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We compute the relaxation times for massive quarks and antiquarks to align their spins with the angular
velocity in a rigidly rotating medium at finite temperature and baryon density. The rotation effects are
implemented using a fermion propagator immersed in a cylindrical rotating environment. The relaxation
time is computed as the inverse of the interaction rate to produce an asymmetry between the quark
(antiquark) spin components along and opposite to the angular velocity. For conditions resembling heavy-
ion collisions, the relaxation times for quarks are smaller than for antiquarks. For semicentral collisions, the
relaxation time for quarks is within the possible lifetime of the QGP for all collision energies. However, for
antiquarks, this happens only for collision energies

ffiffiffiffiffiffiffiffi
sNN

p ≳ 50 GeV. The results are quantified in terms of
the intrinsic quark and antiquark polarizations, namely, the probability to build the spin asymmetry as a
function of time. Our results show that these intrinsic polarizations tend to 1 with time at different rates
given by the relaxation times with quarks reaching a sizable asymmetry at a faster pace. These are key
results to further elucidate the mechanisms of hyperon polarization in relativistic heavy-ion collisions.

DOI: 10.1103/PhysRevD.109.074018

I. INTRODUCTION

Relativistic heavy-ion collisions are the best tool to
explore, in a controlled manner, the properties of strongly
interacting matter under extreme conditions. The study of
the different observables emerging from these reactions has
produced a wealth of results revealing an ever more
complete picture of these properties for temperatures and
densities close to or above the deconfinement transition.
However, some other phenomena still miss a clearer under-
standing and pose a challenge for the evolving standard
model of heavy-ion reactions. One of these observables is
the relatively large degree of polarization of Λ and Λ̄
hyperons measured in semicentral collision for energies
2.5 GeV≲ ffiffiffiffiffiffiffiffi

sNN
p ≲ 27 GeV, which shows an increasing

trend as the energy and centrality of the collision decreases.

The raising trend is different for Λs than Λ̄s [1–4]. For
semicentral collisions, the matter density profile in the
transverse plane induces the development of a global angular
momentum, quantified in terms of the thermal vorticity
[5,6]. Such angular momentum could be transferred to spin
degrees of freedom and be responsible for the observed
global polarization [7]. This expectation is supported by the
relation between rotation and spin, nowadays referred to as
the Barnett effect, whereby a spinning ferromagnet expe-
riences a change of its magnetization [8] and the closely
related Einstein–de Haas effect, based on the observation
that a change in the magnetic moment of a free body causes
this body to rotate [9]. As a consequence, significant efforts
have been devoted to quantify how this vorticity may be
responsible for the magnitude of the observed polarization,
assuming that the medium rotation is transferred to the spin
polarization regardless of the microscopic mechanisms
responsible for the effect [10–18]. However, the transferring
of rotational motion to spin can only happen provided the
medium induced reactions occur fast enough so that the
alignment of the spin and angular velocity takes place on
average within the lifetime of the medium. In the recent
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literature, this question has been addressed using different
approaches [19–25].
In a couple of recent works, we have explored whether

this relaxation time for the alignment is short enough so
that the observed polarization of hyperons can be attrib-
uted to the transferring of rotation to spin degrees of
freedom [26,27]. This is achieved by computing the
interaction rate for the spin of a strange quark to align
with the thermal vorticity, assuming an effective spin-
vorticity coupling in a thermal QCD medium. The find-
ings have been used to compute the Λ and Λ̄ polarization
in the context of a core-corona model [28–31]. The
calculation resorts to computing the imaginary part of
the self-energy of a vacuum quark whose propagator does
not experience the effects of the rotational motion. To
improve the description, also in a recent work, we have
computed the propagation of a spin one-half fermion
immersed in a rigid, cylindrical rotating environment [32].
For these purposes, we have followed the method intro-
duced in Ref. [33], which requires knowledge of the
explicit solutions of the Dirac equation. These have been
previously studied in different contexts by imposing
different boundary conditions [34–41].
In this work, we use the propagator found in Ref. [32] to

compute the imaginary part of the self-energy of a quark
immersed in a rotating QCD medium at finite temperature
(T) and baryo-chemical potential (μB). We show that for
values of T and μB where the chiral symmetry restoration/
deconfinement transition is thought to take place, the
relaxation time for quarks turns out to be small enough,
compared to the medium lifetime, for the inferred, com-
monly accepted values of the medium angular velocity,
after a semicentral heavy-ion collision. However, this is not
the case for the antiquarks except for collision energiesffiffiffiffiffiffiffiffi
sNN

p ≳ 50 GeV. The work is organized as follows: In
Sec. II, we briefly revisit the derivation of the fermion
propagator in a rotating environment. In Sec. III, we use
this propagator to compute the interaction rate for a quark
spin to align with the vorticity in a QCD rotating medium at
finite temperature and baryo-chemical potential. In Sec. IV,
we compute the relaxation time for values of T and μB close
to the chiral symmetry restoration/deconfinement transition
and show that for quarks this relaxation time is within the
putative lifetime of the system produced in the reaction,
although this is not the case for antiquarks except for large
collision energies. We finally summarize and conclude
in Sec. V.

II. PROPAGATOR FOR A SPIN ONE-HALF
FERMION IN A ROTATING ENVIRONMENT

The physics within a relativistic rotating frame is most
easily described in terms of a metric tensor resembling that
of a curved space-time. We consider that the interaction
region can be thought of as a rigid cylinder rotating around
the ẑ axis with constant angular velocity Ω, which is

produced in semicentral collisions. We can thus write the
metric tensor as

gμν ¼

0
BBBB@

1 − ðx2 þ y2ÞΩ2 yΩ −xΩ 0

yΩ −1 0 0

−xΩ 0 −1 0

0 0 0 −1

1
CCCCA: ð1Þ

A fermion with mass m within the cylinder is described by
the Dirac equation

½iγμð∂μ þ ΓμÞ −m�Ψ ¼ 0; ð2Þ

where Γμ is the affine connection. In this context, the γμ

matrices in Eq. (2) correspond to the Dirac matrices in the
rotating frame, which satisfy the usual anticommutation
relations

fγμ; γνg ¼ 2gμν: ð3Þ

The relation between the gamma matrices in the rotating
frame and the usual gamma matrices are

γt ¼ γ0; γx ¼ γ1 þ yΩγ0;

γz ¼ γ3; γy ¼ γ2 − xΩγ0: ð4Þ

In this notation, μ ¼ ft; x; y; zg refers to the rotating frame,
while μ ¼ f0; 1; 2; 3g refers to the local rest frame.
Therefore, Eq. (2) can be written as

�
iγ0

�
∂t − xΩ∂y þ yΩ∂x −

i
2
Ωσ12

�

þ iγ1∂x þ iγ2∂y þ iγ3∂z −m

�
Ψ ¼ 0: ð5Þ

In the Dirac representation,

σ12 ¼
�
σ3 0

0 σ3

�
; ð6Þ

where σ3 ¼ diagð1;−1Þ is the Pauli matrix associated with
the third component of the spin. Therefore, we can rewrite
Eq. (5) as

½iγ0ð∂t þ ΩĴzÞ þ iγ⃗ · ∇⃗ −m�Ψ ¼ 0; ð7Þ

where

Ĵz ≡ L̂z þ Ŝz ¼ −iðx∂y − y∂xÞ þ
1

2
σ12: ð8Þ

This expression defines the total angular momentum in the
ẑ direction. The term L̂z represents the orbital angular
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momentum, whereas Ŝz is the spin. On the other hand, the

term −i∇⃗ is the usual momentum operator. We can find
solutions to Eq. (7) in the form

ΨðxÞ ¼ �
iγ0ð∂t þ ΩĴzÞ þ iγ⃗ · ∇⃗þm

�
ϕðxÞ; ð9Þ

and then, the function ϕðxÞ satisfies a Klein-Gordon like
equation

�ði∂t þ ΩĴzÞ2 þ ∂
2
x þ ∂

2
y þ ∂

2
z −m2

�
ϕðxÞ ¼ 0: ð10Þ

Notice that the spin operator Ŝz when applied to ϕðxÞ
produces eigenvalues s ¼ �1=2. Consequently, conserva-
tion of the total angular momentum expressed in terms
of the eigenvalues j ¼ sþ l imposes solutions with l for
s ¼ 1=2 and lþ 1 for s ¼ −1=2. With these considerations,
the solution of Eq. (10) can be written in cylindrical
coordinates ðt; x; y; zÞ → ðt; ρ sinφ; ρ cosφ; zÞ as

ϕðxÞ ¼

0
BBBBB@

Jlðk⊥ρÞ
Jlþ1ðk⊥ρÞeiφ

Jlðk⊥ρÞ
Jlþ1ðk⊥ρÞeiφ

1
CCCCCA
e−Etþikzzþilφ; ð11Þ

where Jl are Bessel functions of the first kind,

k2⊥ ¼ Ẽ2 − k2z −m2 ð12Þ

is the transverse momentum squared, and we have defined
Ẽ≡ Eþ jΩ, representing the fermion energy observed
from the inertial frame. Hence, the solution of Eq. (9) is

ΨðxÞ ¼

0
BBBBB@

½Eþ jΩþm − kz þ ik⊥�Jlðk⊥ρÞ
½Eþ jΩþmþ kz − ik⊥�Jlþ1ðk⊥ρÞeiφ
½−E − jΩþm − kz þ ik⊥�Jlðk⊥ρÞ

½−E − jΩþmþ kz − ik⊥�Jlþ1ðk⊥ρÞeiφ

1
CCCCCA

× e−ðEþjΩÞtþikzzþilφ: ð13Þ

Before writing the expression for the fermion propagator
in the rotating environment, it is important to highlight
some features of the solution. First, causality requires that

ΩR < 1, where R is the radius of the cylinder. Therefore,
the solution is valid as long as Ω < 1=R. Second, we can
simplify the solution assuming that the fermion is totally
dragged by the vortical motion such that the angular
position is determined by the product of the angular
velocity and the time, specifically φþ Ωt ¼ 0. This is a
reasonable approximation when considering that during the
early stages of a peripheral heavy-ion collision, particle
interactions have not yet produced the development of a
radial expansion. With this approximation, the propagator
is translational invariant and can be simply Fourier trans-
formed. With these features in mind, we write the fermion
propagator Sðx; x0Þ as

Sðx; x0Þ ¼ ½iγ0ð∂t þΩĴzÞ þ iγ⃗ · ∇⃗þm�Gðx; x0Þ; ð14Þ

where

Gðx; x0Þ ¼ ð−iÞ
Z

0

−∞
dτ
X
λ

exp f½−iτλ�gϕλðxÞϕ†
λðxÞ: ð15Þ

In this last expression, λ and ϕλðxÞ represent the eigen-
values and eigenvectors of Eq. (10). Taking E; k⊥; kz; l as
independent quantum numbers, the closure relation is
written as

X
λ

ϕλðxÞϕ†
λðxÞ ¼

X∞
l¼∞

Z
dEdkzdk⊥k⊥

ð2πÞ3 ϕðxÞϕ†ðxÞ

¼

0
BBBB@

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

1
CCCCAδ4ðx − x0Þ: ð16Þ

Hence, Eq. (14) becomes

Sðx; x0Þ ¼
X∞
l¼∞

Z
dEdkzdk⊥k⊥

ð2πÞ3 Φðρ; ρ0Þ

×
e−iðE−ðlþ1=2ÞΩÞðt−t0Þeikzðz−z0Þeilðφ−φ0Þ

E2 − k2z −m2 − k2⊥ þ iϵ
; ð17Þ

where

Φðρ; ρ0Þ ¼

0
BBBBB@

AJ l;l AJ l;lþ1e−iφ
0

AJ l;l AJ l;l

BJ l;lþ1eiφ BJ lþ1;lþ1eiðφ−φ
0Þ BJ lþ1;leiφ BJ lþ1;lþ1eiðφ−φ

0Þ

CJ l;l CJ l;lþ1e−iφ
0

CJ l;l CJ l;l

DJ l;lþ1eiφ DJ lþ1;lþ1eiðφ−φ
0Þ DJ lþ1;leiφ DJ lþ1;lþ1eiðφ−φ

0Þ

1
CCCCCA
; ð18Þ
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and we have defined

A≡ ½Eþm − kz þ ik⊥�;
B≡ ½Eþmþ kz − ik⊥�;
C≡ ½−Eþm − kzkþ ik⊥�;
D≡ ½−Eþmþ kzk − ik⊥�; ð19Þ

with

J l;l0 ≡ Jlðk⊥ρÞJl0 ðk⊥ρ0Þ: ð20Þ

Carrying out the integration and the summation, and taking
the Fourier transform, we obtain

SðpÞ ¼

0
BBBBBBBB@

p0þΩ=2−pzþmþip⊥
ðp0þΩ=2Þ2−p2−m2þiϵ 0

p0þΩ=2−pzþmþip⊥
ðp0þΩ=2Þ2−p2−m2þiϵ 0

0
p0þΩ=2þpzþm−ip⊥
ðp0−Ω=2Þ2−p2−m2þiϵ 0

p0þΩ=2þpzþm−ip⊥
ðp0−Ω=2Þ2−p2−m2þiϵ

−ðp0þΩ=2Þ−pzþmþip⊥
ðp0þΩ=2Þ2−p2−m2þiϵ 0

−ðp0þΩ=2Þ−pzþmþip⊥
ðp0þΩ=2Þ2−p2−m2þiϵ 0

0
−ðp0þΩ=2Þþpzþm−ip⊥
ðp0−Ω=2Þ2−p2−m2þiϵ 0

−ðp0þΩ=2Þþpzþm−ip⊥
ðp0−Ω=2Þ2−p2−m2þiϵ

1
CCCCCCCCA
: ð21Þ

We can write Eq. (21) in terms of the Dirac-gamma matrices as

SðPÞ ¼ ðp0 þ Ω=2 − pz þ ip⊥Þðγ0 þ γ3Þ þmð1þ γ5Þ
ðp0 þΩ=2Þ2 − p2 −m2 þ iϵ

Oþ þ ðp0 −Ω=2þ pz − ip⊥Þðγ0 − γ3Þ þmð1þ γ5Þ
ðp0 −Ω=2Þ2 − p2 −m2 þ iϵ

O−; ð22Þ

where

O� ¼ 1

2
½1� iγ1γ2� ð23Þ

is the spin projection operator. Notice that the derivation
of the fermion propagator is performed in vacuum. To
use this propagator including a finite temperature and
chemical potential, recall that in equilibrium it is sufficiently
general to make the replacement p0 → iω̃n þ μ, where
ωn ¼ ð2nþ 1ÞπT are Matsubara frequencies for fermions.
Equation (22) represents our approximation for the fermion
propagator in a cylindrical rigidly rotating environment. We
now use this propagator to compute the relaxation time for
the fermion spin to align with the angular velocity in the
rotating medium.

III. INTERACTION RATE FOR A QUARK SPIN TO
ALIGN WITH THE ANGULAR VELOCITY IN A

QCD ROTATING MEDIUM

In a QCD plasma in thermal equilibrium at temperature
T and baryon chemical potential μB, the interaction rates
Γ� for a quark with spin components s ¼ �1=2 in the
direction of Ω⃗ and four-momentum P ¼ ðp0; p⃗Þ to align its
spin in the direction of the angular velocity vector can be
expressed in terms of the total interaction rate, which in turn
is given by the probability (per unit time) for a transition
between the same quantum quark state u�, represented by
properly normalized spinors with a definite spin projection
(�) along the direction of the angular velocity. This

transition is mediated by the imaginary part of the self-
energy, ImΣ. In symbols,

Γ� ∼ ū�a ImΣabu�b :

Shuffling the indexes around, we can also write

Γ� ∼ u�b ū
�
a ImΣab

¼ Tr½O�ImΣ�;

where we used that the spin projection operators O� are
given by

O� ≡ u�ū�:

To extract the creation rate for spin-aligned quark states
from the total interaction rate, as discussed in Ref. [42], we
multiply the total interaction rate by the fermion distribu-
tion function f̃, for a grand-canonical ensemble in the
presence of a conserved charge to which a quark chemical
potential μ ¼ 1=3μB is associated, namely,

Γ�ðp0Þ ¼ f̃ðp0 − μ ∓ Ω=2ÞTr½O�ImΣ�: ð24Þ

In previous analyses [26,27], the interaction has been
modeled using an effective vertex coupling the thermal
vorticity and the quark spin. To improve the description,
hereby we consider the case where the fermion is subject to
the effect of a rotation within a rigid cylinder. The one-loop
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contribution to Σ, depicted in Fig. 1, is given by

ΣðPÞ ¼ T
X
n

Z
d3k
ð2πÞ3 γ

μTaSðP − KÞγνTb
�Gab

μν ; ð25Þ

where S is the quark propagator in a rotating environment
obtained in Eq. (22), �Gab

μν is the effective gluon propagator
in the thermal medium, and Ta are the SUð3Þ group
generators. The four-momenta are P ¼ ðiω̃; p⃗Þ for the
fermion and K ¼ ðiωn; k⃗Þ for the gluon, with ωn being
the gluon Matsubara frequencies. Also, �Gab

μν ¼ �Gμνδ
ab,

and in the hard thermal loop (HTL) approximation �Gμν is
given by

�GμνðKÞ ¼ ΔLðKÞPL μν þ ΔTðKÞPT μν; ð26Þ

where PL;T μν are the polarization tensors for three-
dimensional longitudinal and transverse gluons [42]. The
gluon propagator functions for longitudinal and transverse
modes, ΔL;TðKÞ, are given by

Δ−1
L ðKÞ ¼ K2 þ 2m2

T
K2

k2

�
1 −

iωn

k
Q0

�
iωn

k

��
; ð27Þ

Δ−1
T ðKÞ ¼ −K2 −m2

T

�
iωn

k

�

×

	�
1 −

�
iωn

k

�
2
�
Q0

�
iωn

k

�
þ
�
iωn

k

�

; ð28Þ

where

Q0ðxÞ ¼
1

2
ln

�
xþ 1

x − 1

�
; ð29Þ

and m2
T is the gluon thermal mass squared given by

m2
T ¼ 1

6
g2CAT2 þ 1

12
g2CF

�
T2 þ 3

π2
μ2
�
; ð30Þ

where CA and CF are the Casimir factors for the adjoint and
fundamental representations of SUð3Þ.

It is convenient to first look at the sum over Matsubara
frequencies for the products of the propagator functions
for longitudinal and transverse gluons, Δi with i ¼ L; T,
and the Matsubara propagator for the quark in a rotating
environment Δ̃, which, as described in Ref. [42],
can be obtained as the inverse of the denominator of each
of the components of Eq. (22) with the replacement
p0 → iω̃n þ μ.

SiðiωÞ ¼ T
X
n

ΔiðiωnÞΔ̃ðiðω − ωnÞÞ: ð31Þ

The sum can be performed introducing the spectral densities
ρi and ρF for the gluon and fermion, respectively. The
imaginary part of Si can be written as

ImðSiÞ ¼ πðeβðp0−μ∓Ω=2Þ þ 1Þ
Z

∞

−∞

Z
∞

−∞

dk0
2π

dp0
0

2π
fðk0Þ

× f̃ðp0
0 − μ ∓ Ω=2Þδðp0 − k0 − p0

0Þ
× ρiðk0; kÞρFðp0

0; p − kÞ; ð32Þ

where fðk0Þ is the Bose-Einstein distribution. The spectral
densities ρi are obtained from the imaginary part ofΔiðiωnÞ
after the analytic continuation iωn → k0 þ iϵ and contain
the discontinuities of the gluon propagator across the real k0
axis. Their support depends on the ratio x ¼ k0=k. For
jxj > 1, ρi have support on the (timelike) quasiparticle poles.
For jxj < 1, their support coincides with the branch cut of
Q0ðxÞ and corresponds to Landau damping. On the other
hand, the fermion spectral density is

ρFðp0
0; pÞ ¼ −2πδððp0

0 �Ω=2Þ2 − p2 −m2Þ: ð33Þ

We now concentrate on the trace factors required for the
computation of Eq. (24). The term proportional to the
fermion momentum and angular velocity

PL;T μνTr½γμðγ0 � γ3Þð1� iγ1γ2Þγν� ¼ 0 ð34Þ

vanishes identically, whereas the terms proportional to the
fermion mass are given by

PL μνTr½γμð1þ γ5Þð1� iγ1γ2Þγν� ¼ −4;

PT μνTr½γμð1þ γ5Þð1� iγ1γ2Þγν� ¼ −8: ð35Þ

The delta functions in Eqs. (32) and (33) restrict the
integration over gluon energies to the spacelike region,
jxj < 1. Therefore, the parts of the gluon spectral densities
that contribute to the interaction rate are given by

ρLðk0;kÞ¼
2πm2

Txθð1−x2Þh
k2þ2m2

T

�
1− x

2
ln
��xþ1
x−1

��i2þπ2m4
Tx

2
; ð36Þ

FIG. 1. One-loop quark self-energy diagram that defines the
kinematics. The gluon line with a blob represents the effective
gluon propagator at finite density and temperature. The open
circle on the fermion propagator represents the effect of the
rotating environment.
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ρTðk0; kÞ ¼
2πm2

Txð1 − x2Þθð1 − x2Þ
2
h�

k2ðx2 − 1Þ −m2
T

h
x2 þ xð1−x2Þ

2
ln
�� xþ1
x−1

��i2 þ π2

4
m4

Tx
2ð1 − x2Þ2

i : ð37Þ

With all these ingredients, we write the interaction rate as

Γ�ðp0Þ ¼
g2mCFπ

2

Z
d3k
ð2πÞ3

Z
∞

−∞

dk0
2π

Z
∞

−∞
dp0

0

× fðk0Þð4ρLðk0Þ þ 8ρTðk0ÞÞ
× f̃ðp0

0 − μ ∓ Ω=2Þδðp0 − k0 − p0
0Þ

× δððp0
0 � Ω=2Þ2 − E2Þ; ð38Þ

with

E2 ¼ jp⃗ − k⃗j2 −m2: ð39Þ
Notice that

δððp0
0 � Ω=2Þ2 − E2Þ

¼ 1

2E
½δðp0

0 �Ω=2 − EÞ þ δðp0
0 �Ω=2þ EÞ�: ð40Þ

Therefore, we can integrate Eq. (38) over p0
0 to obtain

Γ�ðp0Þ¼
g2mCFπ

2

Z
d3k
ð2πÞ3

Z
∞

−∞

1

2E
dk0
2π

fðk0Þ

×ð4ρLðk0Þþ8ρTðk0ÞÞ
× ½f̃ðE−μ∓ΩÞδðp0−k0−E�Ω=2Þ
þ f̃ð−E−μ∓ΩÞδðp0−k0þE�Ω=2Þ�: ð41Þ

Notice that for the considered angular velocities appropri-
ate to the early stages of the collision (10 MeV≲
Ω≲ 14 MeV), and for a strange quark massm ∼ 100 MeV,
the combination E� Ω=2 can always be safely regarded as
being positive. The kinematical constraint imposed by the
first of the delta functions in Eq. (41) corresponds to the rate
to produce rotating and thermalized quarks originated by the
dispersion of vacuum nonrotating quarks as a result of
dispersion with medium quarks. This is depicted in Fig. 2.
We then single out this contribution from the total rate,
which can then be written as

Γ�ðp0Þ ¼
g2mCFπ

2

Z
k2dk dðcos θÞdϕ

ð2πÞ3
Z

∞

−∞

1

2E
dk0
2π

× ð4ρLðk0Þ þ 8ρTðk0ÞÞδðp0 − k0 − E� Ω=2Þ
× fðk0Þf̃ðE − μ ∓ ΩÞ: ð42Þ

The kinematical restrictions for the k0 integration trans-
late into integration regions R�. After integrating over the

angle θ between p⃗ and k⃗, and over the azimuthal angle ϕ,
and finally using that E2 ¼ p2 þm2 ¼ jp⃗ − k⃗j2 −m2 ¼
p2 þ k2 − 2pk cos θ þm2, we obtain

Γ�ðp0Þ ¼
g2mCFπ

2

Z
∞

0

dk k2

ð2πÞ3
Z
R�

dk0
fðk0Þ
2pk

× ð4ρLðk0Þ þ 8ρTðk0ÞÞf̃ðp0 − k0 − μ ∓ Ω=2Þ;
ð43Þ

where R� are the regions defined by

k0 ≤ p0 � Ω=2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2 þm2

q
;

k0 ≥ p0 � Ω=2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ kÞ2 þm2

q
: ð44Þ

The total rate to align the quark spin with the angular
velocity is thus given by the difference between the rate to
populate the spin projection along and opposite to the
angular velocity, which is obtained by integrating the
difference between Γþ and Γ− of Eq. (43) over the available
phase space

Γ ¼ V
Z

d3p
ð2πÞ3 ½Γ

þðp0Þ − Γ−ðp0Þ�; ð45Þ

where V is the volume of the collision region. To compute
V for conditions that depend on the collision energy and for
a given impact parameter b, we consider a Bjorken
expansion scenario where the volume and the QGP lifetime
are related by

V ¼ πR2ΔτQGP; ð46Þ

FIG. 2. Feynman diagram representing a process whereby an
initially nonrotating quark is dragged by the medium and aligns
its spin either parallel or antiparallel to the angular velocity by
means of its interactions with medium particles mediated by soft
thermal gluons.
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where R is the radius of the colliding species and ΔτQGP is
the QGP lifetime, which is given as the interval elapsed
from the initial formation τ0 until the hadronization time
τf [30].
Figure 3 shows the interaction rates Γ� for positive and

negative quark spin projections, respectively, as functions
of the angular velocity Ω, for semicentral collisions at an
impact parameter b ¼ 10 fm and chemical potential
μ ¼ 100 MeV for quarks. Since the occupation numbers
for antiquarks are obtained from the occupation numbers
for quarks by the replacement μ → −μ≡ μ̄, the corre-
sponding rates for antiquarks Γ̄� are computed performing
such replacement in Eq. (43). Figure 4 shows the rates
for the antiquarks using μ̄ ¼ 100 MeV. In both cases, we
use a temperature T ¼ 150 MeV. Notice the symmetry
Γ̄ð−μÞ ¼ ΓðμÞ. Also, hereafter, we take the value of the
strong coupling as αs ¼ 0.3, and, although the calculation
is valid for any quark with nonvanishing mass, we consider

the computation of the relaxation time for the case of a
strange quark/antiquark mass m ¼ 100 MeV. This is
chosen having in mind to later use the results in the context
of the computation of the Λ and Λ̄ polarizations, under the
assumption that the whole hyperon polarizations come
from the strange-quark polarization.
Shown in the figures are also the phase space inte-

grated differences Γþðp0Þ − Γ−ðp0Þ and Γ̄þðp0Þ − Γ̄−ðp0Þ,
respectively, which represent the rates to align the quark or
antiquark spin with the angular velocity. Notice that
although the rates Γ� and Γ̄� are both decreasing functions,
their difference increases with Ω. This means that overall
the rate at which the positive spin component dominates
over the negative one increases as the angular velocity
increases. The decrease of the individual rates with Ω can
be traced back to Eq. (22) that for large Ω decrease as 1=Ω.
This behavior is translated to the fermion spectral density
and through it to the region of integration and ultimately to
each of the reaction rates.
From the expression for Γ in Eq. (45), we can find the

parametric dependence of the relaxation time for spin and
angular velocity alignment, defined as

τ≡ 1=Γ; ð47Þ

which we proceed to compute.

IV. RELAXATION TIME

We now concentrate on the computation of the relaxation
time when varying the parameters involved in the calcu-
lation. For a direct comparisonwith previous results, wewill
use thevalues obtained in [26] for the initial angular velocity.
Figure 5 shows the relaxation time τ for quarks as a

function of T. The calculation is performed for a collision
energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, which corresponds to an angular
velocity Ω ¼ 0.052 fm−1 and chemical potentials μ ¼ 0,
100 MeV.
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FIG. 4. Interaction rates Γ̄� for positive (þ) and negative (−)
spin projections for antiquarks as functions of the angular
velocity Ω for semicentral collisions at an impact parameter
b ¼ 10 fm and chemical potential μ̄ ¼ 100 MeV for a temper-
ature T ¼ 150 MeV. Shown is also the interaction rate Γ̄ obtained
as the phase space integrated difference Γ̄þðp0Þ − Γ̄−ðp0Þ.

0.1 0.2 0.3
]-1 [fm�

0

10

20

30

]1
 [f

m
�

+�
-�

�

FIG. 3. Interaction rates Γ� for positive (þ) and negative (−)
spin projections for quarks as functions of the angular velocity Ω
for semicentral collisions at an impact parameter b ¼ 10 fm
and chemical potential μ ¼ 100 MeV for a temperature
T ¼ 150 MeV. Shown is also the interaction rate Γ obtained
as the phase space integrated difference Γþðp0Þ − Γ−ðp0Þ.
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FIG. 5. Relaxation time τ for quarks as a function of the
temperature T for semicentral collisions at an impact parameter
b ¼ 10 fm for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, which corresponds to a an-
gular velocity Ω ¼ 0.052 fm−1 with μ ¼ 0, 100 MeV.
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Figure 6 shows the relaxation time τ for quarks as
a function of T, this time for a collision energyffiffiffiffiffiffiffiffi
sNN

p ¼ 10 GeV, which corresponds to a angular velocity
Ω ¼ 0.071 fm−1 and two values of the chemical potential
μ ¼ 0, 100 MeV. In both cases, τ < 5 fm for the considered
temperature range.
Figures 7 and 8 show the relaxation time τ̄ for antiquarks

as a function of T obtained for a collision energy
ffiffiffiffiffiffiffiffi
sNN

p ¼
200 and 10 GeV, which correspond to a angular velocities
Ω ¼ 0.052 and 0.071 fm−1, respectively, for chemical
potentials μ ¼ 0, 100 MeV. Notice that for the largest
antiquark chemical potential, the relaxation times are larger.
This behavior is opposite to that of the quarks, where the
relaxation time is lower for larger quark chemical poten-
tials. However, also notice that τ̄ < 6 fm for the considered
temperature range.
Figure 9 shows the relaxation time for quarks (top) and

antiquarks (bottom) as functions of
ffiffiffiffiffiffiffiffi
sNN

p
for semicentral

collisions at impact parameters b ¼ 5; 8, and 10 fm. For
each value of

ffiffiffiffiffiffiffiffi
sNN

p
, the temperature T and maximum

baryon chemical potential μB ¼ 3μ at freeze-out were
extracted from the parametrization in Ref. [43]

TðμBÞ ¼ 0.166 − 0.139μ2B − 0.053μ4B;

μBð ffiffiffiffiffiffiffiffi
sNN

p Þ ¼ 1.308
1þ 0.273

ffiffiffiffiffiffiffiffi
sNN

p ; ð48Þ

where μB and
ffiffiffiffiffiffiffiffi
sNN

p
are given in GeV. Also, the values

for Ω were obtained from the parametrization found in
Ref. [26]
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FIG. 6. Relaxation time τ for quarks as a function of the
temperature T for semicentral collisions at an impact parameter
b ¼ 10 fm for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 10 GeV, which corresponds to a angular
velocity Ω ¼ 0.071 fm−1 with μ ¼ 0, 100 MeV.
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FIG. 7. Relaxation time τ̄ for antiquarks as a function of the
temperature T for semicentral collisions at an impact parameter
b ¼ 10 fm for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, which corresponds to a an-
gular velocity Ω ¼ 0.052 fm−1 with μ̄ ¼ 0, 100 MeV.
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FIG. 8. Relaxation time τ̄ for antiquarks as a function of the
temperature T for semicentral collisions at an impact parameter
b ¼ 10 fm for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 10 GeV, which corresponds to a angular
velocity Ω ¼ 0.071 fm−1 with μ̄ ¼ 0, 100 MeV.
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FIG. 9. Top: relaxation time τ for quarks as a function of
ffiffiffiffiffiffiffiffi
sNN

p
for semicentral collisions at impact parameters b ¼ 5, 8, and
10 fm. Bottom: relaxation time τ̄ for antiquarks as a function offfiffiffiffiffiffiffiffi
sNN

p
for semicentral collisions at impact parameters b ¼ 5, 8,

and 10 fm.
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Ω ¼ b2

2VN

�
1þ 2

�
mNffiffiffiffiffiffiffiffi
sNN

p
�

1=2
�
; ð49Þ

where VN ¼ 4
3
πR3. The relaxation times for quarks and

antiquarks exhibit overall a decrease as functions of
ffiffiffiffiffiffiffiffi
sNN

p
.

Notice that the relaxation times are smaller for the quark case
than for the antiquark case. Also, for the largest impact
parameters considered, the relaxation times for the quark
case in the energy range considered are smaller than 10 fm,
which is the ballpark lifetime of the QGP in heavy-ion
reactions. However, for the antiquark case, this is true only
for energies

ffiffiffiffiffiffiffiffi
sNN

p ≳ 50 GeV. This indicates that, although
quarks are likely to align their spinswithin the lifetime of the
QGP, this is not the case for the antiquarks at least for small
collision energies.
Recall that the relaxation time can be used to define the

intrinsic polarization as the probability to polarize the
quark spin along the direction of the angular velocity as a
function of time. When an initial number of particles N0,
originally unpolarized, is placed in the rotating medium, the
number of particles that remain unpolarized varies as a
function of time t as N ¼ N0 expð−t=τÞ. Therefore, the
number of particles in the polarized state is given by
N ¼ N0½1 − expð−t=τÞ�. The factor ½1 − expð−t=τÞ� is
therefore the intrinsic polarization. Figure 10 shows the
intrinsic polarization for quarks (z) and antiquarks (z̄),
given by

z ¼ 1 − e−t=τ;

z̄ ¼ 1 − e−t=τ̄; ð50Þ

as functions of time t for semicentral collisions at an impact
parameter b ¼ 8 fm and a collision energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 4 GeV.
Notice that z approaches 1 faster that z̄.

V. SUMMARY AND CONCLUSIONS

In this work, we used a thermal field theoretical
framework to compute the relaxation times for massive
quarks and antiquarks to align their spins with the angular
velocity in a rigidly rotating medium at finite temperature
and baryon density. The rigid rotation is implemented using
the recently found fermion propagator immersed in a
cylindrical rotating environment. In principle, the effects
of rotation could also be included into the properties of the
gluon propagator. However, notice that the kinematical
gluon momentum region that contributes to the calculation
corresponds to Landau damping and thus to soft modes.
The main role of these modes at finite temperature and
baryon density is to mediate the interaction between plasma
quarks and the test quark whose spin alignment with the
angular velocity has been monitored. Notice that the energy
associated to a typical angular velocity for semicentral
collisions is of order Ω ∼ 0.05 fm−1 ∼ 10 MeV. In this
sense, including the effects of rotation into the gluon
propagator with a temperature of order T ∼ 100 MeV,
although not negligible, represents a subleading effect of
order 10%.
The relaxation time is computed as the inverse of the

interaction rate to produce an asymmetry between quark
(antiquark) spin projections pointing along and opposite to
the angular velocity. We found that for conditions resem-
bling a heavy-ion collision, the relaxation times for quarks
are within the putative lifetime of the QGP. However, for
antiquarks, this is the case only for collision energiesffiffiffiffiffiffiffiffi
sNN

p ≳ 50 GeV. We quantified these results in terms of
the intrinsic quark and antiquark polarizations, that is, the
probability to build the spin asymmetry as a function of
time. Our results show that these intrinsic polarizations tend
to 1 with time at different rates given by the relaxation times
τ and τ̄ with quarks building the asymmetry at a faster pace.
These intrinsic polarizations are essential ingredients to
describe the polarization of Λ and Λ̄ hyperons in relativistic
heavy-ion collisions. The consequences of the results
hereby found are currently being explored and will be
reported elsewhere.
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