/Gg, much like in the light front case. The
interactions in the o, ag, 7, i, w, and p channels are attractive, and we expect binding for a given range of couplings. The on-

shell conditions (73) can be rearranged by noting that

d*k [
Iz(Pz) z/ !

(2r)*k*-M

F2(k) :glgs<1 —Z) (76)

Inserting (76) into (75) and then in (73) yields the gaplike equations for the mass spectra in a covariant frame:

Yo.a m
1 _?0 <1 _M> = _4gﬂ,a0(m127,a0 - 4M2> / (

d*k i

27)* (k> — M?)[(P — k)? — M?]

F(k)F(P—k),

i

gﬂ.ﬂ/ m - d4k
1 —I <1 —M> = _4gzz,n'mi,n’ / (2”)4 (k2 _ Mz)[(P _ k)z _ MZ] f(k)f(P - k),

29 m 8
-2 (1-— ) =—= 2+ 2M?
39, ( M> 3 9o (M + >/

E. Connection to the light front

While in the light front formulation manifest Lorentz
symmetry is irremediably lost, the mass spectra should be
identical. To show this equivalence in our case, it is best to
carry the integrations in (77) by splitting the measure
d*k — dk=dk*dk , and carrying first the k™ integration in
1 1 (P 2)’

o dk~ i
o pP—
| S i WEE b
0(xx) 1 L
2xept o _gme @ (78)
X XX T2 Vax

This can be justified by doing the contour integral along
K = L\/E’H in Euclidean space. The parameter 1y is of

order 1 and can be determined by matching the integrals on
both sides. They arise from the process of removing the
spurious poles in the two-body nonlocal form factor in the
analytical continuation from FEuclidean to Minkowski
signature [59,60]. Effectively, the parameter Ay is a
measure of the nonlocality related to the finite-sized
instanton vacuum with effective size cutoff p/Ay which
depends on the bound state mass my, constituent mass M,
and instanton size p. We will use Ag for the vertices
emerging from single instantons, and Ay for the vertices

d*k i

(27)* (k2 = M?)[(P = k)* — M?]

F(k)F(P—k). (77)

emerging from the molecules. Following [59,60], we fix
them empirically by the weak decay constants (see below),

Ay =2464, Ly =3.542. (79)

Inserting (78) into (77) yields the same gaplike equations
obtained in the light front, as expected. We now proceed to
solve numerically these gaplike equations to display the
scalar and vector spectra.

1. Scalar sigma channel

In Fig. 6 we show the sigma mass m,, (solid line) versus
the current mass m for a fixed instanton size p = 0.31 fm
and scalar coupling, all in units of p. The dashed line is the
2M threshold. The ¢ meson is a threshold state in the chiral
limit and becomes unbound away from the chiral limit. For
gs = 2.54 x 27%p?, the 6 mass is m, = 2M = 743.1 MeV
in the chiral limit.
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p=0313fn, gs =2.54x2% ¢

Zo?" maews threshold mass (2M)
e ——— 0 meson

0005 0.010 0.015 0.020 0.025 0030 PM

FIG. 6. Sigma mass versus the current quark mass. solid line.
The dashed line is the 2M threshold.

2. Pseudoscalar pion channel

m gs o ! /00 2 1(\]4
— = d d F .
e
5
(81)

In Fig. 7 we show the pion mass m,, (solid line) versus the
current mass m for a fixed instanton size p = 0.31 fm and
scalar coupling, all in units of p. The dashed line is the 2M
threshold. In comparison to the scalar channel, the pion
channel is strongly attractive in the QCD instanton vacuum.
Flavor SU(2) symmetry guarantees ¢, = g, = gs. In
particular, the chiral expansion of the pion mass eigenvalue
or gaplike equation yields the Gell-Mann-Oakes-Renner
relation

p=0313 fm, gs = 2.54x2n"

w-k o emeaa threshold mass (2M)

pion

0.5

L L pm
0.05 0.10 0.15

FIG.7. Pion mass versus the current quark mass, solid line. The
dashed line is the 2M threshold.

— (ow) (82)

where the pion decay constant in chiral limit follows as

fe { / / e k2 FoFe-n]”

(83)

3. Vector p, @ channels

Each of the longitudinal and transverse vector gaplike
equations can be shown to yield the same masses for p, @

This is manifest if we use the spin averaged combination ,
that is % of transverse mode equation (71) plus 1 of

longitudinal mode equation (72), with the result

2gV m 4 deJ_ 1
l—-——(l—-——= ) =—= 2M?) d k)F(P —k). 84
W (1-3) = =Sovtnd, + / v [ FRFP-R. (84

w.p (kz +M2)

This remarkably simple prescription recovers the covariant gaplike equation for the vector mesons obtained in the covariant

frame. With the explicit form factors, (84) is

2
1= (22 =Y 2 4 om?) / dx/ dz ‘
395 M 3n 2 _ P m2 _M)

[2F'(2)]*. (85)

4/12

In Fig. 8, the vector masses are shown in solid lines versus the current quark mass for different vector couplings gy. The
binding in the vector channels occurs only for a finite range of gy. In the chiral limit with a constituent mass
M = 371.6 MeV, the range is 0.382 x 27%p? < gy < 1.562 x 27°p* as shown in Fig. 9.

F. Physical mass spectrum

Our global results for the scalar and vector masses are summarized in the table

Model my (MeV) m,+ (MeV) m, (MeV) m, (MeV)
ILM (this work) 135.0 135.0 780.0 780.0
PDG [61] 134.9766(6) 139.57018(35) 782.65 £0.12 775.26 £0.25
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p=0313 fm, gs =2.54x2% p

P My,p
15T
=TT — ———— threshold mass (2M)
Looom====m w, pmeson , gy = 0.55x27% p
w w, pmeson , gy = 0.95x27% p*
w, pmeson, gy = 1.35)(27:2;)2
05 w, pmeson, gy = l.75><27r2p2
n . pm
0.02 0.04 0.06 0.08 0.10 0.12 0.14

FIG. 8. Vector masses m,, , versus the current quark mass, in

solid lines, for different vector couplings gy . The dashed line is
the 2M threshold in units of the instanton size p.

p=0313fm, m=0,gs = 2.54x27% p

P My

e I S O R,

1.0

o8r N mmme- threshold mass (2M)
06 w, p meson

0.4

0.2

22
N gv /25
0.6 0.8 1.0 1.2 14 1.6

FIG.9. Vector masses m,, , versus the vector coupling as a solid

line, in units of the instanton size p. The dashed line is the 2M
threshold.

where the parameters in the emergent 't Hooft action are
fixed as

gs = 2.540 x 27%p* = 126.17 GeV-2,
gy = 0.531 x 22%p? = 26.37 GeV~2, (86)

with the current quark mass m = 16.5 MeV. This choice
is commensurate with the standard p = 0.313 fm and
n;.;=1fm™ in the QCD instanton vacuum. The emer-
gent constituent quark mass and the quark condensates
are then

M =3982MeV,  (fy) = (332.6 MeV)>.

The determinantal mass which is a measure of the light
quark hopping between the instanton and anti-instanton is
found to be my. & 173.54 MeV, which is close to the value
of 103 MeV in [12,62]. The fixed parameters (86) translate
to single and molecular induced couplings as

G, = 24834 GeV™2, G, =79.11 GeV~2.

The dimensionless hopping parameter & = 40.25 is fixed
by (6).

V. LIGHT FRONT WAVE FUNCTIONS

The light front eigenstates (51) of the light front
Hamiltonian follows from (52). In leading order in
1/N,, only the leading quark-antiquark Fock component
is retained. The eigenstates consist of a scalar wave
function times a spin-dependent matrix element encoding
the spin-flavor quantum numbers. The scalar wave function
fixes the size of the pertinent meson, together with the
strength of its effective coupling to the quark-antiquark
pair. It is normalized to 1,

[ e

Z|¢§(<x,kL,S1,S2)|2 =1

S1,82

A. Light mesons light front wave functions

1. Scalar channels

1

q)a(x’ kJ.’ St S2> =

C

4o

1

Cs
b= (2 )

VF(k)F(P— k)] i, (k)v, (P —k), (87)

q)ao(x7 kL’ St SQ) =

ao

VN. [\/z—x;(mz - ki“ﬂ)

F(k)F(P - k)] i, (k)tv, (P = k). (88)
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The normalizations fix C,

Pk, K2+ (x—%)2M> -1/2
Coag = — { / dx / = (ne —kZ) )2.7-"(k)]-"(P—k)}
0,a)

~ar| [ [ dzz( S e )2<zF/<z>>“]l/2'

xxz? — 4% (xxm? ,, — M?)

2. Pseudoscalar channels

1 C,
@, (x,ki,51,5,) = { .
2x.

XX

1
(Dﬂ(x’ ki’sleZ) = |:
2x

The normalizations fix C

o e ]

MZ)Z

:‘f”[/ e [ d“ e >2<z1~“/<z>>“r/2'

xxz — L (xxm? ,—M2
1(

In chiral limit, C, satisfies the Goldberger-Treiman relation

d’k | 1 _1/2_ ey
{/ /27;3kzl+sz(k)}"(P—k)] =Y

3. Vector channels

(I)ﬁ)(x7 kL’ S1» SZ) =

o o ey FF P =0 | 4Pt (70, (P = )

xX

c

P

@i kinsns) = - | o ) FRF P =) | 4P, (150, (P = ),

xX

The normalization yields different transverse C,, .

d*k k2 M? -2 kz -1/2
—{ / / L KMok )}"(P—k)}
xxmm/) k )

(1 — 2xx)xxz> +2 4/12 iz
—\/—n[/ dx/ dzxxz<

]
>2

xxz% — 4’;2 (xxm? , — M?)
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and longitudinal C,,

L:PL

4xx(k3 + M?)

B / / dzkl
mL oL mmp

(xxmw,, — k3 —M?*)?

)f(k)f(P - k)} "
) o

4xx(xxz> + 2 /12

12

=2z /0 dx A " dzxfcz(pjizp—k (m Ryy—y M2)>2> (zF'(2))*| . (97)

More specifically, the violation of the Lorentz covariance in
the light front transverse and longitudinal constants is
captured by the identity

11 2 1
3¢2 3C:

Dr.PL or.Pr

d*k

which reflects on the irremediable loss of Lorentz sym-
metry on the light front. The spin average of the transverse
and longitudinal constants is not equal to the covariant
unpolarized constant C2, p- The discrepancy is of order
C,,/(2n*p*m}, ,). Fortunately, our bookkeeping in 1/N,
suggests that

2
Cop

2
o.pMa.p

~O(N)

as also observed in the context of effective models in
[63,64]. As a result, the difference (98) is controlled by the

molecular coupling
9v
2;;2;)2)] %)

1 1 2 1 1 [1 Lo (

3C wL PL 3 C(%IT PT CZ’»P
which is parametrically subleading in the QCD instanton
vacuum, thanks to its dilutenes. Recall that only the leading
contributions gy /gg were retained in our bound state
analysis both on the light front and in the covariant frame.

To summarize, the normalization constants in the

LFWFs from the QCD instanton vacuum are

Model |G, || 1Corprl  1Curp |l 1Cu,l
ILM 4.264 7.391 2.420 2.285 2.426
In the last three columns of the table, C,, , and C, ,

follow from (96) and (97) using the light front analysis,
while C,, , follows from the covariant analysis (see below).
The covariance-violating term in (98) is numerically
estimated to be 7.734 x 107 which is of order O(3% 2)

hence parametrically small as we argued.

B. Bound state wave functions in covariant frame

The light front wave functions can also be obtained from
the covariant formalism. In this section, we will show that
their derivation from the covariant frame can be shown to
agree with our derivation from the light front after a
pertinent integration over the light front “energy.” More
specifically, in the covariant frame the Bethe-Salpeter (BS)
wave functions are given by the residue of the 4-point
Green’s function, around the mass pole of each meson
channel, or diagrammatically

—i 3, Ux(g; P)U! (k; P)
P2 —m%

(100)

In the scalar and pseudoscalar channels, the BS wave
functions are given by

W, (ks P) = GoggS(k)\/ F (k)/ F (P — k)S(k = P),
¥, (ks P) = gy 0qS(k)\/ F(k)2/F (P — k)S(k — P),
W,y (ks P) = GyqqS(k)\/ F (k)ir*/ F(P = k)S(k = P),
P, (K: P) = GrggS(k)\/ F (k)i 2/ F (P = k)S(k = P),

(101)

where S(k) is the quark propagator, while in the vector
channels they are

W, (k; P) = gugq€h (P)S(k)\/ F(k)7,/ F (P —k)S(k—P),
¥, (k; P) = P)S(k)/F k), 7"/ F(P—k)S(k—P).

(102)

The effective quark-meson couplings gy, follow as
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’

> - OHSS -1
go‘,aoqq - 0P2

2 _ (dllpp -l
Yrnaq = oP2

5 . 0HVV -1
Jo.pqq = P

The light front wave functions can be extracted from the
covariant BS wave functions by integrating over the light
front energy k~ of the BS wave functions and projecting out
the bounded quark spins

22
p 7mn.ao

(103)

212
P =N,

Alternatively, the integration of the BS kernel over the
energy k¥ yields the equal-time wave function.

In the covariant frame, the normalization constant of
each light front wave functions Cy is related to the effective
quark-meson couplings gx,, in (103) as

(105)

Now we can compare the normalization constant derived
from the light front formalism and from the covariant

-5 ot
! _ Oy (x, k.51, 8) = iPT / wﬁ”ﬁ}; formalism. In the latter, the normalization follows from
V2xX —o0 27 2k (105). More specifically, in the scalar and pseudoscalar
s channels the normalizations are readily shown to be the
x Wy (k: P) 2P = k) |pope same. In the vector channels, the covariant normalization is
=F the same for both longitudinal and transverse by Lorentz
(104) symmetry,
|
d2kL K+ (14 2xx)M? -172
F(k)F(P -k
{ / / )cxma,p—k2 - M?)? (k)7 ( )
xxz? 4 (1 4 2xx) 24 4/12 -1/
=3n / dx/ dzxxz 5 (2F'(2))* (106)
- W (xxm -M 2))

Using (98) with gy /gs parametrically small, (106) yields

C

w0p = Coppp = C (107)

wr.pr1 wp.pr*

VI. PARTON DISTRIBUTION FUNCTIONS

In general, the partonic structure in a hadron can be
studied using pertinent hadronic matrix elements. In lead-
ing twist, the only nontrivial partonic structure functions for
spin-0 hadrons, are the parton density distributions. For
spin-1 hadrons, the other two distributions, helicity and

transversity, contribute in leading twist. These distribution
functions are related to the Fourier transform of these
matrix elements, which can be calculated using the light
front wave functions.

A. Twist-2 parton distribution functions

Throughout, we will mainly focus on the twist-2 partonic
structure functions, including the parton density functions
for both spin-0 and spin-1 mesons, as well as the spin
distribution functions (helicity and transversity) inside the
spin-1 hadronic bound states.

1. Parton density distributions

Parton density distributions are defined as

G = [T e O WOl )ien =

for quarks, and

odET _ d’k
() = [ PO WO P = [ o LI ks.S)

Pk,
(2z)°

|CI)i (x,k.s,s")? (108)

(109)
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for the antiquarks, where gx(x) = gx(x) = gx(l —x) = gz (1 = x).

— o .z & — A+
W(E.0) =exp { 1 A dn” A" (n )} For spin-1 meson, the quark distributions for different
polarizations are related also by spin symmetry
is a lightlike gauge link. In the case of the meson PDFs, the
quark and antiquark distributions are also related by spin

gx(x) = gx(x) = gk (x),  q%(x) = gk (x).
symmetry

Scalar channels: the ¢ PDF follws as

s [l [ BN

xmz — k3 — M?)?

C xxz> 4 (x — x)z”“2

:2—7:2)()_CA dzz (x)‘czz——(xxm _Mz))z(ZF/(Z))4. (110)

Pseudoscalar channels: the pion and eta prime PDF follows as

2 2 2
Gy (x) = 2C2 / (dz 7’3 (xxmk —11;2M )2 F(K)F(P - k)

M2
2 +
( XXZ 4}»2

:ﬂxi/m dzz (zF'(2))*. (111)
2m? 0 (x)‘czz - H (xxm ,, — MZ))2

Vector channels: the vector PDF for the transverse mode can be evaluated as

&k, K3+ M? - 2xxk}
o) =2Chy, [ Gy WF (PR (112)
The PDF for the longitudinal mode can be evaluated as
d*k 1 4xx(k3 + M?)
Lo(x)=2C2 / S F(k)F(P—k). 113
503 = 2G50, | G5 o G~ gy T FP =) (113)

As we noted earlier, the difference between the longitudinal and transverse normalizations in QCD instanton vacuum on
the light front is controlled by the ratio gy /gs which is parametrically small. Recall that in our bookkeeping analysis in

leading order in 1/N, only the leading gy /gs are also to be retained in the dilute limit. With this in mind, in the QCD
instanton vacuum we obtain

(1 — 2x%)xx2 + £

2 4/12

CH} - e

g5 ,(x) = —2" XX / dzz 5 (zF'(2))*4, (114)
27 0 (x)'czz - W (xxm2 , — M 2))

- p2M?

2 o 4xx(xxz* + 2 s )

L wp - ’ _

qe , (xX) =~ XX dzz F + (’)< ) 115
L-PL( ) 2ﬂ2 /) (xx 2 4/1_2 (xxm%) - M2))2 ( ( )) o 2 2 ( )

The polarization average over transverse mode and longitudinal mode yields the unpolarized PDF:
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Ghy ) + 3450

(1 + 2xx)M?

2
3

e /del K+
3777 )

27) (xxm3, , — k7 — M?)?

xxz2 4 (1 4 2x%) 21

F)F(P k)

e
41%,

In Fig. 10 we show our results for the vector mesons
PDFs versus x in the QCD instanton vacuum for
p =0.313 fm, m, , =780 MeV and a constituent mass
M = 398.2 MeV. The transverse PDF for the vectors is in
solid green, the longitudinal PDF for the vectors is in solid
red, and the unpolarized PDF in dashed blue. Note the
small differences due to the parametrically small value of
gv/gs, with the exception of the end points for the
longitudinal polarization. The unpolarized PDF is identical
to that from the covariant analysis. In Fig. 11 we show the
parton density functions versus parton-x, for the sigma
meson in solid green, the pion in solid blue, and the rho

p=0313 fm, m,, , = 780 MeV , M = 398.2 MeV

Gu,p (X)

Transverse mode

Longitudinal mode
————— Unpolarized PDF

4 L . . L L X
0.2 0.4 0.6 0.8 1.0

FIG. 10. Vector mesons PDFs versus parton-x: transverse
polarization (solid green), longitudinal polarization (solid red).
and unpolarized (dashed blue).

p=0313 fin, gs = 2.540x27% %, gy = 0.531x2x% p*
qx (X)

—— o PDF,m, = 743.2 MeV
—— pPDF ,m, = 736.5 MeV
— nPDF,m, = 0.0 MeV

e — — — X
0.0 0.2 0.4 0.6 08 1.0

FIG. 11. Parton density functions in the chiral limit.

w.p e
=5 XX dzz
377: 0 (X)_CZZ _

)2 (zF'(2))*. (116)

% (xxmg, P MZ)

meson in solid red in the chiral limit. In this limit, the
constituent mass is M = 372.3 MeV.

2. Spin-dependent parton distributions

For mesons with spin, we can also probe the parton
distribution in a polarized hadron. In the case of spin-1
mesons, the spin-dependent parton distribution can be
described by the helicity distribution functions. For quarks,
the helicity distribution is given by

o dEém . + g
4i PO P W(0.6 )y (&) | PA)

—o0 4T

d’k
/ lz:|¢>’1xkss|

Agy(x) =

(117)

and for the antiquarks, it is given by

()= / e it e (A (0) W (0.6 () |PA)

d’k
[ s v

(118)

Charge symmetry implies that the helicity distributions for
the quarks and antiquarks are tied,

Agx(x) = Aqx(x) = Agx (1 —x) = Agx(1 - x).

The quark helicity distributions for different polarizations
are also related by spin symmetry,

Agy(x) = —Agx(x)  Agy(x)=0.

Due to the charge symmetry, the quark and antiquark
should contribute to the meson helicity equally. Therefore,
the helicity distribution in the longitudinal state is zero.
Only the transverse modes have nontrivial helicity parton
distribution, hence
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e, [ dk xk3 + M?
AgE —i’”’”/ = L F(k)F(P—k
qw,p(x) 2 (2r)3 (x)_cmg,p - k2 - M?)? () F )
2, xz* +£ " -
— o zzi“ (2F'(2))*. (119)
471 oM (/’ Moy _ 2)
ZE.M\/E 412 Z
|
The result satisfies the helicity sum rule, where the pion decay constant is defined as
1 a
[ axiagi ) + agh,(1-2) =2 (120) Oy Syl (P) = if P (122)
0

As expected, the quark and antiquark contribute to the
meson helicity equally.

In Fig. 12 we show the parton helicity polarization in a
vector meson with transverse polarization A = + versus
parton-x, in the QCD instanton vacuum. The quark helicity
polarization is shown in solid blue, and the antiquark
helicity polarization is shown in solid brown. The helicity
distributions are comparable away from the end points.

VII. MESON DISTRIBUTION AMPLITUDES

In general, the distribution amplitudes are the leading
twist transition matrix elements between a pertinent
hadron and the vacuum. Throughout, the DAs will be
normalized to 1.

A. Pseudoscalar meson distribution amplitude

The twist-2 DA of the pseudoscalar meson is defined as

P W0, & (&) (P))

{0l (0)y* 7

1 . .
= if,P* / dxe"PTE pA(x) (121)
0
p=031fm,m,, =772 MeV ,M = 398.2 MeV
—— quark
antiquark

P L P P L X
0.2 04 0.6 0.8 1.0

FIG. 12. Helicity distribution function for the quark (solid blue)
and the antiquark (solid brown) in a +polarized vector meson,
versus parton-x.

For 7%, we have 7+ = (¢! 4 iz?)/+/2 and for z°, we have
73. Hence, the twist-2 DA of the pseudoscalar meson can be
expressed in terms of the light front pion wave function

\/2NM deL¢ﬂ x,kJ_

e ) F(P— k) + 3F (K.

P (x) =
(123)

Similarly, the decay constant can also be written in terms of
the light front wave function,

fo= 4«/2NCM/1 dx

«f ey py(x.k1)
@n) Vx|

[xF(P—k)+xF(k)]. (124)

To enforce axial current conservation, it is natural to
assume that

ki
F(P—k)+xF(k)~F .
AR (%VE)
Thus, the pion DA with the quark form factor is
V2N .M _ [
P (x) = Tzfﬂcﬂxx o
x dz— - ~(2F'(2)) (125)

I (xxmy — M?) — xxz?

el

and the pion decay constant with the quark form factor is

2N .M 1 0
=Yoo, [
2 0 0
1
X dzxxz (zF'(2))*.  (126)
P (3002 2 —2
i (xxmz — M*) — xXz

The pion (axial) DA ¢”(x) is normalized to 1,
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m, = 135.0MeV, f, =130.3 MeV

L I L A
0.2 0.4 0.6 0.8 1.0

FIG. 13. The unevolved pion DA versus parton-x at low
resolution, in the QCD instanton vacuum.

/1 dx(x) = 1. (127)
0

In Fig. 13 we show the unevolved pion DA versus
parton-x in the QCD instanton vacuum at low resolution.
Our result for the evolved pion DA is shown in Fig. 14 in
solid blue, using the NLO ERBL equation to a scale of
u =2 GeV. Our result is compared to the QCD asymp-
totic result in dashed black, the lattice calculation from the
RQCD Collaboration [65] in shaded-purple, and the
Dyson-Schwinger equation (DSE) in solid green [66].
The empirical pion DA data points in brown are extracted
from 7z~ into dijets via diffractive dissociation with
invariant dijet mass 6 GeV [67], with the normalization
discussed in [68].

B. Longitudinally polarized vector meson
distribution amplitude

The leading twist DA of the longitudinally polarized
vector meson is defined as

<0|w<o>y+%w<o,:—>w<¢=->|wu, P))

1 R
— famoef (P) [ dxe s g, (128)
0
Ta
Olw(0)yt —=Ww(0,& pA, P
(Ol (0)y NG 0.7y (&)lp(2, P))
1 N
:fpmpej(P)/ dxe P & gV (x), (129)
0
where the vector meson decay constants are set by
1
Olpyt —=w|w(P,)) = f,m,e; (P), 130
<Iwﬁv/l( ) = fomo€y (P, (130)

<0|w’f“2w|pu<z>,x>>=fpmpe*;<P>. (131)

The longitudinal meson distribution amplitude is related
to the light front wave function through

2\/2N. dsz_ ¢ (.X', kl)
\% — c @.p 20xx 2 k2
¢w,p (X) fw,pma),p (27[) 3 ,_2)6)_6 [XJCm + T

+ M(k)M(P —k)]. (132)
To avoid the nonlocal effect of the emergent interactions
[38,69,70], we will limit the analysis to the longitudinally
polarized vector meson. We recall that the nonlocal vertices
in this case are purely transverse, hence blind to the

4
& (X)
15} . I
- x5
PP S22 e i N e ILM, p = 2 GeV
= ; E791 dijet
y "
1.0 T# N DSE
/) i\ ----- Asymptotic
7/4 N
// ) 4 D N\
/4 W\ .
//' / "\ ——— Lattice, u =2 GeV
031/ N \
/"’ /i \\
V4 \\ \
L . . L X
0.0 0.2 0.4 06 08 1.0

FIG. 14. The evolved pion DA using the NLO ERBL equation to y = 2 GeV (solid green), compared with the lattice calculation
(RQCD) (shaded blue) [65], Dyson-Schwinger result [66] (solid purple), and the asymptotic QCD result (dashed black). The
experimental data points (red squared points) are extracted from z~ into dijets via diffractive dissociation with invariant dijet mass
6 GeV [67] and normalized in [68].
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m,, =780.0MeV, f£,,=203.97 MeV

1%

B p(X)
15}
10}
05}
! ! ‘ . x
0.2 0.4 06 0.8 1.0
FIG. 15. Unevolved longitudinal vector DA in the QCD

instanton vacuum at low resolution with p ~ 1/2p.

longitudinal polarization through minimal substitution.
With this in mind, the longitudinally polarized vector
meson contribution to the decay amplitude is

2\/W/ /d2kl G p(x.k 1)
V2xx

XX

fop= 2[x5cm3,_p + k2

+M*F(k (133)

To recover the Lorentz covariance and enforce current
conservation, we remove the Lorentz violating term by
approximating

k
xxm? , + k3 +M(k)M(P —k) ~2(k3 + M?*)F? <%—im>

which amounts to

V2N, 472
ﬂ)L PL / dx/ dZZ
" 4n? Mg, ,

4xx [” s + x)_czz}

fw,p =

X

(zF'(2))°

(134)
[‘ﬁz (xxm3 , — M?) — xfczz}

hence the longitudinally polarized vector meson DA

Using the light front wave functions, we obtain

2N, 47
4”2fw.pm(o,p @Dp.PL /)2

2202
4xx [p 4% + x)'czz]

bop(x) = — Ooo dzz

X

|:fTZV (xxm

(zF'(z))°. (135)
- M?) — xXz ]

In Fig. 15 we show the unevolved longitudinal vector
meson DA versus parton-x in the QCD instanton vacuum at
low resolution u ~ 1/2p. The evolved DA using NLO
ERBL to 4 = 2 GeV is shown in Fig. 16 as solid blue, and
compared to the QCD asymptotic result 6xXx as dashed
black, and the QCD sum rule result from [71] as filled
purple. The lattice results from [72] are in filled brown, and
the lattice from [73] are in filled green.

C. Transversely polarized vector meson distribution
amplitude

The general twist-2 DAs for the transversely polarized
vector mesons are

<0\ll7(0)i7’+h\/— W(0.&7 )y (&7)|w(4. P))

——iffpre(p) [ et ), (136)
0

<0v7(0)i7+7i%W(0,é‘)w(é‘)Ip(ﬂ,P»

= —iflP*el(P) / l dxe P T (x), (137)
0

where the transverse decay constants are defined as

¢Z),p (x) =

with the vector meson decay constant

! d?k | o (¥, k1)
Z,,:-4M2NCM/ dx/ L Top )
Jos s ) o

V2N M/ aﬂkl ¢wp X, kL)
fa)p

Oliro* —la(P.2) = if5(EP = &P, (138)
o oy (P.0) = if5(EP = P, (139
[xF (P —k) 4+ xF (k)] (140)
[xF(P — k) + xF (k)] (141)
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)

= =

0.5

e ILM, p =2 GeV
——— RBC/UKQCD collaboration (Lat), u = 2 GeV
———— Braun (Lat), u =2 GeV

——— QCD Sum Rules, u = 2 GeV

————— Asymptotic

0.0 0.2 0.4 0.6 0.8

1.0

FIG. 16. Evolved longitudinal p DA to 4 = 2 GeV in solid green, compared with the lattice in RBC/UKQCD Collaboration [72] in
filled red and the lattice [73] in filled blue. The QCD asymptotic result of 6xXx is in dashed black and the QCD sum result [71] is in

filled purple.

following from the normalization of the DA to 1. Again, to enforce current conservation we approximate

xF(P = k) + %F(k) » ]—"(

which yields the DA

V2N.M o
#L(x) = Co /

Ty 2T
27 fop
and the transverse vector meson decay constant

T _
fw,/) - 27[2

The transverse decay constant f7 , is scale dependent
due to the nonzero anomalous dimension of the tensor
current [74],

(144)

fop#) = i, (Ho) ( a; (1) > Cr/fo

Ay (ﬂO)

using the one-loop perturbative QCD result, with Cp =
Ne-1 _ 2
N, and ﬁo— 11_§Nf

2

In Fig. 17 we show the unevolved transverse DA versus
parton-x, in the QCD instanton vacuum at low resolution
u~ 1/2p. The evolved transverse DA using NLO ERBL to
u =2 GeV is shown in Fig. 18 in solid blue, and compared
to the QCD asymptotic result 6xx in dashed black. The
lattice results at y = 2 GeV [73] are shown in filled brown,
and the QCD sum rule result also at u = 2 GeV [75] are
shown in filled purple.

V2N M 1 0 1
—;wa,r/ dx/ dzxxz —
0 0

k| >
2y VXX

1
(zF'(2))* (142)
L (xxmg, , — M?) — xxz°
(zF'(2))". (143)
L (xxmg, , — M?) — xxz?
v
|
m,, =780.0MeV, fI =125.70 MeV
Bio,0®)
151
1.0
05
‘0.‘2‘l‘0.‘4‘K‘0.‘6"‘OTBIl’LOX

FIG. 17. Unevolved transverse DA for a vector meson in the
QCD instanton vacuum at a resolutio y ~ 1/2p.
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$p(x)
L s,
e
> — — ILM, u =2 GeV
L/
10l /’ N\ ———— Braun (Lat), u =2 GeV
/, \Y
/ g N \ ——— QCD Sum Rules, u =2 GeV
// \\\ ----- Asymptotic
05} /
0.0 02 04 06 08 1.0

FIG. 18.

Evolved transverse DA for the rho meson at 4 = 2 GeV in solid green, and compared with the lattice result at y = 2 GeV

[73] in filled blue and the QCD sum rule result also at y = 2 GeV [75] in filled purple.

D. End-point behavior and ERBL evolution

The comparison between our results in the QCD instanton
vacuum at low resolution ¢ = 0.313 GeV, and the data as
well as the lattice results at higher resolution at y = 2 GeV,
required the use of the Efremov-Radyushkin-Brodsky-
Lepage (ERBL) evolution of the DA, briefly reviewed in
Appendix E. Recall that the anomalous dimensions for ¢4
and ¢, , are the same (conserved currents, but only in the
chiral limit for the former), while the anomalous dimension
for ¢Z,’p is different due to the running of the quark tensor
current. We now focus on the behavior of the end points for
the pseudoscalar and vector DAs.

In Fig. 19 we show the twist-2 pion DA versus parton-x
in the QCD instanton vacuum at low resolution with y =
0.313 GeV in solid green, the evolved DA with u = 2 GeV
in solid red, and the QCD asymptotic result 6xx in
dashed black. We note that ¢4 (x — 1,4 = 0.313 GeV) ~
10.56(1 — x)%9% near the end point, and asymptotes the
QCD result at infinite resolution.

In Fig. 20 we show the longitudinally polarized vector
twist-2 DA versus parton-x, in the QCD instanton vacuum
at low resolution with ¢ = 0.313 GeV in solid green, the

67 ()

——— ILM, u = 0.313 GeV
—— ILM, u =2 GeV
----- Asymptotic

FIG. 19. The pion twist-2 distribution amplitude at p =
0.313 GeV, 4 =2 GeV, and y = oo (asymptotic form).

evolved DA with 4 =2 GeV in solid red, and the QCD
asymptotic result 6xx in dashed black. The longitudinal
vector DA at the end point scales as qﬁ},/ (x> 1,u=
0.313 GeV) ~ 3.68(1 — x)'9%7 asymptotically. The evolu-
tion broadens somewhat the DA.

In Fig. 21 we show the transversely polarized vector twist-
2 DA versus parton-x, in the QCD instanton vacuum at low
resolution with 4 = 0.313 GeV in solid green, the evolved
DA with 4 = 2 GeV in solid red, and the QCD asymptotic
result 6xX in dashed black. The end point behavior of the
transversely polarized vector twist-2 distribution amplitude
scales as ¢! (x > 1, = 0.313 GeV) ~ 6.37(1 — x)*24% at
the initial scale. The evolution depletes the DA near the end
points, by increasing the power and eventually the DA
approaches its asymptotic form.

E. Meson decay constants

In the QCD instanton vacuum with the fixed parameters
detailed above, we obtain for the pseudoscalar and vector
decay constants,

o) (X)
20,

—— ILM, u=0.313 GeV
—— ILM, p =2 GeV
————— Asymptotic

FIG. 20. The longitudinally polarized vector twist-2 distribu-
tion amplitude at g =0.313 GeV, =2 GeV, and u =
(asymptotic form).
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e ILM, p = 0.313 GeV
LM, p =2 GeV
————— Asymptotic

0.5

" . L . " i
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 21. The transversely polarized vector twist-2 distribution
amplitude at 4 = 0.313 GeV, ¢ =2 GeV, and u = o (asymp-
totic form).

f,=130.3 MeV,
f7 = 125.70 MeV,

f, =203.97 MeV,

£/ f, = 0.6163.

Cata and Mateu [76] have argued that in the large N limit
rf, =1/ V2 ~0.707. Our result is consistent with tis
ratio. Our results are compared with the lattice calculations
[73], and the values quoted by the Particle Data Group [77]
in the table below. The transverse p decay constant f; is
evolved to 2 GeV starting from 0.313 GeV using (144)
when compared with the lattice. We display the results
at Q = 2 GeV.

fz MeV) f, MeV) f, MeV) f]/f,
130.3 20397 9248  0.453

199(4)(1) 124(4)(1) 0.629(8)
130.3+03 210+4 -

ILM (this work)
Lattice (2 GeV) [73]
PDG (exp) [77]

VIII. MESON ELECTROMAGNETIC
FORM FACTORS

The electromagnetic form factor Fy(Q?) in hadron-X is
given by the transition matrix element of the EM current

JEm = ZQfll_/fV”lI/f; (145)
f
(1) spin-0 meson electromagnetic form factor:
(X(P)|Jem|X(P)) = Fx(Q*)(P + P}, (146)
(ii) spin-1 meson electromagnetic form factor:
(X4, P") g |X (2. P))
= |Fix(Q%)e; (P') - €,(P)
q-¢,(P)q-ei(P
- ran(0) 0L SO (p 4y
ny
— Fax(0?)[€) (P')gq - ex(P) = €4(P)q - €;(P')].
(147)

with fixed momentum transfer ¢ = P'— P and Q? =
—q* = ¢%. They capture the charge and current distribu-
tions inside the hadron. For spin-1 mesons, we have three
types of form factors: Fx, F,x, Fx3. From these form
factors one can define the three Sachs form factors [78,79]
for the spin-1 meson, namely, the charge G%(Q?), the
magnetic Gj;(Q?), and the quadrupole G}(Q?) form
factors. The relations between the Lorentz invariant form
factors FY¥, F¥, and F¥ and the Sachs form factors are

2
GE(Q?) = Fix(0%) + WGE(QZ),

o (148)

Gi(Q%) = F3x(Q%). (149)

2

G5(0) = Fix(02) + (1 +§17) Fax(02) - Fix(Q%).

(150)

In the presence of nonlocal interactions, the Noether
construction is more subtle, as additional contributions
from the emerging nonlocal interactions are needed
to enforce current conservation in general [38,69,70].
Fortunately, in the light front formalism, the contributions
from the nonlocal vertices of the emerging effective action
do not contribute in the leading twist approximation [38].
Throughout, we will restrict our discussion of the EM form
factors to the leading twist approximation.

The leading-twist form factor (charge form factor GY)
can be evaluated by the plus component of the spin-
averaged meson matrix element in the g* = 0 frame,

(1) spin-0 meson form factor:

1
Fx(0?) =27+<X(P’)|JEM|X(P)% (151)
(i) spin-1 meson form factor:
1 1
Fo(0?) =1 [ (X P Tl X, PY) .
X 2P+ 3; EM
(152)

If we choose a specific frame where g™ = 0, with

m> m2 +q2
Pﬂ: <P+’0’2P)i)’ P/M: <P+7QJ_3 £ J_)a

the meson form factor follows as
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o= los [ 53

ﬁs’l (k + Q)}/Jrusl (k)
2xP*

q)}(x, kJ_ +)_CqJ_,S/1,S/2)Qf1 552/!S2<I)X(x, kJ_,Sl,Sz)

. Uy, (K)y vy (k + q)
_(I)X(x’kl_quvsll:sa)sz 2)_CP~+ 5‘v]’,slq)X(x’kL’sl9s2) . (153)
More specifically, in the pion channel it is given by
5 I d*k | } K+ M*+xky-q,
F/z(Q ) = dx N \3 Qu¢n(~x9 kJ_ + xQL)¢n(X’ kJ_>4 =
0 (27) XX
ki_“Mz—XkJ_'ql
= Qupr(x, k. = xq )Pr(x, k)4 P (154)
while in the vector channel it reads
d’k K+ (1 +2xx)M? + xk, - q
a)p QZ) = / / = |:Q ¢(up(x kJ_ +XQL)¢wp(x kl_)?, ( ( )— = L)
XX
8 (k2 + (1 +2x¥)M? —xk, - ¢q
- Qd¢w,p(x’ kl - xch.)¢w,p(x’ kL) g ( - ( )_ = J_>:| . (155)
XX
To proceed, it is useful to parametrize the nonlocal form factor using
2.271/2
24 Xpq . P 41
= 0
= [Z YRV S 16m§j
so that
Fu(z.x.0) = (21 F'(2:))*(z-F'(z-))*.
With this in mind, the pion form factor can be worked out:
2M2 PR
) xxz? + 25 >
F(0%) = / / / dzxxz § Mx - 216/12 . Fu(z,x,0)
xxz - (xxm - M?) + 1/;,1?) f/lzqi xXZ 00529}
XZ 2.2
1 xz? +pi%2 1/;/1zl
+= 2 Ful(z,x,0)|. (156)
3 ) 2022 \? 2 _ 5
[(xxz —7(xxm - M) + 16{ - 4ﬂ§lxxz cos 6}

The pion EM form factor in (156) accounts for only the coupling to the lowest Fock component of the pion on the light
front. While it accounts properly for the charge normalization, it falls short from accounting for the rho-meson cloud at
nonvanishing Q2, which is a coherent multi-Fock component. For small Q?, the pion sources a tho meson, which is readily
obtained by resumming the bubble chain in the ¢ channel in our light front formulation, in line with vector meson dominance
(VMD) [80] (and references therein),

1

VDM 2\
Fﬂ (Q ) - FJI(O) 1 + Qz/mi’p'

(157)
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FIG. 22. Our results in solid blue (undressed) and solid orange (dressed) for the pion EM form factor are compared with the JLab
measurements in red squares [81] and the Cornell measurements in purple dots [82,83]. The recent lattice calculations are shown in blue
triangles [84], and the Dyson-Schwinger results are shown in dashed green [85].

The EM form factors of the vector mesons follow similarly:

2 .2 2
27zd9 xXz% + 4% (1+2x3‘c)—%
F, (0% = dzxxz = Fu(z,x,0)
p 5 ) 2R2\2 Rl s
.XXZ _f?(xxmw/) -M ) + mﬂzl) ‘MZJ'XXZ cos-6
2,22
1 xxz? +2 4/12 (1 + 2xX) —x]/;/lzvi i
g 2 2 2 2 szzqz 5 N .’FM(Z,)C,Q) (158)
[(xxz —7(xxm - M?*) + wf) — g XXzcos 0}

In Fig. 22 we show the bare pion form factor (156) in
solid blue and the rho-meson dressed pion form factor
(157) in solid orange, versus Q. Our results in the QCD
instanton vacuum are compared to the measurement using
pion scattering from the reaction 'H(e, ¢'z")n by the JLab
F, Collaboration in red squares [81], the Cornell
Collaboration in purple dots [82,83], and the lattice results
in blue triangles [84]. The Dyson-Schwinger results with
rainbow ladders are shown in dashed green [85]. Clearly,
our lowest undressed Fock contribution fails to reproduce
the pion EM form factor, while the dressed multi-Fock
component agrees relatively well with the current mea-
surements. This result underlies the collective character of
the pion state.

In Fig. 23 we show the EM form factor of the rho meson
in blue solid versus Q2, in comparison to the lattice data in
green squares from the Hadron Spectrum Collaboration
[86]. The results from the Bethe-Salpeter in the NJL model
are shown in dashed orange. The falloff of the form factor is

sharper in our case in comparison to the lattice results,
reflecting on a larger charge radius for the rho. This falloff
is sensitive to the value of Ay in (79) fixed by the rho weak
decay constants. A larger value of Ay yields a smaller
charge radius, at the expense of the weak decay constants.
We note that the falloff of our rho form factor is slower than
that reported in [51,87-89], but about similar to the
reported lattice results. In Fig. 24, we compare the EM
form factors for the pion undressed in dashed blue, dressed
in solid orange, with the EM form factor of the vector
mesons in solid green.

On the light front, all hadrons are 2D Lorentz contracted.
The light front radius ry follows from

2 o, 4
Fx(Q*) =1—-=—rx +0(0%.

7 (159)

For the pion EM form factor, we have
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Hadron Spectrum Collaboration (Lattice)

. . .
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FIG. 23.
using the random-phase approximation in the NJL model [78].

rp = 0.489 fm,
rYPM — 0,620 fm,

&P = 0.659 4 0.004 fm. (160)

The charge radius from other work can also be found in

Reference r, (fm)
ILM (this work) 0.620
Faessler [41] 0.650
Hutauruk [40] 0.629

Without the rho cloud, the bare EM size of the pion r, is
slightly larger than the size of an instanton p = 0.313 fm.
Pions are collective Goldstone modes, strongly bound by
single instantons (anti-instantons) of size p. In contrast, the

p=0.313 fm, m, = 135 MeV , m,, , = 780 MeV
Fx (%)
1.0 fa
N
N e
0.8 \\\ _________
————————————————— pion (bare)
\\ '
0.6 e pion (VDM)
~—_
e w, p meson
0.4 e ——
0.2
L 1 L L 2
0.1 0.2 0.3 0.4 0.5

FIG. 24. Pion EM form factor in dashed blue (undressed) and in
solid orange (dressed) in comparison to the vector EM form factor
in solid green.

0.8 1.0

Our calculations are compared with the recent lattice calculation [86] and the model analysis by Bethe-Salpeter equation

EM size of the rho and omega r,, , = 0.997 fm is about
twice the pion size. Vector mesons are bound by molecular
configurations of size about 2p. As we noted, the empirical
value of the charge radius for the pion ;" in [61,90]
compares well only with the dressed pion, in line with the
VMD lore. For completeness, we compare our charge
radius for the rho meson with some model calculations in
the table.

Reference r, (fm)
ILM (this work) 0.997
de Melo [87] 0.608
Bhagwat [91] 0.735
Krutov [92] 0.748
Carrillo-Serrano [78] 0.819
Owen [93] 0.819

IX. CONCLUSIONS

We presented a detailed analysis of the emerging 't Hooft
nonlocal interactions on the light front, in the light scalar
and pseudoscalar channels. These interactions include not
only the standard single instanton and anti-instanton
chirality flipping contributions, but also the molecular
chirality preserving contributions. The diluteness of the
instanton tunneling rates in the QCD vacuum makes the
molecular contributions parametrically small. Their con-
tribution is subleading in the spontaneous breaking of
chiral symmetry, yet leading in the formation of the light
vector mesons.

Our analysis focused on the light front formulation,
where the light quark fields are split into a good plus bad
component. The elimination of the bad component
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generates additional multifermion interactions. Using the
1/N. bookkeeping analysis, we have shown that in leading
order these additional interactions are tadpolelike and can
be resummed to renormalize the nonlocal interactions
between the good components. They are at the origin of
the nontrivial vacuum structure on the light front, as
initially observed in the NJL model with local interactions
[56-58]. Contrary to common lore, the vacuum is nontrivial
on the light front.

The light front Hamiltonian associated to the emerging
nonlocal effective action was used to define the eigenvalue
problem for the light scalar and vector meson states,
limited to their lowest Fock component. The explicit
breaking of Lorentz symmetry yields apparently different
equations for the longitudinally and transversely polarized
rho and omega vector mesons. Fortunately, a thorough
analysis of the longitudinal equation shows that the
difference is amenable to the ratio of the vector to scalar
interaction strengths, which is parametrically small in the
QCD instanton vacuum.

Our light front results for the light scalar and vector
mesons PDFs and DAs are evaluated at a low renormaliza-
tion point of about 1/2p ~0.31 GeV. A comparison to

existing measurements and lattice simulations at a scale of
1 =2 GeV requires evolution. For simplicity, we have
assumed that factorization holds at this relatively low scale,
and used perturbative QCD evolution. Our results were
shown to be remarkably consistent with most measure-
ments. Yet a more appropriate evolution from this low
renormalization scale should perhaps make use of non-
perturbative effects [16]. This will be discussed elsewhere.

Finally, we have used the light front wave functions in
the QCD instanton vacuum to analyze the EM form factors
of the pions and rho and omega vector mesons. The leading
Fock state in the rho meson yields a tho EM form factor in
good agreement with the recently reported lattice simu-
lations. This is not the case of the pion, when limited to its
lowest Fock component, a well-known shortcoming. This is
readily fixed by resumming the leading rho contribution to
the pion EM form factor, in line with the tenets of vector
dominance.
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APPENDIX A: LORENTZ COVARIANT FORMALISM: BETHE-SALPETER EQUATION

To investigate the meson structures in a covariant frame, we can organize the Bethe-Salpeter kernel in 1/N,. In leading
order (LO), the vacuum polarization function contributes to the 4-point function through the bubble chain

N
M= = +
PNP(] ><

The next-to-leading order (NLO) is more involved [94]. Using our emerging action for the light quarks with nonlocal
interactions, the vacuum polarization function I1% is given by

T1es — _i/ d*k [0 (f + M (k)TP(P — f — M (P — k)]
(K~ 3(B)][(P ~ 2~ M2(P &)

(2m)*

F(k)F(P—k)

where I'* = 1, iy>, 74, iy>t4, y*, y#2¢, y*y>, vy ¢ for o, if, ag, &, @, p, f1, a; respectively. In the low momentum limit
(k < 1/p), similar to the approximation we imposed in the gap equation. We approximate the momentum-dependent
constituent mass M (k) in the fermionic bubble functions by M(0), and the emergent constituent mass at zero momentum,

d*k

d*k
/WHX(M(k),M(P—k))N/WHX(M,M).
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The vacuum polarization function IT in the low momentum limit simplifies

« [ d*k u[l* P(p— -
1—IX/} = _l/ (2n)* tr([kZ (_k];;;y&P (_Pk)Zk_ Mng))} F(k)F(P = k).

1. Scalar channel

In the scalar channel and close to the pole, the resummation of the vacuum polarizations gives
iM = @i (q)vy (P = @)/ F(q)F (P = q)D,(P*)/ F (k) F (P = k)b, (P — k)uy, (k)
iM = @iy (q)7vy, (P = q)/ F(q) F (P = q)Dy, (P*)/ F (k) F (P = k), (P = k)zus, (k).

with the scalar propagator

G, 4,
1 =G, gs(P?)

D, (P?) =

The scalar vacuum polarization function is

Mg = —2iN, / d4k v (“MW) f-M)] F(k)F(P—k)

M?)((P = k)* = M?)
d“k (P —k) —4M?
—2iN, / )((P Py F(k)F(P—k).

2. Pseudoscalar channel

In the pseudoscalar channel, the resummation gives

iM = @iy (q)ir’ vy, (P = @)/ F (@) F (P = q)Dy (P*)/ F (k) F (P = k), (P = k)iy’us, (k).

with the pseudoscalar propagator

The pseudoscalar vacuum polarization is

M,y — —2iN. / £k “MW (P~ M)’”ﬂk)f(P—k)

M?)((P = k)? = M?)
(P —k) 4 4M?
—2iN, / Mz)((P P )}“(k)}"(P—k).

We have neglected the pseudoscalar-axial mixing as higher order in gy /gs.
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3. Vector channel
In the vector channel, the vacuum polarization function can be rearranged through

w d4ktr ;é+MyﬂP ¥ — M)y"]
m, = ZN/ MO (P k=M )F(k)f(P—k)

— M (P?) (gﬂv - P}f ) (a11)

with manifest current conservation P”H’(ffp = 0. The resummation of the fermionic chains gives

IM = ﬁs’,(‘])?’yvs’z(P - q) \% F(q)F<P - Q)D/;)D(Pz) f(k)]:(P - k)@SQ (P - k)yvu_n(k)’ (Alz)
iM = iy (q)r,t"vs (P = q)\/ F (@) F (P = q)D}" (P*)/ F (k) F (P = k), (P = k)y,7us, (k). (A13)

with the vector propagator

) —iG, ., prp
Dz)./J<P2) = 1— G H ~ (Pz) (gﬂ - Gw,pHVV(Pz) P2 ) (A14)

where

HVV — —ZINL

4/ d*k 2k (P —k) +4M?
(

3) o (2= M) ((P - k) — M) F (k) F (P = k). (A15)

The scattering amplitude develops poles at the location of the bound states, whenever
GyIly(m3) =1 (Al6)

with P? = m%. This fixes the mass eigenvalue equation. If we only consider the *t Hooft Lagrangian, the single instanton
and anti-instanto interactions for ¢ and 7 are attractive, while those for 7’ and a are repulsive. The molecular interactions w,
p, and a; are attractive within a certain range, but repulsive in the f; channel.

APPENDIX B: BOUND STATE EQUATION OF LONGITUDINAL VECTOR MESON

The bound state equation for the longitudinal meson on the light front is not only more involved than that of its transverse
counterpart, but apparently different. Here, we detail its derivation, and show that the differences can be removed thanks to a
number of identities. More specifically, the longitudinally bound state equation can be readily cast in the form

2+ M RAM [ R M gw dyd’q
mg),p<1 +2—xx)¢wp(x k)= T( >¢wp(x ky)——=2£ \/ F(P—k) / L

mw.p ma)p \/ 2y 27[
i+ M +M?
« [qi _ 4gw,,)w_<P+><P+>2} (yy + q—) by d W FDEP—q)
yy ma)./)
80wy {ki + M? }
= 2o SFRFP - k) |- —4g, w_(P)(P)?
Lot SFRFP =R |~ g, o (PO)(PY)

%(y ql’: >¢a,pyqﬁ\/ F(P-q). (B1)

w.p

The tadpole resummation involved in the bound state equation of the longitudinal mode can be rearranged as
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1 [
_ <p1+ o [ 2y p
- / /dzkl 5 +M2) FUOFP B
— e (B2)

Remarkably the complicated result (B1) can be considerably simplified by noting that it is composed of three integrals

d2
/\/27 QL(yymwp+ql+M2)¢wp(y q.)VF(q)F(P—-q),
= [ ‘%( me, + +M2>(ﬂ)¢ 0.0 )V FDFP—q)
\/W yy w.p qJ_ yymmp wpy q.1 q q

dyd’q, ¢3 +M°
= F(q)F(P-gq).
[ S F@FP g
The integrals H, and H, are not independent of each other. Indeed, if we multiply (B1) by v/2xx and \/F(q)F (P — ¢), and
integrate the result over the momentum phase space, we have
H,

H2 = 2 + 49(1),/)71H1 . (B3)
1 —4g,, [ G F(@)F(P-q)

Inserting (B3) in (B1), the equation simplifies to

(2= k) = 8000 [1 =00, [ DL ()70 - 0] 1= 00, [ 2 PP )

() | s vFOEe [

mg, X% + k3 + M? 2y

X/(d2 s Mg,y + 4+ M)y, ,(v.4.) F (@) F (P~ q)

_ Sgw,p V f(k)f(P B k) dy
V2R | —4g,, [UE F(q)F(P—q)) VDT

d’q
[ GRS T+ g M) (3.0, ) VF @ F (P (B4)
where we dropped the higher order terms in O(g2, ,) in the third equality. As we argued in the main text, the QCD instanton
vacuum is dilute, with the contributions g,, ,/gs parametrically small. We have only kept them in leading order in the vector
channels, as their keeping at next-to-leading order involves a more complex bookkeeping procedure. With this in mind, we
can further simplify (B4) by multiplying it by v/2xx and /F (¢)F (P — q) again, and integrating over x and k . The result is

/ %@ F(k)F (P —k) <m3””‘¥>¢“”’u’ =

2 b 2 2
~ s, [ B r 7 -0) [ S vrsERAE - (L g k) @9)
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hence the bound state equation

<mg),p - Lg_) ¢a)p(x kJ_

XX

APPENDIX C: LIGHT FRONT WAVE
FUNCTIONS WITH P, #0

To obtain the off-diagonal hadronic matrix elements, we
need to generalize the light front wave functions to a frame
with P| # 0. In this frame, the hadronic momentum is

P% +m3
pr= (Pt p X
( Lopt

The quark k; and antiquark k, momenta can be para-
metrized by

P+ k| )?+ M?
kﬂ‘:(xP*,xPJ_—i-kJ_,(x Ltk + >,

2xP+

o - (xP, —k,)* + M?
kg:(xP+,xPJ_—kJ_, 2}P+
For the spin-1 meson, the polarization vector €;(P) is
defined as

1 Pl 4 ip?
eﬂi(P) :ﬁ <0, lv:th?)’

_ L (p PP PL—m}
my\ 22 2Pt )

With this symmetric parametrization, the light front wave
functions have the same form. The spin-independent wave
functions are

€(P)

Cx

bxlx.k)) = o VERF(P-L: (C1)
2xx(my — =)
scalar channels:
1 _
q)o’(x’ kJ_’ S1» SZ) = W(ﬁa('x’ kJ_)uSl (k)vsz (P - k)’ <C2)
1 _
@, (x,ky,s1,5,) = \/Td)ao('x’ k)i, (k)ttvg, (P = k);

(C3)

- SRR D [

" St + M) 09V F@F (P =),

(B6)

V2yy

pseudoscalar channels:

1 _ .
q)l’]/(x’ kJ_’S17S2) = \/]T(ﬁn’(x? kJ_)MSl(k)lj/SUSZ(P - k)’
(C4)
1 _ .
q)n(x’ kJ_’ S5 SZ) = \/I\T(b”(x’ kl)usl (k)lysfasz (P - k)’
(C5)
vector channels:
1 _
q)ﬁ}(x’kl’ShSZ):\/quﬁu)(x’kl)eg(P)usl(k)yuvxz(P_k)7

(Co)

b, (x. k1 )€y (P)iy, (k)y, vy, (P—k).

(C7)

@f)(x,kl,sl,sz) =

1
VN,

APPENDIX D: SPIN-DEPENDENT WAVE
FUNCTIONS ON THE LIGHT FRONT

The spin-dependent wave functions denote the spin
states in the creation of a quark-antiquark pair. The wave
functions for each channels are as follows:

scalar:

ﬁsl (k)vsz (P - k) = ! [M(X - X)GZ - kJ_ : GL]nsz;

(DI1)

pseudoscalar:

—_ . l. -;-
iy, (K)iy v, (P — k) = T M —ky-o10]n,;  (D2)

vector:
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_ 1 1+ o, 1—-0
e (P, (W7 (P = ) = =i [f Mo* + ( et ﬁZ)kR} .
1 1 - 1+
€Ii(P)ﬁs] (k)yyvsz (P - k) = _\/—x—)_c)(:] |:\/§M6_ - ()_C \/EO-Z +x \/zaz>kL:| ’/Iszv
_ my ki + M2 + _
N R -

where 6 = (0, + i6,)/2 and kp x = k' + ik*.

APPENDIX E: ERBL EVOLUTION

At the leading twist, we have three types of distribution amplitudes defined by vector, axial vector, and tensor currents. In
this work, the pion axial DA, vector DA of @ and p, and their tensor DAs are discussed. Without loss of generality, we only

display the isovector states for the ERBL evolution:

(D3)

(D4)

(Ds)

- Tu — — . 1 —ix + £—
(0l (0)r 7y —=W(0,& )y (&) |n(P)) = lfnP*/ dxe™"""< g (x), (E1)
V2 0
7 i - - ! —ixPtéEm
<0|v/(0)r*%W(0,c§ W (&7)lp(2. P)) = f,mye; (P) A dxe™™""< ¢y (x), (E2)
ONii T - - . i L —iPe
(Ol (0)ir*y LB WO P) = —ify PTe(P) A dxe™™"" <y (x). (E3)
|
The DAs can be expanded in terms of Gegenbauer a,(0) r*‘ﬁl
polynomials Cf/z(x—)"c). This expansion is around the a1 (Q) = AVT(QO)( 0 )> ’ (E7)
asymptotic form 6x(1 — x) = 6xx predicted by perturbative %120
QCD in the Bjorken limit, with the anomalous dimension [59,73]
n+1
P (xp) = 6xx Y G (x=x)an" (w).  (E4) A_c { 344 —] E8
> AR e e N
Due to the orthogonality of the Gegenbauer polynomials, ntl
th fficient be obtained b 3+4 ———, E9
e coefficient can be obtained by { + Z T 2)} (E9)
2(2n+3)
AV.T 3/2 “\ JAV.T
AT =g [ G =9 T ). it )
3(n+1)(n+2) = CF(—4 +4Z—.>, (E10)
(E5) =
Using the Gegenbauer polynomial basis C”(z), we can ~ where Cp = A;%N_[l,
convert the integrodifferential equation of the evolution into
an infinite set of differential equation in terms of a,,, a,(0) = dr
T o)
d avr, .\ _ a(1) avr avr o
p—an () = ===y Tan " (w). (E6)
du 2n 11 2
Bo = ?Nc - g"f»

Now the hard evolution can be readily solved in terms of
the Gegenbauer coefficients a,,,

and AQCD =226 MeV.
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