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The γ�N → Nð1520Þ transition has a property that differs from the other low-lying nucleon resonance
amplitudes: the magnitude of the transverse helicity amplitudes. The transition helicity amplitudes are
defined in terms of square-transfer momentum q2, or Q2 ¼ −q2. Near the photon point (Q2 ¼ 0) there is a
significant difference in the magnitude of the transverse amplitudes: A3=2 is very large and A1=2 is very
small. This atypical behavior contrasts with the relation between the amplitudes at the pseudothreshold [the

limit where the nucleon and the Nð1520Þ are both at rest and Q2 < 0], where A3=2 ¼ A1=2=
ffiffiffi
3

p
, and also in

the large-Q2 region, where theory and data suggest that A3=2 is suppressed relative to A1=2. In the present

work, we look for the source of the suppression of the A1=2 amplitude at Q2 ¼ 0. The result is easy to
understand in first approximation, when we look into the relation between the transverse amplitudes and
the elementary form factors, defined by a gauge-invariant parametrization of the γ�N → Nð1520Þ transition
current, near Q2 ¼ 0. There is a partial cancellation between contributions of two elementary form factors
near Q2 ¼ 0. We conclude, however, that the correlation between the two elementary form factors at
Q2 ¼ 0 is not sufficient to explain the transverse amplitude data below Q2 ¼ 1 GeV2. The description of
the dependence of the transverse amplitudes on Q2 requires the determination of the scale of variation of
the elementary form factors in the range Q2 ¼ 0…0.5 GeV2, a region with almost nonexistent data. We
conclude at the end that the low-Q2 data for the transverse amplitudes can be well described when we relate
the scale of variation of the elementary form factors with the nucleon dipole form factor.

DOI: 10.1103/PhysRevD.109.074021

I. INTRODUCTION

In the last two decades there was a significant progress in
the experimental study of the electromagnetic structure of
the nucleon (N) and the nucleon resonances (N�). The
helicity amplitudes associated with the γ�N → N� transi-
tions have been measured in detail for the Δð1232Þ,
Nð1440Þ, Nð1520Þ, and Nð1535Þ resonances in a range
from Q2 ¼ 0.25 GeV2 up to 4 or 6 GeV2 [1–6]. The
measured helicity amplitudes are the transverse amplitudes
A1=2 and A3=2 (for spin J ≥ 3=2) and the longitudinal
amplitude S1=2. Near the photon point, however, there are
still some uncertainties associated with the shape associated
with the helicity amplitudes [1,7,8]. The selection from the
Particle Data Group (PDG) at Q2 ¼ 0 has a large band of
variation [9], and for most resonances there are no data
below Q2 ¼ 0.25 GeV2 [1,10].

Among the best known experimental resonances the
Nð1520Þ3

2
− (spin J ¼ 3

2
and negative parity, P ¼ −) has

properties that differ from the other low-lying nucleon
excitations. The transverse amplitudes A1=2 and A3=2 have
completely different magnitudes near the photon point [9],
and the helicity amplitudes are related by two conditions
near the pseudothreshold point, where Q2 ¼ −ðMR −MÞ2
[1,11] (M is the mass of the nucleon andMR is the mass of
the nucleon resonance). Most transitions are constrained by
only one condition [1,7,11]. Although these constraints are
valid in a region not directly accessed by electron scattering
on nucleons (Q2 < 0) that may not be probed directly in
physical experiments, the relations may have a significant
impact on the shape of the helicity amplitudes at low Q2,
when the masses of the nucleon and the nucleon resonance
are close [1,7,8,12–14]. Numerically, the pseudothreshold
occurs when Q2 ≃ −0.38 GeV2.
In the present work, we study the magnitude of the

γ�N → Nð1520Þ transverse amplitudes near Q2 ¼ 0, based
on the analytic structure of the transition current and on the
correlations between the amplitudes in the low-Q2 region.
We start by reviewing what we know about the transverse
amplitudes in three kinematic regions.
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Near the pseudothreshold, in addition to the condition
associated with Siegert’s theorem [8,15–17], one has the
relation A3=2 ¼

ffiffiffi
3

p
A1=2 [1,7,11]. In the large-Q2 region,

theoretical calculations based on constituent quark-
counting rules and perturbative QCD arguments indicate
that there is a strong dominance of the A1=2 amplitude over
the A3=2 amplitude (jA1=2j ≫ jA3=2j) [1,2,5,18]. Finally, near
Q2 ¼ 0, one can quote the information from the PDG [9]:

A3=2 ¼ þð140� 5Þ × 10−3 GeV−1=2;

A1=2 ¼ −ð22.5� 7.5Þ × 10−3 GeV−1=2: ð1:1Þ

From these results, we can conclude that there is a
considerable suppression of A1=2 relative to A3=2 at the
photon point.
We can summarize our knowledge of the ratio A1=2=A3=2,

in the three regimes, as

R≡ A1=2

A3=2
¼

8>><
>>:

1ffiffi
3

p if Q2 ¼ −ðMR −MÞ2

−ϵ if Q2 ¼ 0

∞ if Q2 ¼ þ∞

; ð1:2Þ

where ϵ represents a small positive value, ϵ ≃ 0.18 ≃ 1
5
,

according to the experimental data (1.1).
At the pseudothreshold, the amplitudes have similar

magnitudes (R ≃ 0.6). The suppression of A3=2 at large Q2

is extensively discussed in the literature [1,2,18,19]. The
theoretical challenge is then to understand why the ratio
between the two amplitudes is so small in absolute value
near Q2 ¼ 0.
From the theoretical point of view, there is some debate

about the nature of the Nð1520Þ resonance: if it is
dominated by valence quark degrees of freedom, or alter-
natively, if it is dominated by baryon-meson molecular-like
states [1,6,19,20]. The magnitude of A3=2ð0Þ is difficult to
explain based solely on the quark core structure of the
baryon states. Quark model calculations explain in general
only about one-third or one-half of the measured value of
the amplitude [18,21–24]. Those estimates are improved
when explicit meson cloud dressing or quark-antiquarks
excitations are taken into account in quark model calcu-
lations [24,25]. Calculations based on dynamical coupled-
channel reaction models, where the baryon resonances
are described in terms of baryon-meson states [6,26,27],
predict large contributions to the amplitude A3=2 at low Q2,
on the order of 50% of the experimental values [20]. In the
present work, we look for the origin of the difference of
magnitudes between A1=2 and A3=2, based on the numerical
contributions for each amplitude, without an explicit
reference to the internal degrees of freedom.
The transverse amplitudes can be expressed in terms of

the multipole form factors: the magnetic dipole (GM) and

the electric quadrupole (GE) form factors, as defined by
Devenish et al. [1,2,11],

A1=2 ¼ −
1

4F
T1; A3=2 ¼ −

ffiffiffi
3

p

4F
T2; ð1:3Þ

where

T1 ≡GE − 3GM; T2 ≡GE þ GM; ð1:4Þ

and the factor F takes the form

F ¼ 1

e
2M

MR −M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMRK

ðMR þMÞ2 þQ2

s
; ð1:5Þ

with K ¼ M2
R−M

2

2MR
, e ¼ ffiffiffiffiffiffiffiffi

4πα
p

, and α ≃ 1=137 is the hyper-
fine structure constant.
From the previous relations, we can conclude that

A1=2 ≃ 0, near Q2 ¼ 0 is equivalent to the result
GE ≃ 3GM. Notice, however, that this analysis only trans-
fers the discussion from helicity amplitudes to the multi-
pole form factorsGE andGM, and tells us nothing about the
correlation between GE and GM.
The results A1=2 ≃ 0 or GE ≃ 3GM can be understood

when we write the relations between the helicity amplitudes
and the multipole form factors in terms of the elementary
form factors, defined by the gauge-invariant representation
of the transition current for a JP ¼ 3

2
− nucleon resonance.

The transition current can be expressed in terms of three
independent gauge-invariant structures which define three
independent forms factors that can be labeled as G1, G2,
and G3, and are free of kinematic singularities [1,11]. For
convenience, we call these functions elementary form
factors.
Using the elementary form factors, we can rewrite the

transverse amplitudes (1.3) in the limit Q2 ¼ 0, as

A1=2 ¼ −
1

4F0

T1; ð1:6Þ

A3=2 ¼ −
ffiffiffi
3

p

4F0

�
T1 − 4

Mffiffiffi
6

p MR −M
MR

G1

�
; ð1:7Þ

where F0 ¼ B
ffiffiffiffiffi
M

p
and B ¼ 1

e
M
MR

ffiffiffiffiffi
MR
K

q
≃ 3.67 is dimension-

less. The factor T1, defined by Eqs. (1.4), takes the form

T1 ¼ −4
Mffiffiffi
6

p
�
M
MR

G1 þ
1

2
ðMR þMÞG2

�
: ð1:8Þ

From the relations (1.6)–(1.8), we can then conclude that
in the limit Q2 ¼ 0, the transverse amplitudes depend only
on the values of the functions G1 and G2. We can also
conclude that A1=2 ≃ 0, when T1 is negligible, and as a
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consequence A3=2 ∝
MR−M
MR

G1 is large whenG1 is large. The
numerical result for A1=2 is then explained when G1 and G2

are large and have opposite signs. In this case, there is a
significant cancellation between the terms in G1 and in G2.
We will conclude, however, that T1 ≃ 0 (ϵ ≃ 0) provide
only a rough explanation of the data. The values of G1 and
G2 at Q2 ¼ 0 have corrections of the order of 30 and 20%,
respectively, when we use the experimental ratio A1=2=A3=2

(ϵ ≃ 0.2), instead of A1=2 ¼ 0 (ϵ ¼ 0).
At this point, one can ask if the values of G1ð0Þ and

G2ð0Þ can help to explain the Q2 dependence of A1=2 and
A3=2 in the range Q2 ¼ 0…1 GeV2. A simple numerical
calculation demonstrates, however, that the shape of the
amplitude A3=2 cannot be explained without an estimate
of the derivative of the elementary form factors Gi. We
conclude at the end that the A1=2 and A3=2 data can be well
described when we consider simple multipole parametri-
zations of the form factors Gi, where the scale of variation
is determined by the scale of the nucleon dipole form
factor, used in parametrizations of the nucleon electro-
magnetic form factors and some γ�N → N� transition form
factors.
We propose parametrizations of the A1=2 and A3=2

amplitudes based on our analysis of the amplitudes at
Q2 ¼ 0. The parametrizations are consistent with the Q2 ¼
0…1 GeV2 data, within the uncertainties of the available
data, and may be tested by future experiments in facilities
like MAMI or JLab-12 GeV in the low-Q2 region [10].
The precision of the present estimates can be improved
once the uncertainties of the A1=2ð0Þ and A3=2ð0Þ data are
reduced.
This article is organized as follows: in the next section

we present the general formalism for the γ�N → N� tran-
sition form factors and helicity amplitudes for JP ¼ 3

2
−

nucleon resonances, and discuss the relevant limits (pseu-
dothreshold, photon point, and large Q2). Our numerical
analysis of the elementary form factors at the photon point
is presented in Sec. III. In Sec. IV, we derive parametriza-
tions of the data based on the our analysis and discuss the
limits of the parametrizations. We finalize in Sec. IV with
the outlook and conclusions.

II. HELICITY AMPLITUDES AND TRANSITION
FORM FACTORS

We discuss now the formalism associated with the
γ�N → Nð1520Þ transition, and the definition of helicity
amplitudes and multipole form factors.
Considering an initial nucleon with the momentum p

and a final nucleon resonance with momentum p0, we can
define

q ¼ p0 − p; P ¼ 1

2
ðp0 þ pÞ; ð2:1Þ

as the transfer momentum and the average of the baryons
momentum, respectively.
The transition current between a nucleon and an N�

JP ¼ 3
2
− state can be written as

Jμ ¼ ūαðp0ÞΓαμðP; qÞγ5uðpÞ; ð2:2Þ
where uα, u are the resonance and the nucleon spinors,
respectively, and Γαμ takes the form [1,2,11,19,28]

ΓαμðP; qÞ ¼ �
qαγμ − =qgαμ

�
G1 þ

�
qαPμ − ðP · qÞgαμ�G2

þ �
qαqμ − q2gαμ

�
G3: ð2:3Þ

In the previous relation, Gi (i ¼ 1; 2; 3) are independent
functions, free of kinematic singularities, referred to here-
after as elementary form factors. Comparatively with other
authors that use the Devenish convention for the operators,
and define the second term of Eq. (2.3) in terms of p0 ¼
Pþ 1

2
q [1,2,11], we follow the Jones and Scadron con-

vention [29] and use P to define the operator associated
with G2 [12,19,28,29]. The conversion is trivial.1

For the representation of the helicity amplitudes, defined
at the resonance rest frame, it is convenient to introduce the
magnitude of the transfer three-momentum jqj. This
variable can be written in a covariant form as

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þQ2

−
p
2MR

; ð2:4Þ

using the notation

Q2
� ¼ ðMR �MÞ2 þQ2: ð2:5Þ

The magnetic dipole (GM) and the electric quadrupole
(GE) form factors can be calculated inverting the relations
(1.3) and (1.4):

GM ¼ −F
�
1ffiffiffi
3

p A3=2 − A1=2

�
; ð2:6Þ

GE ¼ −F
� ffiffiffi

3
p

A3=2 þ A1=2

�
: ð2:7Þ

One can also relate the longitudinal (scalar) amplitude
S1=2 with the Coulomb quadrupole form factor GC,

S1=2 ¼ −
1ffiffiffi
2

p
F

jqj
2MR

GC: ð2:8Þ

Using the expressions (2.2) and (2.3), we can write the
magnetic dipole and the electric quadrupole form factors in
terms of Gi, as [1,2]

1To obtain the Devenish form factors [11] in terms of the Jones
and Scadron form factors [29] we replace G1 → G1, G2 → G2,
and G3 → G3 þ 1

2
G2.
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GM ¼ −ZRQ2
−
G1

MR
; ð2:9Þ

GE ¼ −ZR

	�ð3MR þMÞðMR −MÞ −Q2
� G1

MR

þ2
�
M2

R −M2
�
G2 − 4Q2G3



; ð2:10Þ

where ZR ¼ 1ffiffi
6

p M
MR−M

.

Using the previous equations, we conclude that

T1 ¼ −ZR

	
4
�
MðMR −MÞ −Q2

� G1

MR

þ2
�
M2

R −M2
�
G2 − 4Q2G3



; ð2:11Þ

T2 ¼ −ZR

�
4ðMR −MÞG1þ2

�
M2

R −M2
�
G2 − 4Q2G3

�
:

ð2:12Þ

We can also write

T2 ¼ T1 − 4ZRQ2
−
G1

MR

¼ T1 þ 4GM: ð2:13Þ

For future discussion, we write also the relation between
the Coulomb quadrupole form factor and the elementary
form factors,

GC ¼ ZR

�
4MRG1 þ ð3M2

R þM2 þQ2ÞG2

þ2ðM2
R −M2 −Q2ÞG3

�
: ð2:14Þ

The previous relation can be used to calculate the amplitude
S1=2, according to Eq. (2.8). Notice that S1=2 andGC cannot
be measured at the photon point (because there are no real
photons with zero polarization). The relation (2.14) can be
used, however, to estimate GC and G3 for values of Q2

arbitrarily close to Q2 ¼ 0.
We discuss now briefly the three relevant limits: the

pseudothreshold, the photon point, and the large-Q2 limit.

A. Pseudothreshold

As mentioned already, when we study the electromag-
netic properties based on the helicity amplitudes or the
multipole form factors, there are some conditions between
those functions that need to be fulfilled when we consider
the pseudothreshold limitQ2 ¼ −ðMR −MÞ2 [1,11]. These
conditions are the consequence of the gauge-invariance
structure of the transition current, which requires that the
elementary form factors are independent and free of
kinematic singularities [11,29].

There are two conditions to be considered for the γ�N →
Nð3

2
−Þ multipole transition form factors [11,12]:

GM ∝ jqj2; GC ¼ −
MR −M

MR
GE: ð2:15Þ

These conditions can be transposed to the helicity ampli-
tudes, as [7,8]

A3=2 ¼
ffiffiffi
3

p
A1=2; ð2:16Þ

�
A1=2 þ

ffiffiffi
3

p
A3=2

� ¼ −2
ffiffiffi
2

p
ðMR −MÞ S1=2jqj : ð2:17Þ

In addition, it is expected that S1=2 ∝ OðjqjÞ and A1=2,
A3=2 ∝ Oð1Þ, near jqj ¼ 0 [7,16].
The correlation between the transverse amplitudes (2.16)

is equivalent to the relation GM ¼ 0 from (2.15) when
jqj ¼ 0.
The second condition for the helicity amplitudes relates

the electric amplitude, E≡ ðA3=2 þ
ffiffiffi
3

p
A1=2Þ, with the

scalar amplitude S1=2, and correspond to Siegert’s theorem
for the JP ¼ 3

2
− nucleon resonances [1,8,14,16,17,30–32].

Using the relations between the helicity amplitudes and
the multipole form factors (2.9) and (2.10), and GM ¼ 0,
we can conclude that

A3=2 ¼
ffiffiffi
3

p
A1=2 ¼ −

ffiffiffi
3

p

4F
GE; ð2:18Þ

where F ¼ 1
e

Mffiffiffiffiffiffiffi
2MR

p
ffiffiffiffiffiffiffiffiffiffiffi
MRþM
MR−M

q
.

The conditions (2.15) for the form factors are valid for
the nucleon resonances JP ¼ 3

2
−; 5

2
þ; 7

2
−;…. Modified ver-

sions of the conditions for the helicity amplitudes (2.16)
and (2.17) are also valid for JP ¼ 5

2
þ; 7

2
−;… [1]. Among all

those nucleon resonances, the Nð1520Þ3
2
− resonance is one

of the resonances with stronger impact of the pseudothres-
hold conditions on parametrizations compatible with the
available data [7], due to the proximity between pseudo-
threshold and photon points.

B. Photon point

In the limit Q2 ¼ 0, we can write

T1 ¼ −4
Mffiffiffi
6

p
	
M
MR

G1 þ
1

2
ðMR þMÞG2



; ð2:19Þ

T2 ¼ −4
Mffiffiffi
6

p
	
G1 þ

1

2
ðMR þMÞG2



: ð2:20Þ

We can also write, following Eq. (2.13),
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T2 ¼ T1 − 4
Mffiffiffi
6

p ðMR −MÞ G1

MR

¼ T1 þ 4GM; ð2:21Þ

and

GM ¼ −
Mffiffiffi
6

p ðMR −MÞ G1

MR
: ð2:22Þ

To obtain the previous relations, we used ðMR−MÞZR ¼ Mffiffi
6

p .

Concerning the scalar amplitude, we can write

F0S1=2ð0Þ ¼ −
1

2
ffiffiffi
3

p MðMR þMÞ
4M2

R

×
�
4MRG1 þ

�
3M2

R þM2
�
G2

þ 2
�
M2

R −M2
�
G3

�
: ð2:23Þ

C. Large Q2

The large-Q2 region has been discussed in detail in the
literature [1,2]. Here, we present the summary. At large Q2

the transverse amplitudes follow [1,33,34]

A1=2 ∝
1

Q3
; A3=2 ∝

1

Q5
; ð2:24Þ

meaning that A3=2 is suppressed relatively to A1=2.
The corresponding relations for the form factors

are [1,19]

GE ∝
1

Q4
; GM ∝

1

Q4
; ð2:25Þ

GE ¼ −GM þO


1

Q6

�
: ð2:26Þ

III. FORM FACTORS Gi FOR Q2 = 0

In the analysis of the transverse amplitudes nearQ2 ¼ 0,
we consider different approximations. For the discussion,
we convert the experimental data (1.1), into the dimension-
less variables

Ã3=2 ¼ F0A3=2ð0Þ ¼ þ0.498� 0.018; ð3:1Þ

Ã1=2 ¼ F0A1=2ð0Þ ¼ −0.080� 0.027; ð3:2Þ

based on the numerical result F0 ¼ 3.67
ffiffiffiffiffi
M

p
.

Notice that since the comparison between amplitudes
is made in units 10−3 GeV−1=2, the first quantity
(≃500 × 10−3) can be regarded as a large number, and
the second quantity (≃ − 80 × 10−3) can be regarded as a
small number.

We can use the results (3.1) and (3.2), to calculate the
corresponding form factors G1 and G2 for Q2 ¼ 0.
Inverting the relations (1.6)–(1.8), one obtains

MG1 ¼ R


1ffiffiffi
3

p Ã3=2 − Ã1=2

�
; ð3:3Þ

M2G2 ¼ −
2M

MR þM
M
MR

R


1ffiffiffi
3

p Ã3=2 −
MR

M
Ã1=2

�
; ð3:4Þ

where R ¼
ffiffi
6

p
MR

MR−M
. The factors M and M2 are included to

generate dimensionless expressions.
In the Introduction, we discussed the approximation

Ã1=2 ¼ 0 (T1 ¼ 0), based on Eqs. (1.6) and (1.7). In that
case, we obtain G2 ¼ − 2

MRþM
M
MR

G1. Now, we can notice,
using the relations (3.3) and (3.4), that the condition T1 ¼ 0

provides only a rough approximation, since Ã1=2 is com-

bined in fact with Ã3=2=
ffiffiffi
3

p
. Neglecting Ã1=2 in the

estimates of G1 and G2 has an impact of 28% for G1

and of 17% for G2.
The relations (3.3) and (3.4) can also be used to explain

the significant cancellation in T1. The effect can be
observed when we write T1 on the form T1 ¼ −4 Mffiffi

6
p t1,

where

t1 ¼
M
MR

G1 þ
1

2
ðMR þMÞG2: ð3:5Þ

For that purpose, we write the two terms as

M
MR

G1 ¼
R
MR


1ffiffiffi
3

p Ã3=2 − Ã1=2

�
;

1

2
ðMR þMÞG2 ¼ −

R
MR


1ffiffiffi
3

p Ã3=2 − Ã1=2

�

þ R
MR

MR −M
M

Ã1=2:

In this form, one concludes that the first term of
1
2
ðMR þMÞG2 cancels the term in G1, and only the term

proportional to Ã1=2 survives the sum. The correction term
is 13% of the term in G1. In units 10−3 the term in G1 and
the term in G2 are large numbers with opposite signs.
The dominance of the amplitude A3=2 is still explained

by the small magnitude of T1. When we can neglect T1 in
Eq. (2.21), we conclude that T2 ∝ G1. Thus, the amplitude
A3=2 is large when T2 is large, and T1 is small in
comparison with T2. However, when we look for (2.20):
T2 ¼ −4 Mffiffi

6
p t2, with t2 ¼ G1 þ 1

2
ðMR þMÞG2, we con-

clude that T2 is large because there is only a partial
cancellation between the two large terms.
To summarize, the combination of the results for the

transverse amplitudes is a consequence of the large
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magnitude of the form factorsG1 and −G2. In A1=2, one has
a significant cancellation between the term in G1 and the
term in G2. In A3=2, the term in G1 is enhanced and the
suppression between the terms is attenuated. We conclude
also that in first approximation (leading order in Ã1=2), one
has A3=2 ∝ G1.
The values of G1 and G2 for Q2 ¼ 0 are presented in

Table I for the cases T1 ¼ 0 and T1 ≠ 0. The first row
(T1 ¼ 0) gives the results when we use A1=2ð0Þ ¼ 0, and
the second row gives the result when T1 ≠ 0 is fixed by the
experimental value of A1=2ð0Þ. In the second row, we
include also G3ð0Þ ¼ 0. The last four rows and the effect of
G3ð0Þ are discussed in the next sections.
The comparison between the first two rows demonstrates

how important the inclusion of the experimental value of
A1=2ð0Þ, instead of A1=2ð0Þ ¼ 0, is in the determination of
the first two elementary form factors. The effect can also be
seen in the results for GMð0Þ and GEð0Þ. The differences
are about 20% for the magnetic form factor and 10% for the
electric form factor.
In the next sections, we use the estimated values for G1

and G2 at Q2 ¼ 0 to test if we can derive parametrizations
that may explain the experimental data for the amplitudes
A1=2 and A3=2, up to a certain range of Q2. Due to the
approximated character of the parametrizations, we restrict
the analysis to the region Q2 < 1 GeV2. To estimate the
uncertainties of the parametrizations, we calculate also
the uncertainties of G1 and G2 at Q2 ¼ 0, based on the
relations (3.3) and (3.4) and the data (1.1), with the errors
combined in quadrature. The numerical values for the
uncertainties of G1ð0Þ and G2ð0Þ are included in the last
row of Table I (between brackets). The relative errors are
7.8% for G1 and 10.6% for G2.

IV. FORM FACTORS Gi FOR Q2 > 0

In this section, we discuss possible parametrizations of
the amplitudes A1=2 and A3=2 forQ2 ≤ 1 GeV2 based on the
values of G1ð0Þ and G2ð0Þ calculated in the previous
section.

In the following, we consider the γ�N → Nð1520Þ
helicity amplitude data from experiments at JLab/CLAS
on single-pion electroproduction [35] and on charged
double-pion electroproduction [20,36], and the PDG selec-
tion for Q2 ¼ 0 [9]. These JLab/CLAS experiments deter-
mine the whole set of helicity amplitudes (A1=2, A3=2, and
S1=2). The πN (∼60%) and the ππN (∼30%) channels are
the dominant Nð1520Þ decay channels [9]. There are
additional data associated with different experiments for
the transverse amplitudes [37], but the data analysis is
based on the assumption that S1=2 ≡ 0, an approximation
that is not valid at low Q2 [35].
In a first stage, we ignore the role of the form factor G3,

setting G3 ≡ 0, since no information about G3 can be
obtained from the transverse amplitudes at Q2 ¼ 0.
We notice, however, that G3 contributes to the amplitudes
A1=2 and A3=2 for Q2 ≠ 0, since T1 and T2 include the term
4ZRQ2G3 [see Eqs. (2.11) and (2.12)]. Later on, we
estimate the impact of nonzero values for G3ð0Þ.
From the previous section, we concluded already that

A1=2ð0Þ ≃ 0 is not a very good approximation. In the
following, we consider then parametrizations based on
Eqs. (3.3) and (3.4) consistent with the experimental value
of A1=2ð0Þ. The numerical values are included in the lower
part of Table I (with T1 ¼ 0.319).
We divided our analysis into several steps.

A. Parametrization with constant form factors Gi

The simplest parametrization can be obtained assuming
that the form factors G1ðQ2Þ and G2ðQ2Þ do not vary
significantly in the region Q2 ¼ 0…1 GeV2 (meaning
that in that range the derivatives of those form factors
are zero or negligible). We label this approximation as the
constant form factor parametrization. The values of Gið0Þ
are the ones presented on Table I in the first row with
T1 ¼ 0.319. As mentioned already, we assume for now
that G3ð0Þ ¼ 0.
The constant form factor estimates are presented in Fig. 1

for the amplitudes and in Fig. 2 for the multipole form
factors. Notice in the figures the lack of data for the interval

TABLE I. Model parametersG1ð0Þ,G2ð0Þ, according with the values for the amplitudes A3=2ð0Þ, A1=2ð0Þ. We include also the limit of
S1=2ðQ2Þ for Q2 ¼ 0, based on the values of G3ð0Þ. The amplitudes are in units 10−3 GeV−1=2. In the last row, the values between
commas are the uncertainties of MG1ð0Þ and M2G2ð0Þ, based on the data for the transverse amplitudes. The model with T1 ≠ 0 has
T2 ¼ −1.149.

MG1ð0Þ M2G2ð0Þ M2G3ð0Þ A3=2ð0Þ A1=2ð0Þ S1=2ð0Þ GMð0Þ GEð0Þ Label

T1 ¼ 0 2.507 −1.429 140 0.0 −0.287 −0.862

T1 ¼ 0.319 2.354 −1.260 0.000 140 −22.5 −82.7 −0.367 −0.782 Multipole 2a
2.354 −1.260 −0.140 140 −22.5 −73.5 −0.367 −0.782 Multipole 2b
2.354 −1.260 −0.278 140 −22.5 −64.4 −0.367 −0.782 Multipole 2c
(0.183) (0.134)
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Q2 ¼ 0…0.28 GeV2. This omission causes difficulty in the
determination of the shape of the helicity amplitudes near
the photon point [1,7].
In Figs. 1 and 2, we distinguish between the CLAS data

from single-pion production [35] from double-pion pro-
duction [20,36]. Some differences between the two sets can
be observed for the function A3=2 and GM in the range
Q2 ¼ 0.35…0.50 GeV2. The data are, however, compat-
ible within the two standard deviation range. More accurate
data in that range may help to determine the shape of the
transverse amplitudes at low Q2.
We present the calculations in the range Q2 ¼

−0.1…1 GeV2 for a better visualization of the results near
Q2 ¼ 0. The lower limit of the graph inQ2 can be extended
down to the pseudothreshold Q2 ≃ −0.4 GeV2 in order
to visualize the consequences of the pseudothreshold
constraints. We notice, however, that the pseudothreshold
conditions are automatically satisfied by the use of elemen-
tary form factors Gi when they have no singularities in the

range Q2 > −ðMR −MÞ2. At the end, we discuss the
properties of GM near the pseudothreshold.
Before discussing the amplitudes A1=2 and A3=2 it is

important to discuss the properties of the form factors GE

and GM when the form factors Gi are constants. From the
relations (2.9) and (2.10), we can conclude that the multi-
pole form factors (GE and GM) are linear functions of Q2.
As for the transverse amplitudes, we can notice that they

are written in the form A1=2 ∝
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
T1 and A3=2 ∝ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p

T2, where T1 and T2 are linear functions and τ ¼
Q2=ðMR þMÞ2 [see Eqs. (1.3)–(1.5)]. Since in the region
of study τ ≪ 1 (because Q2 ≪ 6.05 GeV2), one can writeffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
≃ 1þ 1

2
Q2

ðMRþMÞ2, and conclude that in the region

Q2 ≤ 1 GeV2, the amplitudes are well approximated by
linear functions.
We can now discuss the numerical results for the

amplitudes A1=2 and A3=2 within the constant form factor
approximation. The estimates are presented in Fig. 1 by the
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FIG. 1. Transverse amplitudes A1=2 and A3=2 in terms ofQ2. The data are from JLab/CLAS single-pion production (solid bullets) [35],
JLab/CLAS double-pion production (empty bullets) [20,36], and PDG (square) [9]. The labels correspond to the parameters from
Table I.
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thin solid line (labeled as Constant FF). The model estimate
A3=2 ≃ 140 × 10−3 GeV−1=2 contrasts with the sharp sup-
pression of the experimental amplitude, whenQ2 increases.
The estimate of A3=2 manifests only a weak dependence
on Q2, because A3=2 ∝

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
T2 and T2 is a constant.

The conclusion is then that the amplitude A3=2 follows

A3=2 ∝ 1þ 1
2

Q2

ðMRþMÞ2, in the range of study, an almost

constant function. As for the amplitude A1=2, we observe
also an almost linear function2 of Q2, in flagrant disagree-
ment with the data. The conclusion is then that the constant
form factor approximation for the functions Gi fails
completely the description of the amplitudes A1=2 and A3=2.
The corresponding results for GE and GM are presented

in Fig. 2. In this case, one obtains linear functions, which
fail in general the description of the data.
The corollary of this first analysis is that the description

of the transverse amplitudes requires in addition to the
values of the functions G1 and G2 at Q2 ¼ 0 the determi-
nation of the scale of variation of those functions. In simple
terms, we need an estimate of the derivatives of the form
factors G1, G2, and eventually G3, if we want to describe
the data in the range Q2 ¼ 0…1 GeV2.

B. Parametrization of Gi by multipole
functions—universal cutoff

Once concluded that the data are not consistent with
parametrizations based on constant elementary form fac-
tors, we look for parametrizations based on multipole
functions. These kinds of parametrizations are considered,
for instance, in the study of the nucleon electromagnetic
form factors, where the main dependence is regulated by a
simple dipole function. Based on the expected asymptotic
dependence of the functions Gi in the large-Q2 region, we
consider the multipole parametrizations

G1ðQ2Þ ¼ G1ð0Þ�
1þ Q2

Λ2
3

�
3
; G2;3ðQ2Þ ¼ G2;3ð0Þ�

1þ Q2

Λ2
4

�
4
; ð4:1Þ

where we labeled the square form factor cutoffs Λ2
n by the

power n of the multipole. We assume then that G2 and G3

[when G3ð0Þ ≠ 0] are regulated by the same cutoff. The
powers of Eq. (4.1) are the ones compatible with the
expected falloffs for the helicity amplitudes (2.24) and
the multipole form factors (2.25) and (2.26).
The multipole functions take into account implicitly the

leading-order dependence of the form factors Gi on Q2.
The method had been used in chiral effective-field theory to
include next-leading-order contributions and improve the
convergence of the calculations [38]. It is also known that
simple smooth parametrizations of γ�N → N� data are

obtained for most low-lying nucleon resonances when the
functions are normalized by an appropriated multipole [39].
One of the simplest parametrizations is obtained when

we assume that the scale of variation of the form factors Gi

(associated with the square cutoffs Λ2
3 and Λ2

4) can be the
same for all the form factors (Λ2

3 ¼ Λ2
4). The condition

Λ2
3 ¼ Λ2

4 defines the universal cutoff approximation.
Inspired by the nucleon dipole function

GDðQ2Þ ¼ 1�
1þ Q2

Λ2
D

�
2
; ð4:2Þ

where Λ2
D ¼ 0.71 GeV2, we consider a parametrization

where

Λ2
3 ¼ Λ2

4 ¼ Λ2
D: ð4:3Þ

The results of the universal form factor parametrization
are represented in Figs. 1 and 2 by the dotted line and are
labeled as Multipole 1. We can notice in the figure for
the amplitudes (Fig. 1) the failure in the description of the
amplitude A1=2. Also worth noticing is the shape of the
amplitude A3=2 near Q2 ¼ 0. Although no data exist below
Q2 ¼ 0.28 GeV2, theoretical models predict in general a
sharp and fast falloff of the amplitude near Q2 ¼ 0. In
contrast, the line Multipole 1 has an almost zero derivative
at Q2 ¼ 0.
In the constant-cutoff approximation, we can also treat

the cutoff Λ3 ¼ Λ4 as an adjustable parameter, different
from ΛD, to be determined by a fit to the data. Different
values of the cutoffs lead, however, to similar results. The
combination of the form factors G1 and G2 on T1 and T2 is
such that it generates an almost constant estimate for A1=2,
and an almost zero derivative for A3=2 near Q2 ¼ 0.
The conclusion of this section is then that the data are not

consistent with multipole parametrizations based on the
same cutoff for G1 and G2.

C. Parametrization of Gi by multipole
functions—natural scale

Since the universal cutoff fails to provide a description
of the low-Q2 transverse amplitude data, we look for alter-
native ways of defining the scale of variation of the elemen-
tary form factorsGi. Recalling that the nucleon elastic form
factors and some inelastic transitions, such as the γ�N →
Δð1232Þ magnetic form factor, scale at sufficient small Q2

with the dipole function (4.2), we wondered if the same
scale can be used for the functions Gi. Since the functions
are defined by different powers for the multipoles, the
similarity of the functions Gi with GD must be imposed for
low Q2. We consider then the conditions near Q2 ¼ 0,

1þQ2

Λ2
3

�−3
≃

1þ Q2

Λ2
D

�−2
; ð4:4Þ2The term in Q4 is very small because it is proportional to

1=ðMR þMÞ4.
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1þQ2

Λ2
4

�−4
≃

1þ Q2

Λ2
D

�−2
: ð4:5Þ

The equivalence of the previous expansions near Q2 ¼ 0
implies that

Λ2
3 ¼

3

2
Λ2
D; Λ2

4 ¼ 2Λ2
D: ð4:6Þ

Numerically, one has Λ2
3 ≃ 1.07 GeV2 and Λ2

4≃1.42GeV2.
The numerical results associated with the multi-

pole parametrization (4.1) with the cutoffs (4.6) and
G3ð0Þ ¼ 0 are presented in Figs. 1 and 2 by the thick
solid line, and are labeled as Multipole 2a. Notice the
closeness between the lines and the data.
Concerning the results from Fig. 2 for GM, a note is in

order. SinceGM depend only onG1, all estimates discussed
in this section have the same result forGM (thick solid line).
In the figure, we use the label Multipole 2.
The results of the parametrization Multipole 2a demon-

strate that a reliable description of the γ�N → Nð1520Þ
transverse amplitude data can be achieved when we assume
the natural scale for the elementary form factors Gi.
We can now discuss the effect of the form factor G3 in

parametrizations of the data based on multipole functions.
Although G3ð0Þ cannot be determined by the A1=2ð0Þ and
A3=2ð0Þ data, indirect information can be obtained from the
amplitude S1=2 at low Q2. Unfortunately, no data below
Q2 ¼ 0.28 GeV2 are available to make a reliable estimate
of S1=2ð0Þ, and consequently an estimate of G3ð0Þ.
In these conditions, one has to rely on theoretical

extrapolations of the data. We consider then a parametriza-
tion of the data from Ref. [7], compatible with the pseudo-
threshold constraints of the helicity amplitudes, and also
with the low-Q2 data for A1=2 and A3=2. The value of
S1=2ð0Þ determined by that parametrization is S1=2ð0Þ ¼
−64.4 × 10−3 GeV−1=2. Combining this result with the
present estimates of G1ð0Þ and G2ð0Þ, one obtains
M2G3ð0Þ ¼ −0.278.
In addition to the parametrization discussed earlier

[Multipole 2a, G3ð0Þ ¼ 0], we consider also a parametri-
zation with an intermediate value for G3ð0Þ, fixed by
M2G3ð0Þ ¼ −0.14, labeled as Multipole 2b, and a para-
metrization associated with value of S1=2ð0Þ mentioned
above (Multipole 2c). All parameters and associated values
for S1=2ð0Þ are presented in the last four rows of Table I.
The parametrizations labeled as Multipole 2b and

Multipole 2c are also represented in Figs. 1 and 2 by
the dashed lines (Multipole 2b) and the dashed-dotted lines
(Multipole 2c).
Since these parametrizations (Multipoles 2a, 2b, 2c) are

defined by the values of G1ð0Þ and G2ð0Þ determined by
the transverse amplitudes at Q2 ¼ 0, one can also calculate
the band of variation of the parametrizations based on the
uncertainties of the parameters. For clarity, we include only

the band of variation associated with the Multipole 2a. The
others have similar ranges of variation from the central
lines. The bands of variation are large for estimates near
Q2 ¼ 0, when the errors are added in quadrature, mainly
due to the large relative uncertainty of A1=2ð0Þ. For that
reason, we restrict the representation to Q2 ≥ 0.2 GeV2.
The width of the bands decreases when Q2 increases due
to the reduction of the values of the functions Gi. More
accurate experimental estimates of A1=2ð0Þ and A3=2ð0Þwill
narrow the uncertainties of the estimates based on
Eqs. (3.3), (3.4), (4.1), and (4.6).
From the analysis of the amplitudes (Fig. 1), we can

conclude that the best description of the amplitude A1=2 is
obtained with Multipole 2a (G3 ¼ 0). Notice, however, that
Multipole 2b provides also a fair description of the data
when the uncertainties are taken into account. As for the
amplitude A3=2, Multipole 2b gives the best description
when we consider the central values, but Multipole 2a and
Multipole 2c are also consistent with the data when we take
into account the uncertainties (upper error band for
Multipole 2a and lower error band for Multipole 2c).
Overall, Multipole 2a and Multipole 2b give the best
combined description of the transverse amplitudes within
the uncertainty bands. The agreement with the data is better
for Q2 ≤ 0.7 GeV2.
The preference for the parametrizations Multipole 2a and

Multipole 2b favors also models with large magnitudes for
the absolute values of the scalar amplitude S1=2ð0Þ, asso-
ciated with the range −ð75...85Þ × 10−3 GeV−1=2, as indi-
cated in Table I.
Similar conclusions are obtained when we look for the

multipole form factors GE and GM (Fig. 2). All para-
metrizations are equivalent for GM. The data for GE favor
the parametrizations Multipole 2a and Multipole 2b, within
the intervals of variation.
In the graph for GM, one can also observe that the

function is very smooth near Q2 ¼ 0, contrasting with the
sharp variation of GE. This effect is a consequence of
the particular condition for GM at the pseudothreshold, as
discussed in Sec. II A. No equivalent condition exists for
GE and GC (related by GE ∝ GC). Both functions, GE and
GC, are finite at the pseudothreshold.
A consequence of the condition GM ¼ 0 at the pseudo-

threshold is that we can expect a turning point of the
function below Q2 ¼ 0.2 GeV2. The present calculations
suggest that the turning point is close to Q2 ¼ 0,
meaning that the derivative of GM at photon point is
close to zero. Considering the relation between GM

and G1, we can conclude that ðMR −MÞ2 dGM
dQ2 ð0Þ ¼

ð1 − 3
ðMR−MÞ2

Λ2
3

ÞGMð0Þ ≃ 0.05GMð0Þ, consistent with a very
small value for dGM

dQ2 ð0Þ. This result is a direct consequence
of the parameter Λ2

3 ¼ 1.07 GeV2.
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The parametrizations discussed above can also be
compared with recent parametrizations proposed in the
literature. Of particular interest is the parametrization from
Refs. [40,41] mentioned here as the JLab parametrization.
The JLab parametrization is based on rational functions
calibrated by JLab/CLAS and PDG (Q2 ¼ 0) data. The
parametrization is close to the Multipole 2a parametrization
within one standard deviation for A3=2 and one or two
standard deviations for A1=2 in the Q2 < 0.8 GeV2 region
(estimated by Multipole 2a). It provides also a good
description of the large-Q2 data.
The JLab parametrization has an important property:

although the extension of the parametrization to theQ2 < 0
region is not compatible with the pseudothreshold con-
straints, it can be analytically continued to the timelike
region, in order to fulfill the pseudothreshold constraints [7].
This analytic continuation provides a soft transition between
the region Q2 ≃ 0 and the pseudothreshold and leaves the
original parametrization of the region 0 ≤ Q2 ≤ 0.8 GeV2

almost unchanged. Overall, one obtains a parametrization
consistent with the low-Q2 data and the necessary pseudo-
threshold constraints, preserving at the same time the
original form for the large-Q2 region [7].

D. Discussion

The parametrizations discussed above are based on
two parameters, G1ð0Þ and G2ð0Þ, a cutoff determined
by theoretical arguments, and some tentative estimates of
G3ð0Þ. Two of the parametrizations provide good descrip-
tions of the data for A1=2 and A3=2 for Q2 < 1 GeV2, and
determine also the possible range variation for the ampli-
tude S1=2 near Q2 ¼ 0.
From our analysis, we conclude also that the data favor

parametrizations with multipole functions regulated by
large cutoffs (Λ2

3, Λ2
4 > 1 GeV2) and slower falloffs. The

considered cutoffs are larger than the cutoff associated with
the nucleon elastic form factors (Λ2

D ≃ 0.7 GeV2).
In principle, more accurate estimates can be obtained

considering extensions of the multipole parametrizations,
where the second derivatives of Gi are adjusted by the low-
Q2 data. We did not test this possibility, because the main
goal of the present work is the understanding of theQ2 ¼ 0

and low-Q2 data based on a minimal number of parameters
and assumptions.
The parametrizations proposed here may be tested in the

near future by experiments in the rangeQ2 ¼ 0…0.3 GeV2,
in order to fill the gap in the experimental studies of the
Nð1520Þ resonance. Those data may be acquired at MAMI
(Q2 > 0.2 GeV2) and JLab (Q2 > 0.05 GeV2) [4,10].
New data can help to determine the shape of the

transverse amplitudes below Q2 ¼ 0.3 GeV2, and impose
more accurate constraints on parametrizations of the data

near Q2 ¼ 0 [7]. The knowledge of the Q2 dependence of
the helicity amplitudes near Q2 ¼ 0 is important for the
study of the γ�N → Nð1520Þ in the timelike region
(Q2 < 0), including the Dalitz decay of the Nð1520Þ state
[Nð1520Þ → eþe−N] [19,42].

V. OUTLOOK AND CONCLUSIONS

The Nð1520Þ resonance is among the nucleon excita-
tions that are better known experimentally. It differs from
the other low-lying nucleon resonances by its properties.
The transverse amplitudes A1=2 and A3=2 have completely
different magnitudes at Q2 ¼ 0, and are subject to relevant
constraints at low Q2, due to the proximity between
the pseudothreshold Q2 ¼ −ðMR −MÞ2 and the photon
point.
In the present work, we looked for the origin of the

difference of magnitudes between the transverse ampli-
tudes at very lowQ2. We concluded that the result is related
to a significant cancellation near Q2 ¼ 0 of the contribu-
tions associated with two elementary form factors (G1 and
G2), defined by a gauge-invariant parametrization of the
transition current. We concluded also that the correlation
between the elementary form factors does not hold for
larger values of Q2.
To explain the shape of the amplitudes A1=2 and A3=2

belowQ2 ¼ 1 GeV2, in addition to the values ofG1 andG2

at Q2 ¼ 0, one needs to know the scale of variation of the
elementary form factors G1, G2, and G3. We obtain a fair
description of the Q2 ≤ 0.7 GeV2 data when the scale of
variation of the elementary form factors is correlated to the
natural scale of the γ�N → N� transition amplitudes,
defined by the nucleon dipole form factor.
Different parametrizations can be derived depending

on the projected value of the scalar amplitude S1=2 near
Q2 ¼ 0. Those parametrizations are compatible with the
experimental data for the transverse amplitudes within the
uncertainties of the data for Q2 ¼ 0. The uncertainties can
be reduced once the more accurate determinations of the
transverse amplitudes are provided, mainly for A1=2ð0Þ. The
proposed parametrizations explain also the smooth behav-
ior of the magnetic dipole form factor GM near Q2 ¼ 0,
suggested by the data.
Our analysis of the transverse amplitudes A1=2 and A3=2

for finite Q2 allows us to make an estimate of the range of
variation of the scalar amplitude S1=2 near Q2 ¼ 0, in a
region for which there are no data available. Our para-
metrizations are compatible with values of S1=2ðQ2Þ in the
range from −85 × 10−3 GeV−1=2 to −75 × 10−3 GeV−1=2,
for values of Q2 near the photon point. The parametriza-
tions discussed in the present work may be tested in future
measurements of the transverse and longitudinal ampli-
tudes for 0 < Q2 < 0.28 GeV2.
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