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Generalized distribution amplitudes (GDAs) of mesons can be probed by the reactions e−eþ → M1M2γ,
which are accessible at electron-positron colliders such as BESIII and Belle II. After discussing the neutral
meson production case in our previous paper, we discuss here the complementary case of the charged meson
(MþM−) production, where one can extract the complete information on GDAs from the interference of the
amplitudes of the two competing processes where the photon is emitted either in the initial or in the final state.
Considering the importance of the charged meson production, we present a complete expression for the
interference term of the cross section, which is experimentally accessible thanks to its charge conjugation
specific property. We adopt two types of models for leading-twist ππ GDAs to estimate the size of the
interference term in the process e−eþ → πþπ−γ numerically, namely, a model extracted from previous
experimental results on γ�γ → π0π0 at Belle and the asymptotic form predicted by QCD evolution equations.
We include in the calculation the kinematical power suppressed (sometimes called kinematical higher-twist)
corrections up to 1=Q2 for the helicity amplitudes. Both models of GDAs indicate that the kinematical
corrections are not negligible for the interference term of the cross section measured at BESIII, thus it is
necessary to include them if we try to extract the GDAs precisely. On the other side, the kinematical corrections
are very tiny for themeasurements at Belle II, and the leading twist-two formula of the interference termwill be
good enough to describe the charge conjugation odd part of the differential cross section.
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I. INTRODUCTION

Following our previous paper [1], we continue our
investigation of the kinematical power suppressed (kin-
ematical higher-twist) corrections in the lowest order QCD
amplitude of the reaction

e−eþ → M1M2γ; ð1Þ

where the final state hadronic pair is now made of charged
pseudoscalar mesons, typically πþπ− or KþK−. The basic
difference between the neutral meson case discussed in [1]
and the present case is the presence of an initial state
radiation (ISR) amplitude where the photon is emitted from
the initial state lepton line. While such a QED process does
not contribute to the production of a charge conjugation

even (Cþ) hadronic state (such as π0π0), it turns out to be
dominant [2] for the charge conjugation odd (C−) hadronic
state. Since we are interested in extracting the two meson
generalized distribution amplitudes (GDAs) from exper-
imental data, one needs to disentangle the QCD process
from the ISR background, and this is possible by taking
advantage of the different charge conjugation quantum
numbers of the meson pair. A C− odd observable such as an
angular asymmetry is indeed proportional to the interfer-
ence between Cþ and C− amplitudes and hence is linear in
the GDA, which enters linearly in the Cþ QCD amplitude.
The ISR amplitude is entirely determined by QED

and the experimental knowledge of meson timelike form
factors, hence its validity is not restricted by any leading-
twist argument. On the other hand, the QCD amplitude
factorizes [3] in the convolution of the GDA with a
coefficient function, provided a leading-twist dominance
assumption is used. Since feasible experiments are not at
extremely large values of the large scale Q2, it is thus of
the utmost importance to quantify the power suppressed
corrections to the QCD amplitude, a task that has been
made possible thanks to the breakthrough [4–7] in the
understanding of target mass effects in the operator product
expansion of two electromagnetic currents. By separating
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kinematical and dynamical contributions in the product
of two electromagnetic currents Tfjemμ ðz1xÞjemν ðz2xÞg, they
proved that the kinematical corrections come from two
types of operators, namely, the subtraction of traces in the
leading-twist operators and the higher-twist operators
that can be reduced to the total derivatives of the lead-
ing-twist ones. They were then able to derive gauge
invariant and translation invariant amplitudes for the deeply
virtual Compton scattering (DVCS) process, which take
into account target mass and squared transferred momenta
effects, without introducing new hadronic matrix elements.
This technique was first applied to the DVCS reaction
[7–10] in view of improving the extraction of the t
dependence of generalized parton distributions (GPDs)
from experimental data, which is crucial to access the
tomography of the nucleon [11–13], then to the meson pair
production in γ�γ collisions at e−eþ colliders [14,15] in
view of improving the extraction of the s dependence of
GDAs from experimental data [16].
The present paper is organized as follows. In Sec. II, the

kinematics of e−eþ → MM̄γ are discussed, and we give
the complete formula for the interference term of the cross
section, which is expressed in terms of three helicity
amplitudes. A numerical estimate for the cross section of
this process is provided in Sec. III, and the kinematical
power suppressed corrections are included up to 1=Q2 in
this calculation. Our results are summarized in Sec. IV.

II. KINEMATICS AND CROSS SECTIONS

In the process e−eþ → MM̄γ, there are two types of
subprocesses that differ by the charge conjugation of the
meson pair. The charge conjugation C ¼ þ meson pair
is produced in the subprocess (a), e−eþ → γ� → MM̄γ,
and the charge conjugation odd one is contributed
by the ISR subprocess (b), e−eþ → γ�γ → MM̄γ. To
describe the reaction of e−ðk1Þeþðk2Þ → γ�ðq1Þ →
Mðp1ÞM̄ðp2Þγðq2Þ, the following variables are introduced:

s ¼ ðk1 þ k2Þ2; u ¼ ðk1 − q2Þ2;

ŝ ¼ W2 ¼ ðp1 þ p2Þ2; β0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

ŝ

r
; ð2Þ

where m is the meson mass. In Fig. 1, we show the
description of momenta and angles involved in this
reaction. The kinematics are discussed in the center-of-
mass frame of the meson pair, and we choose a coordinate
system with the z axis along the momenta of the photons.
The momenta of the mesons lie in the x-z plane, and the x
component of p1 is always positive,

p1 ¼ ðp0
1; jp1j sin θ; 0; jp1j cos θÞ; ð3Þ

where θ is the polar angle of p1, and it can be given in terms
of Lorentz invariants,

cos θ ¼ q1 · ðp2 − p1Þ
β0ðq1 · q2Þ

: ð4Þ

φ is the azimuthal angle between the lepton plane and
hadron plane as indicated in Fig. 1, and it is expressed as

sinφ ¼ 4ϵαβγδqα1q
β
2p

γ
1k

δ
1

β0 sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
usŝðŝ − u − sÞp ; ð5Þ

where the convention ϵ0123 ¼ 1 is used. We introduce a
parameter ζ0, which indicates the longitudinal fraction of
Δ ¼ p2 − p1,

ζ0 ¼
ðp2 − p1Þ · q2
ðp2 þ p1Þ · q2

; ð6Þ

and one can obtain ζ0 ¼ β0 cos θ using Eq. (3). For
convenience, we define two lightlike vectors n and ñ,
and they can be expressed in terms of q1 and q2 as

ñ ¼ q1 − ð1þ τÞq2; n ¼ q2; ð7Þ

with τ ¼ ŝ=ðs − ŝÞ. Combining with Eq. (6), one obtains

Δ ¼ p2 − p1 ¼ ζ0ðñ − τnÞ þ ΔT;

2P ¼ p1 þ p2 ¼ ñþ τn; ð8Þ

where ΔT is the transverse component of Δ, and it is
given by

Δμ
T ¼ gμν⊥Δν ð9Þ

with

gμν⊥ ¼ gμν −
nμñν þ nνñμ

n · ñ
: ð10Þ

We can obtain Δ2
T ¼ gμν⊥ΔμΔν ¼ 4m2 − ð1 − ζ20Þŝ by the

on-shell condition.

FIG. 1. Description of the kinematics of the reaction
e−ðk1Þeþðk2Þ → γ�ðq1Þ → Mðp1ÞM̄ðp2Þγðq2Þ, in the center-of-
mass frame of the meson pair; the z axis is chosen along the
photons’ momenta.
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If s ¼ Q2 is large enough to satisfy the collinear QCD
factorization [3] for the subprocess (a), the amplitude of
γ�ðQ2Þ → MM̄γ can be separated into a short-distance part
γ� → qq̄γ and a long-distance part qq̄ → MM̄ [2] as shown
in Fig. 2. The short-distance part is calculable at leading
twist in perturbation theory, while the long-distance part is
described by a two-meson GDA [17–19]. In the case of a
pseudoscalar meson pair, we define the twist-two GDA
Φqðz; ζ0; ŝÞ for the quark flavor q,

hM̄ðp2ÞMðp1Þjq̄ðn=2Þ=nqð−n=2Þj0i

¼ 2P · n
Z

1

0

dz eið2z−1ÞP·nΦqðz; ζ0; ŝÞ; ð11Þ

where z denotes the momentum fraction of the quark, and
the GDAs are actually dependent on a renormalization scale
μ2 which is set as μ2 ¼ s here. GDAs evolve with the scale
Q2 according to the Efremov-Radyushkin-Brodsky-Lepage
evolution equation [20], and the general expressions of
GDAs can be obtained by solving the evolution equation.
For example, the charge conjugation C ¼ þ GDAs

are expanded in Gegenbauer polynomials Cð3=2Þ
n ðxÞ and

Legendre polynomials PlðxÞ [18],

Φqðz; cos θ; ŝÞ ¼ 6zð1 − zÞ
X∞
n¼1
n odd

Xnþ1

l¼0
l even

B̃nlðŝÞCð3=2Þ
n ð2z − 1Þ

× Plðcos θÞ; ð12Þ

where the subscript l indicates the angular momentum of
the meson pair, and the scale dependence is abbreviated in
B̃nlðŝÞ. In general, B̃nlðŝÞ are complex functions,

B̃nlðŝÞ ¼ jB̃nlðŝÞjei�δl ; ð13Þ

where iδl are imaginary phases. If we consider the asymp-
totic limit of Q2 → ∞, only the n ¼ 1 terms remain in
Eq. (12) [18],

Φqðz; cos θ; ŝÞ
¼ 18zð1 − zÞð2z − 1Þ½B̃10ðŝÞ þ B̃12ðŝÞP2ðcos θÞ�; ð14Þ

and they are the asymptotic expressions of GDAs.
Let us introduce the following hadron tensor to discuss

the amplitudes of γ� → MM̄γ:

Aμν ¼ i
Z

d4x e
−iðq1þq2Þ·x

2 hM̄ðp2ÞMðp1Þj

× Tfjemμ ðx=2Þjemν ð−x=2Þgj0i; ð15Þ

it satisfies the electromagnetic gauge invariance condition
Aμνq

μ
1 ¼ Aμνqν2 ¼ 0. Therefore, Aμν can be expressed as [8]

Aμν ¼ −Að0Þgμν⊥ þ Að1Þðñμ − ð1þ τÞnμÞΔ
ν
Tffiffiffi
s

p

þ 1

2
Að2ÞΔαΔβðgαμ⊥ gβν⊥ − ϵαμ⊥ ϵβν⊥ Þ þ Að3Þμnν; ð16Þ

where the tensor ϵμν⊥ is given by

ϵμν⊥ ¼ ϵμναβ
ñαnβ
n · ñ

: ð17Þ

AðiÞ (i ¼ 0, 1, 2) denote three independent helicity ampli-
tudes that are expressed in terms of GDAs, however, Að3Þ is
not physical since it contributes only if the outgoing real
photon was longitudinally polarized. In the center-of-mass
frame of the meson pair, we follow the conventions of
Ref. [18] for the polarization vectors of the virtual photon,

ϵμ�¼ 1ffiffiffi
2

p ð0;∓1;−i;0Þ; ϵμ0¼
1ffiffiffi
s

p ðjq31j;0;0;q01Þ; ð18Þ

where ϵ� are the transverse polarization vectors, and ϵ0
indicates longitudinal polarization. Only transverse polari-
zation vectors ϵ̃� exist for the real photon, and they are
the same as the corresponding ones of the virtual
photon, ϵ̃� ¼ ϵ�. The helicity amplitudes are defined as
Aij ¼ ϵμi ϵ̃

�ν
j Aμν, and they are expressed in terms of AðiÞ,

Aþþ ¼ A−− ¼ Að0Þ; A0� ¼ −Að1ÞðΔ · ϵ∓Þ;
A�∓ ¼ −Að2ÞðΔ · ϵ�Þ2: ð19Þ

If we limit our study to a leading order in αs calculation, the
amplitudes A0� and A�∓ are, respectively, of order 1=Q
and 1=Q2 effects (s ¼ Q2), and only Aþþ receives a leading
1=Q0 contribution, which has been calculated in Ref. [2].
Then, the differential cross section of e−eþ → MM̄γ
reads [1]

FIG. 2. One of the leading-twist Feynman diagrams for the
subprocess (a), e−eþ → γ� → MM̄γ; the meson pair is produced
with charge conjugation C ¼ þ and the hadronization process is
factorized with the help of two meson GDAs.
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dσG
dŝdudðcos θÞdφ ¼ α3emβ0

16πs3
1

1þ ϵ

h
jAþþj2 þ jA−þj2 þ 2ϵjA0þj2 − 2sgnðρÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞ

p

× ReðA�þþA0þ − A�
−þA0þÞ cosφþ 2ϵReðA�þþA−þÞ cosð2φÞ

i
;

where the subscript G indicates that the meson pair is produced through the subprocess (a), namely, in the charge
conjugation C ¼ þ state, and may be rewritten neglecting terms of order 1=Q3 and higher as

dσG
dŝdudðcos θÞdφ ¼ α3emβ0

16πs3
1

1þ ϵ

h
jAþþj2 þ 2ϵjA0þj2 − 2sgnðρÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞ

p
ReðA�þþA0þÞ cosφþ 2ϵReðA�þþA−þÞ cosð2φÞ

i
:

ð20Þ

ϵ is the usual polarization parameter, which is written in
terms of Lorentz invariants as

ϵ ¼ y − 1

1 − yþ y2

2

; y ¼ q1 · q2
k1 · q2

; ð21Þ

and sgnðρÞ ¼ jρj=ρ is the sign function with
ρ ¼ ŝ − s − 2u. Note that Eq. (20) is different from the
cross section presented in Ref. [2], where only the leading-
twist amplitude Aþþ is included and the variable yLu is used
instead of u,

yLu ¼ 1þ u
s − ŝ

: ð22Þ

Recently, the authors of Refs. [4–6] separated the
kinematical contribution from the dynamical one in the
operator product of two electromagnetic currents
Tfjemμ ðz1xÞjemν ðz2xÞg up to twist-four accuracy, and the
kinematical contribution does not contain the genuine
higher-twist operators; namely, it is expressed in terms
of the subtraction of traces in the leading-twist operators
and the total derivatives of the leading-twist operators.
If one includes the kinematical corrections to the cross
sections of the off-forward hard reactions where GPDs or
GDAs can be accessed, hopefully more precise cross
sections can be obtained with the leading-twist GPDs
or GDAs. In Ref. [1], we derived that the up to twist-four
kinematical power suppressed corrections are included in
the helicity amplitudes of e−eþ → MM̄γ as

Að0Þ ¼ χ

��
1þ ŝ

2s

�Z
1

0

dz
Φðz; η; ŝÞ
1 − z

þ ŝ
s

Z
1

0

dz
Φðz; η; ŝÞ

z
lnð1 − zÞ

þ
�
2ŝ
s
ηþ Δ2

T

β20s
∂

∂η

�
∂

∂η

Z
1

0

dz
Φðz; η; ŝÞ

z

�
lnð1 − zÞ

2
þ Li2ð1 − zÞ − Li2ð1Þ

��
;

Að1Þ ¼ 2χ

β0
ffiffiffi
s

p ∂

∂η

Z
1

0

dzΦðz; η; ŝÞ lnð1 − zÞ
z

;

Að2Þ ¼ 2χ

β20s
∂
2

∂η2

Z
1

0

dzΦðz; η; ŝÞ 2z − 1

z
lnð1 − zÞ; ð23Þ

where η ¼ cos θ, and χ ¼ 5e2=18. Φ ¼ Φu þΦd is defined
for the isosinglet pion meson pair. Note that one needs to
replace χΦ by e2uΦu þ e2dΦd þ e2sΦs in the helicity ampli-
tudes if aK meson pair is produced in the charge conjugation
C ¼ þ state, since the GDA for the s quark should be
included. There are two types of kinematical corrections
Oðŝ=sÞ and OðΔ2

T=sÞ in the helicity amplitudes, and the
latter one also contains the so-called target mass correction
Oðm2=sÞ using Δ2

T ¼ 4m2 − ð1 − ζ20Þŝ. Equations (12)
and (23) imply that the S-wave GDAs will not contribute
to the helicity flipped amplitudes A0� and A�∓.
The charge conjugation C ¼ − meson pair is produced

by ISR in the reaction e−eþ → MM̄γ, and the

corresponding Feynman diagrams are shown in Fig. 3.
Note that the amplitude of this process is not described in
terms of a twist expansion, since the hadronic part entirely

FIG. 3. Feynman diagrams of the ISR subprocess for the
reaction e−eþ → MM̄γ; the meson pair is produced with charge
conjugation C ¼ − and the hadronic process occurs through the
meson timelike form factors.
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comes from the timelike electromagnetic meson form factor FMðŝÞ, which is experimentally known at moderate values of ŝ
and does not need to be calculated from QCD (which indeed would be difficult in this nonperturbative region). The
differential cross section for ISR is given in Refs. [2,21,22],

dσISR
dŝdudðcos θÞdφ ¼ α3emβ

3
0

8πs2
jFMðŝÞj2

ϵŝ

h
ð1 − 2xð1 − xÞÞsin2θ þ 4xðx − 1Þϵcos2θ þ sgnðρÞð2x − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xðx − 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞ

p

× sinð2θÞ cosφþ 2xð1 − xÞϵsin2θ cosð2φÞ
i
; ð24Þ

where the variable x is defined as

x ¼ ðq1Þ2
2q1 · q2

¼ s
s − ŝ

: ð25Þ

There is also an interference between the two subprocesses amplitudes in the cross section, and it can be expressed by

dσI
dŝdudðcos θÞdφ ¼ α3emβ0

8πs2

ffiffiffi
2

p
β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝsϵð1þ ϵÞp ½C0 þ C1 cosφþ C2 cosð2φÞ þ C3 cosð3φÞ�; ð26Þ

where the coefficients Ci read

C0 ¼ −sgnðρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xðx − 1Þ

p
ReðAþþF�

MÞ cos θ þ sgnðρÞðx − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞ

p
ReðA0þF�

MÞ sin θ;
C1 ¼ −½1 − ð1 − xÞð1 − ϵÞ�ReðAþþF�

MÞ sin θ þ 2ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xðx − 1Þ

p
ReðA0þF�

MÞ cos θ þ ðx − 1ÞReðA−þF�
MÞ sin θ;

C2 ¼ sgnðρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞ

p
xReðA0þF�

MÞ sin θ þ sgnðρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xðx − 1Þ

p
ReðA−þF�

MÞ cos θ;
C3 ¼ −ϵxReðA−þF�

MÞ sin θ: ð27Þ

If one compares Eqs. (20) and (24) with (26), the
following relation can be found:

dσG∶dσI∶dσISR ∼
1

s
∶

1ffiffiffiffiffi
sŝ

p ∶
1

ŝ
; ð28Þ

and this is reminiscent of the different s andQ2 behavior of
the Bethe-Heitler and QCD amplitudes for the DVCS or
timelike Compton scattering [23] processes. Because of
the factorization condition s ≫ ŝ, the largest contribution
comes from the ISR cross section dσISR. However, what we
are interested in are the GDAs, which do not contribute
to the ISR cross section of Eq. (24). To access the GDAs,
it is thus better to measure the interference cross section.
In addition, the imaginary phases of GDAs cannot be
extracted from Eq. (20), and we can illustrate this using
the asymptotic GDAs of Eq. (14). Since only the D-wave
GDAs contribute to the helicity flipped amplitudes A0� and
A�∓ as indicated by Eq. (23), the term of ReðA�

−þA0þÞ in
Eq. (20) should be independent of the imaginary phases
of GDAs, and the phases affect the cross section via
ReðB̃10ðŝÞB̃�

12ðŝÞÞ for the remaining terms of Eq. (20);
thus, only the relative phase between B̃10ðŝÞ and B̃12ðŝÞ can

be determined for the GDAs. On the contrary, the complete
information of GDAs can be accessed by analyzing the
interference cross section due to dσI ∝ ReðAijF�

MðŝÞÞ.
The hadron GDAs are extracted from e−eþ → γ� →

M1M2γ, where electromagnetic interaction and strong
interaction are involved. The first moments of GDAs lead
to the energy-momentum tensor (EMT) form factors (FFs)
of hadrons, and the latter ones are difficult to be accessed
by experiment directly due to the weak gravitational
interaction. Thus, the hadron GDAs are a powerful way
to obtain the timelike EMT FFs. The imaginary phases are
used when one transfers the timelike FFs to the spacelike
ones [24–26],

FhðtÞ ¼
Z

∞

4m2
h

dŝ
π

ImFhðŝÞ
ŝ − t

; ð29Þ

where FhðŝÞ is a EMT or electromagnetic FF for the
hadron, and mh is the hadron mass. Moreover, many
interesting physical quantities of hadrons can be gained
from the spacelike EMT FFs, such as mass radius, pressure,
and shear force distributions [27–37]. As a consequence,
the measurement of the interference cross section will play
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an important role in the GDA extraction. Since the charge
conjugationC ¼ þ andC ¼ −meson pairs are produced in
subprocesses (a) and (b), respectively, Eqs. (20) and (24)
will remain the same if one interchanges M and M̄, but the
interference cross section of Eq. (26) will change its sign
under this interchange, so that only the interference term
survives in dσðMM̄Þ − dσðM̄MÞ ¼ 2dσI, and it has been
measured by BABAR for πþπ− [21].

III. NUMERICAL ESTIMATES OF THE
CROSS SECTIONS

In the following, we present our numerical estimates for
the various components of the cross section of e−eþ →
πþπ−γ by using the formulas derived in Sec. II, and we
show the importance of the kinematical power suppressed
corrections on various observables. We first calculate the
differential cross section emerging from the dominant
ISR process for BESIII and Belle II kinematics. We then
evaluate in these kinematics both the pure QCD and the
QCD-ISR interference contributions to differential cross
sections, as a function of the hadron pair invariant mass and
as a function of the azimuthal angle. We use two models
for the ππ GDA, namely, one coming from a previous
analysis [30] of Belle experimental data, then a model
based on the asymptotic shape predicted by QCD evolution
of GDAs.

A. Cross section of the ISR process

As indicated by Eq. (28), the ISR process gives the
dominant contribution to the cross section. In this calcu-
lation, the absolute value of the timelike electromagnetic
form factor jFπðŝÞj is needed, and we use the parametriza-
tion presented in Ref. [38], where the pion form factor was
extracted from experimental measurements of e−eþ →
πþπ−ðγÞ [39–41]. Integrating Eq. (24) over φ, we present
the cross section for the ISR process in Fig. 4. We choose
s ¼ 12 and s ¼ 100 GeV2, which are typical values for

BESIII and Belle II, respectively. u is set as u ¼ −2 GeV2

in the left panel and u ¼ −6 GeV2 in the right panel, and
the solid (dashed) curve denotes cos θ ¼ 0.2ð0.8Þ. The
predicted cross section of BESIII is about 10 times larger
than the one of Belle II, and both of them decrease rapidly
asW increases from 0.7 to 2.1 GeV. In the figure, the peaks
around W ∼ 0.7 and W ∼ 1.8 GeV exist due to the oscil-
lating form factor, and the first one comes from the ρmeson
resonance. Note that the differential cross section of the ISR
process will increase as the emitted photon (q2) becomes
parallel to the momenta of the electron or positron, namely,
when u ¼ 0 or u ¼ W2 − s is satisfied. One can see that the
cross sections in the left panel are larger than those of the
right panel, since the momentum of the emitted photon is
closer to the parallel direction at u ¼ −2 GeV2.

B. Cross sections dσI and dσG
with the extracted ππ GDA

Since we are interested in extracting the GDAs, which
appear in the other two contributions to the cross section
for e−eþ → πþπ−γ, we also show the numerical results for
dσG and the interference term dσI. Integrating Eqs. (20)
and (26) over φ, one obtains

dσG
dudW2dðcos θÞ

¼ α3emβ0
8s3

1

1þ ϵ
½jAþþj2 þ jA−þj2 þ 2ϵjA0þj2�; ð30Þ

dσI
dudW2dðcos θÞ ¼

α3emβ0
4s2

ffiffiffi
2

p
β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝsϵð1þ ϵÞp C0; ð31Þ

where the meson GDA is required to calculate the helicity
amplitudes Aij, and the electromagnetic form factor is also
needed for the interference term dσI in addition to the
GDA. In this work, we use two types of GDAs for the
pion meson: one of them was extracted from Belle

FIG. 4. The differential cross section dσ=dudW2d cos θ for the ISR process; s is set as s ¼ 12 GeV2 for BESIII and s ¼
100 GeV2 for Belle II. We choose (left) u ¼ −2 and (right) u ¼ −6 GeV2. The solid lines denote cos θ ¼ 0.2, and the dashed
lines represent cos θ ¼ 0.8.
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measurements of γ�γ → π0π0 [30], and the other is called
the asymptotic ππ GDA [18]. As for the timelike form
factor, only the absolute values are provided in Ref. [38],
and the imaginary phase of the form factor can be related to
the phase shift of the P-wave ππ elastic scattering below the
KK threshold; however, the imaginary phase is unknown
above the KK threshold. The main purpose of this work is
to check whether the kinematical power suppressed effect is
important or not in the interference term, namely, the
proportion of power suppressed contribution to the cross
section of dσI, which is not affected by the form factor since
it is just an overall function as indicated by Eq. (27).
Therefore, the absolute value of the meson form factor is
used in calculating the interference term.
Using the extracted ππ GDA, we include the kinematical

power suppressed corrections to the cross sections dσG and
dσI according to Eq. (23), and they are presented in Fig. 5
with s ¼ 12 and u ¼ −2 GeV2. We choose cos θ ¼ 0.2 and
cos θ ¼ 0.8 as two typical values for the polar angle. The
solid lines denote the cross section of dσG, and the dashed
curves indicate the interference term dσI. We can see that
both dσG and dσI are much smaller than the cross section of
the ISR process shown in Fig. 4. The interference term dσI
is a few times larger than dσG, which is consistent with the
prediction of Eq. (28). On the one hand, dσI is much easier
to access in an experiment due to the larger cross section,
which can be obtained by taking the difference between the
cross section of e−eþ → πþπ−γ and the one of the same
process where the πþ and π− momenta are interchanged.
On the other hand, the imaginary phases of GDAs cannot
be fully determined by analyzing dσG, since the helicity
amplitudes squared in Eq. (30) are only dependent on the
relative phases; however, they can be extracted from dσI,
which are necessary to investigate the spacelike EMT FFs
of hadrons as indicated by Eq. (29).

Since the interference term dσI plays an important role
in the extraction of GDAs, it is necessary to use a precise
description for dσI. We employ the extracted ππ GDA to
check the effect of kinematical power suppressed correc-
tions to the cross section. In Fig. 6, the dashed curves
represent the twist-two contribution to the interference term
dσI, and the solid ones indicate the cross sections with the
kinematical power suppressed corrections included up to
twist four. We choose s ¼ 12 GeV2 which is a typical value
for BESIII, and u is set as u ¼ −2 and u ¼ −6 GeV2 for
the top panel and bottom panel, respectively. The back
lines denote cos θ ¼ 0.2, and the orange ones represent
cos θ ¼ 0.8 as indicated by the figure. In the top left panel,
the gaps between the solid lines and dashed lines are very
small compared with the cross section if W < 1 GeV, and
the kinematical power suppressed corrections can account
for 10%–40% of the cross section for the region of
W > 1 GeV. Since the cross sections decrease rapidly,
and the gaps cannot clearly be seen in the region of
W > 1.5 GeV, the cross sections are also depicted with
1.5 ≤ W ≤ 2.1 GeV in the top right panel. Similarly, one
can infer that the kinematical power suppressed corrections
cannot be neglected when W > 1 GeV from the bottom
panel, where u ¼ −6 GeV2 is chosen. As a consequence, it
is necessary to include the kinematical contribution to extract
the pion GDA from the interference term dσI measured at
BESIII, since the kinematical contribution is important to
describe the cross section at large W region. The timelike
EMT FFs are obtained from the meson GDAs, and timelike
FFs can be transferred to the spacelike ones by the integral of
Eq. (29). Since timelike EMT FFs decrease as the W ¼ ffiffiffî

s
p

goes up, one can usually set ŝ ∼ 4 GeV2 as the upper limit of
the integral [30], which means that the timelike FFs at large ŝ
region (1 < ŝ ¼ W2 < 4 GeV2) are needed to make the
integral convergent. Thus, it is crucial to include the
kinematical power suppressed corrections so as to extract
the GDAs in the medium to largeW region precisely, which
then can be used to study the EMT FFs for mesons.
If we increase s from 12 to 100 GeV2, which is typical

for Belle II, in Fig. 7 the dashed and solid curves indicate
the twist-two cross sections and the cross sections with the
kinematical power suppressed contribution included for the
interference term, respectively. We choose cos θ ¼ 0.2,
cos θ ¼ 0.8, and u ¼ −2 GeV2 as shown in the figure.
One can predict that the interference term will diminish as s
goes up due to the factor 1=ðs2 ffiffiffi

s
p Þ from Eq. (31).

Compared with Fig. 6, the cross sections become quite
tiny when s ¼ 100 GeV2. In Fig. 7, we can hardly see the
difference between the dashed and solid lines, showing that
the kinematical power suppressed corrections can be
neglected for the interference term of e−eþ → πþπ−γ at
Belle II. This also conforms to what is expected, since the
kinematical correction is proportional to ŝ=s, and it only
accounts for ∼1% of the cross section in the kinematics of
the measurements at Belle II.

FIG. 5. The meson pair invariant mass (W) dependence of the
cross sections dσG and dσI at s ¼ 12 GeV2; the model for the ππ
GDA [30] comes from an analysis of Belle measurements. dσG is
depicted as solid curves, and the dashed curves represent the
interference term dσI.
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We have calculated the interference term dσI using
Eq. (31), where the azimuthal angle φ is integrated. In
Eq. (31), only helicity amplitudes Aþþ and A0þ contribute
to the interference term, however, all three helicity ampli-
tudes appear in the φ-dependent differential cross section
of Eq. (26). Actually, the φ-dependent differential cross
section of dσI has been measured by the BABAR
Collaboration [21]. In order to check how the kinematical

corrections affect the φ dependence of the interference
term, we also estimate the cross section dσI=dφ with the
help of Eq. (26). In Fig. 8, the solid (dashed) lines show
the cross sections without (with) the kinematical power
suppressed corrections included. s ¼ 12 GeV2 and W ¼
1.5 GeV are chosen, and the colors of lines (black, orange)
represent the different values of cos θ (0.2, 0.8). We set
u ¼ −2 GeV2 in the left panel and u ¼ −6 GeV2 in the
right panel. The gaps between the solid and dashed lines are
not negligible compared with the magnitude of dσI.

C. Interference term dσI with the
asymptotic model GDA

In addition to the extracted ππ GDA, the asymptotic ππ
GDA is also used to investigate the kinematical power
suppressed corrections in the interference term dσI of
e−eþ → πþπ−γ. The asymptotic GDA is expressed in
terms of the S- and D-wave terms as explained in
Sec. II, and a model ππ GDA was proposed based on its
asymptotic form [17],

Φðz;cosθ; ŝÞ

¼20zð1−zÞð2z−1ÞRπ

�
−3þβ20

2
eiδ0 þβ20e

iδ2P2ðcosθÞ
�
;

ð32Þ

FIG. 7. Differential interference cross section dσI; s ¼
100 GeV2 is chosen according to the Belle II experiment
kinematics. The dashed curves denote the twist-two cross
sections, and the solid ones include the kinematical power
suppressed contribution.

FIG. 6. Differential cross section of the interference term dσI. The kinematics is set according to the BESIII experiment as s ¼ 12,
u ¼ −2 ð−6Þ GeV2 together with cos θ ¼ 0.2 (0.8). The dashed lines are the twist-two cross sections, and the solid lines include the
kinematical power suppressed contribution. The GDA model used comes from the estimate [30] using the Belle measurements.
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where δ0 and δ2 [42–44] are the ππ elastic scattering phase
shifts of the S and D wave, respectively. The parameter
Rπ ¼ 0.5 is chosen, which quantifies the momentum
fraction carried by quarks in the pion meson. The asymp-
totic model GDA is quite different from the extracted ππ
GDA. It is thus meaningful to check whether the kinemati-
cal power suppressed corrections are significant or not in
dσI by using both models of the GDAs. In Fig. 9, the
interference term dσI is depicted by the solid and dashed
lines, where the latter are twist-two cross sections and
the former include the kinematical power suppressed

contribution. u ¼ −2 and u ¼ −6 GeV2 are chosen for
the top and bottom panels, respectively. The colors (black,
orange) of lines represent different values of cos θ (0.2,
0.8). Compared with Fig. 6, both GDAs predict a similar
magnitude of the interference term dσI. From Fig. 9, we
draw the conclusion that the kinematical contributions
cannot be neglected if W > 1 GeV, which is consistent
with the case of the extracted ππ GDA.
Similarly, we also present the φ-dependent differential

cross section of Eq. (26) with the asymptotic model GDA
in Fig. 10. The kinematics is fixed as s ¼ 12 GeV2 and

FIG. 9. Differential cross section of the interference term dσI at s ¼ 12, u ¼ −2 ð−6Þ GeV2. The asymptotic ππ GDA is used as the
input.

FIG. 8. The azimuthal angle φ dependence of the interference cross section dσI; s ¼ 12 GeV2 and the extracted GDA is used. The
dashed curves denote the twist-two cross sections, and the solid ones include the kinematical power suppressed contribution.
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W ¼ 1.5 GeV, and we choose u ¼ −2 ð−6Þ GeV2 for the
left (right) panel. The black lines denote cos θ ¼ 0.2, and
the orange lines represent cos θ ¼ 0.8. The dashed curves
denote the twist-two cross sections, and the solid ones
include the kinematical power suppressed contribution as
usual. Even though the asymptotic model GDA is very
different with the extracted ππ GDA, especially at W >
1 GeV (above KK threshold), both cross sections have
similar magnitudes. Moreover, we also conclude that one
cannot neglect the kinematical power suppressed contri-
bution in the φ-dependent differential cross section.

IV. SUMMARY

GPDs and GDAs are related key physical quantities to
study the proton spin puzzle and the EMT FFs of hadrons,
and these research topics stand at the heart of hadron
physics. However, there are no experimental facilities
where the meson GPDs can be accessed directly.
Especially the pion meson is one of the Goldstone bosons,
thus it is of prime importance to understand its inner
structure. Fortunately, GDAs can be considered as an
alternative way to investigate the EMT form factors of
mesons, which are accessible in the two-photon reactions,
for example, γ�γ → MM̄ and γ� → MM̄γ, where the
momentum squared of the virtual photon is large enough
to satisfy the QCD factorization condition. In the former
process, the meson GDAs are probed by the spacelike
photon, and the timelike photon comes from eþe−
annihilation for the latter. Thus, the universality of
GDAs can be checked by two processes [45].
To access the pion GDAs, we investigate the process

e−eþ → ππγ, and it can be measured at Belle II and BESIII.
In case of the π0π0 production, the cross section is
expressed in terms of three helicity amplitudes of
γ� → ππγ where the GDAs are involved. As indicated
by Eq. (20), the imaginary phases of the GDAs cannot be
determined by analyzing its cross section. In the πþπ−
production channel, πþπ− can also come from the electro-
magnetic FF besides GDAs, which is called the ISR

process. Thus, there are three parts in the cross section,
among which the interference term between the ISR
process and the GDA process is very interesting. The
interference term is much larger than the cross section of
the GDA process, and it can be obtained if we exchange the
momenta of πþπ−, namely, dσðπþπ−ÞÞ−dσðπ−πþÞ¼2dσI.
Therefore, it may be quite easy to measure it. Moreover, the
complete information of GDAs can be extracted from the
interference term including the imaginary phases.
In this work we provide the complete formula for the

interference term in the cross section of the process
e−eþ → πþπ−γ, expressed in terms of three helicity ampli-
tudes and the pion electromagnetic FF. Using the ππ GDA
model extracted from Belle measurements and the pion FF,
we also present the numerical estimate of the cross section
of e−eþ → πþπ−γ, and we find that the contribution of the
ISR process is dominant and the interference term is much
larger than the cross section of the GDA process, which is
consistent with theoretical expectation. In order to see the
impact of the kinematical power suppressed (kinematical
higher-twist) corrections, we calculate the interference
term with and without these power suppressed corrections
included, using two types of GDAs, which are the extracted
GDA and asymptotic model GDA. In the case of the
measurements of e−eþ → πþπ−γ at BESIII, our estimates
with both GDAs indicate that the kinematical power
suppressed corrections contribute significantly to the
interference term when W > 1 GeV, and one needs to
include such corrections in the extraction of GDAs. If
e−eþ → πþπ−γ is measured at Belle II, the interference
term is much smaller than in the case of BESIII.
Moreover, the kinematical power suppressed contribution
only accounts for 1%–2% of the interference term, which
also agrees with the rough estimate that the kinematical
contribution is suppressed by the factor of ŝ=s. Thus, one
can adopt the twist-two formula for the interference term
to extract GDAs at Belle II.
As the study of hadron EMT FFs becomes one of the

most popular topics in hadron physics, the measurements
of e−eþ → MM̄γ and e−γ → e−MM̄ are widely discussed

FIG. 10. Interference term dσI is dependent on the azimuthal angle φ; we use the same conventions as in Fig. 8 and the asymptotic
model GDA.
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for BESIII and Belle II experiments. Actually, such
measurements are now in progress at Belle II. Our
theoretical work should play an important role in the
precise extraction of meson GDAs from the measure-
ments. The meson GDAs are used to obtain the meson
EMT FFs, from which many important physical quantities
can be gained, such as mass radius, mass, pressure, and
shear force distributions of mesons.
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[33] H. Dutrieux, C. Lorcé, H. Moutarde, P. Sznajder,

A. Trawiński, and J. Wagner, Eur. Phys. J. C 81, 300 (2021).
[34] R. Wang, W. Kou, C. Han, J. Evslin, and X. Chen, Phys.

Rev. D 104, 074033 (2021).
[35] K. Raya, Z. F. Cui, L. Chang, J. M. Morgado, C. D. Roberts,

and J. Rodriguez-Quintero, Chin. Phys. C 46, 013105
(2022).

[36] A. Freese and I. C. Cloët, Phys. Rev. C 100, 015201 (2019);
105, 059901(E) (2022).

[37] D. Chakrabarti, C. Mondal, A. Mukherjee, S. Nair, and
X. Zhao, Phys. Rev. D 102, 113011 (2020).

[38] E. Bartoš, S. Dubnička, and A. Z. Dubničková, Dynamics 3,
137 (2023).

[39] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 86,
032013 (2012).

[40] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 753,
629 (2016); 812, 135982(E) (2021).

[41] T. Xiao, S. Dobbs, A. Tomaradze, K. K. Seth, and G.
Bonvicini, Phys. Rev. D 97, 032012 (2018).

[42] P. Bydžovský, R. Kamiński, and V. Nazari, Phys. Rev. D 94,
116013 (2016).

[43] P. Bydžovský, R. Kamiński, and V. Nazari, Phys. Rev. D 90,
116005 (2014).

[44] Y. S. Surovtsev, P. Bydzovsky, R. Kaminski, and M. Nagy,
Phys. Rev. D 81, 016001 (2010).

[45] D. Mueller, B. Pire, L. Szymanowski, and J. Wagner, Phys.
Rev. D 86, 031502 (2012).

KINEMATICAL HIGHER-TWIST CORRECTIONS IN … PHYS. REV. D 109, 074016 (2024)

074016-11

https://doi.org/10.1103/PhysRevD.107.114014
https://doi.org/10.1103/PhysRevD.73.094021
https://doi.org/10.1103/PhysRevD.75.099902
https://doi.org/10.1103/PhysRevD.75.099902
https://doi.org/10.1002/prop.2190420202
https://doi.org/10.1103/PhysRevLett.107.202001
https://doi.org/10.1103/PhysRevLett.107.202001
https://doi.org/10.1007/JHEP01(2012)085
https://doi.org/10.1007/JHEP01(2012)085
https://doi.org/10.1016/j.ppnp.2011.12.011
https://doi.org/10.1016/j.ppnp.2011.12.011
https://doi.org/10.1007/JHEP01(2023)078
https://doi.org/10.1007/JHEP01(2023)078
https://doi.org/10.1103/PhysRevD.86.014003
https://doi.org/10.1103/PhysRevD.86.014003
https://doi.org/10.1103/PhysRevLett.109.242001
https://doi.org/10.1103/PhysRevLett.109.242001
https://doi.org/10.1103/PhysRevD.89.074022
https://doi.org/10.1103/PhysRevD.62.071503
https://doi.org/10.1103/PhysRevD.66.119903
https://doi.org/10.1103/PhysRevD.66.119903
https://doi.org/10.1103/PhysRevD.66.111501
https://doi.org/10.1007/s10052-002-1016-9
https://doi.org/10.1140/epjc/s2003-01356-4
https://doi.org/10.1103/PhysRevD.106.094030
https://doi.org/10.1103/PhysRevD.106.094030
https://arXiv.org/abs/2208.12532
https://doi.org/10.1016/S0370-2693(03)00134-5
https://doi.org/10.1103/PhysRevLett.81.1782
https://doi.org/10.1103/PhysRevLett.81.1782
https://doi.org/10.1103/PhysRevD.62.073014
https://doi.org/10.1103/PhysRevD.62.073014
https://doi.org/10.1016/j.physrep.2003.08.002
https://doi.org/10.1016/0370-2693(79)90554-9
https://doi.org/10.1016/0370-2693(80)90869-2
https://doi.org/10.1016/0370-2693(80)90869-2
https://doi.org/10.1103/PhysRevD.92.072015
https://doi.org/10.1103/PhysRevD.92.072015
https://doi.org/10.1088/1126-6708/1997/10/006
https://doi.org/10.1088/1126-6708/1997/10/006
https://doi.org/10.1007/s100520200917
https://doi.org/10.1007/s100520200917
https://doi.org/10.1103/PhysRevC.82.042201
https://doi.org/10.1103/PhysRevD.83.013006
https://doi.org/10.1103/PhysRevD.83.013006
https://doi.org/10.1134/S002136401412008X
https://doi.org/10.1134/S002136401412008X
https://doi.org/10.1142/S0217751X18300259
https://doi.org/10.1142/S0217751X18300259
https://doi.org/10.1038/s41586-018-0060-z
https://doi.org/10.1038/s41586-018-0060-z
https://doi.org/10.1103/RevModPhys.95.041002
https://doi.org/10.1103/RevModPhys.95.041002
https://doi.org/10.1103/PhysRevD.97.014020
https://doi.org/10.1103/PhysRevD.97.014020
https://doi.org/10.1140/epjc/s10052-019-6572-3
https://doi.org/10.1140/epjc/s10052-019-6572-3
https://doi.org/10.1038/s41586-019-1211-6
https://doi.org/10.1140/epjc/s10052-021-09069-w
https://doi.org/10.1103/PhysRevD.104.074033
https://doi.org/10.1103/PhysRevD.104.074033
https://doi.org/10.1088/1674-1137/ac3071
https://doi.org/10.1088/1674-1137/ac3071
https://doi.org/10.1103/PhysRevC.100.015201
https://doi.org/10.1103/PhysRevC.105.059901
https://doi.org/10.1103/PhysRevD.102.113011
https://doi.org/10.3390/dynamics3010009
https://doi.org/10.3390/dynamics3010009
https://doi.org/10.1103/PhysRevD.86.032013
https://doi.org/10.1103/PhysRevD.86.032013
https://doi.org/10.1016/j.physletb.2015.11.043
https://doi.org/10.1016/j.physletb.2015.11.043
https://doi.org/10.1016/j.physletb.2020.135982
https://doi.org/10.1103/PhysRevD.97.032012
https://doi.org/10.1103/PhysRevD.94.116013
https://doi.org/10.1103/PhysRevD.94.116013
https://doi.org/10.1103/PhysRevD.90.116005
https://doi.org/10.1103/PhysRevD.90.116005
https://doi.org/10.1103/PhysRevD.81.016001
https://doi.org/10.1103/PhysRevD.86.031502
https://doi.org/10.1103/PhysRevD.86.031502

