PHYSICAL REVIEW D 109, 074019 (2024)

Magnetic field dependence of the neutral pion longitudinal screening mass in
the linear sigma model with quarks
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We use the linear sigma model with quarks to study the magnetic-field-induced modifications on the
longitudinal screening mass for the neutral pion at one-loop level. The effects of the magnetic field are
introduced into the self-energy, which contains the contributions from all the model particles. We find that,
to obtain a reasonable description for the behavior with the field strength, we need to account for the
magnetic field dependence of the particle masses. We also find that the couplings need to decrease fast
enough with the field strength to then reach constant and smaller values as compared to their vacuum ones.
The results illustrate the need to treat the magnetic corrections to the particle masses and couplings in a self-
consistent manner, accounting for the backreaction of the field effects for the magnetic field dependence of
the rest of the particle species and couplings in the model.
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I. INTRODUCTION

In recent years, it has become clear that electromagnetic
fields provide a powerful probe to explore the properties of
the QCD vacuum. When the energy associated with the
field strength is larger than Agcp, the field can prove the
hadron structure and help reveal the dynamics associated
with confinement and chiral symmetry breaking. For
example, at zero temperature, magnetic fields catalyze
the breaking of chiral symmetry, producing a stronger light
quark-antiquark condensate [1]. However, for nonvanish-
ing temperature, magnetic fields inhibit the condensate
formation and reduce the critical temperature for chiral
symmetry restoration, giving rise to inverse magnetic
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catalysis (IMC) [2-15]. This property has motivated an
intense activity aimed to search for the influence of
magnetic fields on hadron dynamics [16-67]. Since the
dynamics of chiral symmetry breaking is dominated by
pions, the lightest of all quark-antiquark bound states, it
then becomes important to explore how the pion mass is
affected by the presence of magnetic fields.

Recall that, for a Lorentz-invariant system, the mass
corresponds to the rest energy of a given particle, which can
then be obtained from the pole of the propagator when the
particle three-momentum g is taken to zero. This is dubbed
the “pole mass.” Notice that if, instead, the zeroth compo-
nent of the particle four-momentum g, is taken first to zero,
we obtain the “screening mass.” The screening mass
squared can be identified as the negative of the particle
magnitude of its three-momentum squared. In a system
where Lorentz symmetry is unbroken, the pole and screen-
ing masses coincide. However, when Lorentz symmetry is
broken, as is, for example, the case of a system at finite
temperature, the above described limiting procedures do
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not yield the same values. Explicitly, if f(qo,|q|;T)
represents the thermal medium response function that
contributes to the particle dispersion relation, the limits
f(qo,0;T) and f(0,|g|;T) do not commute. Pole and
screening masses do not coincide. The name screening
mass stems from the analysis in linear response theory
when studying the influence of static external fields on a
thermal medium. Because of the static nature of the
external field, its screening within the medium is controlled
by the system’s response function in the limit f(0, |g|; T).
The inverse of the screening mass corresponds to the
screening or Debye length.

When the system is immersed in a magnetic field, the
breaking of Lorentz symmetry happens in the spatial
directions, giving rise to distinct dispersion properties for
particles moving in the transverse or the longitudinal
directions with respect to the field orientation. Thus, in
addition to studying the magnetic-field-induced modifica-
tions of the pole mass, one can also study the corresponding
longitudinal and transverse screening masses. At 7 = 0 the
longitudinal screening mass is equal to the pole mass. This
degeneracy is lifted when 7T #0. Although most
of the studies have concentrated in the magnetic properties
of the pion pole mass [68—80], more recently, an interesting
relation between the magnetic behavior of screening
masses and condensates, and thus between IMC and
screening masses, has been obtained in Ref. [77].
Motivated by this finding, the authors of Ref. [81] used
a lattice QCD (LQCD) setup to assess the importance of the
“sea” versus the “valence” quarks’ contribution for the
temperature and magnetic dependence of the pion screen-
ing mass. For the lowest temperature studied, the screening
mass seems to behave as a monotonically decreasing
function of the field strength, up to |eB|~ 2.5 GeV>.
Unfortunately, no attempt to distinguish between longi-
tudinal and transverse screening masses was made. The
transverse and longitudinal pion masses at finite temper-
ature and magnetic field strength were also studied in
Ref. [82] using a two-flavor Nambu—Jona-Lasinio (NJL)
model in the random phase approximation. The authors
focused on addressing possible mishaps of previous cal-
culations [83,84]. Their results indicate opposite behaviors
for the transverse and longitudinal screening masses as
functions of the magnetic field strength for 7 = 0; whereas
the former decreases, the latter slightly increases.

Since it is important to check that in a magnetic back-
ground the pole and the longitudinal screening mass are
equal when calculated within the framework of a given
effective model at 7 = 0, in this work we use the linear
sigma model with quarks (LSMq) to study the pion
longitudinal screening mass as a function of a magnetic
field of arbitrary strength for vanishing temperature. We
argue that to extract a reliable behavior of this mass
as a function of the field strength, the magnetic field

dependence of the couplings, as well as of the quark, pion,
and o pole masses, need to be accounted for and that, in this
sense, the complete solution of the particle mass depend-
ence on the magnetic field needs to be treated self-
consistently within a given model. We find that a rapid
decrease of the model couplings with the field strength is
needed for the longitudinal screening mass to follow the
LQCD profile as a function of the magnetic field. This
procedure is consistent with previous calculations of the
magnetic field dependence of the pion pole mass within the
same model, where it was also found that a rapid reduction
of the couplings with the field strength is needed to describe
the magnetic field behavior of the pion pole mass [70,71].
Since the LSMq provides a general framework to study
quark-meson systems under the influence of magnetic
fields, the setup can also be extended to address the
properties of the directional sound velocities, a subject
that is studied in Ref. [81], or the connection between
screening masses and inverse magnetic catalysis, a subject
that is emphasized in Ref. [82]. These studies require, as a
previous step, the implementation of an adequate formu-
lation of the magnetic field effects at zero temperature, the
subject that we explore in the present work. The work is
organized as follows: In Sec. II, we introduce the linear
sigma model with quarks. In Sec. III, we make a quick
survey of the way magnetic field effects are introduced into
the propagators of charged bosons and fermions, which we
hereby describe in terms of the Schwinger proper time
formalism. In Sec. IV, we compute the Feynman diagrams
that contribute to the neutral pion self-energy. In Sec. V,
we compute the magnetic corrections to the neutral pion
screening masses, showing that the behavior strongly
depends on the magnetic field dependence of masses
and couplings. We finally summarize and conclude in
Sec. VI. We reserve for the Appendix the explicit calcu-
lation details of the one-loop magnetic filed corrections to
the neutral pion self-energy.

II. LINEAR SIGMA MODEL WITH QUARKS

The LSMq is an effective model that describes the low-
energy regime of QCD, incorporating the spontaneous
breaking of chiral symmetry. The Lagrangian for the
LSMq can be written as

1 1, 2 A -
L= 20,07 +5 (9,7 + %(& +#) =P+ )

+ Wy — igr W T Iy — gy, (1)

Pions are described by an isospin triplet, 7 = (7, 7,, 713).
Two species of quarks are represented by an SU(2) isospin
doublet . The o scalar is included by means of an isospin
singlet. Also, 4 is the boson self-coupling and ¢ is the
fermion-boson coupling. a®> > 0 is the mass parameter.
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To allow for spontaneous symmetry breaking, we let the
o field develop a vacuum expectation value v,

1 1
L =0,60'c + Ea,,noaﬂno +0,m_d'm,

2
[N 2 o
=5 Me0" = 5 MG — MGT_T + ipdy
_ a’ A
My = v* — 104 + Line, (2)

where the charged pion fields can be expressed as

Ty :L(ﬂl ii”z)’ (3)

V2

and the interaction Lagrangian is defined as

A
Line=— 1 o — lo® — e — Ad’n_n, — 2von_m,
A 2

2.2 2 2 2 2 4
— 50~ Avormy — AnZnt — Aw_m my — 270

+ a*ve — gpryo — igr (v, +T_m_ + 13wy
(4)
In order to include a finite vacuum pion mass m, one adds

an explicit symmetry breaking term in the Lagrangian of
Eq. (2) such that

L L' =L+ ho. (5)

As can be seen from Egs. (2) and (4), there are new terms
that depend on » and all fields develop dynamical masses,

m(z; =31?% - a2,

m(z) = W? — a?,

my = gv. (6)
Using Egs. (2) and (5), the tree-level potential is given by

2

:—a—vz+%v4—hv. (7)

Vtree ( U) 5 2

This potential develops a minimum, called the vacuum
expectation value of the o field, namely,

la* + m?
Vg = TO (8)

Therefore, the masses evaluated at v, are

la* + m}
ms(vg) =g fo,

m2(vy) = 2a* + 3mj,

mg(vo) = mg. ©)

Finally, an external magnetic field, uniform in space and
constant in time, can be included in the model introducing a
covariant derivative in the Lagrangian density, Eq. (2),
namely,

9, = D, = 0, + ieA,, (10)

where A* is the vector potential corresponding to an
external magnetic field directed along the Z axis coupled
to a particle with charge e. In the symmetric gauge, this is
given by

1
A*(x) :EXDFW (11)

and couples only to the charged pions and to the quarks.
Notice that, in order to consider the propagation of
charged particles, one can resort to introducing Schwinger
propagators, which can be expressed either in terms of their
proper time representation or as a sum over Landau levels.
For completeness of the presentation, we now proceed to
briefly discuss the properties of these propagators.

III. MAGNETIC FIELD-DEPENDENT BOSON AND
FERMION PROPAGATORS

To consider the propagation of charged particles within
a magnetized background, we use Schwinger’s proper
time representation. The fermion propagator can be written
as [85]

Se(x,x') = e @S (x = x'), (12)

where @/ (x, x’) is the Schwinger phase given by

&te) =g [ de a0+ g2, ] 3

and g, is the charge of a quark with flavor f. ®/(x,x')
corresponds to the translationally noninvariant and
gauge-dependent part of the propagator. On the other hand,
S;(x — x') is translationally and gauge invariant and can be
expressed in terms of its Fourier transform as

4
Si(x—=x') = /éT’;AtSf(p)e—iP-(x—x’)’ (14)

where
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. 2 ptanlapBls) o )
zs(pH Pl Tay Bl mf+le

oo ds
o feds
i5;(p) / cos(1q,Bls)

X [(cos(|qu|s) + 7172 sin(|g,B|s)sign(q;B))

2 ] (15)

x (mg+ p)) " cos(lq,Bls)

with m; as the quark mass. In a similar fashion, for a
charged scalar field we have

D(x, x/) — eid),,(x,x’)D(x _ x/)’

D(x—x)= / (621”[;4D(p)e—ip-(x—x/), (16)

with

iD(p) = / c__ Ay (et (g
o cos(|gBls)

where m,;, and ¢,, are the boson mass and charge, respec-
tively. The e appearing in Egs. (15) and (17) is the
infinitesimal positive parameter that enforces Feynman
boundary conditions and thus causality. Notice that, in
the B — 0 limit, one recovers the usual Feynman fermion
and scalar propagators.

We now use these ingredients to compute the elements
necessary to obtain the magnetic modification of the neutral
pion mass.

IV. ONE-LOOP MAGNETIC CORRECTIONS

To compute the magnetic-field-induced modification to
the neutral pion screening mass, the starting point is the
equation defining its dispersion relation in the presence of
the magnetic field, namely,

q5 = |GI* = m§(B) — Re[[lz] =0, (18)

where I1j is the magnetic-field-dependent neutral pion self-
energy that depends on the model couplings and masses.
Notice that, for the calculation of the magnetic-field-induced
modifications to the mass, only the real part of I1; contrib-
utes. On the other hand, the imaginary part would contribute
to the magnetic-field-induced pion damping rate. The
properties of this damping rate can also offer insights into
the possible opening of magnetic field driven channels for
particle process; however, for the purposes of the present
work, we hereby concentrate exclusively on the magnetic-
field-induced modifications of the (longitudinal screening)
mass that are encoded in the real part of the self-energy.
The computation requires knowledge of each of the
above-mentioned elements as functions of the field
strength. To obtain the screening mass, we need to set
qo =0 in Eq. (18) and find positive solutions for the

parameter m2, = —|g|>. In the presence of a constant

magnetic field, we have two kinds of solutions for m2:
the longitudinal screening mass denoted by my. |, which is
defined for the limit where ¢, = 0, and the transverse
screening mass, denoted by m ;, which is defined for the
limit where g; = 0. Since we have chosen the direction of

the magnetic field to point along the z axis, mgc’H = —q3,
whereas m2, | = —|g'|>. In what follows, we concentrate

on the calculation of the longitudinal screening mass. We
leave for a future work the computation of the transverse
screening mass.

We first compute the neutral pion self-energy,

% — zf:(n%@ + Hff) +I, T + 10, (19)

The terms on the right-hand side of Eq. (19) are represented
by the Feynman diagrams depicted in Figs. 1-4, which
contribute to the self-energy at one loop. The subindices
represent the kind of particles in the loop and correspond to
the quark-antiquark loop H}lff depicted in Fig. 1, the quark
tadpole H? depicted in Fig. 2, the charged boson tadpoles
Hfi depicted in Figs. 3 and 4, and the neutral boson
tadpoles IL,II,. Notice that the diagrams with neutral
bosons in the loop contribute only to vacuum renormaliza-
tion and not to the magnetic properties of the system. To see
this, recall that these fields contribute with terms repre-
sented by the regularized integrals that are computed using
bare couplings and masses. When the propagator does not

k+q f
us 7 u
et (RN o o
q ; (/k q

FIG. 1. Feynman diagram corresponding to the one-loop
contribution from the fermion antifermion loop to the neutral
pion self-energy in the LSMgq.

FIG. 2. Feynman diagram corresponding to the tadpole con-
tribution from the fermion loop and a ¢ to the neutral pion self-
energy in the LSMgq.
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0 0
— —
q q

FIG. 3. Feynman diagram corresponding to the one-loop
contribution from charged pions to the neutral pion self-energy
in the LSMq.

include magnetic field effects, the result of the regularized
integral can be canceled by the introduction of suitable
counterterms. The upshot is that, when a given diagram is
computed without field effects in the propagator, it does not
contribute to the magnetic field modifications of particle
properties. Therefore, hereafter we do not consider the
effect of these diagrams for the description of the magnetic
modifications of the pion self-energy.

Since the contribution from the quark-antiquark loop is
the only one that depends on the pion momentum, we first
concentrate on the contribution from this diagram, for a
single quark species. This is given explicitly by
|

FIG. 4. Feynman diagram corresponding to the tadpole con-
tribution from charged pions and a ¢ to the neutral pion self-
energy in the LSMgq.

/%Tr

Notice that, since both particles flow with the same
charge around the loop, the Schwinger phase vanishes.
According to the explicit computation in the Appendix,
the fermion contribution to the pion self-energy is
given by

—illf;(q) = [75iS;(k)ysiSy(k + q)]. (20)

B 2 sin(|gsBlu(1 — v)) sin(|g;B|uv
I8 (g) = —4g Mle dv/ duexp|—i 9L (lq;B| (. ) sin(|gq,Bluv)
11 (47) |9/B| sin(|q,Blu)
2
X e_iq.%”"(l_1;)eiq%”"(l‘”)e_mm_zfe—ue{ mf |qu|
e, B10) + 514,570

" (—qi sin(|q;Blu(1 — v)) sin(|q;B|uv)

lq/B| sin(|q¢B|u)

where we have defined the variables

) s (- ).

s=u(l-v),
s'=uw. (22)
To isolate the magnetic contribution in the pion self-energy, we need to work with the function F(g3, ¢3, 47, L Mmy)
defined as
2 2 2 _ B
F(QO’ C]37 qu H 7 q}};IEonf’ (23)
explicitly given by
B 1 )
F(q5.93-9% . |asB|.my) L 2!/ dv/ due™"
(477.') 0 0
) {{ me gsin(lgBlu(1—v))sin(g/Bluv) v(1=v)(g3-q3)
tan(|q /B|u) sin®(|qB|u) tan(|q,Blu)
_l.< Bl 1 )} ity [(m%—v(l—v)(%wi)ﬂ(l —v)(J%)u—Zi] }
sin2(|qu|u) utan(|q,Bu) |qu|u2 ’
(24)
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where X and X, are defined as

g% sin(|gsBlu(1 —v))sin(|q;B|uv)

 |g;B| sin(|q ;B|u)
Xo = uv(1=v)(¢1 +43)

+ q3uv(1 - )

— qouv(1 = v) + miu,

- qguv(l = v) + m7u. (25)

Hereafter, we concentrate on the computation of the longitudinal screening mass. For this purpose, we set g3 = g3 = 0 in

the function F(q3.q3. 47 .|qsB|.ms) of Eq. (24), to obtain

l4,5] /1 dv /oo due‘”“{e‘ix {m} (=)
2
(47)* Jo 0 tan(|q;B|u)

F(O, q%,O, |qu|, mf) — _492

_ i< g8
sin2(|qu|u)

o [m2=o(l =v)g? 2i
utan(|qsBlu) |q;Blu |q;Blu

In this case, X and X, reduce to the same expression, which is explicitly given by

X = Xo = uv(l = v)g3 + um} = ua, (27)

with

a=mj+v(l - v)g3. (28)

The real part of the u integral in Eq. (26), which is needed to compute the screening mass, can be performed analytically (see

the Appendix), with the result

4g°

Re[F(0,43.0.]q,B|.my)] =

~lan)? / dv{—Zv(l —0)g3[A; + A,

o <\/ 2ot (1) - 2ens(57) )| 147 [ ) )|

a
+1q B|ln< > ln<—)
! g8 2|qB]

where A; and A, are given by

|qu]1n(47r)—|—2|qu|lnF< T |>} (29)

7 ( )
e =) ()]
cosh(qef’%o COS(\qﬁi’\) 1—e“’fB‘cos(qu‘>
|C]fB| a a
A, = — 1 -y . 30
2= T aggm) Y g Bl (0)

Notice that the limits g;B — 0 and € — 0 do not commute.
Therefore, to check that Eq. (29) goes to zero when q;B
vanishes, the ¢ dependence has to be maintained. For finite
and arbitrary values of g,B, the integration over v needs to
be numerically performed for finite values of e. We have
checked that the value of the integral converges after having
performed the v integration when we then take smaller
values of € so as to implement the limit ¢ — 0. Notice that,
to compute the magnetic modification of the screening

|
mass, only the real part of the self-energy is required.
However, the imaginary part of the self-energy is also an
interesting and useful quantity that could be computed in
the presence of a magnetic field, since this is directly linked
to the magnetic field activation of decay channels that are
otherwise not present in the absence of magnetic fields. For
example, if as a consequence of field effects, a meson mass
becomes larger than twice the quark mass, the meson decay
into a quark-antiquark pair can be opened and this is
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signaled by a nonvanishing imaginary part of the meson
self-energy. In the present work, no such channel is opened
since the pion mass decreases and always remains smaller
than twice the quark mass as a function of the field strength
and, consequently, the magnetic-field-dependent imaginary
part of the pion self-energy vanishes, as expected. This may
not be the case were we to consider the ¢ meson or when
the combined thermomagnetic effects on meson masses are
considered.

We now proceed to compute the charged boson loop
contribution to the neutral pion self-energy. This includes
the two tadpole diagrams shown in Figs. 3 and 4 and can be
written as

8 2
. :_ﬂ<1—@>ng, (31)

2
4 mg

where I17 is the contribution to the neutral pion self-energy
coming from Fig. 3, which is calculated by

[k
i — / Gyt Do) (32)

Notice that, since the initial and final loop space-time points
in the tadpole Feynman diagram coincide, the Schwinger
phase also vanishes. Substituting Eq. (17) into Eq. (32) and
integrating over the momentum and s variables, we obtain,
after subtracting the B = 0 contribution,

mj mj |9»B|
e, = —t- |1 b) -1 P n(2
1 = o () 1] + e men)

_lasB|

1 m?
In|T(= b .
877 “{ <2+2|qu|>} (33)

Notice that, since Eq. (33) does not depend on the external
momentum, it represents a purely real contribution. There-
fore, the explicit expression for Hfi in Eq. (31) is given by

8 ) 2 2 2
e, =S (A Ly ()
= 4 mg ) |16z 2|q,B|
1948 |9,B] 1 mj
In(27) =422 [ ( . (34
AT L U R T (34)

Finally, for the contribution of the quark tadpole ij shown in

Fig. 2, we have

4
—il} = ZAvg/%Tr[iS(p)]. (35)

Substituting Eq. (15) into Eq. (35), then performing a Wick
rotation to Euclidian space and finally integrating over the
momentum variables, we obtain, after subtracting the B = 0
contribution,

lasBl
tanh (|, B]5) 1} (36)

Agm ) —smj
Hlfg'_ngfzﬂ/ dsez [

: 8zms Jo s
Notice that Eq. (36) corresponds also to a purely real
contribution.

V. MAGNETIC MODIFICATION TO THE
NEUTRAL PION MASS

With all these elements at hand, we can now find the
magnetic-field-dependent longitudinal screening mass for
the neutral pion from the dispersion relation (18) by setting
g% = g3 = 0. Since we are pursuing the purely magnetic
field effects, we also subtract the B = 0 contribution, which
amounts to subtracting the vacuum contribution, namely,

—q3 = m}(B) + ReF(q3 = 0,43, 4% =0, q/Bl). (37)

where F is defined in correspondence with Eq. (23) and
accounting for all relevant diagrams, that is,

g/B) =T = lm I, (3

F(q3. 43 47
The longitudinal screening mass is obtained finding sol-
utions for m?, | = —q3, for different values of the field

strength. In anticipation of the results, we point out that, in
order to make a reasonable description of the behavior of
the screening mass with the field strength, we need to
account for the magnetic field dependence of the different
particles involved in the self-energy, as well as of the
couplings. In this sense, the full-fledged description of the
problem therefore requires a self-consistent treatment,
whereby all self-energies of the particles subject to the
influence of the magnetic field depend on each other
through the field dependence of their masses. However,
for our purposes, here we set the problem in a simpler
manner. We borrow results for the magnetic field depend-
ence of the pion, o, and quark pole masses, which are inputs
to compute the magnetic corrections to the neutral pion
screening mass. We have taken as input the pole pion mass
mg(B), the quark mass m,(B), and the ¢ mass m,(B) as
functions of the magnetic field from Ref. [72]. Figure 5
shows the magnetic field dependence of the input masses.
To have a direct comparison with LQCD results of
Ref. [81], hereby we use a vacuum value of my(B = 0) =
220 MeV for the pion mass, m (B = 0) = 252 MeV for
the quark mass, and m,(B = 0) = 550 MeV for the o
mass. In principle, the magnetic mass dependence we use is
rigorously valid for eB < 0.4 GeV?, which is the upper
limit for the cutoff for the NJL calculation of Ref. [72].
Hence, the mass values for large magnetic fields should be
considered as extrapolations, as they provide only a
qualitative behavior in this limit. As we show, the magnetic
dependence of these masses turns out to be a key ingredient
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0.7 . . . -
0.6 _//—\
0.5 k — mf A
S o4l —mr
S, r — ma
S 03f :
0.2 \ a
01l ]
0.0 : . . . ]
0.0 0.2 0.4 0.6 0.8
qiB [GeV?]
FIG. 5. Masses of the quark (blue line), pion (orange line), and

o (green line) as a function of the magnetic field following
Ref. [72].

that allows a good description of the behavior of the
longitudinal screening mass found by LQCD and for
NJL model-based calculations [81,82].

Before proceeding to the analysis of the screening mass,
we first test whether the model can be used to describe the
LQCD average condensate as a function of the field strength.
Figure 6 shows this quantity taken from Ref. [86] compared
to our model calculation, using the same magnetic
field dependence of the quark mass that we use as input
to compute the neutral pion screening mass. The model
calculation provides a reasonable description of the LQCD
data.

As discussed in Sec. IV, the neutral pion self-energy is
described by the two couplings g and A; the former enters in
the calculation of the fermion contribution to the self-
energy, depicted in Fig. 1, whereas the latter enters in the
contribution of the tadpole diagrams of Figs. 3 and 4. Also,
a combination of both couplings enters in the computation
of the tadpole diagram in Fig. 2. In vacuum, these

(Z, +24) 2

— LSMq e LQCD

0.0 0.2 04 0.6 0.8 1.0 1.2
qrB[GeV?]

FIG. 6. Average normalized condensate computed from the
model compared to the results from Ref. [86].
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FIG. 7. Neutral pion longitudinal screening mass as a function
of the magnetic field strength normalized to the pion pole mass
for B = 0 computed using g = 2.75. Solutions to the dispersion
relation cease to exist beyond g;B ~ 0.2 GeV2.

parameters have to obey the following constraints imposed
by the model and that are derived from Eq. (6):

g:mf/fﬂ7
I’)’l?,—l’n2

where, in account of the partially conserved axial current
statement, we identify the vacuum expectation value v
with f,, the pion decay constant. Substituting the values of
the masses in Eq. (39), we obtain g~ 2.75 and 1 ~ 15.

We now use the aforementioned parameters in Eq. (37)
to find the screening mass for the neutral pion. The results
are shown in Fig. 7 as the ratio my. | /m,. Hereafter, for the
calculations, we sum over the two light quark flavor
charges taking |¢q,| =2/3 and |g,4| = 1/3. Notice that,
with this choice, the behavior of the screening mass does
not resemble the findings of LQCD, nor those of NJL.
Furthermore, the solutions to the dispersion relation equa-
tion cease to exists for an intermediate value of the field
strength.

Motivated by the results of Ref. [72], which point out to a
fast decrease of the NJL coupling as a function of the
magnetic field, we first study the consequences of using a
lower value of the g coupling to explore the effects for the
m. ||/ mg ratio. The results are shown in Fig. 8. Notice that
the effect of decreasing ¢ is to increase the range of
solutions for my. | as a function of g,B, producing results
closer to those of the NJL and LQCD ones. We find that the
choice g = 0.33, which corresponds to the solid line plot in
Fig. 8, already provides a good description of the NJL and
LQCD findings. Finally, we add the contribution from the
tadpoles shown in Figs. 2 and 4. Here, we naturally
choose the best parameter already determined for g, that
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0.0 0.2 0.4 0.6 0.8
qrB[GeV?]
FIG. 8. Neutral pion longitudinal screening mass as a function

of the magnetic field strength normalized to the pion pole mass
for B=0: g=2.75 (dotted), g= 1.5 (dashed), g =0.75
(dashed-dot), and g = 0.33 (solid). Solutions to the dispersion
relation cease to exist beyond ¢,B~0.2, 0.35, 0.55, and
0.8 GeV?, respectively, and the range where solutions exist
increases as the coupling decreases.

is, g = 0.33 from Fig. 8, and use it as a starting point to then
add the tadpole contributions. The results are shown in
Fig. 9 for the choice of parameters g = 0.33 and 1 = 2.5.
Here, we compare our findings with the results for the
screening masses reported in Ref. [82] for the NJL model
and also with the LQCD results in Ref. [81] for
T =17 MeV. Notice that the NJL results are reported
for T = 0, just as ours, however, the results from LQCD are
calculated for finite temperature. We thus compare with the

1.2 ——
—— {7 loop + tadpoles ]

0.0“‘0.2“‘0.4“‘0.6‘ ‘0.8‘
qrB [GeV?]

FIG. 9. Neutral pion longitudinal screening mass as a function
of the magnetic field strength normalized to the pion pole mass
for B =0, including all the contributions to the self-energy
computed with g = 0.33 and 4 = 2.5 compared to the NJL results
from Ref. [82] and to an interpolation of the data for the LQCD
results from Ref. [81] for T =17 MeV. The green shadow
represents the error in the LQCD calculations from Ref. [81].
For comparison we also show the case where only the fermion-
antifermion loop is considered, computed with g = 0.33.

smallest temperature reported, which corresponds to
T = 17 MeV. The results are consistent with the findings
in Refs. [70,71] for the magnetic field dependence of the
pole pion mass in the large field limit. We emphasize that a
good description for the LQCD and NJL results for the
neutral pion parallel screening mass can be achieved only
when the couplings are taken to be about one order of
magnitude smaller than their vacuum values. We have
refrained from parametrizing the magnetic field depend-
ence of these couplings, but instead highlight that their
decrease happens soon after the magnetic field starts
growing from zero.

VI. SUMMARY AND CONCLUSIONS

In this work we studied the magnetic-field-induced
modifications on the longitudinal screening mass of the
neutral pion at one-loop level using the LSMgq. The effects
of the magnetic field are introduced in the neutral pion self-
energy, which is made out of several terms stemming from
the contribution from the ¢ as well as from the charged
particles of the model to the loop corrections. We found
that, in order to obtain a reasonable description for the
behavior of the longitudinal screening mass with the field
strength, the magnetic field dependence of the particle
masses, as well as of the couplings, needs to be taken into
account. Moreover, for the calculation to reproduce the
corresponding results from LQCD and NJL, the couplings
g and A need to decrease fast enough (within a magnetic
field interval ~0.1 GeV? from B =0) to then reach
constant and small values with the field strength. This
result is in agreement with the findings of Refs. [70,71].
The results illustrate the need to account for the back-
reaction of the magnetic field dependence of the rest of the
particle species in the model. This could be achieved by a
complete self-consistent treatment of the problem.
However, this represents a highly involved procedure,
requiring the simultaneous solution, at a given perturbative
order, first of the set of coupled equations that govern the
behavior of the pole masses, together with the couplings, to
then use these as inputs for the coupled set of equations that
yield the screening masses. Although this procedure can be
implemented, in principle, in this work we have taken the
more modest approach that makes use of the magnetic field
behavior of the particle masses found in Ref. [69]. In this
sense, we believe that this work provides further evidence
of the need to consider mutually dependent magnetic-field-
dependent masses and couplings in effective model calcu-
lations to achieve better insight into the properties of
strongly interacting systems subject to the effects of
magnetic fields. The results are obtained using a method
to analytically carry out the calculation of the quark-
antiquark contribution to the neutral pion longitudinal
screening mass up to the last integral. The method is valid
for arbitrary field strengths, but cannot be directly applied
to the case of the transverse screening mass, for which the
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pole contributions need to be handled in a different manner.
We are currently working on this calculation, and the
results, together with thermal effects, will soon be reported
elsewhere.
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APPENDIX: NEUTRAL PION SELF-ENERGY
CALCULATION

Consider the quark-antiquark loop depicted in Fig. 1.
The loop can be made of either quarks u or d. For a quark of
flavor f, its contribution to the neutral pion self-energy is
given by Eq. (20), where we used the fact that the
Schwinger phase vanishes. To proceed with the calculation
of —in.}.(q), we need to insert the fermion propagator,
whose explicit form is given by Eq. (15). We find that

only five of the traces survive. The surviving terms are
given by

Tr[y>m cos(|q,Bls)y® cos(|q,Bls")] = 4m cos(|g,B|s) cos(|¢,Bls").
Tr[y5kH cos(|q/B|s)y (kH + ﬂH) cos(|q¢B|s")] = —4cos(|qB|s )cos(|qu|s/)kH . (k” + qH),
Tr[y my(v'y?) sin(|q;Bls)r’my(v'y?) sin(|q;Bls")] = —4m7 sin(|q,B|s) sin(|¢;B|s").
Te[y* ¥ (r'v?) sin(|q,Bls)y” (K + 4)) (v'r?) sin(|q;B|s")] = 4sin(|q;B|s) sin(|q¢B|s")k - (k + q).
r{— ks KLt dy) } _ Ak (ki+4) (A1)
cos(|q/B|s) cos(|q¢Bls’) cos(|q/B|s) cos(|qB|s")
Substituting the values of these traces in the fermion contribution to the neutral pion self-energy, we obtain
4 tan(|q ¢Bls) .
_l'HB _4g / / dsds’ : / d*k e [kﬁ kz “lf;;“ —m%+ts}
cos(|qsB|s) cos(|g;B|s') ) (2x)*
[(ku+qH) —(k1+q.1) m‘qq{gi‘ ?-H'E]
k(K +40)
x < [cos(|qB|(s + s"))][m3 =k - (ky + q)] + : A2
{eostayto-+- 0 — -k + )+ LTI (42)
We proceed first to integrate over loop momentum com- 2itan(|q,B|s
_ e r_ ayBls’)
ponents perpendicular to the magnetic field. The form of _ (Adb)

this integral is given by

/52 00 2 =
I, = e_b - / d kLz (ak’i+b'k.-G )
—o (27)
x [A+Bky - (ki +41)], (A3)
where
i
l4,B] (tan(|qsBls) + tan(|q,B|s')),  (Ada)

|QfB|

ko(ko + qo) + k3 (ks + q3)),
(Adc)

A = cos(|g,B|(s + S/))(mjzf -

1
= cos([qBs) cos([g;BI5)

(Add)

The integral is trivially performed first by completing the
square in the argument of the exponential and then using
the known expressions for Gaussian integrals
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[ae
— a
) N 1
/_ i dxxle ™ = g% (ASb)
The result for 7, is
bb' 2
e .P’1iB B (bl
L= {A‘a(ﬂi 1)] (A6)

where, when completing the square, we found it convenient
to introduce the parameter b defined in terms of Eq. (A4) as
2itan(|q,B|s)

b=2a-b =
lq/B]|

(A7)

We now proceed to the calculation of the longitudinal
momentum integral, whose explicit form is given by

o dk -2 -
I = /_oo 2—;: e~ et (o 4 s (ks + q3)}. (A8)

with

1 m; |qsB|

7£m}—k0(k0+qo) |q/B]
itan(|q;B|(s +s'))  sin*(|q;B|(s + s'))
( ig3 sin(|q¢B|s)sin(|q/B|s’) _ 1)
lgsB|  sin(|g;B|(s +s))

(A9a)

1
~ itan(lq,Bl(s + )

(A9b)

The integral 7 is also found with the help of the Gaussian
integrals in Eq. (AS). The result is

_“13(
¢ 2

et )
“_zﬁ(i(s+s>)1/2 iy Gyt
(A10)

Finally, for the integral over the zeroth momentum com-
ponent, we have

o dk Ly
’0‘/ 5 ¢ e WAL Bl (ko + g0)} (A1)

[Se]

where the A and B constants are defined as

~ itan(|g;B[(s +5))

N 1 <1
i(s + ") tan(|g,B|(s + 5)) \2i
1
~itan(lgBl(s + )

sin’(|q/B|(s + 5))

s+s’q3)

( ig: sin(|q;B|s)sin(|g;B|s") ~ 1)
lg¢B|  sin(|g;B|(s + "))

(A12)

Using again the Gaussian integrals in Eq. (AS), the result for [, is given by

RIS
IO —

:+x> i 1/2
ur () 14

(A13)

B i ss' 5
s+ s \2 s+s’q0 )

Substituting Egs. (A6), (A10), and (A13) into Eq. (A12), and making the change of variables s = u(1 — v) and s’ = uv, we

get Eq. (21) that we hereby reproduce,

g% sin(|gyBlu(1 —v))sin(|q;B|uv)

() —42|qu|/ / duexp{

|‘]/B|

sin(|qu|u)

. . 2
:| e—lq%uv(l—v)ezq%uv(l—r)e—mmfe—ue

{ m7 |q/B] (
X .
tan(|q,Blu) = sin*(|q;Blu) \|q;B|

+ T (j-wa-oi-a)}

—g2. sin(|g;Blu(1 — v))sin(|g/Bluv) _ ,-)
sin((q, Blu)

(A14)

As discussed in Sec. 1V, to isolate the magnetic dependence in H (q) we need to subtract the self-energy evaluated at
B = 0 from the full pion self-energy. Therefore, we are mterested in the function
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F(q3.43.4%.|qsB

,mf) = HB

— lim I8

15 g0 fF (A15)

Substituting Eq. (A14) into Eq. (A15), we obtain Eq. (24), with X and X, defined in Eq. (25).
To obtain the longitudinal screening mass, we need to set q% = qi = 0in Eq. (24), thus obtaining Eq. (26) that we show

here explicitly for convenience,

F(07 q%, 07

q.fB

mfc —v(l —v)g3

g [ a0 " aner |
Jmy) = =4 =L — | dv due=€{ ¢=iX
f) g (4]_[)2 0 0

— %o [mi —v(1-v)g; 2i
|q;Blu

Equation (A16) can be conveniently written in the compact
form

F(07 qgv 07

4g2
M) = _W}—(qg’

qsB qsBl.my), (A17)

where

F(43-lqsBl.my)

1 &)
E|qu/0 dv/o duG(u,v,q%,|qu|,mf), (A18)

with

G(u, v, 43, |qrBl, my) = [m7 — v(1 = v)g3le e~

1
X COt(|QfB|I/l) - W—BW

— jeTuegTiau {|qu|cscz(|qu|u)

cot(|q,B|u) 2
+ — =
u |q,Blu

=G, - iG,, (A19)

where a has been defined in Eq. (28). Let us first study the
part of the integral in F(0, 43,0, |¢,B|, m) that comes from
the G, term, namely,

492 1 ©o el 2 2
I, :_WVUE” , V), due (m7 = v(1 = v)g3)

—iau 1
X e COt(‘quB|M)—|qf—B|u .

For the moment, let us focus only on the u integral,

(A20)

o ) 1
I = due e cot(|g Blu) — ——|. A21
/ (cot(a Bl |qu|u) (A21)

|q,B|u?

B l( |qsB| N 1 >]
tan(|q,B|u) sinz(\qu|u) utan(|q;B|u)

)

|

Since the poles of cot(|q,B|u) lie along the real axis, we
should evaluate Eq. (A21) using the principal value
prescription. Also, we promote the integral to the complex
plane using the quarter circle contour shown in Fig. 10.
Thus, we now focus in the contour integral,

, 1
I = 7{ due e <COt q¢Blu ——), A22
c=¢ (a8 =5 ) (A2)

where C = C; U C, U Cs, as shown in Fig. 10. It is
convenient to make the change of variables u’ = [q;B|u
in our expression for /- so that

Ic = f_du’ e_‘:f%‘e_%‘ (cot(u’) - i,)
clasB u

It is easy to see that the integral over C, vanishes when
R — o0, due to the exponential damping in Eq. (A23),

(A23)

/ !

u'e iau’

—e _aw 1
= [ ——e e u¥ (cot(u’) - —> =0. (A24)
C, |f]fB|

&)

e e U e W
C1

C34

FIG. 10. Contour of integration for Eq. (A22).
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Now, for Cj it is convenient to make the following change
of variable:

u' = —iw'. (A25)
Thus, the integral over C; becomes
! du’ exp < u'e ) exp( iau')
= | T al i i
; ¢, lasB| lq/B] lasB|
1
X (cot(u’) _J)
B /°° do' exp( iea) ) exp ( aw’ )
o lasB |qsB] |qsB]
1
X (coth(a)’) - —,) (A26)
@

Since ¢ — 0, the imaginary exponential above tends to 1,
and the integral turns out to be analytic; the result is given

by
a a
R IR ()
W :
<2|‘]f3|> (2|‘]f3|>)

(A27)

1 la,B|
Ic3 :—B (-f—+ln
lasB| a

where (%) (z) is the digamma function.

Substituting Eqgs. (A24) and (A27) in Eq. (A23) and
using Cauchy’s residue theorem in the closed integral /.,
we can obtain the integral along the path C; with the result

ue _ iau’

00 d ! _ ! 1
PV(I)—PV/ Sl P <cot(u’)—_/>
0 u

|q /B

—(ia+e)=
—e

in 1 In[1 1o ]
= (ia+e)—2= +
lasBI\_1 +e I z

1 lq /Bl ( q ) a
+ - +1In —yO(—) ).
|CIfB‘ ( a 2|‘IfB| 2|f1fB|

(A28)
|

| In [] _e_(ia+€)\q;_3\]

Now we concentrate on the part of the integral in
F(0,p3.0,|q;B|.my) that comes from the term —iG,,
namely,

| % 1 co
i ,
Ig, E%quA dvA due et

>+cot(\qu|u) 2
u |qu|u2 ’

(A29)

x {|qu|csc2(|qu|u

Let us isolate the u integral defining

J= /oo due™"¢e=iau [|qu|cscz(|qu|u)
0

cot(|q¢B|u) 2 ]
+ ) - 2
u lg,Blu

(A30)

It is again convenient to make the change of variable i/ =
|q/B|u so that the J integral becomes

cot(u') 2
W u?

J:/ dul e e o [cscz(u’)—l— }EJI—I—JZ,
0

(A31)

where we have defined

o0 _ e _iad 1
J] — A du'e lirBle lafBl |:CSC2(M/) - u/2:| s (A32a)

o0 _ale il Toot(u' 1
J, :/ dud e V1B o TasBl {CO(”)_]' (A32b)
0

u/ u/2

J; can be integrated by parts to bring it to a form similar to
the 7 integral in Eq. (A21). Taking into account the —i|q,B|
factor in Eq. (A29), we find that

(=ilg;B))PV(J,) =—(ia+e){ .

—1+e

|q/B] ( q > a
—il - +In O ——
( a 2|q,B| 2|q,B|

(A33)

where PV stands for the Cauchy principal value integral. Finally, J, is calculated in a similar fashion as was done to
compute the / integral, namely, by promoting it to a closed contour integral using the same contour of integration. The result
for J,, taking into account again the factor —i|g,B| from Eq. (A29), is given by
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In |:1 —e (ta+é)\,,fm] Li, (e—(iaJre)\,,;_g\)
(—ilqsB|)PV(J2) = n|q;B|| - - 5

a a
+qun< > aln( >+a+2qun<F[—]>—qun4n. A34

Putting together the expressions for 7, J;, and J,, we get

492 1 In |:1 —e (la+€)“’/3‘:|

1
M) = ———— dv{ =2inv(l —v)q3 +
f) (477)2A ( ) 3 1 e(m+e)‘qu P

|qu| a a
—20(1 = )2 = 1 (O
o ”)%( o T\Ggm) TV 3B

In [1 —e (mﬂ)“?fB‘} Lig( (laﬂ)‘ﬂﬂf‘)
2

F(Oa qga )

B —
+ 7|q,B| p .

a a
+ g B|ln< > aln< > +a+2|gsB|In <F[]> —lq/B|In(4z) 3. (A35)
! lasB| 2|q¢B| ! 2[qyB] !

Finally, taking the real part of the previous expression, we obtain

49
+qsB] {e—ﬂ In ( 2cosh< ) 2005( an ))} —‘qu| {Re(Liz <e Uate L’f‘*))}
’ 2|qu| |CIJB| |‘IfB| T
a a
+qun(—>—aln<—)—l—a q/B|In(4n +2qunF< )} A36
where A; and A, are given by
sin( L ) efir s1n( )
A =12 L —tan™! 72
2 €T ar qé—” ’
COSh(\qu\) —co (MB‘) 1 — elar®l COS(%BO
|61fB| a a
Ay=-—""141 — 0 . A37
= Mg E) 7Y 2B (A7)

Equation (A36) corresponds to the result in Sec. IV given by Eq. (29).
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