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We consider the vector and the pseudovector glueball in the top-down holographicmodel of large-Nc QCD
of Witten and their decays into ordinary mesons described by the D8 brane construction due to Sakai and
Sugimoto. At leading order, the relevant interactions are determined exclusively by the Chern-Simons action
of the D8 branes and are thus rigidly connected to the chiral anomaly and theWess-Zumino-Witten terms. As
found in a previous study of the pseudovector glueball, which we revisit and complete, the resulting decay
widths are surprisingly large, implying that both the pseudovector and the vector glueball are very broad
resonances, with a conspicuous dominance of decays into a1ρ and K1ð1400ÞK� in the case of the vector
glueball. We also obtain a certain weak mixing of vector glueballs with ordinary vector mesons, but we
conclude that it does not provide an explanation for the so-called ρπ puzzle in charmonium decays.
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I. INTRODUCTION AND SUMMARY

In spite of extensive theoretical and experimental studies,
the status of glueballs in the hadron spectrum of QCD
remains largely unsettled [1–4]. While the spectrum of
glueballs as obtained in lattice QCD [5–9] appears to be
relatively stable when dynamical quarks are included, their
interactions and the amount of mixing with ordinary
mesons are difficult to pin down, so that no clear glueball
state could be identified yet.
Lattice QCD indicates that the lightest glueball is a JPC ¼

0þþ scalar with a mass between 1500 and 1800 MeV, but
phenomenological studies disagree [10–16] whether to
identify it as a smaller or larger component of the scalar-
isoscalar mesons f0ð1500Þ, f0ð1710Þ, or a novel f0ð1770Þ,
or instead as a wide resonance distributed over several
scalars [17].
The next lightest glueball is the 2þþ tensor glueball

associated with the Pomeron [18], where lattice QCD
indicates a mass around 2400 MeV, while Pomeron physics
favors a somewhat smaller mass, followed by the 0−þ
pseudoscalar around 2600MeV, which is expected to play a
role in the chiral anomaly and the large η0 mass.
In this work we continue the studies of Refs. [19–25]

using the Witten-Sakai-Sugimoto (WSS) model [26,27] to
derive predictions for the interactions of glueballs with
ordinary mesons as well as their radiative decays. The

Witten model [28] for low-energy large-Nc QCD is based
on a supersymmetry breaking background geometry pro-
vided by an Nc ≫ 1 stack of circle compactified D4 branes
in type-IIA supergravity, and it has a spectrum of spin-0�þ,
spin-1�−, and spin-2þþ glueballs with a mass hierarchy
that is qualitatively in agreement with lattice findings
[29,30]. By adding stacks of Nf ≪ Nc D8 and anti-D8
probe branes, Sakai and Sugimoto have succeeded in
constructing a top-down holographic model that provides
a geometric model of non-Abelian chiral symmetry break-
ing and reproduces numerous features of actual low-energy
QCD qualitatively as well as semi-quantitatively, typically
with 10%–30% deviations, with a minimal number of
free parameters. Because no further free parameters are
involved to determine the interactions with glueballs, the
WSS model is also very predictive with respect to inter-
actions between glueballs and ordinary mesons, which
are treated as (approximately) unmixed in the ’t Hooft
limit g2Nc ≫ 1, Nf ≪ Nc, corresponding to a quenched
approximation when we set Nf ¼ Nc ¼ 3 in the end.
In Ref. [25] we have recently revisited the predictions

of the WSS model for meson decays upon including the η0
mass from the Uð1ÞA anomaly and adding a mass term
for pseudoscalars induced by quark masses. Besides
extending the decay patterns of scalar and tensor glueballs
by radiative decay modes, we have also considered
the pseudoscalar glueball, which is represented by a
Ramond-Ramond 1-form field and whose interactions
are determined by its anomaly-driven mixing with the
η0 meson. The interactions of the latter are uniquely
given by the Chern-Simons (CS) term of the flavor
branes, hence completely determined by the anomaly
structure.
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In this paper, we extend the analysis to spin-1 glueballs,
where the quenched lattice QCD simulation of Ref. [7]
predicts masses around 3000 MeV for the pseudovector
(1þ−) and around 3800 MeV for the vector (1−−) glueball,
which is reproduced well by the WSS model as far as their
ratio is concerned, while the overall scale is underestimated
by about 30%. In the WSS model, the two spin-1 glueballs
are represented by the Kalb-Ramond tensor field in con-
junction with a Ramond-Ramond 3-form field. Their
interactions with ordinary mesons are dominated by the
unique CS action of the D8 branes; they are thus tied to the
structure of the anomalous interactions of ordinary mesons.
Moreover, through the Kalb-Ramond field, the 1−− vector
glueball mixes with the singlet component of ordinary
vector mesons, which is interesting with regard to the
proposal [31–33] that mixing with vector glueballs could
explain the so-called ρπ puzzle in charmonium decays [34],
which consists of a surprisingly strong suppression of ρπ
and K�K in the decay of ψð2SÞ compared to ψð1SÞ ¼ J=ψ .
However, in the WSS model the decay pattern of the vector
glueball turns out to have a strong enhancement in the a1ρ,
K1K�, and f1ω channels, which are not seen in any of the
ψðnSÞ decays. The results of the WSS model thus do not
support an explanation of the charmonium ρπ puzzle
through vector glueball admixtures.
The couplings and decay patterns of vector and

pseudovector glueballs are also of interest with regard
to the physics of the Odderon [18,35], which recently has
been claimed to have been discovered in joint experi-
ments by the TOTEM and D0 collaborations [36]. Brower
et al. [37] have argued that in holographic QCD Odderons
appear naturally as the Reggeized Kalb-Ramond modes
in the Neveu-Schwarz sector of closed string theory,
which contains both vector and pseudovector glueball
modes whose interactions with ordinary hadrons are
fixed in the WSS model without any additional free
parameters.
However, as found in the previous study of the decays of

the pseudovector glueball in Ref. [23], which we revisit and
complete, the decay widths obtained in the WSS model are
very large, making both spin-1 glueballs difficult to
discover, albeit the peculiar decay pattern of the vector
glueball may be helpful in this respect.
This paper is organized as follows. In Sec. II we

recapitulate the WSS model as used in [25], but expanded
to include all form fields relevant for spin-1 glueballs. In
Sec. III we derive the bulk mode function of the vector
glueball and describe its effects on the hadronic modes on
the flavor branes, followed by a systematic evaluation of
the hadronic and radiative decay modes, closing with a
discussion of the implications for the ρπ puzzle in J=ψ and
ψ 0 decays. In Sec. IV, we consider the pseudovector
glueball, revisiting and completing the previous work of
Ref. [23]. Section V contains our conclusions and com-
ments on phenomenological consequences.

II. QUICK REVIEW OF THE WITTEN-SAKAI-
SUGIMOTO MODEL

The 10-dimensional background geometry correspond-
ing to an Nc ≫ 1 stack of D4 branes compactified with
supersymmetry breaking boundary conditions in the cir-
cular fourth spatial coordinate x4 ≡ τ,

τ ≃ τ þ δτ ¼ τ þ 2πM−1
KK; ð2:1Þ

is given by the metric

ds2 ¼
�

U
RD4

�
3=2

½ημνdxμdxν þ fðUÞdτ2�

þ
�
RD4

U

�
3=2

�
dU2

fðUÞ þ U2dΩ2
4

�
;

eϕ ¼ gs

�
U
RD4

�
3=4

; F4 ¼ dC3 ¼
ð2πlsÞ3Nc

V4

ϵ4;

fðUÞ ¼ 1 −
U3

KK

U3
; ð2:2Þ

with dilaton ϕ and Ramond-Ramond three-form field1 C3.
Here xμ, μ ¼ 0; 1; 2; 3, are the coordinates in the flat four-
dimensional directions, U is the radial holographic direc-
tion, where regularity at U ¼ UKK fixes

MKK ¼ 3

2

U1=2
KK

R3=2
D4

; ð2:3Þ

the radius RD4 is related to the string coupling gs and the
string length ls through R3

D4 ¼ πgsNcl3s , and the ’t Hooft
coupling of the dual four-dimensional Yang-Mills theory
that arises after Kaluza-Klein reduction is given by

λ ¼ g2YMNc ¼
g25
δτ

Nc ¼ 2πgslsMKKNc: ð2:4Þ

This is a solution in type IIA supergravity, whose
bosonic part reads [38]

SIIA ¼ SNS þ SR þ SCS;

SNS ¼
1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
Rþ 4∇Mϕ∇Mϕ−

1

2
jH3j2

�
;

SR ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p �
−
1

2
jF2j2 −

1

2
jF̃4j2

�
;

SCS ¼ −
1

2κ210

Z
d10x

1

2
B2 ∧ F4 ∧ F4; ð2:5Þ

1Using standard string-theory conventions [38] for the nor-
malization of Ramond-Ramond fields rather than the rescaled
version of Ref. [26].
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where

F2 ¼ dC1; F4 ¼ dC3;

F̃4 ¼ F4 − C1 ∧ H3; H3 ¼ dB2: ð2:6Þ

The probe (Nf ≪ Nc) D8 and D8-branes extend along xμ,
U, S4 and are located in an antipodal configuration on the τ-
circle, joining smoothly at UKK, thereby realizing sponta-
neous ULðNfÞ × URðNfÞ breaking.
The action for the flavor D8-branes is given by the sum

of the DBI action and the Chern-Simons action

SD8DBI ¼−T8

Z
d9x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgMN þ2πα0FMN þBMNÞ

p
;

SD8CS ¼T8

X
p

Z
D8

ffiffiffiffiffiffiffiffiffiffiffiffi
ÂðRÞ

q
Tr expð2πα0FþBÞ∧Cp; ð2:7Þ

with F the non-Abelian flavor field strength and ÂðRÞ
being the A-roof genus [38,39]. The sum in the Chern-
Simons term is a formal sum over the p-form gauge fields in
the Ramond-Ramond sector of the theory.
Following [26,27], the spectrum on the joined D8 and

D8-brane is truncated to include only SOð5Þ invariant
states. To this end, and to quadratic order, the DBI action in
Eq. (2.8) reduces to2

SD8DBI ¼ −κ
Z

d4xdzTr

�
1

2
K−1=3F2

μν þM2
KKKF2

μz

�
; ð2:8Þ

with

κ≡ λNc

216π3
; KðzÞ≡ 1þ z2 ¼ U3=U3

KK; ð2:9Þ

where z runs from −∞ to þ∞ along the joined D8 branes.
Performing a Kalzua-Klein (KK) decomposition for the

five-dimensional flavor gauge fields

Aμðxμ; zÞ ¼
X∞
n¼1

BðnÞ
μ ðxμÞψnðzÞ

Azðxμ; zÞ ¼
X∞
n¼0

φðnÞðxμÞϕnðzÞ; ð2:10Þ

yields a tower of massive vector and axial vector mesons
corresponding to odd and even mode numbers n with even
and odd z-parity, respectively (see our previous paper [25]
for further details):

vnμ ≡ Bð2n−1Þ
μ ; anμ ≡ Bð2nÞ

μ ; ð2:11Þ

Identifying the lightest vector mode with the ρ meson
fixes MKK ¼ 949 MeV [26,27], corresponding to mρ ¼
776.4 MeV.
The scalar fields φðnÞ can be absorbed by the fields BðnÞ

μ

except for φð0Þ which corresponds to the massless pseudo-
scalar Goldstone multiplet of the broken chiral symmetry,

UðxÞ ¼ eiΠ
aðxÞλa=fπ ¼ P exp i

Z
∞

−∞
dzAzðz; xÞ; ð2:12Þ

with the Gell-Mann matrices λa ¼ 2Ta and including the
singlet term λ0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

2=Nf

p
1.

To fix the ’t Hooft coupling λ we use the resulting pion
decay constant

f2π ¼
λNcM2

KK

54π4
ð2:13Þ

to get λ ≈ 16.63 from fπ ≈ 92.4 MeV. To obtain an error
estimate and following [20] we shall also consider the
smaller value λ ≈ 12.55 obtained by matching the large-Nc
lattice result for the string tension obtained in Ref. [40].
The non-normalizable modes of the flavor gauge field Aμ

can be used to introduce the photon field as an external
source via [27]

lim
z→�∞

Aμðx; zÞ ¼ AL;RμðxÞ ¼ eQAem
μ ðxÞ; ð2:14Þ

with the quark charge matrix Q for Nf ¼ 3 given by

Q ¼ 1

3

0
B@

2

−1
−1

1
CA; ð2:15Þ

where e is the electromagnetic charge. As reviewed in our
previous paper [25], vector meson dominance (VMD)
arises because the photon field couples exclusively through
mixing with the tower of vector mesons. For on-shell
photons, the corresponding holographic wave function
entering the overlap integrals with the mode functions of
hadronic fields reduces to unity; off-shell photons involve
nontrivial bulk-to-boundary propagators.
For Nf ¼ 3, which we shall consider in the following,

we also take into account that in the WSS model the Uð1ÞA
flavor symmetry is broken by an anomalous contribution of
order 1=Nc due to the C1 Ramond-Ramond field, which
gives rise to a Witten-Veneziano [41,42] mass term for the
singlet η0 pseudoscalar with [24,26]

m2
0 ¼

Nf

27π2Nc
λ2M2

KK: ð2:16Þ
2Note that in (2.8) one uses the Minkowski metric ημν, in the

mostly plus convention, to contract the four-dimensional space-
time indices.
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For Nf ¼ Nc ¼ 3, one has m0 ¼ 967…730 MeV for
λ ¼ 16.63…12.55, which is indeed a phenomenologically
interesting ballpark when finite quark masses are added to
the model by the addition of an effective Lagrangian

LM
m ∝ TrðMUðxÞ þ H:c:Þ;
M ¼ diagðmu;md;msÞ; ð2:17Þ

which can be motivated by either world sheet instantons
[43,44] or non-normalizable modes of additional bifunda-
mental fields corresponding to open-string tachyons
[45–48].
Assuming for simplicity isospin symmetry,mu¼md¼m̂,

this leads to masses [22,25] mη ≈ 520…470, mη0 ≈
1080…890 MeV and mixing angles θP ≈ −14°… − 24°
for λ ¼ 16.63…12.55.
In the following we shall consider this range of mixing

angles in conjunction with the variation of λ, but we shall
fixmη andmη0 to their experimental values when evaluating
phase space integrals.
Vector mesons remain unchanged by this introduction of

quark masses. In the following we shall keep the (chiral)
results for their couplings, but we will raise the masses of ω
and ϕ mesons to their experimental values in phase space
integrals, assuming ideal mixing.
In the WSS model, the axial vector meson a1 is predicted

with mass 1186.5 MeV, very close to the experimental
result of 1230(40) MeV. For the remaining axial vector
mesons we again keep the chiral results for their couplings,
but introduce phenomenological masses and mixing angles
in phase space integrals. Here we use a mixing angle of
θf ¼ 20.4° for f1 and f01 mesons in

jf1ð1285Þi ¼ cos θfjn̄ni − sin θfjs̄si;
jf1ð1420Þi ¼ sin θfjn̄ni þ cos θfjs̄si: ð2:18Þ

The physical strange axial vector mesons K1ð1270Þ and
K1ð1400Þ are mixtures of K1A ð1þþÞ and the excited axial
vector meson K1B (1þ−) [49]. Because in the WSS model,
there is no 1þ− nonet of ordinary mesons, only K1A is
present, which couples to the physical K1 mesons accord-
ing to their mixing defined by

jK1Ai ¼ cos θKjK1ð1400Þi þ sin θKjK1ð1270Þi: ð2:19Þ

In [49,50] the favored mixing angle is quoted as jθKj ≈ 33°,
which we adopt in the following.
Encouragingly, the WSS model predicts rather well the

ballpark of several hadronic decays such as ρ → ππ,
ω → πππ, a1 → ρπ, and also various radiative decays, see
Refs. [20,25–27].

III. THE VECTOR GLUEBALL IN THE WSS

The mass spectra for the spin-1 fluctuations in the M-
theory lift of theWitten model were first obtained in [30] by
considering the fluctuations of AMNO and AMN11. In the
10D string frame, these fluctuations translate to C3 and B2,
respectively.
Treating contributions stemming from the D8-branes as

perturbations later on, the relevant field equations are
obtained by varying Eq. (2.5) with respect to B2 and C3

∇Oðe−2ϕHOMNÞ

−
1

2! · ð4!Þ2 ffiffiffiffiffiffi−gp ϵMNO1���O8FO1���O4
FO5���O8

¼ 0;

∇PFPMNO

−
1

3! · 4!
ffiffiffiffiffiffi−gp ϵMNOP1���P7HP1P2P3

FP4���P7
¼ 0: ð3:1Þ

A. Ansatz, normalization, and equations of motion

In [30] the 1−− vector glueball mode is obtained from the
Aμντ and Aμr11 components of the 11D gauge field A3 which
translates to Cμντ and Bμu in the 10D string frame. Note that
including the Bμu fluctuation is necessary to obtain a
consistent solution of the equation of motion since these
two fluctuations are tied by a topological mass term.
Starting from the ansatz

Cμντ ¼
aðuÞ
gs

C̃μνðxμÞ;

Bμu ¼
3

2□

u2

u3 − 1
aðuÞημκϵκνρσ∂νC̃ρσðxμÞ; ð3:2Þ

and neglecting backreactions from the DBI action, we
obtain the mode equation for the vector glueball

a00ðuÞ þ a0ðuÞ=uþ aðuÞ
�
M2

R3

UKKðu3 − 1Þ−
9u

u3 − 1

�
¼ 0;

u ¼ U=UKK: ð3:3Þ
The relation to the notation used in [30] is

aðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6=r6KK − 1

q
M4ðrÞ; u3 ¼ r6=r6KK; ð3:4Þ

and when using coordinates z along the D8 branes we
have aðzÞ ¼ zM4ðzÞ.
By imposing the boundary conditionsM0

4ðUKKÞ ¼ 1 and
M4ð∞Þ ¼ 0 we obtain the mass spectrum M2

V ¼ λVM2
KK

with the first three eigenvalues given by λV ¼ f9.22721;
15.9535; 24.1552g. The lowest eigenvalue corresponds
to the mass of MV ¼ 2883 MeV which is below the
(quenched) lattice result of ≈3850 MeV [6,7].
To fix the normalization we induce the fluctuations (3.2)

in (2.5) and utilize the equation of motion (3.3) to get
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Lð2Þ
V ¼ −

1

2κ210

1

4g2s

R6

UKK

ffiffiffiffiffiffi
ĝS4

q u
u3 − 1

aðuÞ2C̃μνðM2 −□ÞC̃μν:

ð3:5Þ
Requiring a kinetic term with canonical normalization after
integrating over the holographic coordinate, the S4, and the
S1, we set aðuÞ → aðuÞ=N V with

Z
du

1

2κ210

2π

MKK
V4

R6

UKKg2s

u
u3−1

N −2
V aðuÞ2 ¼ 1; ð3:6Þ

leading to

N 2
V ¼

3

16

λN2
c

ð2πÞ2M4
KKR

6

Z
∞

1

duuM4ðuÞ2; u¼ U
UKK

; ð3:7Þ

with

N V ¼ 0.0142218

ffiffiffi
λ

p
Nc

M2
KKR

3
ð3:8Þ

for the ground-state vector glueball.
When considering interactions with modes on the flavor

branes, the integration variable z covers the holographic
radial coordinate twice. The glueball modes are all even
under z-parity. However the rescaling employed above
corresponds to aðzÞ ¼ zM4ðzÞ and thus M4ðzÞ has odd
parity on the joint flavor branes.

B. Bilinear corrections due to the DBI action

Because the Kalb-Ramond field couples directly to the
flavor branes through the DBI action, the latter gives rise to
bilinear terms involving the vector glueball field and the
singlet component of the vector meson field.

1. Mass correction

Integrating over the holographic direction and the S4, the
DBI action gives rise to an additional mass term for the
vector glueball proportional to Nf=Nc, given by

SDBI ¼ −T8tr
Z

d9xe−ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gMN þ ð2πα0ÞFMN þ BMN

p
⊃ −T8Nf

�
8π2

3

�Z
d4xdz

ffiffiffiffiffiffiffiffiffiffi
−gD8

p
e−ϕ

1

2
gμνgzzBμzBνz

¼ −
2λ3NfNc

27ð2πÞ5R6

Z
d4xdzð1þ z2ÞM4ðzÞ2

1

2□
ημνVμVν

¼ −
Z

d4x
1

2
δλVM2

KKη
μνVμVν;

δλV ¼ 2λ3NfNc

27ð2πÞ5M2
KKR

6M2
V

Z
dzð1þ z2ÞM4ðzÞ2

¼ 0.00233λ2
Nf

Nc
ð3:9Þ

where we projected out the spin-1 part of C̃ρσðxμÞ with
C̃ρσðxμÞ ¼ 1ffiffiffi

□
p ϵρσ

κλ
∂κVλðxμÞ. Treating this contribution

perturbatively we obtain for Nf ¼ 3; Nc ¼ 3; λ ¼ 16.63…
12.55 an increase of the mass of the vector glueball of
100…57 MeV, i.e., only 3.4…2%.
Since this correction is of the same order as backreaction

effects [51,52] that we otherwise ignore in the following,3

and since it is numerically quite negligible, we shall later use
only the leading order result for the vector glueball mass.

2. Mixing with vector mesons

A parametrically more important term of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf=Nc

p
is given by a bilinear term involving the vector glueball
and the singlet flavor gauge field v̂ ¼ va¼0. Explicitly it is
given by

SDBI ¼−T8tr
Z

d9xe−ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gMN þð2πα0ÞFMN þBMN

p
⊃−

Z
d4xξnημνv̂nμðxμÞVνðxμÞ;

ξn ¼
κλ

2πMV

MKK

R3
trT0

Z
dzð1þ z2ÞM4ðzÞψ 0

2n−1ðzÞ

¼ f−0.0180;−0.0165;0.005;…gλM2
KK

ffiffiffiffiffiffi
Nf

Nc

s
ð3:10Þ

for the first three vector meson modes. Note that, as
explained above, the integral over z involves M4 as an
odd function. Restricting to the ground-state singlet vector
meson, the combined kinetic terms for singlet vector
mesons and the vector glueball are then given by a

Lð2Þ
V;v̂ ¼ −

Z
d4x

�
1

4
f̂2μν þ

1

2
m2ημνv̂μv̂ν þ ξ1η

μνv̂μVν

þ 1

4
ðFV

μνÞ2 þ
1

2
M2

Vη
μνVμVν

�
: ð3:11Þ

With degenerate vector meson masses, the Lagrangian is
readily diagonalized by a unitary field redefinition

Vμ → Ṽμ cos θ − ṽμ sin θ

v̂μ → Ṽμ sin θ þ ṽμ cos θ ð3:12Þ

with mixing angle

θ ¼ 1

2
arctan

2ξ1
M2

V −m2
ð3:13Þ

and masses

3See Ref. [53] for a recent study of such backreaction effects
for the glueballs of the WSS model.
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m̃2 ¼ m2

�
cos2θ þM2

V

m2
sin2θ −

2ξ1
m2

sin θ cos θ

�
;

M̃2
V ¼ M2

V

�
cos2θ þ m2

M2
V
sin2θ þ 2ξ1

M2
V
sin θ cos θ

�
: ð3:14Þ

For example, for Nf ¼ 2, where ρ and ω are approx-
imately degenerate, we obtain

θ ¼ −ð1.52…1.18Þ° ð3:15Þ

with MV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λV þ δλV

p
MKK ¼ ð2949…2921Þ MeV. After

the diagonalization, the masses are only slightly changed
and given by

m̃ ¼ 773…774 MeV

M̃V ¼ 2950…2921 MeV; ð3:16Þ

which would make the ω meson 2–3 MeV lighter than
the ρ, while in reality it is roughly 12 MeV heavier.
Larger effects could however arise for vector mesons that

are comparable in mass with the vector glueball, such as
charmonia, but for those the WSS model does not provide a
reasonable description, because their masses are dominated
by the quark masses whereas the vector mesons in the WSS
model are independent of quarkmasses.Nevertheless,we can
study the additional decay modes of vector charmonia that
would be contributed by a certain mixing with vector glue-
balls.We shall return to this question after having determined
the decay modes and partial widths of vector glueballs.

C. Decays of the vector glueball

Except for the mixing term (3.10), all leading-order
couplings of the vector glueball with ordinary mesons
originating from the DBI action vanish, since they involve a

trace of commutator terms. Hence to this order all cou-
plings arise through the Chern-Simons term and are thus
anomalous. Further we note that C3 is dual to C5 since
F6 ¼ ⋆F4, leading to contributions from B2 as well as C3.
From the Chern-Simons term of the D8-brane we obtain

couplings to mesons, and through VMD also to photons,
namely from

SD8
CS ¼ T8

X
p

Z
D8

ffiffiffiffiffiffiffiffiffiffiffiffi
ÂðRÞ

q
Tr exp ð2πα0F þ BÞ ∧ Cp

⊃ T8

Z
D8

Tr
ð2πα0Þ2

2!
F ∧ F ∧ C5

þ Tr
ð2πα0Þ2

2!
F ∧ F ∧ B2 ∧ C3: ð3:17Þ

Looking at each term separately we have

F ∧ F ∧ C5 ¼ A ∧ F ∧ dC5 ¼ A ∧ F ∧ ⋆dC3 ð3:18Þ

F ∧ F ∧ B2 ∧ C3 ¼ A ∧ F ∧ B2 ∧ F4: ð3:19Þ

In the first term we can use the Hodge dual to fill the indices
pertaining to the S4. In the second term we can distribute
the indices to obtain the F4 field strength from the back-
ground and Bμz. Note that for the field strengths with p > 4

we have the twisted field strengths [54]

Fpþ1 ¼ dCp −H ∧ Cp−2

¼ ð−1Þpðp−1Þ=2⋆F9−p; p > 4 ð3:20Þ

but they are not dynamical [55].
From (3.18) we obtain

A ∧ F ∧ ⋆dC3 ¼ −
1

2

1

6gs

ffiffiffiffiffiffi
−g

p
gττððgμσgνκgλρ þ 2gμκgνλgρσÞAμFνρ∂σCκλτ

þ gzzgμρgνσðAzFμν þ 2AμFνzÞ∂zCρστÞd4xdzdΩ4

¼ −
1

2

1

6gs

ffiffiffiffiffiffi
−g

p
gττ

�
aðzÞgμκgνλgρδAμFνρ

1ffiffiffiffi
□

p ð∂κ⋆FV
λδ þ ∂δ⋆FV

κλ þ ∂λ⋆FV
δκÞ

þ gzzgμκgνλð2Az∂μAν þ 2Aμ∂νAz − 2Aμ∂zAν − 3iAz½Aμ; Aν�Þ∂z
aðzÞffiffiffiffi
□

p ⋆FV
κλ

�
d4xdzdΩ4

¼ −
1

6gs

ffiffiffiffiffiffi
−g

p
gττ

�
−
aðzÞ
2

gμκgνλgρδAμFνρϵκλδσ
ffiffiffiffi
□

p
ησαVα

þ gzzgμκgνλðAz∂μAν þ Aμ∂νAz − Aμ∂zAν −
3i
2
Az½Aμ; Aν�Þ∂z

aðzÞffiffiffiffi
□

p ⋆FV
κλ

�
d4xdzdΩ4; ð3:21Þ
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and from (3.19)

A ∧ F ∧ B2 ∧ F4

¼ 1

2 · 2
ϵMNOPQAMFNOBPQ

�
3R3

gs

�
d4xdzdΩ4

¼ 1

2
ϵμνρσAμFνρBσz

�
3R3

gs

�
d4xdzdΩ4

¼ aðzÞ
z

ϵμνρσAμFνρ
1ffiffiffiffi
□

p Vσ

�
3R3

gs

�
d4xdzdΩ4; ð3:22Þ

where ⋆FV
μν ¼

ffiffiffiffi
□

p
C̃μν. Furthermore we utilized the full

antisymmetry to rewrite

ð∂μ⋆FV
νρ þ ∂ν⋆FV

ρμ þ ∂ρ⋆FV
μνÞ ¼ −

1

2
ϵμνρσϵ

σαβγ
∂α⋆FV

βγ

¼ −
1

4
ϵμνρσϵ

σαβγ
∂αϵβγλκFλκ

V

¼ −ϵμνρσ∂αFασ
V

¼ −ϵμνρσ□Vσ: ð3:23Þ

Interactions between the vector glueball, pseudoscalar
mesons, and vector mesons are thus given by

LGVΠv ¼ −
1

MV
gm1 trðΠ∂μvðmÞ

ν þ vðmÞ
μ ∂νΠÞ⋆FV

μν ð3:24Þ

where

gm1 ¼ 9

16

ffiffiffi
κ

π

r
1

M2
KKR

3

Z
dz

1

z
ψ2m−1ðzÞ∂zðzM4ðzÞÞ

¼ f15.04;…gffiffiffi
λ

p
Nc

; ð3:25Þ

and we explicitly pulled out the mass dependence in the
Lagrangian and used Az ¼ ΠðxμÞK−1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κπM2

KK

p
. The cou-

plings to vector- and axial vector mesons are governed by

LGV→va ¼
1

MV
fmn
1 ϵμνρσtrðvmμ ∂νanρ þ anμ∂νvmρ ÞVσ

þ 1

MV
fmn
2 trðvmμ anνÞ⋆Fμν; ð3:26Þ

where

fmn
1 ¼ 3

8

κ

MKKR3

Z
dz

�
3

2
ð1þ z2Þ−1=3 M2

V

M2
KK

þ 36

�
× ψ2m−1ðzÞψ2nðzÞM4ðzÞ

¼ f177.83; � � �gMKK

Nc

ffiffiffi
λ

p

fmn
2 ¼ 3

8

κ

MKKR3

Z
dz

�
3

2

1þ z2

z

�
ðψ2m−1ψ

0
2n − ψ 0

2m−1ψ2nÞ

× ∂zðzM4ðzÞÞ

¼ f16.60; � � �gMKK

Nc

ffiffiffi
λ

p : ð3:27Þ

Note that since MV ∝ MKK, (3.26) does not depend
explicitly on the compactification scale.
The leading quartic couplings are obtained from the

commutator terms in the non-Abelian field strengths
FMN ¼ ∂MAN − ∂NAM − i½AM; AN � of the Chern-Simons
interactions. To leading order we have

LGV→Πvv ¼
i

MV
gmn
1 trðΠ½vðmÞ

μ ; vðnÞν �Þ⋆FV
μν ð3:28Þ

with

gmn
1 ¼ 9

16

ffiffiffi
κ

π

r
1

M2
KKR

3

Z
3

2
dz

1

z
ψ2m−1ðzÞψ2n−1ðzÞ∂zðzM4ðzÞÞ

¼ f1061; � � �g
λN3=2

c

: ð3:29Þ

Finally, there are interactions with one axial vector meson
and two vector mesons. With the masses obtained by the
WSS model, these are however at the mass threshold of
the vector glueball, and even above the mass threshold of
the pseudovector glueball, which is why they will not be
considered in the following.

1. Hadronic decays

From Eq. (3.24) we obtain the squared amplitude for the
decay into one pseudoscalar and one vector meson

jMGV→Πvm j2¼2ðgm1 MV trTΠTvÞ2

×

�
1−2

m2
Πþm2

v

M2
V

þ
�
m2

Π−m2
v

M2
V

�
2
�

ð3:30Þ

with decay rate

ΓGV→Πvm ¼ 1

3

jpvj
8πM2

V
jMGV→Πvm j2: ð3:31Þ

The resulting decay rates are collected in Table I.
From Eq. (3.26) we obtain the squared amplitude for the

decay into one axial-vector and one vector meson as
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jMGV→amvn j2 ¼
�

trTaTv

mamvMV

�
2
�
fmn
1 fmn

2 ðm2
a −m2

vÞð−2M2
Vðm2

a þm2
vÞ þ 10m2

am2
v þm4

a þm4
v þM4

VÞ

þ ðfmn
1 Þ2

2M2
V

ðM6
Vðm2

a þm2
vÞ − 2M4

Vð6m2
am2

v þm4
a þm4

vÞ

þM2
Vðm2

a þm2
vÞð14m2

am2
v þm4

a þm4
vÞ þ 4m2

am2
vðm2

a −m2
vÞ2Þ

þ ðfmn
2 Þ2
2

ðM4
Vðm2

a þm2
vÞ − 2M2

Vð−4m2
am2

v þm4
a þm4

vÞ þ ðm2
a −m2

vÞ2ðm2
a þm2

vÞÞ
�
: ð3:32Þ

For the three-body decays (3.28) yields

jMGV→Πvmvn j2 ¼
ðgmn

1 Þ2
m2

v1m
2
v2M

2
V

�
m2

Πðm2
v1ðm2

v2 þM2
V − s12Þ þM2

Vðm2
v2 −M2

V þ s12Þ þ s23ðM2
V −m2

v2 þ s12ÞÞ

þm2
v2M

2
Vð2M2

V − s12Þ þ s23ðm2
v2ðs12 − 4M2

VÞ þ s12ðM2
V − s12ÞÞ

þm2
v1ðm2

v2ð17M2
V − 3ðs12 þ s23ÞÞ þm4

v2 þ ðM2
V − s12Þð2M2

V − 2s12 − s23ÞÞ

þm4
Πð−M2

VÞ þ s223ð2m2
v2 − s12Þ þm4

v1m
2
v2

�
ðtrTΠ½Tv1 ; Tv2 �Þ2; ð3:33Þ

where sij is the center of mass energy of the vector meson
and pseudoscalar subsystem.
Because a1 decays into ρπ with a large decay width,

which as mentioned above is in fact rather well reproduced
by the WSS model, we should consider the decay channels

a1ρ and ρρπ together (see Fig. 1), since these decays can
interfere either positively or negatively. In fact, we find that
there is almost maximal negative interference. In isolation,
GV → a1ρ would have a partial width of 822…1089 MeV,
whereas the resonant decay GV → a1ρ → ρρπ together
with the nonresonant GV → ρρπ is only about 60% of that.
When extending these results to the axial vector mesons

involving strange quarks, we instead treat those as narrowTABLE I. Hadronic decays of the vector glueball with WSS
model mass MV ¼ 2882 MeV (mixing between vector glueball
and singlet vector mesons neglected). Because of the large width
of a1 → ρπ, the strongly interfering direct and resonant decays
into ρρπ have been combined.

ΓGVð2882Þ ½MeV�
GV → ρπ 34.3…45.4
GV → K�K 37.8…50.1
GV → ωη 5.78…9.80
GV → ϕη 3.45…2.81
GV → ωη0 3.06…2.50
GV → ϕη0 3.22…5.46

GV → a1ρ; ρρπ 339…417
GV → K1ð1270ÞK� 185…246
GV → K1ð1400ÞK� 320…424
GV → f1ω 212…281
GV → f01ω 22.4…29.7
GV → f1ϕ 9.51…12.6
GV → f01ϕ 47.8…63.3

GV → K�K�π 22.7…39.9
GV → K�ρK 30.3…53.2
GV → K�ωK 9.85…17.3
GV → K�K�η 7.77…12.1
GV → ϕK�K 3.87…6.80

GV → hadrons 1301…1725 FIG. 1. Feynman diagrams contributing to the hadronic three
body decay of the vector glueball into ρρπ.
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resonances and final decay products, neglecting the corre-
sponding interference effects. In fact, in real QCD the axial
vector mesons K1 and f1 have much smaller decay widths.
Using their experimental widths indeed leads to compara-
tively minor changes of the combined resonant plus
nonresonant three-body decays.

2. Comparison with Ref. [56]

InRef. [56],Giacosa et al.have calculated branching ratios
for the vector glueball resulting from three candidate inter-
action terms in a chiral Lagrangian inspired by the extended
linear sigma model (eLSM) developed in [14,57–59]. Since
there is no experimental information on the coupling con-
stants in either of those terms, ratios of partial decay widths
within each of the three possibilities have been worked out.
Two of these terms involve dimension-4 operators and do not
have a counterpart in the WSS model studied here, so the
latter suggests that they may be subleading. A third one
breaks dilatation invariance and involves the Levi-Civita
tensor that appears also in all the interactions following from
the Chern-Simons term in the WSS model, but the resulting
interactions differ qualitatively from those considered in
Ref. [56]. In particular, there are terms in (3.26) which cannot
be written in terms of the (dual) field strength tensor for the
vector glueball field, whereas Ref. [56] considered only one
term proportional to ⋆FV .
In Table II, our results for the ratios of the various partial

decay widths and ΓðGV → ρπÞ are compared with
Ref. [56]. In both models the dominant decay mode is
GV → a1ρ, but in the WSS model this is a factor of 24
larger than ΓðGV → ρπÞ, while in the model of Ref. [56]
this factor is 1.8, more than an order of magnitude smaller.4

The second strongest decay mode is K1K�, for which
Ref. [56] does not list a result, followed by f1ω. The WSS
model thus predicts a rather strong enhancement of decays
into a pair of axial vector and vector compared to a pair of
pseudoscalar and vector.

3. Radiative decays

From Eq. (3.24) we obtain the coupling to photons by
utilizing VMD

LGVΠV ¼ 1

MV
gV1 trðΠ∂μVν þ Vμ∂νΠÞ⋆FV

μν ð3:34Þ

where

gV1 ¼ 9

16

ffiffiffi
κ

π

r
1

M2
KKR

3

Z
dz

1

z
∂zðzM4ðzÞÞ ¼

0.31ffiffiffiffiffiffi
Nc

p : ð3:35Þ

Employing VMD in Eq. (3.26) we readily obtain the
coupling between the vector glueball, an axial vector
meson, and one photon as

LD8
CS ⊃

1

MV
fVn1 ϵμνρσtrðVμ∂νanρ þ anμ∂νVρÞVσ

þ 1

MV
fVn2 ϵμνρσtrðVμ∂νanρ − anμ∂νVρÞVσ; ð3:36Þ

where

fVn1 ¼ 3

8

κ

MKKR3

Z
dz

�
3

2
ð1þ z2Þ−1=3 M2

V

M2
KK

þ 36

�

× ψ2nðzÞM4ðzÞ ¼
f5.88; � � �gMKKffiffiffiffiffiffi

Nc
p

fVn2 ¼ 3

8

κ

MKKR3

Z
dz

�
3

2

1þ z2

z

�
ψ 0
2nðzÞ∂zðzM4ðzÞÞ

¼ f0.36; � � �gMKKffiffiffiffiffiffi
Nc

p ; ð3:37Þ

and the Lagrangian is again independent of the compacti-
fication scale. The quartic coupling including one photon is
obtained in a similar fashion from Eq. (3.28)

LGV→ΠvV ¼ i
MV

gmV
1 2trðΠ½Vμ; v

ðmÞ
ν �Þ⋆FV

μν; ð3:38Þ

where

TABLE II. Relative branching ratios of the hadronic decays of
the vector glueball with WSS model mass MV ¼ 2882 MeV and
with quenched lattice QCD result [7] 3830 MeV, the latter for the
sake of comparison with Ref. [56].

ΓGVð2882Þ→…

ΓGVð2882Þ→ρπ

ΓGVð3830Þ→…

ΓGVð3830Þ→ρπ Reference [56]

ρπ 1 1 1
K�K 1.1 1.21 1.3
ωη 0.17…0.22 0.18…0.23 0.16
ϕη 0.10… 0.062 0.12…0.07 0.21
ωη0 0.089… 0.055 0.11…0.07 0.13
ϕη0 0.094… 0.12 0.14…0.18 0.18

a1ρ; ρρπ 9.88…9.18 17.0…15.3 1.8
K1ð1270ÞK� 5.40 12.0
K1ð1400ÞK� 9.32 23.8
f1ω 6.2 11.8 0.55
f01ω 0.65 1.41 0.82
f1ϕ 0.28 0.83
f01ϕ 1.4 4.92

K�K�π 0.66…0.88 1.92…2.54
K�ρK 0.88…1.17 3.48…4.62
K�ωK 0.29…0.38 1.14…4.62
K�K�η 0.23…0.27 1.19…1.40
ϕK�K 0.11…0.15 0.70…0.93

4Here we are taking into account the substantial negative
interference with nonresonant GV → ρρπ decays in the WSS
model, while [56] considered only two-body decays.
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gmV
1 ¼ 27

32

ffiffiffi
κ

π

r
1

M2
KKR

3

Z
dz

1

z
ψ2m−1ðzÞ∂zðzM4ðzÞÞ

¼ f22.55; � � �gffiffiffi
λ

p
Nc

: ð3:39Þ

From Eq. (3.24) the squared amplitude for the decay into
one pseudoscalar and one photon is obtained as

jMGV→ΠV j2 ¼ 2ðegV1 trTΠQÞ2M2
V

�
1 −

m2
Π

M2
V

�
2

ð3:40Þ

with decay rate

ΓGV→ΠV ¼ 1

3

jpvj
8πM2

V
jMGV→ΠV j2: ð3:41Þ

From Eq. (3.36) we obtain the squared amplitude for the
decay into one axial vector meson and one photon

jMGV→aV j2

¼ trTaQ2

2m2
aM4

V
ð−2M2

Vf
nV
1 fnV2 ð−2m2

aM2
V − 7m4

a þM4
VÞ

þ ðfnV1 Þ2ð9m4
aM2

V − 6m2
aM4

V þ 4m6
a þM6

VÞ
þM2

VðfnV2 Þ2ð6m2
aM2

V þm4
a þM4

VÞÞ: ð3:42Þ
The squared amplitude for the three-body decays resulting
from Eq. (3.38) is given by

jMGV→ΠvnV j2 ¼
2ðgmV

1 Þ2
m2

vM2
VðM2

V − s12Þ2
�
2m2

vM2
V

h
ðs12 −M2

VÞðm2
Π − 3M2

V þ 2s12Þ − s23ðM2
V þ s12Þ

i
þ ðm2

Π − s12Þ2ðM2
V − s12Þ2 þ 2s12s23ðm2

Π − s12ÞðM2
V − s12Þ þ 2m4

vM4
V þ s223ðM4

V þ s212Þ
�
: ð3:43Þ

There are no three-body decays with two external photons
due to the appearance of the commutator in Eq. (3.38). But
there are also decays into one photon, one vector meson,
and one axial vector meson determined by

LGV→avV ¼ −
3i
MV

fmn
1 εμνρσtrVμ½vmν ; anρ�Vσ; ð3:44Þ

with the same coupling fmn
1 as in (3.27) that dominated the

hadronic decays.
The various partial decay widths are collected in

Table III. Again we combine ρπ decay products with
resonant a1 → ρπ contributions (see Fig. 2) although here
the interference is of lesser importance.

4. Implications for the ρπ puzzle

A long-standing puzzle in charmonium physics is the
experimental fact that the radial excitation ψ 0 ¼ ψð2SÞ ¼
ψð3686Þ of the vector meson J=ψ has decays into ρπ, K�K,

and other hadronic channels with partial widths far below
the expectation from their nature of a nonrelativistic bound
state of c and c̄ [34,60].
Early attempts to explain this are based on a mixing of

the ground state J=ψ with a vector glueball that enhances
the decay modes involved in the ρπ puzzle [31–33,61–63],
for instance by assuming a narrow vector glueball with
mass close to that of J=ψ so that a resonant enhancement of
the mixing appears [cf. (3.13)].
The WSS model is certainly not suitable to describe the

nonrelativistic cc̄ bound states, but it makes concrete
predictions for the decays of the vector glueball. Since
the vector glueball is predicted to be a rather wide
resonance, it does not fit the picture assumed in [32].

FIG. 2. Feynman diagrams contributing to the radiative three
body decay of the vector glueball into πργ.

TABLE III. Radiative decays of the vector glueball with WSS
model mass MV ¼ 2882 MeV.

ΓGVð2882Þ ½keV�
GV → π0γ 27.8
GV → ηγ 7.85… 6.96
GV → η0γ 0.40…1.10

GV → a1γ; ρπγ 358…361
GV → f1γ 41.5
GV → f01γ 11.4

GV → K�Kγ 78.2…104

GV → a1ργ 338...447
GV → K1ð1270ÞK�γ 47.2...62.6
GV → K1ð1400ÞK�γ 47.3...62.7

GV → X þ γ 958...1126
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Moreover, lattice QCD predicts a mass of the vector
glueball about 700 MeV higher than that of J=ψ .
Nevertheless, it is not excluded that the mixing of the
vector glueball could be strongly different for the different
vector charmonia. Indeed, in Sec. III B 2, we have found
that the mixing of excited vector mesons depends strongly
on the mode number, albeit the first two modes happened to
be comparable, but that need not be the case for vector
mesons far from the chiral limit.
However, the decay pattern that we have obtained for

the vector glueball makes it rather unsuitable for an
explanation of the ρπ puzzle. While the vector glueball
has ρπ and K�K as important decay modes, decays into a1ρ
and K1ð1400ÞK� are much stronger, but have not been
observed in the hadronic decays of J=ψ [64].

IV. REVISITING THE
PSEUDOVECTOR GLUEBALL

After Kaluza-Klein reduction of the 3 form fieldA3 of the
11D supergravity theory to 10D, the 1þ− glueball is iden-
tified with the fluctuations of Bμν ¼ Aμν11 and Cμτr ¼ Aμτr.
In 10D notation the equations of motion are solved by

Bμν ¼ cðuÞB̃μνðxμÞ;

Cμτu ¼
3

2gs□
cðuÞ
u

ημνϵ
νρσκ

∂ρB̃σκðxμÞ: ð4:1Þ

Upon rescaling cðuÞ ¼ ðr=rKKÞ3N4ðrÞ, u3 ¼ r6=r6KK, the
radial mode corresponds to the one already obtained in [30].
In terms of the z coordinate this rescaling amounts to
cðzÞ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þz2

p
N4ðzÞ, hence the N4 mode has even z parity.

In [23] only the Chern-Simons couplings arising from B2

were considered. However, there is an additional coupling
arising from the dualization of F6 ¼ ⋆F4 which has been
overlooked. Inducing the pseudovector fluctuation on this
term we obtain additionally

A ∧ F ∧ ⋆dC3 ¼
1

4!

ffiffiffiffiffiffi
−g

p
AMFNOFτMNO

4 d4xdzdΩ4

¼ 1

3!MPV

ffiffiffiffiffiffi
−g

p
gzzgττðAzFμν þ 2AμFνzÞ

× Fμν
Ṽ

3

2gs
z2cðzÞd4xdzdΩ4; ð4:2Þ

besides the couplings already computed in [23]

A ∧ F ∧ B2 ∧ F4 ¼ −
cðzÞ
2MPV

ðAzFμν þ 2AμFνzÞ

× FṼ
μν

�
3R3

gs

�
d4xdzdΩ4: ð4:3Þ

From this we obtain

LGPV→Πv ¼ −
�
1 −

1

3!

�
1

MPV
bm1 trðvðmÞ

μ ∂νΠþ Π∂μv
ðmÞ
ν ÞFṼ

μν

ð4:4Þ
where the first term is the one already obtained in [23], and
the second term involving − 1

3!
arises through the dual-

ization of C3, with

bm1 ¼ T8

ð2πα0Þ2
2!

3R3

gs

�
8π2

3

�Z
dzK−1=2ψ2m−1ðzÞN4ðzÞ

¼ 27

4

ffiffiffi
κ

π

r
1

M2
KKR

3

Z
dzffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p ψ2m−1ðzÞN4ðzÞ

¼ f112.054; � � �gffiffiffi
λ

p
Nc

: ð4:5Þ

This results in a reduction of the decay rates of roughly 30%.
The corresponding coupling to the photon is readily

obtained as

LGPV→ΠV ¼ −
5

6

1

MPV
bV1 trðVμ∂νΠþ Π∂μVνÞFṼ

μν; ð4:6Þ
where

bV1 ¼ 27

4

ffiffiffi
κ

π

r
1

M2
KKR

3

Z
dzffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p N4ðzÞ ¼
2.70ffiffiffiffiffiffi
Nc

p : ð4:7Þ

There is also a couplingbetween the pseudovector glueball
and vector- and axial vector mesons present, which has not
been considered in [23]. Their masses are, however, at the
threshold of the WSS model mass. Explicitly it is given by

LGPV→va ¼ −
5

6

1

MPV
bmn
3 trðvðmÞ

μ aðnÞν ÞFṼ
μν ð4:8Þ

with

bmn
3 ¼ 27

4

κ

MKKR3

Z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
ðψ2m−1ðzÞψ 0

2nðzÞ

− ψ 0
2m−1ðzÞψ2nðzÞÞN4ðzÞ

¼ f118.66; � � �gMKKffiffiffi
λ

p
Nc

: ð4:9Þ

This entails a coupling to photons and axial vector mesons
given by

LGPV→Va ¼ −
5

6

1

MPV
bmV
3 trðVμa

ðmÞ
ν ÞFṼ

μν ð4:10Þ

with

bmV
3 ¼ 27

4

κ

MKKR3

Z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
ψ2m−1ðzÞψ 0

2nðzÞN4ðzÞ

¼ f1.75; � � �gMKKffiffiffiffiffiffi
Nc

p : ð4:11Þ

Three-body decays result from the interactions gov-
erned by
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LGPVΠvv ¼
5

6

i
MV

bmn
2 trðΠ½vðmÞ

μ ; vðnÞν �ÞFṼ
μν ð4:12Þ

where5

bmn
2 ¼ 81

8

ffiffiffi
κ

π

r
1

M2
KKR

3

Z
dzψ2m−1ðzÞψ2n−1ðzÞN4ðzÞ

¼ f7257.92; � � �g
λN3=2

c

; ð4:13Þ

with a corresponding photon coupling given by

LGPVΠvV ¼ 5

6

i
MV

2bmV
2 trðΠ½vðmÞ

μ ;Vν�ÞFṼ
μν ð4:14Þ

with

bmV
2 ¼ f168.081; � � �gffiffiffi

λ
p

Nc

: ð4:15Þ

The results for the hadronic decay rates are collected in
Table IV. Table V shows the change of the decay pattern
when the WSS model mass MPV ¼ 2311 MeV is replaced
by the quenched lattice value of 2980 MeV. The radiative
decays are displayed in Table VI; note that there is no
analog of (3.44) and thus there are no avγ decays.

V. CONCLUSION AND DISCUSSION

In this paper we have completed our previous study [25]
of radiative and purely hadronic decays of glueballs in the
WSS model by investigating the decay modes of spin-1�−

glueballs. We have found that the latter are dominated by
anomalous vertices involving the Levi-Civita symbol
which are uniquely determined by the Chern-Simons action
of the flavor branes.
In the case of the vector glueball, such anomalous decays

have previously been studied by Giacosa et al. [56],
however in the form of just one candidate term among
others which are nonanomalous. While Ref. [56] also
obtained a1ρ decays as dominant anomalous decay, the
branching ratio for vector-axial vector decay modes is very
much higher in the WSS prediction. For pseudovector
glueballs we instead found a dominance of ρπ.
The WSS model also has direct vertices for the spin-1

glueballs with two vector mesons together with one

TABLE IV. Hadronic decays of the pseudovector glueball with
WSS model mass of MPV ¼ 2311 MeV.

ΓGPVð2311Þ ½MeV�
GPV → ρπ 585…775
GPV → K�K 259…338
GPV → ηω 83.2…141
GPV → ηϕ 13.8…11.3
GPV → η0ω 31.9…26.0
GPV → η0ϕ 5.21…8.83

GPV → a1ρ; ρρπ 433…751
GPV → K1ð1270ÞK� 26.9…35.6
GPV → K1ð1400ÞK� 1.72…2.82
GPV → f1ω 40.9…54.2
GPV → f01ω 1.32…1.75

GPV → K�K�π 37.6…66.0
GPV → K�ρK 5.85…10.3
GPV → K�ωK 1.66…2.91

GPV → hadrons 1476…2162

TABLE VI. Radiative decays of the pseudovector glueball with
WSS model mass of MPV ¼ 2311 MeV.

ΓGPVð2311Þ ½keV�
GPV → π0γ 0.01
GPV → ηγ 1.11…0.98
GPV → η0γ 0.59…1.62

GPV → a1γ; ρπγ 1395…1848
GPV → f1γ 5.16
GPV → f01γ 1.40

GPV → K�Kγ 266…353

GPV → X þ γ 1669…2209

TABLE V. Hadronic decays of the pseudovector glueball with
WSS model mass MPV ¼ 2311 MeV and the quenched lattice
value of 2980 MeV.

ΓGPVð2311Þ→…

ΓGPVð2311Þ→ρπ

ΓGPVð2980Þ→…

ΓGPVð2980Þ→ρπ

ρπ 1 1
K�K 0.55 0.75
ωη 0.14…0.18 0.17…0.21
ϕη 0.02…0.01 0.04…0.03
ωη0 0.05…0.03 0.09…0.06
ϕη0 0.009…0.01 0.04…0.05

a1ρ; ρρπ 0.74…0.97 2.64…3.35
K1ð1270ÞK� 0.05 0.16
K1ð1400ÞK� 0.003 0.24
f1ω 0.07 0.16
f01ω 0.002 0.015
f1ϕ 0.01
f01ϕ 0.04

K�K�π 0.06…0.09 0.43…0.57
K�ρK 0.010…0.013 0.52…0.69
K�ωK 0.003…0.004 0.17…0.22
K�K�η 0.11…0.12
ϕK�K 0.04…0.06

5Our results for bm1 and bmn
2 form ¼ n ¼ 1 differ from the ones

in [23] by factors of 2 and 23=2, respectively, due to the different
normalization of the SUðNfÞ generators.
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pseudoscalar. In the case of the a1ρ channel we found that
ρρπ interferes strongly and negatively with a1ρ → ρρπ.
Whereas for vector glueballs a1ρ has a much larger
amplitude, for pseudovector glueballs it is below the direct
ρρπ channel. In Figs. 3 and 4 we display the corresponding
Dalitz plots for the two spin-1 glueballs with mass given by
the WSS model, which shows that in the case of the vector
glueball, the resonant decay via a1 should be visible. A
clearer signal can however be expected for the decay
channels GV → K1ð1400ÞK� and GV → K1ð1270ÞK�
which arise in proportion to their K1A content, since the
strange axial vector mesons are more narrow resonances.
When the vector glueball mass is extrapolated from the
WSS model mass to the prediction of lattice QCD,
K1ð1400ÞK� becomes the leading mode.
The decay pattern of the vector glueball is thus con-

spicuously dominated by a1ρ and K1K�, which could help
in finding its signatures in reactions such as those studied in
[65] but also implies that a mixing of J=ψ with the vector

glueball as proposed in [31–33,61–63] cannot explain the
ρπ puzzle in J=ψ and ψ 0 decays.
We have also revisited the decay pattern of the pseudo-

vector glueball of Ref. [23], confirming the conclusion
of a very broad resonance, but correcting the result from
Γ=M ∼ 0.92…1.37 to 0.64…0.94. The heavier vector glue-
ball has turned out to be only slightly less broad, with
Γ=M ∼ 0.45…0.60. The large widths probably make
both spin-1 glueballs difficult to detect. On the other
hand, their interactions, which are strongly dominated6 by
anomalous vertices andwhich are numerically large, point to
an important role in applications like those studied in
Ref. [66].
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FIG. 3. Dalitz plots for the three body decay GV → ρρπ.

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Dalitz plots for the three body decay GPV → ρρπ.

6Nonanomalous pseudovector glueball interactions from
quartic terms in the DBI action have been worked out in
Ref. [23], where they were found to be negligibly small, sup-
pressed by an extra inverse ’t Hooft coupling as well as small
coefficients.
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