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We study the effect of external proper time-dependent longitudinal forces on the evolution of the
distribution function using the Boltzmann equation with a relaxation time collision kernel under Bjorken
flow. We derive an exact solution and study the early time attractor behavior of different components of
energy-momentum tensor under Bjorken symmetry. We show that the arbitrary initial data approaches the
attractor solution but is influenced by the external force with slightly broken Bjorken symmetry.
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I. INTRODUCTION

In the realm of high-energy heavy-ion collisions, two
massive nuclei collide at relativistic speeds and create
quark-gluon plasma (QGP) [1]. This novel state of matter
is composed of deconfined quarks and gluons, almost freely
traversing the nuclear volume. Owing to the initial velocity
of the two colliding nuclei, initially, the hot and dense
fireball expands primarily along the beam direction; the
transverse expansion due to the hydrodynamic response of
the system takes some time to catch up with the longitudinal
expansion [2–5]. Due to this initial asymmetric flow, the
momentum anisotropy can be substantial. This may give
rise to a situation where the system is far away from local
thermal equilibrium. The momentum anisotropy is also
supposed to be larger for smaller systems such as p-p, p-Au,
d-Au, etc. However, relativistic hydrodynamics seems to
work well even for these small systems [6,7].
Hydrodynamics is a valid description of dynamics when

a system under scrutiny has attained a state of near local
thermal equilibrium (i.e., the ratio of the off-equilibrium
part of the energy-momentum tensor to the equilibrium
one is much smaller than one). This raises the question of
how the hydrodynamics can be a valid description for the
QGP evolution at small timescales of ∼0.1 to 0.2 fm=c (at
LHC) or for smaller systems where it is supposed to be
highly anisotropic. Hydrodynamic attractors were pro-
posed [8] as a possible solution to why hydrodynamics
effectively describe QGP evolution even for systems far
from local thermal equilibrium. For systems with certain
symmetries—conformal and Bjorken/Gubser, it was
observed that the nonhydrodynamic modes decay expo-
nentially, and the system relaxes to an attractor solution

regardless of the initial conditions (near or far away from
local thermal equilibrium). It was speculated then that the
validity of hydrodynamics could be expanded beyond the
limit of small gradients as previously held. Several
subsequent studies [9–21], showed that attractor solutions
could be observed in less symmetric systems albeit in a
more general sense of an attractor. However, more recent
nonconformal studies [11,12,22] using exact solutions to
the Boltzmann equation pointed out that attractor behavior
is not as general as previously thought as it was absent in
several hydrodynamic variables when conformal sym-
metry was broken and nonconformal systems only show
an early-time attractor for the case of scaled longitudinal
pressure PL=P.
Given that a universal attractor is absent in nonconformal

systems, one could ask whether attractors still exist when
other symmetries are broken. One method to explore this is
to introduce an external force. Due to the relativistic speed
of the charged protons inside the colliding nuclei, there
exists a strong transient electromagnetic field in the initial
stage of heavy-ion collisions. These fields are estimated to
possess strengths on the order of 1018 to 1019 G at the apex
of RHIC or LHC energies [23–27]. Advancements have
recently been made across various fronts, encompassing
theoretical [28–32], phenomenological [33,34], and exper-
imental domains [35,36], all in pursuit of detecting the
telltale signals of these potent electromagnetic fields. Given
that early-time attractors explore the journey toward equi-
librium from highly nonequilibrated states, it is both logical
and imperative to investigate their behavior in the presence
of electromagnetic fields. In this study, we intend to explore
the evolution of a far-from-equilibrium system under an
external force arising due to the interaction of electrically
conducting QGP fluid and the initial strong EM fields.
We use the RTA-Boltzmann equation to study the effects

of external forces in a 0þ 1 dimensional setting under
approximate Bjorken symmetry. Specifically, we subject the
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system to a longitudinal force and explore how the evolution
of the system varies for varying field strengths and initial
anisotropies. We check for the presence of attractor behavior
in hydrodynamic variables for the nonconformal systems
and if they persist in the conformal limit. For our calcu-
lations, we will be using natural units, h̄ ¼ kB ¼ c ¼ ϵ0 ¼
μ0 ¼ 1, and the metric signature is mostly negative
gμν ¼ diagðþ;−;−;−Þ.
Our paper is structured as follows. In Sec. II, we discuss

the relativistic Boltzmann equation with the RTA collision
kernel. Then, in the next section, Sec. III, we discuss
symmetries and the Bjorken flow. In the next section,
Sec. IV, we talk about the formal solution of the Boltzmann
equation with external forces. We also cover the discus-
sions on the initial distribution function and how to
describe these external forces in Sec. V. Finally, we present
our findings for different situations involving external
forces and summarize our findings in Secs. VI and VII
respectively.

II. THE BOLTZMANN EQUATION

The Boltzmann equation describes the evolution of the
single-particle phase space distribution function fðx; pÞ of
a statistical system. The expression of the Boltzmann
equation in the presence of external forces can be written
as [37]

pμ ∂f
∂xμ

þmKμ ∂f
∂pμ − Γσ

μνpμpν ∂f
∂pσ ¼ CðfÞ; ð1Þ

here Kμ is a 4-force and Γρ
μν is the Christoffel symbol. The

momenta pμ satisfy the onshell relation gμνpμpν ¼ m2 and
the 4-force satisfy gμνpμKμ=p0 ¼ 0. As the general colli-
sion kernel is quite complex, we use Anderson-Witting
relaxation time approximation (RTA) [37]

CðfÞ ¼ −u · p
ðf − feqÞ

τR
: ð2Þ

Here, feq ∼ e−ðu·pÞ=T represents the local equilibrium dis-
tribution function. u · p ¼ gμνuνpμ represents the inner
product. T is the local temperature and uμ is the fluid
4-velocity (gμνuμuν ¼ 1). We consider the relaxation time
τR is a function of temperature but not of momentum.
The energy-momentum tensor TμνðxÞ is obtained from

the distribution function by taking its second moment

Tμν ¼
Z

dΞpμpνf; ð3Þ

where the integration measure is given by dΞ ¼
ffiffiffiffi−gp

d3p
ð2πÞ3p0 .

The energy-momentum conservation ∇μTμν ¼ 0 is ensured
for the RTA kernel by imposing the Landau matching
condition

Z
dΞðuμpμÞ2f ¼

Z
dΞðuμpμÞ2feq; ð4Þ

where ∇μ is the covariant derivative. Here the fluid four-
velocity uμ is defined as the eigenvector of Tμν with energy
density ϵ as the eigenvalue

Tμνuν ¼ ϵuμ: ð5Þ
III. SYMMETRIES AND BJORKEN FLOW

The symmetries of the system set restrictions on the flow
profile of the fluid. A Bjorken system is characterized by
translation, rotational symmetry in the transverse plane
(x − y), boost invariance along the longitudinal direction z,
and a reflection symmetry(z → −z). The symmetries com-
pletely determine the Bjorken flow profile,

uμ ¼
�

tffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p ; 0; 0;
zffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

�
: ð6Þ

We use Milne coordinate system ðτ; x; y; ηÞ, where

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; ð7Þ

η ¼ tanh−1
z
t
; ð8Þ

where τ is the longitudinal proper time, η the space-time
rapidity. The Milne metric is given by gμν ¼ diagð1;−1;
−1;−τ2Þ with the nonzero Christoffels symbols

Γτ
ηη ¼

1

τ
; Γη

τη ¼ τ: ð9Þ

The flow profile in the Milne coordinate with Bjorken
symmetry (η invariance) becomes uμ ¼ ð1; 0; 0; 0Þ.
Rotational and translational symmetries in the transverse
plane imply that the distribution function cannot depend on
x and y. The spatial dependence then reduces to only that
of the proper time τ due to boost invariance and reflection

symmetry. We use transverse momentum pT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
and w≡ pη ¼ τpz ¼ tpz − zpt in the longitudinal direc-
tion. The distribution function is then only dependent on
three variables, one space, and two momenta and the
Boltzmann Equation in Milne coordinates takes the
simple form

∂fðτ; pT; wÞ
∂τ

¼ −
ðf − feqÞ

τR
: ð10Þ

A formal solution can be found for this equation in [38–41]
which is given as:
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fðτ; w; pTÞ ¼ Dðτ; τ0Þf0ðw; pTÞ

þ
Z

τ

τ0

dτ0

τRðτ0Þ
Dðτ; τ0Þfeqðτ0; w; pTÞ; ð11Þ

where Dðτ2; τ1Þ the damping function defined as

Dðτ2; τ1Þ ¼ exp

�
−
Z

τ2

τ1

dτ00

τRðτ00Þ
�
; ð12Þ

and f0 ¼ fðτ ¼ τ0; w; pTÞ.

A. RTA Boltzmann equation under longitudinal force

The introduction of an external force is bound to break
one of the four symmetries. This means that Bjorken flow
could be modified in the presence of force. In order to
approximately retain Bjorken flow, the simplest force one
can then introduce is one that only depends on the proper
time τ and is along the z direction. The introduction of
this force will break reflection symmetry about η ¼ 0.
Considering the force to be weak enough so that the change
in fluid velocity (δuμ) is small and the new velocity is
written as

uμ ¼ uμB þ δuμ: ð13Þ

This approximation is valid as long as the correction to the
fluid variables due to the force is smaller than the equilib-
rium values. Assuming Bjorken flow, the Boltzmann
equation with force along z direction can then be written
as (see Appendix A for details)

�
F ðτÞτ ∂

∂w
þ ∂

∂τ

�
f ¼ −

ðf − feqÞ
τR

: ð14Þ

IV. SOLUTION UNDER EXTERNAL FORCE

Here we assume F ðτÞ ≠ 0 for any value of τi < τ < τf
(where τi and τf are initial and final time).For conven-
ience we introduce a dimensionless function F(τ) and
express F ¼ α

τF
FðτÞ. After a change of variables (see

Appendix A 1), Eq. (14) takes the following form,

∂fðr; s; pTÞ
∂s

¼ −
τF
τR

ðf − feqÞ
FðτðsÞÞτðsÞ : ð15Þ

Where we have defined a new variable s.

sðτÞ ¼
Z

τ

0

Fðτ0Þ τ
0

τF
dτ0; ð16Þ

and used the coordinate transformations ðw; τÞ → ðr; sÞ,

r ¼ w − αs; ð17Þ

s ¼ s: ð18Þ

Here α and τF are constants with dimensions of momen-
tum and time respectively so that α=τF has dimensions of
force. Then we can write a solution

fðs; r; pTÞ ¼ Dðs; s0Þf0ðr; pTÞ

þ
Z

s

s0

ds0

τRðs0Þ
Dðs; s0Þfeqðs0; r; pTÞ; ð19Þ

where

Dðs1; s2Þ ¼ exp

�
−
Z

s2

s1

ds0

Fðτðs0ÞÞðτðs0Þ=τFÞτRðs0Þ
�
: ð20Þ

The above expression for Dðs1; s2Þ gives the impression
that it depends explicitly on the force. However, if one
were to change the coordinates back from s → τ, we can
see that Dðs1; s2Þ takes the form

Dðτ1; τ2Þ ¼ exp

�
−
Z

τ2

τ1

dτ0

τRðτ0Þ
�
: ð21Þ

Therefore dependence of Dðτ1; τ2Þ on force is only
implicitly through τRðτ0Þ.

V. INITIAL CONDITIONS

The initial anisotropic distribution is chosen to be that of
Romatschke-Strickland and form [42],

f0 ¼
2

ð2πÞ3N0

exp

(
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ ð1þ ξ0Þp2

z þm2
p

Λ0

)
: ð22Þ

The three initial free parameters N0, ξ0 and Λ0 allow us to
specify the initial fluid parameters T,PL and PT . Here ξ0
corresponds to the longitudinal anisotropic parameter in
momentum space, andΛ0 is an energy scale, and in the limit
it reduces to local temperature. The value ofΛ0 andN0 is set
such that the energy density matches the energy density of
an equilibrium distribution with the initial temperature T0.
To study the effect of varying m

Λ0
we can change N0 while

ensuring that the initial energy density and ξ0 remain fixed.
For the nonconformal case (m=Λ0 ≠ 0) we use the same set
of initial parameters (Table II, Appendix III) as [43] for ease
of comparison.
The hydrodynamic variables like energy density (E),

longitudinal PL and transverse pressure PT in the presence
of external forces can be obtained from Eqs. (3) and (19)
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EðsÞ ¼ Dðs; s0Þ
Λ4
0

4πN0

HF
ϵ

�
s0; s; ξ0;

α

Λ0

;
m
Λ0

�

þ
Z

s

s0

ds0

τRðs0Þ
Dðs0; sÞT4ðs0ÞHF

ϵ

�
s0; s;

α

T
;
m
T

�
; ð23Þ

PLðsÞ ¼Dðs; s0Þ
Λ4
0

4πN0

HF
L

�
s0; s; ξ0;

α

Λ0

;
m
Λ0

�

þ
Z

s

s0

ds0

τRðs0Þ
Dðs0; sÞT4ðs0ÞHF

L

�
s0; s;

α

T
;
m
T

�
; ð24Þ

PTðsÞ ¼Dðs; s0Þ
Λ4
0

4πN0

HF
T

�
s0; s;ξ0;

α

Λ0

;
m
Λ0

�

þ
Z

s

s0

ds0

τRðs0Þ
Dðs0; sÞT4ðτ0ÞHF

T

�
s0; s;

α

T
;
m
T

�
; ð25Þ

by evaluating the corresponding integrals Appendix B. Note
that due to the breaking of reflection symmetry, the energy-
momentum tensor is no longer diagonal. The nondiagonal
term T03 can be evaluated as

T03 ¼
Z

s

s0

ds0

τRðs0Þ
Dðs; s0ÞT4ðs0ÞHF

03

�
s0; s;

m
T

�
: ð26Þ

We can use it to calculate the modified flow velocity uμ

using the Landau frame definition

Tμνuν ¼ ϵuμ: ð27Þ

T03=Peq contains the directionality of the force as its sign
changes with the force direction. Therefore we can use
T03=Peq and δu=u ≪ 1 as a measure of self consistency.
Here Peq is the equilibrium isotropic pressure defined by

Peq ¼
Z

dΞ
p2

3
feq: ð28Þ

For the rest of our calculation, we use the conformal
relation τRðτÞ ¼ 5c=TðτÞ, where c ∝ η0

s0
is a dimensionless

number which sets the initial viscosity of the system. In this
study, we set the initial time to τ0 ¼ 0.1 fm and the initial
temperature to T0 ¼ 500 MeV. For the nonconformal
computations, we set the mass to m ¼ 200 MeV.
The Eq. (23) can be solved using iterative techniques

(A faster algorithm compared to the iterative technique
used in previous studies is given in Appendix C) and using
the energy density-temperature relation,

EðTÞ ¼ 3T4

π2

�
z2

2
K2ðzÞ þ

z3

6
K1ðzÞ

�
; ð29Þ

where z ¼ m=T and K1, K2 are modified Bessel functions
of the second kind. The relations for pressure Eqs. (24)

and (25) can be evaluated once the temperature is obtained
using the above procedure.

A. Parametrized force

1. Force type 1

Motivated by the exponentially decaying fields in high-
energy heavy-ion collisions we use the following para-
metrization of the force

FðτÞ ¼ τ

τF
exp

�
1 −

τ

τF

�
; ð30Þ

where τF is a decay timescale. The parameter τF is the
proper time at which F takes its maximum value α

τF
. Here α

has the dimension of momentum, α
τF
has dimensions of p2

(Force). By varying the value of α and τF we can control the
strength and the duration of the force. A plot of the
normalized force for various values of decay time is given
in Fig. 1.

2. Force type 2

For exploratory purposes, we also try a constant force

FðτÞ ¼ 1; ð31Þ

where F takes the maximum value F 0. For ease of
comparison, we rewrite F 0 ¼ α

τF
.

VI. EFFECT OF FORCE ON FLUID VARIABLES

A. Force type 1

The application of an external force should change the
particle momenta and therefore could have observable
effects on pressure. We explore these effects in Figs. 2–5
for various values of m=Λ0. The Figs. 2–5 show the proper
time evolution of temperature (top left panel), transverse

FIG. 1. Normalized force (maxðFÞ ¼ 1) for different time-
scales. τF ¼ 1 fm=c (dot), τF ¼ 2.5 fm=c (dashed), τF ¼ 5 fm=c
(dot-dashed).

GANGADHARAN, PANDA, and ROY PHYS. REV. D 109, 074020 (2024)

074020-4



FIG. 2. Evolution of T, P̄L, P̄T , and T̄03 for α ¼ ½200; 100; 50; 0�, τm ¼ 1, and for Π̄0 ¼ 0, π̄0 ¼ −1.

FIG. 3. Evolution of T, P̄L, P̄T , and T̄03 for α ¼ ½200; 100; 50; 0�, τm ¼ 1, and for Π̄0 ¼ 0, π̄0 ¼ 0.99.

STUDY OF EARLY TIME ATTRACTOR WITH LONGITUDINAL … PHYS. REV. D 109, 074020 (2024)

074020-5



FIG. 4. Evolution of T, P̄L, P̄T , and T̄03 for α ¼ ½200; 100; 50; 0�, τm ¼ 1 and for Π̄0 ¼ 0.85; π̄0 ¼ 0.

FIG. 5. Evolution of T, P̄L, P̄T , and T̄03 for α ¼ ½200; 100; 50; 0�, τm ¼ 1 and for Π̄0 ¼ 0.25; π̄0 ¼ 0.
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pressure (top right panel), longitudinal pressure (bottom
right panel) and the scaled off-diagonal component T03=Peq

(bottom left panel) of the energy-momentum tensor for
various values of initial anisotropy. Different lines in these
figures correspond to various values of α. Figure 2 shows
the time evolution of temperature for negative ξ0 values
whereas Fig. 3 is for a sharply peaked pz distribution.
Figures 4 and 5 is for isotropic initial distribution but for
varying m=Λ0 values. In each figure showing the temper-
ature evolution, the red line corresponds to ideal hydro
evolution, and green, orange, and blue correspond to
Boltzmann solution with α ¼ 200; 100; 50; 0 respectively.
The same color code is used in P̄L; P̄T , and T̄τz − τ
evolution.
It is seen that for the magnitude of the force considered in

this study, there is a marginal impact on the evolution of
energy density (temperature). A possible explanation is the
following: the expansion cools down the system whereas
force, in the presence of dissipation, should increase the
temperature of the system. The effect is small because we
are assuming the force and the correction to the fluid
velocity is small.
It is also seen that P̄L increases while P̄T correspond-

ingly decreases during the time period in which the force
acts. PL increases as it is driven by an external force, which
in turn drives the transverse pressure down due to the
constraint E − 2PT − PL ¼ hm2i. We see that the long-term
behavior of the evolution is such that the system relaxes
back to the zero-force curve, and loses memory of the
variations due to force.
From Figs. 2 and 3 we see that the effect of longitudinal

force is diminished when there is a large initial shear
anisotropy. That means that the predominant factor driving
the evolution of the system is the shear force. On the other
hand in Figs. 4 and 5 when the shear anisotropy is low, we
see that the effect of force is pronounced and the effect of
bulk anisotropy is subdominant.

B. Force type 2

In the case of constant force, the force-to-temperature
ratio cannot be kept constant throughout the evolution of the
system. So, we use smaller α ¼ 2; 5; 10 ðMeVÞ values to
make the corrections small. We see again that the variation
in temperature is marginal except for late times when the
force is comparatively larger than the effective temperature.
The variations in the bulk observables are also only
noticeable at late times. The qualitative behavior of the bulk
observables remains the same as that for the case of the
decaying force. We show the results for a constant force for
Π̄0 ¼ −0.37, π̄0 ¼ −1 in Fig. 6.

C. Attractor behavior: Nonconformal

It was reported that for nonconformal systems a universal
attractor was not obtained for fluid variables other than for

scaled longitudinal pressure P̄L ¼ PL=P [43]. The authors
also computed the bounds for Π=P (scaled bulk pressure)
and π=P (scaled sheer pressure) so that the positivity of the

FIG. 6. Evolution of T,P̄L,P̄T and T̄03 for
α ¼ ½10; 5; 2; 0�,τm ¼ 1 and for Π̄0 ¼ −0.37; π̄0 ¼ −1.
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distribution function, the transverse and the longitudinal
pressure is maintained. Following their findings we use the
same set of initial parameters given in Table II. The
corresponding values for m=Λ0, N0 and ξ0 are reported
in Table III. With this, we check how the attractor behavior
is modified by an external force. In Fig. 7 the scaled
longitudinal pressure P̄L is plotted for three different force
α ¼ 0 (top panel), α ¼ 50 (middle panel), and α ¼ 100
(bottom panel). In each subplot, the different colored lines
represent different anisotropies as given in Table III.

For zero force we reproduce the results in the previous
study [43]. However, for finite forces, only a late-time
attractor is present.

D. Attractor behavior: Massless limit

Systems with conformal symmetry were shown to
exhibit universal early time attractor behavior for a variety
of system configurations and flow profiles [8,9,44–47].
Here we check if early-time attractors can be reproduced for
systems under external forces. In Fig. 8 the transverse and
longitudinal pressure is plotted for varying initial condi-
tions (given in Table I) in the presence of an external force
in the massless limit. We observe that even when the system
is subjected to an external force it shows an attractor in P̄L

and P̄T much earlier than the massive case (as compared to
Fig. 7). We note however that this is subject to the condition
that the force has died out much before equilibration is
achieved.
The equilibration rate is mostly determined by the

exponentially decaying damping factor Dðτ; τ0Þ given in
Eq. (21). One can see from Eqs. (23)–(25) that the decay
rate is determined by the interplay between the damping

FIG. 7. Evolution of P̄L for α ¼ ½0; 50; 100�,τm ¼ 1 and for
various initial conditions.

FIG. 8. Scaled transverse and longitudinal pressure plotted for
varying initial conditions (given in Table I) in the presence of an
external force α ¼ 100 with m ¼ 0.

GANGADHARAN, PANDA, and ROY PHYS. REV. D 109, 074020 (2024)

074020-8



factor and the HE=PL=PT
functions. It is observed from

the τ − T graphs that the force has negligible impact on the
temperature evolution and, therefore, does not modify the
damping function(as τR ∼ 1=T). However, it significantly
modifiesHPL=PT

functions. Therefore, the relative change in
behavior is due to the higher sensitivity of these functions
on mass and force. Within the approximation scheme
employed, in the massless limit, the system regains con-
formal symmetry. A combination of these factors gives rise
to the observed behavior.

VII. SUMMARY AND CONCLUSION

We solve the RTA Boltzmann equation incorporating
the external force and study the dynamics of the system
far away from local equilibrium under Bjorken flow. We
also study the attractor behavior of a system undergoing
Bjorken expansion in the presence of external longitudinal
force. For this exploratory study, we consider a constant
force and time-parameterized force which initially peaks
and then exponentially decays afterward. We treat this
force as a small perturbation so that the overall flow profile
remains unchanged. For a constant force the temperature
evolution was observed to vary at late times while for the
time-varying force considered here, no significant change
was observed for temperature evolution. The longitudinal
pressure was observed to increase as it is driven by the
external longitudinal force which in turn drove the trans-
verse pressure down due to the constraint E − 2PT−
PL ¼ hm2i. The force was also observed to have a larger
effect for smaller-scaled mass values.
We explored the attractor behavior by considering the

time evolution of scaled longitudinal and transverse pres-
sure for various initial anisotropies. For conformal systems
an early time attractor was observed for various bulk scaled
observables [8]. Whereas in the nonconformal case [43] an
early time attractor was observed only for scaled longi-
tudinal pressure. The addition of force however modifies
this behavior and an attractor is only found at late times.
In the conformal limit, we observed that, within our
approximation scheme, the attractor for scaled longitudinal
pressure reappears even in the presence of an external force.
This behavior is due to the nontrivial interplay between the
damping function Dðτ; τ0Þ and HPL=PT

. The results in this
work were obtained by assuming that the system obeys
approximate Bjorken symmetry. However, the nondiagonal
terms T03 become comparable to E and P for large values
of force. Therefore, a proper quantitative estimate of the
evolution of the bulk properties cannot be obtained using the
techniques used in this paper.
For future work, one can explore the effect of force on

non-Bjorken flows like Gubser and even arbitrary flow
profiles. One can consider more realistic electromagnetic
forces and a self-consistent solution can be obtained by
considering a 1þ 1 dimensional expansion. One can also

solve for systems under a magnetic field which would
necessarily include transverse dynamics and momentum
dependant forces, Further, one can explore the effects of
chromoelectric and chromomagnetic fields which would
require modifications in the collision kernel.
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APPENDIX A: RTA BOLTZMANN EQUATION
WITH FORCE

Boltzmann equation would then read

F τ
∂f
∂w

þ ∂f
∂τ

þ δuzpz

uτpτ

∂f
∂z

ðA1Þ

¼ −
pτ

uτpτ

ðf − feqÞ
τR

−
δu · p
uτpτ

ðf − feqÞ
τR

: ðA2Þ

If we now assume that δu=uτ ≪ 1, we can ignore the δu
terms from the above equation and get

�
F ðτÞτ ∂

∂w
þ ∂

∂τ

�
f ¼ −

ðf − feqÞ
τR

: ðA3Þ

For the consistency of the above approximation, we need to
keep the strength of the force sufficiently small so that the
background flow is still close to Bjorken.

1. Change of variables

For computational convenience we write the force F as

F ¼ α

τF
FðτÞ: ðA4Þ

We then rewrite the Boltzmann equation as

�
α

τF
FðτÞτ ∂

∂w
þ ∂

∂τ

�
f ¼ −

ðf − feqÞ
τR

: ðA5Þ

To convert Eq. (A3) to a simpler form, we divide both sides
by FðτÞτ=τF getting

�
α

∂

∂w
þ τF
FðτÞτ

∂

∂τ

�
f ¼ −

τF
τR

ðf − feqÞ
FðτÞτ : ðA6Þ

We define the variable s

sðτÞ ¼
Z

τ

0

Fðτ0Þ τ
0

τF
dτ0; ðA7Þ
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and rewrite the proper time derivative to get Eq. (14),

�
α

∂

∂w
þ ∂

∂s

�
f ¼ −

τF
τR

ðf − feqÞ
FðτÞτ : ðA8Þ

We now use the standard technique of characteristics for
solving partial differential equations and define new var-
iables ðw; sÞ → ðr; sÞ

r ¼ w − αs; ðA9Þ

s ¼ s; ðA10Þ

and obtain the equation

∂fðr; s; pTÞ
∂s

¼ −
τF
τR

ðf − feqÞ
FðτðsÞÞτðsÞ : ðA11Þ

APPENDIX B: INTEGRALS

In this section we give the explicit form of the H
functions appearing in the equation for E, P etc given in
Eqs. (23)–(26) We define the integrals,

H̃F
ϵ ½s0; s; m; α� ¼ 1

4π2

Z
duu3e−

ffiffiffiffiffiffiffiffiffi
u2þz2

p
HF

ϵ ðu; z; s; s0; αÞ;

ðB1Þ

H̃F
L½s0; s; m; α� ¼ 1

4π2

Z
duu3e−

ffiffiffiffiffiffiffiffiffi
u2þz2

p
HF

Lðu; z; s; s0; αÞ;

ðB2Þ

H̃F
T ½s0; s; m; α� ¼ 1

4π2

Z
duu3e−

ffiffiffiffiffiffiffiffiffi
u2þz2

p
HF

T ðu; z; s; s0; αÞ;

ðB3Þ

H̃F
03½s0; s; m; α� ¼ 1

4π2

Z
duu2e−

ffiffiffiffiffiffiffiffiffi
u2þz2

p
ðB4Þ

where u ¼ p=T and z ¼ m=T.
The functions inside the integrals can be obtained using

analytical techniques. Define

hðsÞ≡ τðsÞ: ðB5Þ

For notational simplicity, we define the following variables

hðs0Þ
hðsÞ ≡ h̄ðs; s0Þ≡ h̄; ðB6Þ

α × ðs − s0Þ
hðs0Þ ≡ gðs; s0Þ≡ g; ðB7Þ

and

N2 ≡ 1

ð1 − h̄2Þ
�
u2 þ h̄2g2 þ z2

u2
þ g2h̄4

u2ð1 − h̄2Þ
�
; ðB8Þ

G≡ gh̄2

uð1 − h̄2Þ : ðB9Þ

Using the above definitions we can write

HFðu; z; s; s0;αÞ ¼ −h̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − h̄2Þ

q
N2

(
1

2

�
sin−1

G − 1

N
− sin−1

ðGþ 1Þ
N

�

þ 1

2

2
4− 1þ G

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1þG
N

�
2

s
þ G − 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
G − 1

N

�
2

s 3
5
9=
;; ðB10Þ

HLðu; z; s; s0; αÞ ¼ −
h̄3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h̄2

p
8<
:
�
N2

2
þ ðgþ GÞ2

��
sin−1

G − 1

N
− sin−1

1þ G
N

�

þ N2

2

2
41þ G

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1þ G
N

�
2

s
−
G − 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
G − 1

N

�
2

s 3
5

− 2Nðgþ GÞ
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1þG
N

�
2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −G
N

�
2

s 3
5
9=
;; ðB11Þ
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HTðu; z; s; s0; αÞ ¼ −
h̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − h̄2Þ
p

8<
:
�
1 −G2 −

N2

2

��
sin−1

G − 1

N
− sin−1

1þ G
N

�

−
N2

2

2
41þ G

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1þ G
N

�
2

s
−
G − 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
G − 1

N

�
2

s 3
5

þ2NG

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1þ G
N

�
2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −G
N

�
2

s 3
5
9=
;: ðB12Þ

HF
03ðu; z; s; s0; αÞ ¼ gh̄ ðB13Þ

APPENDIX C: ITERATIVE SOLUTION
ALGORITHM

Consider the integral equation

yðtÞ ¼ Kðt; t0; yÞvðt; t0Þ ðC1Þ

þ
Z

t

t0

dt0Kðt; t0; yÞHðt; t0; yðt0ÞÞ
τRðyðt0ÞÞ

fðyðt0ÞÞ ðC2Þ

where,

Kðt; t0; yÞ ¼ exp

�Z
t

t0
gðyðt00ÞÞdt00

�
ðC3Þ

and we are given the initial condition

yðt0Þ ¼ y0: ðC4Þ

This implies

yðt0Þ ¼ vðt0; t0Þ ðC5Þ

as

Kðt; t; yÞ ¼ 1 ðC6Þ

The usual method for solving this equation is to consider
an arbitrary functional form for the solution yðtÞ and
substitute it in the right-hand side (rhs) and get a new

solution. This process is continued until the iteration
converges to some desired level of accuracy. The drawback
of this method is that the speed of convergence depends on
the initial guess yðtÞ. Here we take an alternate approach. If
the function yðtÞ is continuous then we approximate at each
step tn ¼ tn−1 þ Δtn,

yðtn−1 þ ΔtnÞ ¼ yðtn−1Þ þOðΔtnÞ: ðC7Þ

Therefore with the initial condition yðt0Þ ¼ vðt0; t0Þ, we
start with

yðt0 þ ΔtÞ ∼ yðt0Þ ðC8Þ

and continue this procedure in order for each n succes-
sively. We show elsewhere that after one iteration this
produces an approximation for yðtÞ accurate up to OðΔt2Þ.
This process gets rid of the need for a good initial guess. It
not only converges faster but also allows us to estimate
order or error for our computation.

APPENDIX D: INITIAL CONDITIONS

For the conformal case, we fix the anisotropy and
normalization the same as the nonconformal case but vary
the value of Λ0 to match the initial energy density. The
initial conditions for the distribution function were chosen
to match [43] for comparison and are reproduced in the
Table I.

TABLE I. Various values of Λ0,N0 and ξ0 corresponding to different initial values of ðπ=PÞ0 for m ¼ 0.

No. 0 1 2 3 4 5 6

Λ0 321.74 314 275 1089 198 500 500
ξ0 −0.832 −0.908 −0.949 1208.05 −0.987 0 0
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