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It was found that isoscalar-scalar and isovector-scalar mesons play significant roles in nuclear matter
physics. However, the underlying structures of these resonances are not yet well understood. We construct a
three-flavor baryonic extended linear sigma model including both the two- and four-quark constitutes of
scalar mesons with respect to the axial transformation and study the nuclear matter properties with the
relativistic mean field method. The nuclear matter properties at saturation density and hadron spectra are
well reproduced with this model simultaneously, and only the two-quark component of the scalar mesons
couples to baryon fields and dominates the nuclear force. A plateaulike structure is found in the symmetry
energy of nuclear matter due to the multimeson couplings, and it is crucial for understanding the neutron
skin thickness of 208Pb and the tidal deformation of neutron star from GW170817. At high-density regions,
vector mesons are found to be rather crucial, especially the ones coupling with four-quark configurations.
This model can be easily extended to study neutron stars, even with hyperons in their interior.
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I. INTRODUCTION

Nuclear matter (NM) is a kind of strongly interacting
system which is mainly composed of nucleons and mesons
and, maybe, other novel structures (see, e.g., Refs. [1–4] for
reviews). Since NM is in the nonperturbative region of QCD
which is not yet fully understood so far, many properties are
still under debate.
Finite nuclei as well as infinite NM at low densities can

be fairly well accessed by nuclear chiral effective field
theories, pionless or pionful, anchored on some sym-
metries and invariances of QCD. However, these theories
break at high densities relevant to the interiors of massive
stars [2], and the higher-order expansion of the power
counting and hadron resonances such as the lightest
isoscalar-scalar meson (σ) and lowest-lying vector mesons
are indispensable; see, e.g., Refs. [5–7], where the σ meson
is regarded as the Nambu-Goldstone boson of scale sym-
metry breaking [8,9] and the vector mesons are included
through the hidden local symmetry approach [10–12].
In the relativistic mean field (RMF) approach to NM, it

has long been recognized that both the isoscalar-scalar
mesons and the isovector-scalar mesons are crucial for
obtaining the NM properties around the saturation density

n0 ≈ 0.16 fm−3, for example, the binding energy of nucleon
e0 due to the competition between the attractive force from
σ meson and repulsive force from the ω meson [1,13,14].
The three- and four-point interactions of the sigma meson
reduce the nuclear incompressibility [15], and the six-
point interaction reproduces the properties of NM [16].
The interaction between sigma and vector mesons is also
significant: The σ and ω meson coupling has been
introduced to obtain a reasonable value of incompress-
ibility coefficient K0 [15,17]; the interactions between
(σ) and ρ meson are crucial for describing the isospin
asymmetric NM [1,13,14,18] and the neutron skin thick-
ness of heavy nuclei 208Pb [19,20].
In addition to the isoscalar-scalar meson, the isovector-

scalar mesons δ [denoted as a0ð980Þ in particle physics]
should also be included in the RMF approach to NM,
especially for asymmetric NM at high densities [21–24].
Recently, it has found that isoscalar- and isovector-scalar
meson couplings are closely related to the stiffness of the
equation of state (EOS) of NM and, therefore, the properties
of neutron stars [25–28].
The existing studies have already shown that meson

resonances heavier than the pion should be seriously
considered in the study of nuclear matter, especially for
asymmetric matter at high densities. However, these
studies are considered separately, and the results are highly
model dependent. So it is very interesting to construct a
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self-consistent model including σ, δ [following the con-
vention of particle physics, we denote δ as a0ð980Þ in the
rest of this work] and ω, ρ, in addition to π, to study these
resonance effects in a systematical way.
A systematic study of the scalar meson effects on NM is

not so easy if one wants to concern more underlying
dynamics of QCD, since, unlike pions, scalar mesons
cannot be regarded as Nambu-Goldstone bosons of chiral
symmetry breaking, and their quark contents still puzzle
physicists [29]. Considering their mass ordering, it is very
difficult to arrange scalar mesons below 1 GeV as pure qq̄
states, and the four-quark components of scalar mesons
should be taken into account. The purpose of this work is
to investigate the effects of the quark contents of scalar
mesons on NM properties.
To consider the two- and four-quark contents in the

model, we follow the idea of Refs. [30–33], where an
extended linear sigma model (ELSM) with both the two-
quark and four-quark configurations was included and
the physical states—the mixing states of the two- and
four-quark configurations—were obtained by fitting the
data [34–37]. We couple the scalar meson states to
baryons with respect to the axial symmetry [38,39].
Since the two- and four-quark components have different
axial transformations, the quark contents of the scalar
mesons affect the properties of NM. In addition to the
scalar mesons, the vector mesons are introduced as chiral
representations with two-quark configurations [40].
By taking the RMF approximation using such con-

structed baryonic ELSM (bELSM), we found that both
scalar mesons and vector mesons contribute to the EOS, and
the quark contents of the scalar mesons also affect the EOS
in a sizable way, especially at high-density regions. A
plateaulike structure of symmetry energy is found around
saturation density n0 ≈ 0.16 fm−3, which is the key to
understand the neutron skin of 208Pb and tidal deformability
of neutron stars. Another interesting finding is jgσNN j ∼ 10
and jgωNN j ∼ 13, which is consistent with the results from
other approaches [28,41,42].
This paper is organized as follows: In Sec. II, we discuss

the theoretical framework that will be used. The numerical
results are discussed in detail in Sec. III. Our summary and
perspective are given in the last section, and the Lagrangian
of the three- and four-meson couplings are listed in the
Appendix.

II. EXTENDED LINEAR SIGMA MODEL
WITH BARYON FIELDS

We consider two three-flavor meson nonets Φ and Φ̂,
which represent two-quark configuration qq̄ and four-quark
configuration ðqqÞðq̄ q̄Þ, respectively. Under chiral trans-
formation, they transform as [31–33]

Φ → gLΦg†R; Φ̂ → gLΦ̂g†R; ð1Þ

where gL;R ∈SUð3ÞL;R. In addition, they transform under
(Uð1ÞA) axial transformation as

Φ → e2iνΦ; Φ̂ → e−4iνΦ̂ ð2Þ

with ν being the phase angle.
In the ELSM, we introduce the vector meson fields as

current operators Lμ and Rμ with q̄LγμqL and q̄RγμqR
configurations, respectively [40]. Under chiral transforma-
tion, they transform as

Lμ → gLLμg
†
L; Rμ → gRRμg

†
R: ð3Þ

Considering the baryon as a three-quark configuration,
we apply the diquark model for simplicity [38,39]. Then the

baryon states are donated asNðRRÞ
R ,NðRRÞ

L ,NðLLÞ
L , andNðLLÞ

R ,
where (RR) and (LL) denote right- and left-hand diquark
configurations, respectively, and R and L represent the
quark configurations. Their transformation behaviors are
given by

NðRRÞ
R → gRN

ðRRÞ
R g†R; NðRRÞ

L → gLN
ðRRÞ
L g†R;

NðLLÞ
R → gRN

ðLLÞ
R g†L; NðLLÞ

L → gLN
ðLLÞ
L g†L; ð4Þ

and

NðRRÞ
R → e−3ivNðRRÞ

R ; NðRRÞ
L → e−ivNðRRÞ

L ;

NðLLÞ
R → eivNðLLÞ

R ; NðLLÞ
L → e3ivNðLLÞ

L : ð5Þ

Since, in the effective model based on the linear
realization of the chiral symmetry to be used here, there
is no self-consistent power-counting mechanism, like the
derivative expansion in chiral perturbation theory, we set
the following counting rules to truncate our model:

(I) The order of an effective term is determined by the
number of valence quarks Nq.

(II) Double trace terms are neglected because of largeNc
suppression [43].

(III) The terms containing vector mesons should be given
priority considering rule I.

A. The Lagrangian

After the above discussion on the transformation proper-
ties of the meson and baryon fields, we are ready to
construct the effective model. Formally, we decompose the
Lagrangian of the bELSM as

L ¼ LM þ LV þ LB: ð6Þ

The LM is the gauged scalar and pseudoscalar part of
ELSM which takes the form
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LM ¼ 1

2
TrðDμΦDμΦ†Þ þ 1

2
TrðDμΦ̂DμΦ̂†Þ − V0ðΦ; Φ̂Þ − VSB; ð7Þ

where DμΦ ¼ ∂μΦ − ig1ðLμΦ −ΦRμÞ. VSB stands for the effect of the explicit symmetry breaking, which will not be
considered in this work. The interaction potential V0 is given by

V0 ¼ −c2TrðΦΦ†Þ þ c4TrðΦΦ†ΦΦ†Þ þ d2TrðΦ̂Φ̂†Þ þ e3ðϵabcϵdefΦa
dΦb

eΦ̂c
f þ H:c:Þ

þ c3

�
γ1 ln

�
detΦ
detΦ†

�
þ ð1 − γ1Þ ln

�
TrðΦΦ̂†Þ
TrðΦ̂Φ†Þ

��
2

; ð8Þ

where the c3 term accounts for the Uð1ÞA anomaly of QCD [31,44,45] and the other terms are chiral invariant. It was found
that the e3 terms are crucial for scalar meson mass split between octet and singlet [46].
By considering the transformation properties (3), the chiral and axial invariant Lagrangian for the vector meson part at the

lowest order takes the form

LV ¼ −
1

4
TrðR2

μν þ L2
μνÞ þ i

g2
2
fTrðLμν½Lμ; Lν�Þ þ TrðRμν½Rμ; Rν�Þg

þ h2TrðjLμΦj2 þ jΦRμj2Þ þ ĥ2TrðjLμΦ̂j2 þ jΦ̂Rμj2Þ þ 2h3TrðLμΦRμΦ†Þ þ 2ĥ3TrðLμΦ̂RμΦ̂†Þ
þ g3½TrðLμLνLμLνÞ þ TrðRμRνRμRνÞ� þ g4½TrðLμLμLνLνÞ þ TrðRμRμRνRνÞ�; ð9Þ

where Rμν ¼ ∂μRν − ∂νRμ − i½Rμ; Rν� and Lμν ¼ ∂μLν − ∂νLμ − i½Lμ; Lν�. In this Lagrangian, all the terms have Nq ¼ 8 at

most except the ĥ2 and ĥ3 terms, which are allowed by power-counting rule III.
Next, let us turn to the baryon sector. According to the above discussion, with respect to the chiral and axial invariances,

we can write down the effective Lagrangian in term of the basis NðRRÞ
R , NðRRÞ

L , NðLLÞ
L , and NðLLÞ

R as

LB ¼ Tr
n
N̄ðRRÞ

R iγμD
μ
1RN

ðRRÞ
R þ N̄ðRRÞ

L iγμD
μ
2LN

ðRRÞ
L þ N̄ðLLÞ

R iγμD
μ
2RN

ðLLÞ
R þ N̄ðLLÞ

L iγμD
μ
1LN

ðLLÞ
L

o
þ 2c0Tr

n
RμN̄ðRRÞ

R γμN
ðRRÞ
R þ LμN̄ðLLÞ

L γμN
ðLLÞ
L

o
− gTr

n
N̄ðRRÞ

L ΦNðRRÞ
R þ N̄ðRRÞ

R Φ†NðRRÞ
L þ N̄ðLLÞ

L ΦNðLLÞ
R þ N̄ðLLÞ

R Φ†NðLLÞ
L

o
; ð10Þ

where Dμ
iR ¼ ∂

μ − iciRμ and Dμ
iL ¼ ∂

μ − iciLμ with ci
being constants. An interesting and important observation
from this Lagrangian is that, due to the invariance under
axial transformation, only the two-quark component of the
scalar fields couples to baryon fields at the lowest order.
This is one of the main conclusions of this work.
Without considering the negative parity baryons, one can

make the identification

NðRRÞ
R;L ¼ 1ffiffiffi

2
p 1� γ5

2
B;

NðLLÞ
R;L ¼ −

1ffiffiffi
2

p 1� γ5
2

B; ð11Þ

with B being the baryon octet. Then, the final Lagrangian
for baryons to be used in the following is

LB ¼ 1

2
TrfB̄iγμ½ðDμ

R þDμ
LÞþγ5ðDμ

R −Dμ
LÞ�Bg

−
g
2
TrfB̄½ðΦþΦ†Þ þ γ5ðΦ −Φ†Þ�Bg; ð12Þ

where Dμ
RB ¼ ∂

μB − icRμB − ic0BRμ and Dμ
LB ¼ ∂

μB −
icLμB − ic0BLμ with c and c0 being coupling constants.

B. Physical states

There are two meson multiplatesΦ and Φ̂ in the bELSM
discussed above. The physical states are the admixture of
them. The two-quark nonets can be organized in terms of
the scalar and pseudoscalar states as
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Φ ¼ Sþ iP ¼

0
BBB@

ðσNþa0
0
ÞþiðηNþπ0Þffiffi

2
p aþ0 þ iπþ Kþ

S þ iKþ

a−0 þ iπ−
ðσN−a00ÞþiðηN−π0Þffiffi

2
p K0

S þ iK0

K−
S þ iK− K̄0

S þ iK̄0 σS þ iηS

1
CCCA: ð13Þ

The octet and singlet states can be obtained via

Φ ¼ 1ffiffiffi
2

p
X8
i¼0

Φiλi ¼
1ffiffiffi
2

p
 X8

i¼0

Siλi þ i
X8
i¼0

Piλi

!
; ð14Þ

where λ0 is
ffiffi
2
3

q
I3×3 and the others are Gell-Mann matrices. The four-quark configurations can be written in the similar way

and will be denoted with an overcaret in the following.
Moreover, vector and axial-vector mesons can be obtained through the combination of left- and right-hand currents:

ðL;RÞμ ¼ Vμ � Aμ ¼ 1ffiffiffi
2

p

0
BBBB@

ωμ
Nþρμ0ffiffi

2
p � fμ

1Nþaμ0
1ffiffi

2
p ρμþ � aμþ1 K�μþ � Kμþ

1

ρμ− � aμ−1
ωμ
N−ρ

μ0ffiffi
2

p � fμ
1N−a

μ0
1ffiffi

2
p K�μ0 � Kμ0

1

K�μ− � Kμ−
1 K̄�μ0 � K̄μ0

1 ωμ
S � fμ1S

1
CCCCA: ð15Þ

Finally, the baryon octet takes the form

B≡

0
BBB@

Λffiffi
6

p þ Σ0ffiffi
2

p Σþ p

Σ− Λffiffi
6

p − Σ0ffiffi
2

p n

Ξ− Ξ0 − 2Λffiffi
6

p

1
CCCA: ð16Þ

At low energies, the chiral symmetry of QCD breaks to
Uð3ÞV spontaneously, so it is more reasonable to let the
scalar components which lie on the diagonal position of the
Φ matrix to have nonzero vacuum expectation values

hSbai ¼ αaδ
b
a; hŜbai ¼ βaδ

b
a; ð17Þ

where Sba and Ŝba stand for the two-quark and four-quark
scalar components, respectively. Certainly, α1¼α2¼α3¼α
and β1 ¼ β2 ¼ β3 ¼ β if Uð3ÞV symmetry is exact. Then
the fluctuations of the two- and four-quark fields are defined

as S̃ba ¼ Sba − αδba and ˜̂S
b
a ¼ Ŝba − βδba, respectively.

The existence of c3 and e3 terms in V0 leads to the mixing
of two-quark and four-quark states. The mixing angles can
be obtained by solving two-point vertex functions, and the
mixing matrix can be defined as

�Φi;j

Φ̂i;j

�
¼ R

�Φ0
i;j

Φ̂0
i;j

�

¼
�
cos θi;j − sin θi;j
sin θi;j cos θi;j

��Φ0
i;j

Φ̂0
i;j

�
; ð18Þ

where the superscript prime denotes the physical states.
Currently, it leads to four mixing sets of (pseudo)scalar
sectors (octets and singlets).
The four-quark configurations follow the same terminol-

ogy. Then, the minimum potential conditions should also be
considered in order to pin down vacuum expectation values
of isoscalar-scalar states, α and β:

�
∂V0

∂Sa;a

�
¼ 2αð−c2 þ 2c4α2 þ 4e3βÞ ¼ 0;�

∂V0

∂Ŝa;a

�
¼ 2ðd2β þ 2e3α2Þ ¼ 0: ð19Þ

In this work, we will not consider strange hadrons or
mesons heavier than 1 GeV. And, since EOS of nuclear
matter is obtained via RMF approximation, the axial-vector
and pseudoscalar mesons will also be dropped out. Then
the baryon field B can be rewritten as

Ψ ¼
�
p

n

�
;
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and the relevant mesons should be scalar and vector mesons including f0ð500Þ (denoted as σ), f0ð980Þ, a0ð980Þ, ω, and ρ.

C. Physical parameters

The physical parameters can be defined in terms of the parameters in the above discussed Lagrangian and the
corresponding mixing angles. By diagonalizing of two-point effective potentials, one can obtain mass terms for scalar
singlets and scalar octets, respectively, as

ms;0;� ¼ −c2 þ 6α2c4 þ d2 þ 4βe3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−c2 þ 6α2c4 þ d2 þ 4βe3Þ2 þ 4ðc2d2 − 6α2c4d2 þ 4e3ð4α2e3 − βd2ÞÞ

q
;

ms;8;� ¼ −c2 þ 6α2c4 þ d2 − 2βe3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 − 6α2c4 − d2 þ 2βe3Þ2 þ 4ðc2d2 − 6α2c4d2 þ 2e3ð2α2e3 þ βd2ÞÞ

q
: ð20Þ

It is obvious that one stands for the light states and the other
one stands for heavier ones, and the mixing angle in
Eq. (18) can be also obtained as

θs;0 ¼ −
1

2
arctan

�
8αe3

c2 − 6α2c4 − 4βe3 þ d2

�
;

θs;8 ¼ −
1

2
arctan

�
4αe3

c2 − 6α2c4 þ 2βe3 þ d2

�
: ð21Þ

With the above arguments, the Lagrangian contributing
to the mean field approach can be written as

LRMF ¼ Ψ̄ði=∂−mNÞΨþLσ þLω þLρ þLa0 þLf0 þLI;

ð22Þ

where mN ¼ gα. The Lagrangian for the meson part can be
organized as

Lσ ¼
1

2
ð∂μσ∂μσ −m2

σσ
2Þ;

Lω ¼ −
1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ;

Lρ ¼ −
1

4
ρ⃗μν · ρ⃗μν þ

1

2
m2

ρρ⃗μ · ρ⃗μ;

La0 ¼
1

2
ð∂μa⃗0 · ∂μa⃗0 −m2

a0 a⃗
2
0Þ;

Lf0 ¼
1

2
ð∂μf0∂μf0 −m2

f0
f20Þ; ð23Þ

where a0 ¼ ai0τ
i, ρμ ¼ ρiμτ

i with τi being the Pauli
matrices, and

mρ ¼ mω

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2α2 þ 2ĥ2β2 þ 2h3α2 þ 2ĥ3β2

q
: ð24Þ

The interaction terms can be written as

LI ¼ Ψ̄ðga0NNa0 þ gf0NNf0 þ gσNNσ0

þgρNNγμρ
μ þ gωNNγμω

μÞΨþ L3 þ L4; ð25Þ

where ga0NN ¼ − 1ffiffi
2

p g cos θ̃s;8, gf0NN ¼ − gffiffi
6

p cos θ̃s;8,

gσNN ¼ − gffiffi
3

p cos θ̃s;0, and gρNN ¼ gωNN ¼ c
2
. θ̃ can be θ

or π
2
þ θ defined in Eq. (21) corresponding to the choice of

light set between Φ0
i;j and Φ̂0

i;j. L3ð4Þ refers to three-(four-)
meson coupling terms which are listed in the Appendix.
Note that with RMF approximation only zero compo-

nents in isospin space and nonderivative terms in Lorentz
space survive for meson fields. Therefore, g1 and g2 make
no contribution and the effects of g4, h3, and ĥ3 can be
absorbed by g3, h2, and ĥ2, respectively.

III. PHENOMENOLOGICAL ANALYSIS
AND NUMERICAL RESULTS

A. Parameter values

The parameters interrelated in this work are α, β, c2, c4,
d2, e3, h2, ĥ2, g3, and c. By using Eq. (19), two parameters,
e.g., d2 and c2, can be reduced. The other parameters are
determined by pinning the empirical values of meson
spectrums and nuclear matter properties. Our results are
listed in Table I. In the following, this set of parameters is
denoted as “opt.”
The light isosinglet scalar meson σ takes the choice of

θ̃ ¼ θ, and the light mesons a0 and f0 in the original octet
take the choice of θ̃ ¼ θ þ π

2
, where θs;0 ¼ 41.0° and

θs;8 ¼ 40.7°, which indicates the two-quark component
in the singlet is 56.9% and that in the octet is 42.5%. This

TABLE I. Values of the parameters interrelated in this work. α
and β are in units of MeV, and e3 is in units of GeV.

α β e3 c4 h2 ĥ2 g3 c

32.3 9.55 −3.58 154 370 −915 630 25.8
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leads to gσNN ¼ −13.0, ga0NN ¼ 13.8, gf0NN ¼ 7.98, and gρðωÞNN ¼ 12.7.
The three-(four-)meson couplings L3ð4Þ after RMF simplification are organized as

L3 ¼ −mNð−13.2a20f0 þ 4.41f30 þ 1.84f0ρ2 þ 9.72a20σ þ 9.72f20σ − 4.06ρ2σ þ 1.96σ3

þ6.36a0ρωþ 1.84f0ω2 − 4.06ω2σÞ ð26Þ

and

L4 ¼ −13.9a40 − 27.8a20f
2
0 − 13.9f40 þ 116a20ρ

2 − 38.6f20ρ
2 þ 158ρ4 þ 90.9a20f0σ − 30.3f30σ

þ 98.7f0ρ2σ − 74.4a20σ
2 − 74.4f20σ

2 − 61.2ρ2σ2 − 16.6σ4 − 267a0f0ρωþ 342a0ρσω

− 116a20ω
2 − 38.6f20ω

2 þ 946ρ2ω2 þ 98.7f0σω2 − 61.2σ2ω2 þ 158ω4; ð27Þ

where, to clearly show the magnitudes of the contributions,
we explicitly write down the values of the coupling
constants. The above parameter space leads to the spectrums
of mesons and nuclear matter quantities listed in Tables II
and III, respectively.
It can be seen that the choice of parameter space opt leads

to reasonable physical results. In the numerical calculation
is found α ≃ 30 MeV, which makes jgσNN j ∼ 10, in order to
obtain the physical quantities of NM. The gσNN is consistent
with Refs. [17,28,41,42,52], where the couplings between
sigma and nucleon are parametrized as one-boson-exchange
(OBE) form. It provides evidence that this model is suited
for the description of NM properties and also makes a
suggestion that mσ may be around 700 MeV in the nuclear
medium.

B. Parameter dependence of nuclear matter properties

The couplings between scalar mesons and nucleons
contribute to attractive potential, while those between

vector mesons and nucleons contribute to repulsive poten-
tial, and the competition between them leads to the
saturation of NM and the value of e0. After obtaining
the reasonable e0 in current bELSM, the K0 and Esymðn0Þ
are found to be too large compared to experimental data.
Then, the four-vector meson self-interaction term g3 is
found to be crucial to suppress these higher-order density-
dependent quantities. But, when pinning down all these
quantities, the choice of g3 makes the Esym and K to be
negative, which may lead to a too soft neutron star structure
in the current scheme. With this, the importance of the four-
quark configuration ĥ2 term comes in and compensates the
effects brought by g3 terms at high-density regions while
keeping higher-order quantities at n0 reasonable. In addi-
tion, the ĥ2 terms yield jgωNN j ≃ 13, which is also con-
sistent with the models in Refs. [17,28,41,42,52]. These
effects can be seen in Fig. 1, where opt and opt-N4 which
refers to the parameter set without ĥ2 terms are compared.
In opt-N4, the parameters are chosen as α ¼ 35.8 MeV,

TABLE III. Nuclear matter properties at saturation density n0. e0 is the binding energy of nucleon, EsymðnÞ ¼ 1
2

∂
2Eðn;aÞ
∂a2

			
a¼0

is the

symmetry energy, K0 ¼ 9n20
∂
2Eðn;0Þ
∂n2

			
n¼n0

is the incompressibility coefficient, J0 ¼ 27n30
∂
3Eðn;0Þ
∂n3

			
n¼n0

is the skewness coefficient, and

L0 ¼ 3n0
∂Esymðn0Þ

∂n

			
n¼n0

is the symmetry energy density slope.

n0ðfm−3Þ e0 ðMeVÞ Esymðn0Þ ðMeVÞ J0 ðMeVÞ L0 ðMeVÞ K0 ðMeVÞ
Empirical 0.155� 0.050 [48] −15.0� 1.0 [48] 30.9� 1.9 [49] −700� 500 [50] 52.5� 17.5 [49] 230� 30 [51]
Opt 0.155 −16.0 31.9 −449 62.7 225

TABLE II. The spectrums of hadrons in units of MeV. The empirical values are chosen as the real parts of the
corresponding resonance T-matrix poles from Ref. [47]. The excited state f00 is chosen to be f0ð1370Þwith a00 being
a0ð1450Þ and σ0 being f0ð1500Þ. Since Uð3ÞV is exact in the current work, the empirical values for ρ and ω or
f0ð1370Þ and a0ð1450Þ are combined together. The nucleon mass is fixed as 938 MeV for simplicity.

mN mσ mf0ða0Þ mf0
0
ða0

0
Þ mσ0 mρðωÞ

Empirical 938–940 400–800 960–1010 1250–1500 1430–1530 761–783
opt 938 701 965 1359 1526 779
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β ¼ 8.03 MeV, c4 ¼ 146, e3 ¼ −2640 MeV, h2 ¼ 232,
c ¼ 14.6, and g3 ¼ 123 in order to pin down the NM
properties, and this choice yields gωNN ¼ 7.28 with
mσ¼ 910 MeV.
We next investigate the effects of each parameter on the

NM properties by changing 1% of the opt values. The
effects on the spectrum are shown in Tables IV and V, and
those on NM properties are illustrated in Figs. 2–6.
From Fig. 2, it can be seen that the binding energy is

sensitive to α, β, c4, e3, and c, since these parameters
determine the spectra and couplings between nucleons and
mesons. As expected, multimeson couplings, the g3, h2, and
ĥ2 terms, affect less because they represent higher-order
density dependence. In general, the binding energy is
consistent with TM1 [41] and FSU-δ6.7 [28]. So, its

behavior is similar to the previous conclusion which is
determined by the competition between attractive and
repulsive potentials.
The parameter dependence of the symmetry energy Esym

is shown in Fig. 3. A generic property which can be found
is the existence of a plateaulike structure which is due to
the possible multimeson couplings allowed by chiral
symmetry and power-counting rules set up above.
Actually, this structure has also been found in FSU-δ6.7
[28] to describe the neutron skin thickness of 208Pb and
tidal deformability of neutron stars. Explicitly, the 208Pb
measurement suggests that Lð2=3n0Þ (Esym slope) should
be larger than 49 MeV, and the neutron star tidal defor-
mation (TD) Λ1.4 is estimated as 642–955 [53], if Esym is
stiff at intermediate densities. Such a calculated value of

FIG. 1. (a)–(e) Comparison between models with (opt) and without ĥ2 (opt-N4) terms.

TABLE IV. The effects on spectra and two-quark configuration by parameter variation. opt-a� refers to the
parameter set with α̃ ¼ ð1� 0.01Þα with α being the value in opt. The same convention is used for other parameters
with b for β, c4 for c4, and e for e3.

opt-aþ opt-a− opt-bþ opt-b− opt-c4þ opt-c4− opt-e3þ opt-e3−

mσ ðMeVÞ 715 687 696 706 706 696 699 703
ma0 ðMeVÞ 974 956 969 960 973 956 961 968
mω ðMeVÞ 789 770 777 782 779 779 779 779
σ two-quark (%) 56.5 57.2 57.9 55.8 57.6 56.2 56.2 57.6
a0 two-quark (%) 42.4 42.6 42.9 42.1 42.8 42.2 42.2 42.8

TABLE V. The effects on vector spectra. The notations are the same as Table IV: h for h2, H for ĥ2, g for g3, and
c for c.

opt-cþ opt-c− opt-h2þ opt-h2− opt-g3þ opt-g3− opt-H2þ opt-H2−

mω (MeV) 779 779 784 774 780 780 778 781
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Λ1.4 is larger than the one extracted from GW170817
Λ1.4 ≤ 580 [54]. In order to yield the neutron star TD
consistent with both GW170817 and neutron skin thick-
ness of 208Pb, the symmetry energy should be stiff at
subsaturation densities but soft at intermediate regions,
leading to a plateaulike structure in symmetry energy. The
difference is that the plateaulike structure in this work
appears at a lower-density region than that in FSU-δ6.7.

The reason is that the current bELSM is built with
exact Uð3ÞV symmetry, which sets gρNN ¼ gωNN and also
constrains other vector meson couplings. With these
constraints, the Esym will first increase to a large value
when the binding energy is tuned to a reasonable value
by adjusting gωNN , but the growth rate of Esym must
be suppressed around n0 to meet the requirement
Esym ≈ 32 MeV.

FIG. 2. Parameter effects on the binding energy. TM1 is the result from Ref. [41], where ρ, ω, and σ mesons are considered with
n0 ¼ 0.145 fm−3. FSU-δ6.7 is the result from Ref. [28], where δ [here, a0ð980Þ] meson is added with n0 ¼ 0.148 fm−3.
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This reasoning based on the symmetry argument can
also be seen in the analysis of the slope of the symmetry
energy L. From Fig. 4, one can see that there is quanti-
tative difference between opt and FSU-δ6.7 due to the
exact Uð3ÞV symmetry applied here, but the qualitative
behavior is similar. The valley structure of the slope

around 0.6n0 yields the plateaulike structure of Esym

below n0 and gives a realistic Esym. In addition, it is
found that the slope is affected mainly by the quark
condensates. It is reasonable to expect that the behavior of
L can be revised by breaking the Uð3ÞV symmetry
into SUð3ÞV × Uð1ÞV.

FIG. 3. Parameter effects on symmetry energy Esym. (a) α variation. (b) β variation. (c) c4 variation. (d) e3 variation. (e) c variation.
(f) g3 variation. (g) h2 variation. (h) ĥ2 variation.
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It is found in Fig. 5 that the variations of α, β, and c
increase or decrease K at all regions below 2n0, while those
multimeson coupling contributions are opposite between
regions below and above n0, especially those triple- and
quadruple-scalar-meson couplings. The behavior of K can
affect the speed of sound vs NM. Explicitly, a large K

always leads to a large vs by definition. vs is at the center of
the stage in the studies on strong interaction in dense
systems, since its unique behavior always indicates inter-
esting phenomena [55–59]. The analysis here may provide
some hints about introducing multimeson couplings in a
more logical way.

FIG. 4. Parameter effects on the slope of the symmetry energy L. (a) α variation. (b) β variation. (c) c4 variation. (d) e3 variation. (e) c
variation. (f) g3 variation. (g) h2 variation. (h) ĥ2 variation.
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Different from other properties discussed above, the
constraint on the skewness coefficient J0 is not well
understood, and it varies between −1200 and 400 MeV
based on different targets or analysis methods [50,60,61].
An interesting point is that a plateaulike structure is found
in every model from Fig. 6. The parameter variation effects

are similar to that in the incompressibility K; that is, the
multimeson coupling contributions are opposite between
high-density regions and low-density regions.
The above analysis shows that the stiffness of the EOS

obtained with the parameter choice opt is different from
other approaches, for example, FSU-δ6.7, due to the Uð3ÞV

FIG. 5. Parameter effects on incompressibility coefficient K. (a) α variation. (b) β variation. (c) c4 variation. (d) e3 variation. (e) c
variation. (f) g3 variation. (g) h2 variation. (h) ĥ2 variation.
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symmetry applied. Using the parameter choice opt, we
found that the maximum mass of neutron star is 1.98M⊙,
and the radius of the neutron star with mass 1.4M⊙ neutron
star is 14.5 km with the tidal deformability Λ1.4 ¼ 1440.
Obviously, the neutron star predicted above is less compact
than expected to describe the GW170817 event and the
tidal deformability is beyond the constraint. The possible

reasons are the following: (i) The Uð3ÞV symmetry should
break into SUð3ÞV × Uð1ÞV, especially in a dense envi-
ronment [62]; (ii) the explicit chiral symmetry-breaking
terms are important because too strong multimeson cou-
plings are introduced to obtain reasonable spectrums with-
out quark mass terms, and it may cause too much noise at
high-density regions.

FIG. 6. Parameter effects on skewness coefficient J. (a) α variation. (b) β variation. (c) c4 variation. (d) e3 variation. (e) c variation.
(f) g3 variation. (g) h2 variation. (h) ĥ2 variation.
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IV. DISCUSSION AND PERSPECTIVE

In this work, a bELSM is built to study the properties of
nuclear matter with special interest in the effects of quark
configurations of scalar mesons and vector resonances. The
model is built with three flavors such that the splitting of
scalar meson octet and singlet can be analyzed and the a0
and f0 mesons can be included with σ meson in a unified
framework.
By pinning down the spectra of mesons and NM

properties at saturation density with RMF approximation,
the parameters are determined. It is found that the NM
properties are sensitive to the two-quark condensate α,
which determines the couplings between scalar mesons
and nucleons, and jgσNN j should be around ≃10. This result
is consistent with previous works where σ is parametrized
as OBE form.
We find that there is a plateaulike structure in the Esym

curve because of the valley structure in its slope L. This
behavior has already been addressed in Ref. [28], where
a0ð980Þ, also known as δ, is introduced to produce the
plateaulike structure to describe neutron skin thickness and
tidal deformation of neutron star (NS) constraints at the
same time. But the plateaulike structure appears too early in
current bELSM due to Uð3ÞV symmetry applied, which sets
gρNN ¼ gωNN making Esym grow too rapidly below n0. This
implies that Uð3ÞV symmetry is necessarily broken into
SUð3ÞV × Uð1ÞV in a dense environment. And, because of
the early plateaulike structure, the star properties are slightly
beyond the constraints of GW170817.
Besides the breaking of the Uð3ÞV symmetry, another

factor that may remedy the drawback of the present model

is the explicit chiral symmetry-breaking effect which is not
considered in the present work. This is because the quark
masses may apparently reduce the strength of multimeson
couplings producing the meson spectra in current bELSM.
This effect will be studied in a forthcoming work.
With more and more NS signals detected, the more

stringent multisource constraints of nucleon interactions in
the medium will become available. Therefore, a system-
atical investigation of the hadron spectrum, NM properties,
and neutron star properties will bring insights into strong
interactions and the nature of hadrons, such as the structure
of light scalar mesons. The present model will be a good
starting point to further explore in a wider density range
of NM.
In the future, the bELSM will be extended to a more

realistic one with a better symmetry pattern to describe the
neutron stars with RMF approximation, and the strange
freedoms will also be considered naturally. In addition, it is
also interesting to introduce the quantum effects of hadrons
using the bELSM with the Hartree-Fock method, so that
the contributions of pseudoscalar and axial-vector mesons
can be included. All these will be clarified in forthcom-
ing works.
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APPENDIX: THE TRIPLE-MESON AND QUADRUPLE-MESON COUPLINGS

In this appendix, we explicitly list the triple-meson couplings and quadruple-meson couplings which contribute to the
present calculation after the RMF.
The triple-meson couplings that survive under RMF are the following:

L3 ¼ −
1

6



12

ffiffiffi
3

p
c4f20ασ cos θ0 − 4

ffiffiffi
3

p
h2αρ2σ cos θ0 þ 6

ffiffiffi
3

p
c4ασ3 cos θ0 − 4

ffiffiffi
3

p
h2ασω2 cos θ0

þ 2
ffiffiffi
3

p
c4ασ3 cosð3θ0Þ − 6

ffiffiffi
3

p
c4f20ασ cosðθ0 − 2θ8Þ −

ffiffiffi
6

p
e3f30 cos θ8

þ
ffiffiffi
6

p
e3f30 cosð3θ8Þ − 6

ffiffiffi
3

p
c4f20ασ cosðθ0 þ 2θ8Þ − 2

ffiffiffi
3

p
e3f20σ sin θ0

− 4
ffiffiffi
3

p
ĥ2βρ2σ sin θ0 þ 2

ffiffiffi
3

p
e3σ3 sin θ0 − 4

ffiffiffi
3

p
ĥ2βσω2 sin θ0 þ 2

ffiffiffi
3

p
e3σ3 sinð3θ0Þ

−
ffiffiffi
3

p
e3f20σ sinðθ0 − 2θ8Þ þ 3

ffiffiffi
6

p
c4f30α sinðθ8Þ þ 2

ffiffiffi
6

p
h2f0αρ2 sin θ8 þ 2

ffiffiffi
6

p
ĥ2βf0ρ2 sin θ8

þ 12
ffiffiffi
2

p
h2αa0ρω sin θ8 þ 12

ffiffiffi
2

p
ĥ2βa0ρω sin θ8 þ 2

ffiffiffi
6

p
ĥ2αf0ω2 sin θ8 þ 2

ffiffiffi
6

p
ĥ2βf0ω2 sin θ8

þ 8
ffiffiffi
3

p
e3a20σ cos θ0 cos θ8 sin θ8 þ 24

ffiffiffi
3

p
c4ασa20 cos θ0 sin

2 θ8 þ 12
ffiffiffi
6

p
e3f0a20 cos θ8 sin θ

2
8

− 4
ffiffiffi
3

p
e3σa20 sin θ0 sin

2 θ8 − 12
ffiffiffi
6

p
c4αf0a20 sin

3 θ8 −
ffiffiffi
6

p
c4f30α sinð3θ8Þ

þ3
ffiffiffi
3

p
e3f20σ sinðθ0 þ 2θ8Þ

�
: ðA1Þ
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The quadruple-meson couplings contributing to the present calculation are summarized as

L4 ¼ −
1

48
ð9c4f40 − 4h2f20ρ

2 − 4ĥ2f20ρ
2 − 12g3ρ4 þ 24c4f20σ

2 − 8h2ρ2σ2 − 8ĥ2ρ2σ2 þ 6c4σ4

− 4h2f20ω
2 − 4ĥ2f20ω

2 − 72g3ρ2ω2 − 8h2σ2ω2 − 8ĥ2σ2ω2 − 12g3ω4

þ 24c4f20σ
2 cosð2θ0Þ − 8h2ρ2σ2 cosð2θ0Þ þ 8ĥ2ρ2σ2 cosð2θ0Þ þ 8c4σ4 cosð2θ0Þ

− 8h2σ2ω2 cosð2θ0Þ þ 8ĥ2σ2ω2 cosð2θ0Þ þ 2c4σ4 cosð4θ0Þ þ 8
ffiffiffi
2

p
ĥ2f0ρ2σ cosðθ0 − θ8Þ

þ 8
ffiffiffi
2

p
ĥ2f0σω2 cosðθ0 − θ8Þ − 12c4f20σ

2 cos½2ðθ0 − θ8Þ� − 12c4f40 cos½2θ8�
þ 4h2f20ρ

2 cosð2θ8Þ þ 4ĥ2f20ρ
2 cos θ8 − 24c4f20σ

2 cos θ8 þ 4h2f20ω
2 cos θ8

þ 4ĥ2f20ω
2 cos θ8 þ 3c4f40 cos θ8 − 8

ffiffiffi
2

p
ĥ2f0ρ2σ cosðθ0 þ θ8Þ − 8

ffiffiffi
2

p
ĥ2f0σω2 cosðθ0 þ θ8Þ

− 12c4f20σ
2 cos½2ðθ0 þ θ8Þ� þ 4

ffiffiffi
2

p
c4f30σ sinðθ0 − 3θ8Þ − 12

ffiffiffi
2

p
c4f30σ sinðθ0 − θ8Þ

− 8
ffiffiffi
2

p
h2f0ρ2σ sin½θ0 − θ8� − 8

ffiffiffi
2

p
h2f0σω2 sinðθ0 − θ8Þ þ 32

ffiffiffi
6

p
h2a0ρσω cos θ0 sin θ8

þ 32
ffiffiffi
6

p
ĥ2a0ρσω sin θ0 sin θ8 − 24h2a20ρ

2 sin2 θ8 − 24ĥ2a20ρ
2 sin2 θ8

− 32
ffiffiffi
3

p
h2a0f0ρω sin2 θ8 − 32

ffiffiffi
3

p
ĥ2a0f0ρω sin2 θ8 − 24h2a20ω

2 sin2 θ8 − 24ĥ2a20ω
2 sin2 θ8

þ 96c4a20σ
2 cos2 θ0 sin2 θ8 − 96

ffiffiffi
2

p
c4a20f0σ cos θ0 sin θ

3
8 þ 24c4a40 sin θ

4
8 þ 48c4a20f

2 sin θ48

þ 12
ffiffiffi
2

p
c4f30σ sinðθ0 þ θ8Þ þ 8

ffiffiffi
2

p
h2f0ρ2σ sinðθ0 þ θ8Þ

þ 8
ffiffiffi
2

p
h2f0σω2 sinðθ0 þ θ8Þ − 4

ffiffiffi
2

p
c4f30σ sinðθ0 þ 3θ8ÞÞ; ðA2Þ

where the mixing angles have already been chosen based on the numerical results in Sec. III.
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