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We discuss the possibility that threshold photoproduction of ηc;b may be sensitive to the pseudovector
1þ− glueball exchange. We use the holographic construction to identify the pseudovector glueball with the
Kalb-Ramond field, minimally coupled to bulk Dirac fermions. We derive the holographic C-odd form
factor and its respective charge radius. Using the pertinent Witten diagrams, we derive and analyze the
differential photoproduction cross section for ηc;b in the threshold regime, including the interference from
the dual bulk photon exchange with manifest vector dominance. The possibility of measuring this process
at current and future electron facilities is discussed.
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I. INTRODUCTION

At large center of mass energies, diffractive scattering of
hadrons is dominated by Pomeron exchanges, Reggeized
even gluon exchanges with even C assignments and P
assignments. Initial perturbative QCD (pQCD) arguments
suggest that odd gluon exchanges in the form of Odderon
exchanges with odd C assignments and P assignments are
also possible [1] (and references therein). The signature of
this exchange may be observed in the difference between
the diffractive pp and pp̄ cross sections, and the photo-
production or electroproduction of heavy pseudoscalar
mesons.
Recently, the TOTEM Collaboration at the LHC, has

reported a difference between their extrapolated pp data atffiffiffi
s
p ¼ 1.96 GeV [2], from the reported pp̄ data by the D∅
Collaboration at Fermilab, at the same center of mass
energy. Their analysis suggests that the difference is
evidence for an Odderon. A number of recent analyses

appear to also point in this direction [3] (and references
therein).
At weak coupling, the hard Pomeron is a Reggeized

Balitsky-Fadin-Kuraev-Lipatov ladder which resums the
rapidity ordered C-even collinear emissions. In the con-
formal limit, it is identified with the j-plane branch points.
By analogy, the Odderon is a Reggeized Bartels-Kwiecinski-
Praszalowicz (BKP) ladder which resums the C-odd collin-
ear emissions [4,5]. At strong coupling in dual gravity, the
Pomeron is identified with a Reggeized spin-j graviton,
while the Odderon is identified with a Reggeized spin-j
Kalb-Ramond field [6]. Further analyses of the gravity dual
Odderon have been carried out in conformal geometries [7],
andmore recently in confining geometries [8] with a detailed
comparison to the recent TOTEM data.
The purpose of this work is to explore the possible

contribution of the C-odd gluonic exchange, in the dif-
fractive photoproduction of charmed and bottom pseudo-
scalars ηc;b near threshold, using dual gravity. This approach
was recently applied to the description of photoproduction
of charmonium near threshold at Jlab energies [9,10], with
relative success in extracting the mass and scalar radii of the
gluonic component of the nucleon [11].
In dual gravity, threshold charmoium photoproduction is

dominated by the C-even and 2þþ glueball exchange,
with some admixture of 0þþ glueball exchange for large
skewness. Similarly, we expect that threshold photopro-
duction of charmed pseudoscalars to be dominated by
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C-odd 1þ− glueball exchanges, modulo the photon
Primakoff exchange as illustrated in Fig. 1. This process
provides for a possible measure of the C-odd gluon charge
radius.
The organization of the paper is as follows: in Sec. II we

outline the dual bulk action for the photoproduction of
heavy eta pseudoscalars. Following the initial suggestion
in [6], the C-odd gluon exchange is identified with the
Kalb-Ramond 2-form in the bulk, with coupling to the
photon and pseudoscaars governed by the Chern-Simons
term. In Sec. III the dual photoproduction amplitudes are
evaluated using the leading Witten diagrams. The C-odd
bulk form factors are explicitly derived, and the corre-
sponding charge radii derived. In Sec. IV we detail the
differential cross section for photoproduction in the treshod
region. Detailed numerical results are presented at currently
electron machines. Our conclusions are in Sec. V. We have
added a number of Appendixes to detail some of the
derivations in the main text.

II. BULK ACTION

We recall that the 1þ− Kalb-Ramond as a 2-form field,
couples to the light flavor brane through the Chern-Simons
term. For instance, for flavor D8 probe branes,

SCS ¼ T8

Z
Tr

�
eF ∧ X

j

C2jþ1

�
→ T̃8

Z
d5xϵMNOPQTrðAMFNOBPQÞ ð2:1Þ

with the 2-form F ¼ 2πα0F þ B, the sum of F ¼ dA − iA2

the flavor 2-form and the 1þ− Kalb-Ramond 2-form B. The
tension of the D8 brane is denoted by T8. The light η field is
usually identified with the singlet part of Az ¼ 1ffiffiffi

N
p

f
η, with

Nf ¼ 1þ 2 (for a single heavy and two light flavor
branes), while the Uð1Þ gauge field with the space-time
parts of F. We will assume that an analogous coupling
carries to the heavy ηc;b. The bulk action relevant to the
photoproduction of ηc;b reads as

SB ¼
Z

d5x
ffiffiffi
g
p �

−
1

12g̃25
e−2ϕHMNOHMNO

þ 1

2
gCSTrϵMNOPAzFMNBOP

þ e−ϕgBψ
X
1;2

ð�ÞΨ̄1;2eMA e
N
Bσ

ABΨ1;2BMN

�
; ð2:2Þ

for the Kalb-Ramond field B2 and

SA ¼
Z

d5x
ffiffiffi
g
p

e−ϕ
�
−

1

4g25
FMNFMN

þ
X
1;2

i
2g25

Ψ̄1;2eMA ΓAΨ1;2AM

þ 1

2
gCSTrϵMNOPFMNFOP

þ e−ϕηP
X
1;2

ð�ÞΨ̄1;2eMA e
N
Bσ

ABΨ1;2FMN

�
; ð2:3Þ

for the vector mesons, which will supply the relevant photon
couplings through vector-meson dominance (VMD). The
coupling gCS is uniquely determined by the 5D Chern-
Simons term to be gCS ¼ Nc

24π2
. The 5D Newton constant is

given by g̃52 ¼ 2κ2 ¼ 16πGN ¼ 8π2=N2
c, and ηP is the

Pauli parameter, which will be fixed by matching the Pauli
form factor to its experimental value. In the above equations
the flavor trace will pick up the relevant charges for
charmonia ec ¼ 2=3e or bottomonia eb ¼ −1=3e. Here
H3 ¼ dB is the 3-form field strength of the 1þ− Kalb-
Ramond field. The background is given by the AdS metric

ds2 ¼ L2

z2
ðdx2 þ dz2Þ; ð2:4Þ

with nonconstant dilaton ϕ ¼ κ2z2. In the fermionic parts of
the action we denote σAB ¼ i

2
½ΓA;ΓB�, with the gamma

matrices given by ΓA ¼ ðγμ;−iγ5Þ and obeying the Clifford
algebra fΓA;ΓBg ¼ 2ηAB. The tetrads following from (2.4)
are given by eMA ¼ zδMA . The positive and negative parity
Dirac spinors follow from the mixed representation of (A5)
in Appendix A, to which we refer the interested reader for
further details. The axial gauge field VM ¼ ð0; VμÞ is the
projected spin-1 axial-field

Bμν ¼
1ffiffiffiffiffiffiffiffi
−∂2
p ϵμνρσ∂

ρVσ

with the physical polarization h0jVμjV;Pi ¼ ϵμðPÞ. The
projection yields the three physical degrees of freedom out
of the six gauge degrees of freedom in B, and guarantees
the correct normalization for the ensuing kinetic term. We
have included the sole coupling to a bulk Dirac fermion
through its magnetic moment, as suggested by super-
gravity (SUGRA). In Appendix B we give the triple
couplings 1�−ηγ in the Sakai-Sugimoto model, for com-
parison. The dual field with boundary spin values

B̃μν ¼ 1

2
ϵμναβBαβ ¼ Cμν

carries 1−− assignment. Following [6], we make the
boundary identifications with scalar and pseudoscalar
gluonic operators with mass dimension Δ ¼ 6
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Bμν → dabcGaαβGb
αβG

cμν

B̃μν → dabcGaαβGb
αβG̃

cμν; ð2:5Þ

which we interpret as C-odd twist-5 operators on the light
front. In contrast, we note that in the context of pQCD,
factorization arguments show that the leading contribution
to the photoproduction of ηc, in the large skewness limit, is

a C-odd local twist-3 operator [12]

dabcGaαþGbþ
α Gcþν:

III. ηc AND ηb PHOTOPRODUCTION
IN DUAL GRAVITY

In dual gravity, threshold photoproduction of ηc;b by
exchange of a Kalb-Ramond field is illustrated by the
Witten diagram in Fig. 2(a). This process is very similar to
the photoproduction of charmonium, with similar kinemat-
ics given the ηc mass of 2.984 GeV, and the J=Ψ mass of
3.097 GeV. The essential differences stem from their
quantum numbers: P-odd versus P-even couplings, with
the former expected to be more suppressed. In light of this,
and motivated by previous analyses [13–16], we have also
included the tree level Witten diagram contribution stem-
ming from the exchange of a bulk photon in Fig. 2(b).

A. Dual photoproduction amplitude

Using (2.3), the Witten diagram in Fig. 2(a) yields the
photoproduction amplitude for ηc as

iAðs; tÞγp→ηp ¼
X
n

iÃγp→ηpðmn; s; tÞ

iÃγp→ηpðmn; s; tÞ ¼ ð−iÞVμ
Oγηðq1; q2; k; mnÞ × P̃μνðmO

n ;ΔÞ × ð−iÞVν
OΨΨ
ðp1; p2; k; mnÞ

þ ð−iÞVμ
γγ�ηðq1; q2; k; mnÞ × P̃μνðmγ

n;ΔÞ × ð−iÞVν
γ�Ψ̄Ψðp1; p2; k; mnÞ; ð3:1Þ

with the bulk vertices

Vμ
Oγηðq1; q2; kÞ ¼ gCS

ec;b

2
ffiffiffiffiffiffiffiffiffiffiffiffi
NfK2

q Z
dzϕðzÞJbðmn; zÞϵμνρσkνFρσ

Vσ
OΨ̄Ψðp1; p2; kÞ ¼

1

2
ffiffiffiffiffiffi
K2
p

Z
dz

ffiffiffi
g
p

e−ϕ
X
1;2

ð�ÞΨ̄1;2ðp2; zÞσμνΨ1;2ðp1; zÞJbðmn; zÞϵμνρλkρηλσ; ð3:2Þ

FIG. 1. Threshold photoproduction of ηc through (a) Kalb-
Ramond exchange and (b) P-wave photon exchange.

FIG. 2. Witten diagrams for threshold production of ηc;b through (a) Odderon and (b) photon exchange.
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where the field strength is now to be understood as Fρσ ¼ iqρϵσðqÞ − iqσϵρðqÞ with ϵμðqÞ being the polarization of the
external photon with momentum q. The massive spin-1 propagator in the mode-sum representation is given by

G1ðmn; t; z; z0Þμν ¼ Jbðmn; zÞP̃μνJbðmn; z0Þ;

P̃μνðmn; kÞ ¼
−i

k2 −m2
n
PμνðkÞ

PμνðkÞ ¼ ημν −
kμkν

k2
: ð3:3Þ

Similarly, we obtain for the photon vertices in the bulk

Vμ
γ⋆γηðq1; q2; KÞ ¼

e2c;b
2

ffiffiffiffiffiffi
Nf

p Z
dzϕðzÞ × z2

2
ϵμνρσFμνFρσ ð3:4Þ

Vνð1Þ
γ⋆Ψ̄Ψðp1; p2; KÞ ¼

ec;b
2g25

Z
dz

ffiffiffi
g
p

e−ϕ
X
1;2

Ψ̄�ðp2; zÞγνΨ�ðp1; zÞJðmn; zÞ

Vνð2Þ
γ⋆Ψ̄Ψðp1; p2; KÞ ¼ ηP

e
2

Z
dz

ffiffiffi
g
p

e−ϕ
X
1;2

ð�ÞΨ̄�ðp2; zÞσμνΨ�ðp1; zÞKμJðmn; zÞ

Vνð3Þ
γ⋆Ψ̄Ψðp1; p2; KÞ ¼ ηP

e
2

Z
dz

ffiffiffi
g
p

e−ϕ
X
1;2

Ψ̄�ðp2; zÞγνiγ5Ψ�ðp1; zÞ∂zJðmn; zÞ: ð3:5Þ

The bulk coupling to ηc;b is also governed by the Chern-Simons term in (2.1) via the substitution BMN → FMN . Note that
there are no metric and dilaton factors in the coupling of B2 and Aμ to γ − ηc;b in (3.2) since this interaction is purely
governed by the Chern-Simons term in (2.1). The baryon couplings on the other hand are governed by the Dirac-Born-
Infeld part of the action and only receive 1=Nc corrections from the Chern-Simons term. The photon couplings follow
analogously with κb replaced by κ.
For z0 → 0 and t ¼ −K2 we can use (A35) in (3.2) to get

iAðs; tÞγp→ηp ¼ iÃγp→ηpðs; tÞ ð3:6Þ

iÃγp→ηpðs; tÞ ¼ ð−iÞVμ
Oγηðq1; q2; kÞ × PμνðΔÞ × ð−iÞVν

OΨ̄Ψðp1; p2; kÞ ð3:7Þ

þ ð−iÞVμ
γγ�ηðq1; q2; kÞ × PμνðΔÞ × ð−iÞVν

γ�Ψ̄Ψðp1; p2; kÞ; ð3:8Þ

with the normalizable modes in (3.2) now substituted with their non-normalizable counterparts VðQ; zÞ. In the spacelike
region, we obtain for the Kalb-Ramond amplitude

Vμ
Oγηðq1; q2; KÞ ¼ gCS

ec;b
2

ffiffiffiffiffiffi
Nf

p Z
dzφðzÞ × z2

2
ϵμνρσkνFρσ

Vσ
OΨ̄Ψðp1; p2; KÞ ¼

gBΨ
2

ffiffiffiffiffiffi
K2
p

Z
dz

ffiffiffi
g
p

e−ϕ
X
1;2

ð�ÞΨ̄1;2ðp2; zÞσμνΨ1;2ðp1; zÞVbðK; zÞϵμνρλKρηλσ

¼ gBΨ
2

ffiffiffiffiffiffi
K2
p

Z
dz

ffiffiffi
g
p

e−ϕ2ψLðzÞψRðzÞVbðK; zÞūðp2Þγ5σρλuðp1ÞKρηλσ ð3:9Þ

and for the photon amplitude analogously

Vμ
γ⋆γηðq1; q2; KÞ ¼

e2c;b
2

ffiffiffiffiffiffi
Nf

p Z
dzφðzÞ × z2

2
ϵμνρσηFμνFρσ ð3:10Þ
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Vνð1Þ
γ⋆Ψ̄Ψðp1; p2; KÞ ¼

ec;b
2g25

Z
dz

ffiffiffi
g
p

e−ϕ
X
1;2

Ψ̄�ðp2; zÞγνΨ�ðp1; zÞVðK; zÞ

¼ e
2g25

Z
dz

ffiffiffi
g
p

e−ϕzðψ2
RðzÞ þ ψ2

LðzÞÞVðK; zÞūðp2Þγνuðp1Þ

Vνð2Þ
γ⋆Ψ̄Ψðp1; p2; KÞ ¼ ηP

e
2

Z
dz

ffiffiffi
g
p

e−ϕ
X
1;2

ð�ÞΨ̄�ðp2; zÞσμνΨ�ðp1; zÞKμVðK; zÞ

¼ ηP
e
2

Z
dz

ffiffiffi
g
p

e−ϕð2ψLðzÞψRðzÞÞVðK; zÞūðp2Þσμνuðp1ÞKμ

Vνð3Þ
γ⋆Ψ̄Ψðp1; p2; KÞ ¼ ηP

e
2

Z
dz

ffiffiffi
g
p

e−ϕ
X
1;2

Ψ̄�ðp2; zÞγνiγ5Ψ�ðp1; zÞ∂zVðK; zÞ

¼ ηP
e
2

Z
dz

ffiffiffi
g
p

e−ϕzðψ2
LðzÞ − ψ2

RðzÞÞVðK; zÞūðp2Þγνuðp1Þ: ð3:11Þ

B. Dual form factors

The form factors are extracted from the 3-point functions
with pertinent Lehmann–Symanzik–Zimmermann (LSZ)
reduction. For example, the Dirac form factor resulting
from the current associated with the covariant derivative
receives contributions from

WμðK2ÞEMDirac ¼ ūðp2Þγμuðp1Þ × eN × C1ðKÞ

≡ 1

FNðp2ÞFNðp1Þ
δSEMDirac
δϵμ

ð3:12Þ

with eN ¼ e for the proton and eN ¼ 0 for the neutron,
FNðpÞ ¼ h0jONð0ÞjNðpÞi the nucleon source constant and

C1ðKÞ ¼
1

2

Z
e−κ

2z2z3−2τðψ̃2
L þ ψ̃2

RÞVðQ; zÞ

¼ ðaK þ 2τÞΓðaK þ 1ÞΓðτÞ
2ΓðaK þ τ þ 1Þ : ð3:13Þ

Similar relations hold for the other 3-point amplitudes.
The electromagnetic Dirac and Pauli form factors are thus
given by

F1ðQÞ ¼ C1ðKÞ þ ηPC2ðKÞ
F2ðQÞ ¼ ηPC3ðKÞ ð3:14Þ

where

C2ðKÞ ¼
1

2

Z
e−κ

2z2z3−2τðψ̃2
L − ψ̃2

RÞz∂zVðK; zÞ

¼ aKðaKðτ − 1Þ − 1ÞΓðaK þ 1ÞΓðτÞ
ΓðaK þ τ þ 2Þ

C3ðKÞ ¼ 2MN

Z
e−κ

2z2z3−2τψ̃Lψ̃RzVðQ; zÞ

¼ 4ðτ − 1ÞτΓðaK þ 1ÞΓðτÞ
ΓðaK þ τ þ 1Þ ; ð3:15Þ

which follow from

hNðp2ÞjJμEMð0ÞjNðp1Þi

¼ ūðp2Þ
�
F1ðKÞγμ þ F2ðKÞ

iσμν

2MN
kν

�
uðp1Þ; ð3:16Þ

as previously obtained in [17]. Note the appearance of an
additional contribution to F1ðQÞ from the 5D Pauli term
σμz. The proton electromagnetic form factor normaliza-
tions are fixed by the charge F1ð0Þ ¼ 1 (Dirac) and
magnetic moment given in units of the nuclear magneton

F2ð0Þ ¼ ðμp − 1Þ ¼ 1.7928 ðPauliÞ;

where we used μp=μN ¼ 2.7928. This fixes ηP ¼
1.7928=C3ð0Þ ¼ 1.7928=4ðτ − 1Þ. Similarly, the C-odd
Kalb-Ramond or Odderon form factor is given by

FbðKÞ ¼
Z

dzz−2τþ3e−ϕ2MNψ̃Rψ̃LVbðK; zÞ

¼ 16ðτ − 1ÞΓðτ þ 1ÞΓðaK þ 1Þ
× 2F̃1ðτ þ 1; aK þ 1; τ þ aK þ 1;−3Þ; ð3:17Þ

where we pulled out a factor of 2MN to highlight the
similarity with the electromagnetic Pauli form factor
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and pF̃q is the regularized hypergeometric function. The
ensuing C-odd squared charge radius is

hr2i ¼ −6
�
d logFbðKÞ

dK2

�
K2¼0

: ð3:18Þ

The C-odd form factor normalizations are fixed by the
nucleon tensor charge (axial-Pauli) and the nucleon
intrinsic spin (axial-Dirac). More specifically, the nucleon
tensor charge is defined by the matrix element

hPSjψ̄iσμνγ5ψ jPSi ¼ 2δqðPμSν − PνSμÞ: ð3:19Þ
At a resolution of the order of the nucleon mass, lattice
evaluation gives [18]

δq ¼ δuþ δd ≈ 0.839 − 0.231 ¼ 0.608: ð3:20Þ

The intrinsic spin of the nucleon is mostly due to the
mixing with the gluons from the Uð1ÞA anomaly

hPSjψ̄ iγμγ5ψ jPSi ¼ 2MNΣð0ÞSμ: ð3:21Þ

The estimation from the QCD instanton vacuum gives
Σð0Þ ¼ 0.3 at a resolution of about the nucleon mass [19],
while lattice simulations give Σð0Þ ¼ 0.4, at a resolution
of about twice the nucleon mass [20]. Therefore, at the
nucleon mass resolution, we set

Fbð0Þ ¼ 0.608: ð3:22Þ

Using (3.18) we readily obtain the charge radius

hr2i ¼ 3

2κ2b
ðγE − 4Γðτ þ 1Þ

× ð2Fð0;0;1;0Þ1 ð1; τ þ 1; τ þ 1;−3Þ
þ 2F

ð1;0;0;0Þ
1 ð1; τ þ 1; τ þ 1;−3ÞÞÞ; ð3:23Þ

where γE is the Euler-Mascheroni constant. For τ ¼ 3 and
κγ ¼ 0.3875 GeV we obtainffiffiffiffiffiffiffiffi

hr2i
q

¼ 2.733 GeV−1 ¼ 0.540 fm: ð3:24Þ

For comparison, we note that the Odderon-nucleon coupling
as a C-odd and un-Reggeized 3-gluon exchange in [13], is
assumed monopolelike with unit normalization. Also in the
eikonal dipole analysis at low-x [14], the Odderon-nucleon
form factor is argued to be fixed by the leading twist quark
Generalized Parton Distribution, with a normalization to 1.
In contrast, the Reggeized BKP Odderon-nucleon form
factor in [15] is relatively large, with even a rapid sign
change at the origin.
The form factors are displayed in Fig. 3 with

ϕ ¼ κ2Nz
2 ¼ κ2γz2 ¼ κ2z2 for the open string sector and

ϕ ¼ κ2bz
2 ¼ 4κ2z2 for the closed string sector. We fix κ by

the ρmeson pole in the (timelike) photon bulk-to-boundary
propagator, as is required by VMD, giving

ðκb; κγ; κNÞ ¼ ð0.775; 0.3875; 0.3875Þ GeV: ð3:25Þ

For moderate K2 the dominant contribution on the light
front stems from the F1 contribution of the photon, in
analogy to, but not as pronounced as, the Primakoff effect.
This is due to the absence of the photon pole in VMD. At
larger K2 the C-odd contribution will dominate the differ-
ential cross section due to the kinematical nature of
the coupling in (2.2), in agreement with pQCD calculations
[14,16].

C. Threshold vertices

At threshold, the Odderon-ηc;bγ vertices in the spacelike
region are given by

VBηγðKÞ ¼
ec;b

2
ffiffiffiffiffiffi
Nf

p Z
dzφðzÞVbðK; zÞ: ð3:26Þ

The pertinent LSZ reduction for the production of ηc;b at the
boundary results in a substitution rule for the bulk-to-
boundary propagator

φðq; zÞ → ϕnðzÞ ¼ g5cnκzLnðκ2z2Þ

¼ −
fn
mn

× 4g5ðnþ 1ÞκzLnðκ2z2Þ; ð3:27Þ

hence reducing to a simple vertex factor

VBηγðKÞ ≈
ec;b

2
ffiffiffiffiffiffi
Nf

p Z
dzϕnðzÞ ×

z2

2

≡ ec;b

�
fηc;b
mηc;b

�
VBηγ: ð3:28Þ

FIG. 3. C-even and C-odd nucleon form factors in the approxi-
mation κN ¼ κγ with the normalization fixed by the charge,
magnetic moment and (3.22).
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The absence of the dilaton/metric in the Chern-Simons term
implies that (3.28) is divergent in the IR. Note that this is
not the case if we were to use a slab geometry with a hard
wall. With this in mind, to obtain an estimate for the
coupling VBηγ, we use the simple hard-wall cutoff obtained
from (A38) to obtain VBηγ ¼ − g5ffiffiffiffiffi

Nf

p κγz40=4.

The vertex containing a single virtual and one real
photon is given by

Vηγγ� ðKÞ ¼
e2c;b

2
ffiffiffiffiffiffi
Nf

p Z
dzφnðzÞVðK; zÞ: ð3:29Þ

As is the case for the Kalb-Ramond field, LSZ reduction
picks out the pertinent normalizable mode, and we obtain
the same vertex as in (3.28):

Vηγγ� ðKÞ ≈
e2c;b

2
ffiffiffiffiffiffi
Nf

p Z
dzϕnðzÞ ×

z2

2

≡ e2c;b

�
fηc;b
mηc;b

�
V γγη; ð3:30Þ

with V γγη ¼ − g5ffiffiffiffiffi
Nf

p κγz40=4. For the numerical analysis we

fix the decay constant fc by the leading order decay rate
from pQCD [21],

Γη→γγ ¼ 4πQ4
cα

2
f2η
Mη

; ð3:31Þ

with Qc the charm quark charge. From the experimental
value Γηc→γγ ¼ 5.376 × 10−6 GeV [22] we obtain

fηc ¼ 0.327 GeV; ð3:32Þ

where we usedMηc ¼ 2.9839 GeV. The value for Γηb→γγ is
not reported. However, from heavy quark symmetry, it
follows that

fηb
fηc
¼

ffiffiffiffiffiffiffiffi
Mηc

Mηb

s
; ð3:33Þ

which amounts to

fηb ¼ 0.184 GeV; ð3:34Þ

with Mηb ¼ 9.3897 GeV.

IV. DIFFERENTIAL CROSS SECTION

The differential cross section is obtained by averaging
over the initial state spins and polarizations and by
summing over the final state spins

dσ
dt
¼ 1

16πðs −M2
NÞ2

1

2

X
pol

1

2

X
spin

jAðs; tÞγp→ηpj2: ð4:1Þ

The cross sections are then obtained from

σðsÞ ¼
Z

−tmax

−tmin

dσ
dt

; ð4:2Þ

with tmin =max fixed by the kinematics of the process, which
are detailed in Appendix C.
Carrying out the polarization and fermion spin sums we

arrive at

dσ
dt
¼ 2e2e2c;bg

2
CS

16πðs −M2
NÞ2

×

�
fX
MX

�
2

ðFOðs; t;MN;MXÞ

þ Fγðs; t;MN;MXÞ þ FOγðs; t;MN;MXÞÞ; ð4:3Þ

with respectively, the C-even FO, photon Fγ , and mixed FOγ contributions

FOðs; t;MN;MXÞ ¼ −
FbðKÞ2g2BψV2

Bγη

K2M2
N

�
K2sðK2 þ 2M2

N þM2
XÞ þM2

NK
2ðM2

X −M2
NÞ þM4

X − K2s2
�

Fγðs; t;MN;MXÞ ¼ e4e2XV
2
γγη

×

�
F2ðKÞ2K2ð−K2sðK2 þ 2M2

N þM2
XÞ þM2

NðK2ð2K2 þM2
NÞ þ 3K2M2

X þM4
XÞ þ K2s2Þ

M2
N

þ 4F2ðKÞF1ðKÞK2ðK2 þM2
XÞ2 þ 2F1ðKÞ2

�
K6 þ 2K4ðM2

X − sÞ

þ K2ð−2M2
NðM2

X þ 2sÞ þ 2M4
N − 2sM2

X þM4
X þ 2s2Þ − 2M2

NM
4
X

��
FOγðs; t;MN;MXÞ ¼ 0 ð4:4Þ

with zero mixing between the tensor contributions.
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A. Estimate of gBψ
The overall magnitude of the cross section (4.2) hinges

considerably on the value of the bulk coupling gBψ . For an
estimate, we can take the eikonal limit where the B exchange
as a closed string is exchanged between two open string
dipoles. As a result, the coupling is of order gBψ ∼ ffiffiffiffi

gs
p

, with
the string coupling gs ¼ λ=4πNc [pure anti–de Sitter (AdS)
geometry]. For λ ∼ 10, we obtain gBψ ∼ 0.5.
Alternatively, if we use the identification (2.5) for the

boundary operator, then the near forward C-odd gluonic
matrix element in the QCD instanton vacuum is about [23]

hP0SjdabcGaαβGb
αβG

cμνjPSi

∼
κ2IþĪ
ρ3

fðqρÞhP0Sjψ̄σμνψ jPSi: ð4:5Þ

Here fðqρÞ is the induced form factor by an instanton of size
ρ. For the kinematical range of interest in Fig. 10,
ρ

ffiffiffiffiffiffiffiffiffiffijtminj
p

∼1, and fðqminρÞ ∼ 1. Indeed, for a “dense instan-
ton ensemble” [24], the instanton packing fraction is κIþĪ ∼
0.7 with a mean instanton size ρ ∼ 1

3
fm. It follows that a

simple estimate for the dual coupling is gBψ ∼ κ2IþĪ ∼ 0.5, in
agreement with the string estimate. For a “dilute instanton
ensemble” [25], the packing fraction is κIþĪ ∼ 0.1, with a
weaker dual coupling gBψ ∼ κ2IþĪ ∼ 0.01. The suppression of
the gluons compared to the quarks in a topologically active
vacuum, at the resolution 1=ρ, is similar to the suppression
factor noted for the gluons in comparison to the quarks in the
nucleon spin budget [19]. It would be very useful to carry a
lattice simulation check for the QCD instanton vacuum
estimate (4.5).

B. Numerical results

With this in mind, the total cross section for threshold
production of ηc with κ0s fixed to the mass spectra, and

gBψ ¼ f1; 0.5g is σðW ¼ 4.3 GeVÞ ¼ f10.3; 2.76g pb. It
is sensitive to the overall value of gBψ which we estimated
above. In pQCD it corresponds to the fraction of gluons
contributing to the nucleon tensor charge as measured by
the quarks in (3.19). In the numerical results to follow, all
the holographic results will be quoted for gBψ ¼ f1; 0.5g.
In Fig. 4(a) we show the differential cross section for

W ¼ 4.3 GeV versus the threshold t, with the P-wave
photon contributions (dotted green: Pauli and solid green:
Dirac), the Odderon contribution (solid red) and the sum
total (solid black). At this center of mass energy and
modulo the value of gBψ , the differential cross section is
dominated by the Odderon exchange near threshold, but
is rapidly overtaken by the P-wave photon exchange. In
Fig. 4(b) we compare our results for the differential cross
section, to the recent estimate using the Primakoff photon
exchange estimate (open blue dots) in [16]. The holo-
graphic result is substantially larger.
In Fig. 5(a) we show the same differential cross section

for ηc production at the center of mass energy
W ¼ 10 GeV. The total cross section at this energy is
σðW ¼ 10 GeVÞ ¼ f202; 50g pb. Again, the P-wave pho-
ton contributions (dotted green: Pauli and solid green:
Dirac) are compared to the Odderon contribution (solid
red) and the sum total (solid black). At this energy, the
Odderon contribution is dominant throughtout the thresh-
old region. In Fig. 5(a) the holographic results are
compared to the results obtained using the eikonalized
dipole approximation for the Odderon in [14]. The holo-
graphic results for the P-wave photon exchange (solid
green), the Odderon (solid red) and total (solid black), are
compared to Odderon (red triangle), photon (green dia-
mond) and total (black diamond) in [14]. The sum total
of the differential cross section are about comparable at
t ¼ tmin with the eikonalized results falling off much
faster, although there is a substantial difference in the

FIG. 4. (a) Holographic differential cross section for threshold photoproduction of ηc at W ¼ 4.3 GeV, with the P-wave photon
exchange (solid green, Dirac; dotted green, Pauli), the Odderon exchange (solid red with gBψ ¼ f1; 0.5g) and their coherent sum (solid
black with gBψ ¼ f1; 0.5g). (b) Holographic differential cross section as in (a), compared to the Primakoff photon exchange estimate
(open blue circles) in [16].
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respective contributions, with no crossing in the holo-
graphic case in this kinematical range. The difference in
the photon contribution stems from the VMD nature of the
holographic photon exchange in the bulk in comparison to
the simple Primakoff exchange used in [14] which dwarfs
the Odderon contribution at threshold. In Fig. 6(b) we
show the differential cross section at W ¼ 50 GeV, the
relevant kinematical range for the future Electron Ion
Collider (EIC). The integrated cross sections are given
by σðW ¼ 50 GeVÞ ¼ f242; 59g pb.
At much higher center of mass energy, say W ¼

300 GeV, the integration interval becomes very large since
tmin ∼ 0 and −tmax ∼W2 and the integrated cross section
starts to diverge. Although the Reggeization may start to be
important in this kinematical range, we show our un-
Reggeized C-odd bulk Odderon exchange in Fig. 7(a) with
the P-wave photon exchange (solid green: Dirac and dotted
green: Pauli), the Odderon exchange (solid red) and the

sum total (solid black). In Fig. 7(b) the holographic results
are compared to the estimate for photon-exchange (open
blue dots) in [16], and the Odderon model exchange (green
triangle) from [26] and the Odderon model exchange
(orange diamond) from [27].
In Fig. 8(a) we show the same differential cross section

for photoproduction of ηb atW ¼ 11 GeV, with the P-wave
photon exchange (solid green: Dirac and dashed green:
Pauli), the Odderon exchange (solid red) and the sum total
(solid black). The unseparated contributions are shown in
Fig. 8(b) for the photon (solid green), Odderon (solid red)
and sum (solid black). For ηb production the integrated
cross sections are σðW ¼ 11 GeVÞ ¼ f0.002; 0.001g pb
and σðW ¼ 22 GeVÞ ¼ f1.20; 0.29g pb. For ηb, the pho-
ton contribution crosses the Odderon contribution twice in
the threshold region, underlying the sensitivity to the
unfixed overall gBψ parameter.
In Fig. 9 we compare the holographic results for the

differential cross section for photoproduction of J=Ψ (blue

FIG. 5. (a) Holographic differential cross section for threshold photoproduction of ηc at W ¼ 10 GeV, with the P-wave photon
exchange (solid green, Dirac; dotted green, Pauli), the Odderon exchange (solid red with gBψ ¼ f1; 0.5g) and their coherent sum (solid
black with gBψ ¼ f1; 0.5g). (b) Holographic differential cross section as in (a), compared to the eikonalized dipole approximation in [14]
with the Primakoff photon exchange (green diamonds), the Odderon exchange (red triangles) and their sum (black diamonds).

FIG. 6. (a) Holographic differential cross section for threshold photoproduction of ηc at W ¼ 50 GeV, with the P-wave photon
exchange (solid green, Dirac; dotted green, Pauli), the Odderon exchange (solid red with gBψ ¼ f1; 0.5g) and their coherent sum (solid
black with gBψ ¼ f1; 0.5g). (b) Holographic differential cross section as in (a), but with the photon contribution summed.
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spread) [9], with that of ηc (black spread) from this work:
(a) W ¼ 4.58 GeV, (b) W ¼ 4.30 GeV, (c) W ¼ 10 GeV,
(d)W ¼ 50 GeV, (e)W ¼ 300 GeV. The holographic total
cross section for threshold photoproduction of J=Ψ and its
comparison to ηc is shown in (f). The black data points are
from GlueX [28]. The magenta and green data points are
from SLAC [29] and Cornell [30], respectively. The holo-
graphic result from [9] uses the normalization constant
N ¼ 4.637� 3.131, and replaces AðtÞ by AðtÞ þ η2DðtÞ in
Eq. (VIII.58) of [9], where η is the skewness parameter
given explicitly by Eq. (III.33) in [10]. We have used the
holographic gluonic gravitational form factors AðtÞ and
DðtÞ ¼ 4CðtÞ extracted by the J=Ψ − 007 collaboration at
JLab [11]. Note that we have ignored the D-term for the
total cross section (f). Also note that the upper limit in the
shaded region corresponds toN ¼ 4.637þ 3.131 ¼ 7.768
used by the J=Ψ − 007 collaboration at JLab [11].

V. CONCLUSIONS

We have analyzed the differential and integrated cross
sections for photoproduction of heavy pseudoscalars ηc;b in
the threshold regime using dual gravity. In this limit, we
have suggested that the dominant contribution stems from
the exchange of a Kalb-Ramond B2-field in the bulk, which
is the dual of a 1þ− glueball. The glueballs are sourced by a
twist-5 boundary operator, which we have argued to be tied
to the tensor coupling of Dirac fermions in the bulk as dual
to nucleons, modulo an overall constant gBψ not fixed by
holography. This gluon mediated constant was estimated
to be small, using the QCD instanton vacuum at low
resolution.
A possible measure of the diffractive gluon mediated

photoproduction of heavy mesons near threshold would
bring an important insight on the C-odd gluonic mass

FIG. 7. (a) Holographic differential cross section for threshold photoproduction of ηc at W ¼ 300 GeV, with the P-wave photon
exchange (solid green, Dirac; dotted green, Pauli), the Odderon exchange (solid red with gBψ ¼ f1; 0.5g) and their coherent sum (solid
black with gBψ ¼ f1; 0.5g). (b) Holographic differential cross section as in (a), compared to the Primakoff photon-exchange (blue open
circles) from [16], the Odderon model (orange diamonds) from [27] and the Odderon model (green triangles) from [26].

FIG. 8. (a) Differential cross section for threshold photoproduction of ηb at W ¼ 11 GeV, with the P-wave photon exchange (solid
green, Dirac; dotted-green, Pauli), the Odderon exchange (solid red with gBψ ¼ f1; 0.5g) and their coherent sum (solid black with
gBψ ¼ f1; 0.5g). (b) Holographic differential cross section as in (a), for the unseparated contributions.
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content of the proton, at about the nucleon mass resolution.
It would also be an important precursor for the elusive
Odderon, expected to set in at higher energies through
Reggeization of the C-odd glueballs.
Near threshold, the ηc;b photoproduction cross sections

through diffractive 1þ− glueballs are shown to be very
sensitive to the value of this coupling gBΨ. This notwith-
standing, we have found that the ensuing diffractive

differential cross sections overtake the P-wave photon
mediated differential cross sections for gBΨ ¼ 0.5–1, as
suggested by both a string estimate, and an estimate using
the dense QCD instanton vacuum for the dual boundary
operator. The production is depleted by almost two orders
of magnitude, say for gBψ ¼ 0.01 using the (dilute) QCD
instanton vacuum for the dual boundary operator. These
observations hold for the current electron facility at JLab

FIG. 9. Holographic differential and total cross sections for threshold photoproduction of J=Ψ (blue-shaded) from [9], and the present
results for ηc (black-shaded with gBψ ¼ f1; 0.5g). (a) W ¼ 4.58 GeV, (b) W ¼ 4.30 GeV, (c) W ¼ 10 GeV, (d) W ¼ 50 GeV,
(e)W ¼ 300 GeV; and holographic total cross section for threshold photoproduction of J=Ψ (f). The black data points are from GlueX
[28]. The magenta and green data points are from SLAC [29] and Cornell [30], respectively.
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withW ∼ 5 GeV, and the future electron facility at the EIC
with W ∼ 50 GeV.

ACKNOWLEDGMENTS

I. Z. is supported by the Office of Science, U.S.
Department of Energy under Contract No. DE-FG-
88ER40388, and in part within the framework of the
Quark-Gluon Tomography (QGT) Topical Collaboration,
under Contract No. DE-SC0023646. F. H. is supported by
the Austrian Science Fund FWF, Project No. P 33655-N
and the FWF doctoral program Particles & Interactions,
Project No. W1252-N27. K. M. is supported by U.S. DOE
Grant No. DE-FG02-04ER41302.

APPENDIX A: BULK FIELDS

1. Bulk Dirac fermions

Throughout we will use the definitions and partial results
in [31], to which we also refer for further details. The free
bulk Dirac action in terms of the nucleon doublet

Ψ1;2 ≡
�Ψp1;2

Ψn1;2

�
ðA1Þ

is given by

SF ¼
1

2g25

Z
d5xe−ϕðzÞ

ffiffiffi
g
p �

i
2
Ψ̄1;2eNAΓAðD⃗L;R

N − D⃖L=R
N ÞΨ1;2

− ð�M þ VðzÞÞΨ̄1;2Ψ1;2

�
; ðA2Þ

with VðzÞ ¼ κ2Nz
2;ωμνz ¼ −1=zημν, anomalous dimension

M ¼ �ðΔ − 2Þ ¼ �ðτ − 3=2Þ and

D⃗L;R
N ¼ ∂

!
N þ

1

8
ωNAB½ΓA;ΓB� − iXa

NT
a

D⃖L;R
N ¼ ∂

 
N þ

1

8
ωNAB½ΓA;ΓB� þ iXa

NT
a: ðA3Þ

The equations of motion governed by (A2) are given by�
ieNAΓADL;R

N −
i
2
ð∂NϕÞeNAΓA − ð�M þ VðzÞÞ

�
Ψ1;2 ¼ 0;

ðA4Þ

with the normalizable solutions in the bulk

Ψ1ðp; z; nÞ ¼ ψRðz; nÞΨ0
RðpÞ þ ψLðz; nÞΨ0

LðpÞ
Ψ2ðp; z; nÞ ¼ ψRðz; nÞΨ0

LðpÞ þ ψLðz; nÞΨ0
RðpÞ; ðA5Þ

where

ψRðz; nÞ ¼ zΔ × ψ̃Rðz; nÞ ¼ zΔ ×
�
nRξ

τ−3
2

N Lðτ−2Þn ðξNÞ
�

ψLðz; nÞ ¼ zΔ × ψ̃Lðz; nÞ ¼ zΔ ×
�
nLξτ−1N Lðτ−1Þn ðξNÞ

�
;

ðA6Þ

and Ψ0
R=LðpÞ ¼ P�uðpÞ; Ψ̄0

R=LðpÞ ¼ ūðpÞP∓ their respec-

tive chiral projections. Here Δ ¼ τ þ 1
2
, ξN ¼ κ2Nz

2 and

LðαÞn ðξNÞ are the generalized Laguerre polynomials. The
free boundary spinors are normalized to

ūðpÞuðpÞ ¼ 2MN: ðA7Þ

The ψ̃L;R are normalized in the bulkZ
dze−κ

2
Nz

2 1

z2τ−3
ψ̃L;Rðz; nÞψ̃L;Rðz; n0Þ ¼ δnn0 ðA8Þ

with

nR ¼ nL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ − 1þ n
p

nL ¼
1

κN
ðτ−2Þ

�
2Γðnþ 1Þ
Γðτ þ nÞ

�1
2

: ðA9Þ

The mass spectrum resulting from the non-normalizable
modes of (A4) displays Regge behavior

m2
n ¼ 4κ2Nðnþ τ − 1Þ: ðA10Þ

The bulk-to-boundary Dirac field following from the non-
normalizable solutions to the Dirac equation in the bulk
(A4) are given in terms of Kummer functions

ψ̃Rðp; zÞ ¼ NRU

�
−

p2

4κ2N
; 3 − τ; ξN

�
ψ̃Lðp; zÞ ¼ NLU

�
−

p2

4κ2N
; 2 − τ; ξN

�
; ðA11Þ

with NR=NL ¼ p=2κN and

NL ¼
Γ
�
τ − 1 − p2

4κ2N

�
Γðτ − 1Þ :

Note that (A11) can be recast as the resummed Regge poles

ψ̃Rðp; zÞ ¼
X∞
n¼0

fnpψ̃Rðn; zÞ
p2 −m2

n

ψ̃Lðp; zÞ ¼
X∞
n¼0

fnmnψ̃Lðn; zÞ
p2 −m2

n
ðA12Þ
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with the couplings fn ¼ 2κN=ðnRΓðτ − 1ÞÞ. For later con-
venience we also define Fn ¼ −mnfn.
During the reduction of the chiral spinors in the

interaction terms to 4D, we will encounter the following
expressions:

Ψ̄1γ
μΨ1 þ Ψ̄2γ

μΨ2 ¼ ðψ2
R þ ψ2

LÞūγμu
Ψ̄1γ

μγ5Ψ1 − Ψ̄2γ
μγ5Ψ2 ¼ ðψ2

R − ψ2
LÞūγμu

Ψ̄1γ
μγνΨ1 − Ψ̄2γ

μγνΨ2 ¼ 2ψRψLūγμγνu: ðA13Þ

2. Bulk pseudoscalar fields

The pseudoscalar fluctuations are contained in Az of the
5d vector field AM. The equation of motion following from
the quadratic part of the action (2.3) is given by

∂Mð
ffiffiffi
g
p

e−ϕFMNÞ ¼ 0: ðA14Þ

In particular we obtain

□Vμ þ zeϕ∂z

�
e−ϕ

1

z
∂zVμ

�
¼ 0

□Vz − ∂zð∂μVμÞ ¼ 0 ðA15Þ

subject to the gauge condition

∂μVμ þ zeϕ∂z

�
e−ϕ

1

z
Vz

�
¼ 0: ðA16Þ

The normalizable modes are given by

ϕnðzÞ ¼ cnκzLnðκ2z2Þ ðA17Þ

with the normalization fixed by

Z ffiffiffi
g
p

e−ϕe−4AðzÞϕmðzÞϕnðzÞ ¼ δmn ðA18Þ

and cn ¼ 1
2
. The ensuing mass spectrum follows as

m2
n ¼ 4κ2ðnþ 1Þ; ðA19Þ

and displays again the expected Regge behavior. Note that
the decay constant given by

Fn ¼
1

g5

�
e−ϕ

1

z0
∂z0ϕnðz0Þ

�����
z0¼0

ðA20Þ

is strictly divergent at z0 ¼ 0. The correct UV boundary
condition should be set by a heavy brane with z0 ∼ 1

mc
. With

this in mind the bulk wave functions can be written as

ϕnðzÞ ¼ −
fn
mn

× 4g5ðnþ 1ÞκzLnðκ2z2Þ; ðA21Þ

with fn ¼ −Fn=mn fixed to its experimental value in the
main text.

3. Bulk spin-1 fields

a. Top-down Kalb-Ramond field

In type-II SUGRA the fields B2 and C2 (IIA) and C3

(IIB) are mixed via a topological mass term. In particular a
consistent solution to the equations of motion studied in
[32] is only given by Bμν and Cμτr for 1þ− and Bμz and Cμντ

for 1−−, where τ is the supersymmetry breaking compacti-
fied direction of the Witten model [33]. For example, the
relevant linearized type IIA equations of motion in 10D
string frame are given by

∇Oðe−2ϕHOMNÞ − 1

2! · ð4!Þ2 ffiffiffiffiffiffi−gp ϵMNO1���O8FO1���O4
FO5���O8

¼ 0;

∇PFPMNO −
1

3! · 4!
ffiffiffiffiffiffi−gp ϵMNOP1���P7HP1P2P3

FP4���P7
¼ 0; ðA22Þ

which are coupled through a nonvanishing F4 flux gen-
erated by the Nc color branes. To solve them for the 1−−

polarization, we start with the radial ansatz

Cμντ ¼
aðrÞ
gs

C̃μνðxμÞ; Bμr ¼ bðrÞημκϵκνρσ∂νC̃ρσðxμÞ;

ðA23Þ

where we suppress the plane wave factors eikx. The
equation of motion for H3 gives

bðrÞ ¼ 3

2□
e4λðrÞaðrÞ; ðA24Þ

and upon substituting this result into the equation of motion
for C3 we get the equation of motion for the 1−− glueball.
The factor e4λ pertains to the metric factors on M4 with
ds2M4

¼ e2λðrÞημνdxμdxν, and r is the holographic coordi-
nate. One can check that all other linearized equations of
motion resulting from the type IIA closed string action are
satisfied, and the Lagrangian is diagonal. To project out the
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three polarizations of a massive spin-1 field, we use
C̃ρσðxμÞ ¼ 1ffiffiffi

□
p ϵκλρσ∂κVλðxμÞ, which ultimately leads us to

Cμντ ¼
2aðrÞffiffiffiffi
□
p

gs
⋆Fμν; Bμr ¼

3ffiffiffiffi
□
p e4λaðrÞVμ; ðA25Þ

and a canonically normalized kinetic term pertinent for a
spin-1 field. This projection will also result in the correct
kinetic term in (2.3). For the 1þ− polarization the situation
is precisely reversed: Cμτr ∼ Vμ and Bμν ∼ Fμν. Note that
the relevant interactions originate from the Chern-Simons
term, which leads to the correct parity assignments of the
interactions.

b. Soft-wall

As discussed above, after dimensional reduction, the
SUGRA action for the Kalb-Ramond field reduces to an
effective spin-1 action in 5d. The subsequent formulas thus
also hold for the bulk photon fields, with mass scale set by
κγ and the corresponding bulk wave functions substituted
by Jbðmn; zÞ → Jðmn; zÞ and VbðK; zÞ→ VðK; zÞ.
Following [34] we describe the t-channel exchange of
the Kalb-Ramond field via the exchange of a massive spin-
1 field with bulk wave function

ϕnðzÞ ¼ cnκ2bz
2L1

nðκ2bz2Þ≡ Jbðmn; zÞ: ðA26Þ

Note that the coupling of the closed string sector is twice
that of the open string sector; hence the dilaton is given by
ϕ ¼ κ2bz

2 ¼ ð2κγÞ2z2 ¼ ð2κÞ2z2, and g5 is to be understood
as eg5. The wave functions are normalized viaZ

dz
ffiffiffi
g
p

e−ϕe−4AðzÞϕmðzÞϕnðzÞ ¼ δmn; ðA27Þ

giving cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðnþ 1Þp

. With a decay constant given by

Fn ¼
1

g5

�
e−ϕ

1

z0
∂z0ϕnðz0Þ

�����
z0¼0
¼ −

2

g5
cnðnþ 1Þκ2b;

ðA28Þ

and a Reggeized mass spectrum

m2
n ¼ 4κ2ðnþ 1Þ: ðA29Þ

Fixing the mass spectrum to correspond to the lowest
glueball state on the Odderon trajectory, we would obtain

κb ¼ 1.925 GeV−1; κb ¼ 1.47 GeV−1; ðA30Þ

for the 1−− glueball with massM ¼ 3.85 GeV and the 1þ−
glueball with mass M ¼ 2.94 GeV, respectively. For our
computations, we fix the mass spectrum by the rho meson
pole of the timelike photon bulk-to-bulk propagato. With a
rho mass of mρ ¼ 0.775 GeV we thus obtain

κγ ¼ 0.3875 GeV−1;

κb ¼ 2κγ ¼ 0.775 GeV−1: ðA31Þ

With this in mind, we can rewrite the bulk wave function as

ϕnðzÞ ¼
fn
mn

× 2g5κ2bz
2L1

nðκ2bz2Þ ðA32Þ

where fn ¼ −Fn=mn. At the production threshold, the
external wave functions are localized at the boundary. In
this limit, the bulk-to-bulk propagator in the mode sum
representation

G1ðz; z0Þ ¼
X
n

ϕnðzÞϕnðz0Þ
k2 −m2

n
ðA33Þ

reduces to

G1ðz → 0; z0Þ ≈ ϕnðz → 0Þ
−g5Fn

X
n

−g5Fnϕnðz0Þ
k2 −m2

n

¼ z2

2
× Vðk; z0Þ: ðA34Þ

For spacelike k2 ¼ −K2 we thus have

G1ðz→ 0; z0Þ≈ z2

2

X
n

g5Fnϕnðz0Þ
K2þm2

n
¼ z2

2
×VðK;z0Þ; ðA35Þ

with

VðK; zÞ ¼ κ2bz
2Γð1þ aKÞUð1þ aK; 2; κ2bz

2Þ

¼ κ2bz
2

Z
1

0

dx
ð1 − xÞ2 x

aK exp

�
−

x
1 − x

κ2bz
2

	
; ðA36Þ

and with aK ¼ K2=4κ2b, Uða; b; cÞ the confluent hyper-
geometric function of the second kind and normalized to
Vð0; zÞ ¼ VðK; 0Þ ¼ 1. Note that the bulk-to-boundary
propagator for an on shell photon is trivially represented
by Vð0; zÞ ¼ 1 in the Witten diagram of Fig. 2(a).

c. Hard wall

In the hard-wall model (κ ¼ 0), the normalizable bulk
wave functions are given by

ϕnðzÞ ¼ cnzJ1ðmn; zÞ; ðA37Þ

where cn ¼
ffiffiffi
2
p

=z0J1ðmnz0Þ and the mass spectrum is fixed
by the n-th root, rn, of the Bessel function

J0ðmnz0Þ ¼ 0: ðA38Þ

Fixing the lowest mass to the ρ meson pole in the photon
bulk-to-bulk propagator we obtain z0 ¼ 3.103 GeV−1,
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which we use as a hard-wall cutoff in the divergent parts of
the Chern-Simons interactions.

APPENDIX B: COUPLINGS IN WITTEN-SAKAI-
SUGIMOTO MODEL

For reference, we also give the type IIA 1�− vector
couplings obtained in the Witten-Sakai-Sugimoto model,
which were first studied in [35] and recently extended and
completed in [36]. The interactions are fully governed by
the Chern-Simons term, which we assumed to also carry
over to the soft-wall computations in the main text. For the
1−− vector fluctuation one obtains

LGVΠV ¼
1

MV
gV1 trΠFμν⋆FV

μν ðB1Þ

where

gV1 ¼
9

16

ffiffiffi
κ

π

r
1

M2
KKR

3

Z
dz

1

z
∂zðzM4ðzÞÞ

¼ 0.31ffiffiffiffiffiffi
Nc
p : ðB2Þ

R is the AdS radius, M4ðzÞ the normalizable mode of the
bulk spin-1 glueball, Vðq; zÞ is the photon bulk-to-boun-
dary propagator and the numerical value is obtained for an
on shell photon with Vð0; zÞ ¼ 1. Note that z here is related
to the radial coordinate in the Sakai-Sugimoto model by

1þ z2 ¼
�

U
UKK

�
3

:

The mass scale is again fixed by the rho meson pole, which
gives MKK ¼ 949 MeV, and the ’t Hooft coupling is
fixed by the pion decay constant to be λ ¼ 16.63;
κ ¼ λNc=216π3. The corresponding coupling for the 1þ−
fluctuation is given by

LGPVΠV ¼ −
1

MPV
bV1 trΠFμνFPV

μν ; ðB3Þ

where

bV1 ¼
45

8

ffiffiffi
κ

π

r
1

M2
KKR

3

Z
dzffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2
p N4ðzÞ

¼ 2.25ffiffiffiffiffiffi
Nc
p ; ðB4Þ

with the normalizable 1þ− bulk mode N4ðzÞ. Taken
at face value we have −bV1 =2MPV ≈ −0.2 GeV−1 and
Nc
24π2

fηc=mηcVBηγ ≈ −0.05 GeV−1, where we used MPV ¼
3.2 GeV from unquenched lattice QCD [37]. However, note
that the Witten-Sakai-Sugimoto model treats quarks as

massless and quarkonia receive large mass contributions
from their quark content.

APPENDIX C: KINEMATICS

The invariants for the meson photoproduction are s and t,
respectively. Here s ¼ ðq1 þ p1Þ2 is related to the center of
mass energy W ¼ ffiffiffi

s
p

and t ¼ Δ2 is related to the momen-
tum transfer Δμ ¼ ðp2 − p1Þμ. For photoproduction
Q2 ¼ 0, but leptoproduction can also be analyzed with
minor variations. In the center of mass frame, the four-
momenta of the incoming photon, incoming proton, out-
going proton and outgoing meson X are denoted by q1, p1,
p2, and q2 respectively. Each external state is given by the
on shell conditions defined as

p2
1 ¼ p2

2 ¼ M2
N; q21 ¼ 0; q22 ¼ M2

X:

Using the on shell conditions, the four-momenta in the
center of mass frame, can be written as

q1 ¼
�
s −M2

N

2
ffiffiffi
s
p ; 0;−

s −M2
N

2
ffiffiffi
s
p

�
q2 ¼

�
sþM2

X −M2
N

2
ffiffiffi
s
p ;−jp⃗Xj sin θ;−jp⃗Xj cos θ

�
p1 ¼

�
sþM2

N

2
ffiffiffi
s
p ; 0;

s −M2
N

2
ffiffiffi
s
p

�
p2 ¼

�
s −M2

X þM2
N

2
ffiffiffi
s
p ; jp⃗Xj sin θ; jp⃗Xj cos θ

�
ðC1Þ

where MN is the nucleon mass, MX is the produced meson
mass, and θ is the scattering angle in the center of mass
frame. The magnitude of the outgoing three-momentum
reads as

jp⃗Xj ¼
�½s− ðMXþMNÞ2�½s− ðMX −MNÞ2�

4s

�
1=2

: ðC2Þ

The scattering angle is fixed by the invariant t,

cosθ¼ 2stþðs−M2
NÞ2−M2

XðsþM2
NÞ

2
ffiffiffi
s
p jp⃗Xjðs−M2

NÞ
ðC3Þ

with pμ ¼ 1
2
ðp1 þ p2Þμ. In the threshold limit

ffiffiffi
s
p

→
MN þMX, the momentum transfer t is near the threshold
value tth:

tth ¼ −
MNM2

X

MN þMX
: ðC4Þ

The kinematically allowed regions are shown on the
ðW;

ffiffiffiffiffi
−t
p Þ plane in Fig. 10 for ηc and ηb, respectively. In

the near threshold region s≳ ðMN þMXÞ2, the factorization
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for the proton occurs when the outgoing meson is heavy
enough, so that the proton target moves fast enough to be
factorized in partons. In the heavy limit, the incoming and
outgoing nucleon velocity is of order 1 modulo M2

N=M
2
X

corrections. In this regime, factorization holds near threshold
for photoproduction, with a nonrelativistic outgoing meson
with a skewness of order 1 [12,38,39].

APPENDIX D: TOP-DOWN FERMIONIC
COUPLINGS

Since in type II SUGRA minimal couplings of the form
σMNBMN are actually absent due to the strict constraints
from supersymmetry, we explore various different top-
down couplings in this Appendix. By identifying the

fermion couplings by those resulting for the mesinos on
the flavor branes we have [40]

SDp⊃ iTDp

Z
dpþ1xe−ϕ

ffiffiffi
g
p X

1;2

Ψ̄1;2ðΓMD̆M− Δ̆ÞΨ1;2 ðD1Þ

with

D̆M ¼Dð0Þð1;2Þ þ σ1 ⊗Wð1;2ÞM; Δ̆¼Δð1Þ þ σ1 ⊗Δð2Þ

ðD2Þ

where

Dð0Þð1;2ÞM ¼ ∂M þ
1

4
ωMABΓAB � 1

4 · 2!
HMABΓAB

Wð1;2ÞM ¼
1

8
eϕ
�
∓ FAΓA −

1

3!
FABCΓABC ∓ 1

4!
FABCDΓABCD

�
ΓM

Δð1Þð1;2Þ ¼
1

2

�
ΓM

∂Mϕ�
1

2 · 3!
HABCΓABC

�
Δð2Þ1;2 ¼

1

2
eϕ
�
� 1

2!
FAΓA þ 1

2 · 3!
FABCΓABC

�
; ðD3Þ

and ΓA… the antisymmetrized product of gamma matrices.
By introducing the chiral spin connection

ωð�ÞABM ¼ ωAB
M �

1

4 · 2!
eNAeOBHMNO; ðD4Þ

which is amenable to a spin connection with torsion

ω̃AB
M ¼ ωAB

M þ eANe
BOΓ̃N

MO; ðD5Þ

where Γ̃ is the antisymmetric part of the Christoffel
symbol, the Kalb-Ramond field can be viewed as a source
for torsion, which was first observed in [41]. The couplings
arising from H3 in the covariant derivative, and in
particular Δð1Þ, in (D1) for the 1þ− field Vσ in the main
text reduce to

ðψ2
L þ ψ2

RÞVbðK; zÞϵσαβγ
ffiffiffiffiffiffi
K2

p
Vσūðp2Þγαγβγγuðp1Þ; ðD6Þ

FIG. 10. Minimal and maximal transverse momentum transfer tmin, tmax in the physical region for ηc (a) and ηb (b) versus W ¼
ffiffiffi
s
p

.
The photon momentum is taken to be at the optical point q2 ¼ −Q2 ¼ 0, and the hadron masses are given by MN ¼ 0.938 GeV,
mηc ¼ 2.984 GeV and Mηb ¼ 9.399 GeV.
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where we note that the HZμνΓZμν coupling vanishes after
the reduction to the 4D spinor is carried out. This means
that also the Bμz fluctuation corresponding to 1−− does not
couple through this term. However the fluctuations
Bμν; CμZ and BμZ; Cμν form the physical 1�− states, and
we obtain from F3Γð3Þ in Δð2Þ for the 1−− field Vσ

2ψLψRVbðK; zÞϵσαβγ
ffiffiffiffiffiffi
K2

p
Vσūðp2Þγαγβγγuðp1Þ: ðD7Þ

Note that both couplings have the correct 5D parity. After
the spin sums, the resulting squared matrix elements are
highly suppressed at low K2. Other couplings yield the
nucleon axial-tensor charge

ðūLðp2Þ − ūRðp2ÞÞσμνuðp1Þ ¼ ūðp2Þγ5σμνuðp1Þ; ðD8Þ

up to a factor
ffiffiffiffiffiffi
K2
p

, which is again suppressed in the near-
forward regime.
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