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We discuss the possibility that threshold photoproduction of 7., may be sensitive to the pseudovector
17~ glueball exchange. We use the holographic construction to identify the pseudovector glueball with the
Kalb-Ramond field, minimally coupled to bulk Dirac fermions. We derive the holographic C-odd form
factor and its respective charge radius. Using the pertinent Witten diagrams, we derive and analyze the
differential photoproduction cross section for 7., in the threshold regime, including the interference from
the dual bulk photon exchange with manifest vector dominance. The possibility of measuring this process

at current and future electron facilities is discussed.
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I. INTRODUCTION

At large center of mass energies, diffractive scattering of
hadrons is dominated by Pomeron exchanges, Reggeized
even gluon exchanges with even C assignments and P
assignments. Initial perturbative QCD (pQCD) arguments
suggest that odd gluon exchanges in the form of Odderon
exchanges with odd C assignments and P assignments are
also possible [1] (and references therein). The signature of
this exchange may be observed in the difference between
the diffractive pp and pp cross sections, and the photo-
production or electroproduction of heavy pseudoscalar
mesons.

Recently, the TOTEM Collaboration at the LHC, has
reported a difference between their extrapolated pp data at
Vs = 1.96 GeV [2], from the reported pp data by the D@
Collaboration at Fermilab, at the same center of mass
energy. Their analysis suggests that the difference is
evidence for an Odderon. A number of recent analyses
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appear to also point in this direction [3] (and references
therein).

At weak coupling, the hard Pomeron is a Reggeized
Balitsky-Fadin-Kuraev-Lipatov ladder which resums the
rapidity ordered C-even collinear emissions. In the con-
formal limit, it is identified with the j-plane branch points.
By analogy, the Odderon is a Reggeized Bartels-Kwiecinski-
Praszalowicz (BKP) ladder which resums the C-odd collin-
ear emissions [4,5]. At strong coupling in dual gravity, the
Pomeron is identified with a Reggeized spin-j graviton,
while the Odderon is identified with a Reggeized spin-j
Kalb-Ramond field [6]. Further analyses of the gravity dual
Odderon have been carried out in conformal geometries [7],
and more recently in confining geometries [8] with a detailed
comparison to the recent TOTEM data.

The purpose of this work is to explore the possible
contribution of the C-odd gluonic exchange, in the dif-
fractive photoproduction of charmed and bottom pseudo-
scalars 7., near threshold, using dual gravity. This approach
was recently applied to the description of photoproduction
of charmonium near threshold at Jlab energies [9,10], with
relative success in extracting the mass and scalar radii of the
gluonic component of the nucleon [11].

In dual gravity, threshold charmoium photoproduction is
dominated by the C-even and 27" glueball exchange,
with some admixture of 0" glueball exchange for large
skewness. Similarly, we expect that threshold photopro-
duction of charmed pseudoscalars to be dominated by

Published by the American Physical Society
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C-odd 17~ glueball exchanges, modulo the photon
Primakoff exchange as illustrated in Fig. 1. This process
provides for a possible measure of the C-odd gluon charge
radius.

The organization of the paper is as follows: in Sec. I we
outline the dual bulk action for the photoproduction of
heavy eta pseudoscalars. Following the initial suggestion
in [6], the C-odd gluon exchange is identified with the
Kalb-Ramond 2-form in the bulk, with coupling to the
photon and pseudoscaars governed by the Chern-Simons
term. In Sec. III the dual photoproduction amplitudes are
evaluated using the leading Witten diagrams. The C-odd
bulk form factors are explicitly derived, and the corre-
sponding charge radii derived. In Sec. IV we detail the
differential cross section for photoproduction in the treshod
region. Detailed numerical results are presented at currently
electron machines. Our conclusions are in Sec. V. We have
added a number of Appendixes to detail some of the
derivations in the main text.

II. BULK ACTION

We recall that the 17~ Kalb-Ramond as a 2-form field,
couples to the light flavor brane through the Chern-Simons
term. For instance, for flavor D8 probe branes,

Ses = Ts/Tr<e[F A ZCZ.iH)
J

b d Ts / dsxeMNOPQTI'(AMFNOBPQ) (21)

with the 2-form F = 2za’F + B, the sum of F = dA — iA?
the flavor 2-form and the 17~ Kalb-Ramond 2-form B. The
tension of the D8 brane is denoted by T'g. The light 7 field is
usually identified with the singlet part of A, = T}an’ with

Ny=1+2 (for a single heavy and two light flavor
branes), while the U(1) gauge field with the space-time
parts of F. We will assume that an analogous coupling
carries to the heavy 7., The bulk action relevant to the
photoproduction of 7., reads as

1
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for the Kalb-Ramond field B, and
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for the vector mesons, which will supply the relevant photon
couplings through vector-meson dominance (VMD). The
coupling gc-g is uniquely determined by the 5D Chern-
Simons term to be gcg = 22’? The 5D Newton constant is
given by s> = 2«* = 162Gy = 87%/N?, and np is the
Pauli parameter, which will be fixed by matching the Pauli
form factor to its experimental value. In the above equations
the flavor trace will pick up the relevant charges for
charmonia e, =2/3e or bottomonia e, = —1/3e. Here
H; = dB is the 3-form field strength of the 17~ Kalb-
Ramond field. The background is given by the AdS metric

L2
ds® = =z (dx* + dz?),

(2.4)

with nonconstant dilaton ¢ = x*z?. In the fermionic parts of
the action we denote ¢*% = £ I'®], with the gamma
matrices given by I'* = (y#, —iy’) and obeying the Clifford
algebra {T4, T8} = 258 The tetrads following from (2.4)
are given by e = z5%. The positive and negative parity
Dirac spinors follow from the mixed representation of (A5)
in Appendix A, to which we refer the interested reader for
further details. The axial gauge field V,, = (0,V,) is the
projected spin-1 axial-field

B, = €00’ V°

1

with the physical polarization (0|V,|V;P) = €,(P). The
projection yields the three physical degrees of freedom out
of the six gauge degrees of freedom in B, and guarantees
the correct normalization for the ensuing kinetic term. We
have included the sole coupling to a bulk Dirac fermion
through its magnetic moment, as suggested by super-
gravity (SUGRA). In Appendix B we give the triple
couplings 1¥~ny in the Sakai-Sugimoto model, for com-
parison. The dual field with boundary spin values

B = l wapp o — CH
26 P

carries 17~ assignment. Following [6], we make the
boundary identifications with scalar and pseudoscalar
gluonic operators with mass dimension A = 6
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FIG. 1. Threshold photoproduction of 5, through (a) Kalb-
Ramond exchange and (b) P-wave photon exchange.
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B* — d*GeGh,GH, (2.5)

which we interpret as C-odd twist-5 operators on the light
front. In contrast, we note that in the context of pQCD,
factorization arguments show that the leading contribution
to the photoproduction of #,., in the large skewness limit, is

iA(s, Z iAo (M, 5,1)

}’P—WIP

1A,y (M, s, 1) =

with the bulk vertices

e
V%)yq("]l » 42, k) = Jcs cb
2, /N K?

1
Vo (P12, k) 22—\/ﬁ/dz\/§e ¢Z VW1 2(p2.2)0 Y1 2(p1. 2) T (M. 2)€4 k1

a C-odd local twist-3 operator [12]
duthanerJrGH»v‘

I1L. 7, AND 5, PHOTOPRODUCTION
IN DUAL GRAVITY

In dual gravity, threshold photoproduction of 7., by
exchange of a Kalb-Ramond field is illustrated by the
Witten diagram in Fig. 2(a). This process is very similar to
the photoproduction of charmonium, with similar kinemat-
ics given the 7, mass of 2.984 GeV, and the J/¥ mass of
3.097 GeV. The essential differences stem from their
quantum numbers: P-odd versus P-even couplings, with
the former expected to be more suppressed. In light of this,
and motivated by previous analyses [13—-16], we have also
included the tree level Witten diagram contribution stem-
ming from the exchange of a bulk photon in Fig. 2(b).

A. Dual photoproduction amplitude

Using (2.3), the Witten diagram in Fig. 2(a) yields the
photoproduction amplitude for 7, as

( )V(Dyr](qthvk mn) XP (mn’A) X (_l)vaﬁ\y(pl’ p27k7 mn)
+ (_Z)Vyy*n(ch* g2 k, mn) X P;w(mﬂ’ A) ( )V;*\qu(pl’ P2k, mn)’

[ dzb@asm ek

(3.2)

(a)

(b)

FIG. 2. Witten diagrams for threshold production of 7., through (a) Odderon and (b) photon exchange.

074013-3



HECHENBERGER, MAMO, and ZAHED PHYS. REV. D 109, 074013 (2024)

where the field strength is now to be understood as F,, = iq,¢,(q) — iq,€,(q) with €,(q) being the polarization of the
external photon with momentum ¢. The massive spin-1 propagator in the mode-sum representation is given by

Gl(mn’ 1,2, Z/)m/ = Jb(mm Z)i)ﬂujb(mn’ Z/)’

—i

pﬂv(mm k) - mpﬂu(k)
Kk
P;w(k) =n" - K2 (33)
Similarly, we obtain for the photon vertices in the bulk
u 2
Vy*m((]hfh,K) 2\/7 dzp(z) x €””’”’FWF/,,, (3.4)
v €, - N v
Vyﬁlx%w(Plvl’sz) = Zgg/dZ\/ﬁe P W (2. )P (pr.2)d (my. 2)
5 12
V () w(P1. 2. K) =1np 5 /dZ\/§€ ¢Z MW (pa 2)0" ¥ (p1, 2)K,J(m,, z)
V;f—ﬁw(pl,pz,K) =1np5 /dZ\/!?e P> W (2. )7 iy Wi (pr.2)0 (. 2). (3.5)

1.2

The bulk coupling to 7., is also governed by the Chern-Simons term in (2.1) via the substitution By — Fy. Note that
there are no metric and dilaton factors in the coupling of B, and A, to y — 5., in (3.2) since this interaction is purely
governed by the Chern-Simons term in (2.1). The baryon couplings on the other hand are governed by the Dirac-Born-
Infeld part of the action and only receive 1/N, corrections from the Chern-Simons term. The photon couplings follow
analogously with «,, replaced by «.

For 7/ = 0 and t = —K? we can use (A35) in (3.2) to get

LA(S, 1), posnp 1./471,_,,”, s, 1) (3.6)
i-’zlyp—mp(sv t) = (_i)véyn(ql’ q>, k) S P/w(A) X (_i)vaqu;(pl: P2, k) (37)
+ (Ve (@162 k) X Py (8) x (=D)VY gy (P11 P2 K). (3.8)

with the normalizable modes in (3.2) now substituted with their non-normalizable counterparts V(Q, z). In the spacelike
region, we obtain for the Kalb-Ramond amplitude

V{am(q“qZ*K) QCSZ\/*~ dzo(z X—eﬂV/mkF

g _ -
Voo (P1. 02 K) = = [ dz\/ge ¢Z(i)‘1‘1,2(192,Z)f’”yqll,z(l?laZ)Vb(K’ )€K
2

2VK?
) - p
= 2\/3% dz/ge™ 2y (2)wr(2) V(K. 2)a(p2)y 0,5u(pr) K 1 (3.9)
and for the photon amplitude analogously
2 2
Vi ( K)= feb dzg( )xz—e"”’”’ F,F (3.10)
4192 ) Nf Pz 3 ' wl pe .
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V. ” w(P1> P2 K) = 5 2/dz\/§e ¢Z\Pi P2, )r"¥e(pr, V(K 2)

~ 55 [ 4Bl ) + VIR Do) ()

V’;ﬁ%-ﬁq,(pl,pz,K) =1p5 /dz\/’e ¢Z(i Y. (p2,2)0"¥s(p1, 2)K, V(K 2)

— / dz/Ge QuL (D (2))V(K. Da(py)ou(p)K,

Vo (P1 92 K) = 1p 5 /dee ¢Z‘I’i P2, )7 ir* ¥ (p1, )9 V(K. 2)

— / dz/Ge 202 (2) WA ()VK. i pa)ru(py)-

B. Dual form factors

The form factors are extracted from the 3-point functions
with pertinent Lehmann—Symanzik—Zimmermann (LSZ)
reduction. For example, the Dirac form factor resulting
from the current associated with the covariant derivative
receives contributions from

WH(K?)Bitae = i(p2)7*u(py) x ey x Ci(K)

1 S5SEM
= Dirac (3 . 12)

Fn(p2)Fn(p1) de,

with ey = e for the proton and ey = 0 for the neutron,
Fy(p) = (0|Oy(0)|N(p)) the nucleon source constant and

Ci(K) —%/6"‘222 2+ iR)V(0.2)

 (ag +270)(ag + 1)I'(z)
N Al'(ag +7+1)

(3.13)

Similar relations hold for the other 3-point amplitudes.
The electromagnetic Dirac and Pauli form factors are thus
given by

(3.14)

where

(3.11)
|
Co(K) = [ (@ — R0 VK. )
_aglag(r=1) = Dl(ax + DI()
INag +7+2)
Cs(K) =20y [ 72 0.2)
_ 4(t— 1)l (ag + 1)I(7) ’ (3.15)

Flag +7+1)

which follow from

(N(p2)IEMm(0)IN(p1))

— a(py) (Fluw Ry ()17

ok (e, (316

as previously obtained in [17]. Note the appearance of an
additional contribution to F(Q) from the 5D Pauli term
o"*. The proton electromagnetic form factor normaliza-
tions are fixed by the charge F;(0) =1 (Dirac) and
magnetic moment given in units of the nuclear magneton

F5(0) = (, — 1) = 1.7928  (Pauli),

where we used p,/uy =2.7928. This fixes #np =
1.7928/C5(0) = 1.7928/4(z — 1). Similarly, the C-odd
Kalb-Ramond or Odderon form factor is given by

Fy(K) = /dZZ_2”3€_¢2MNll~/R¥7LVb<Kv 2)

=16(r — )I'(z + DI'(ag + 1)

X,F (t+ Lag + e +ag +1;-3),  (3.17)

where we pulled out a factor of 2My to highlight the
similarity with the electromagnetic Pauli form factor
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and ,,F g is the regularized hypergeometric function. The
ensuing C-odd squared charge radius is

=),

The C-odd form factor normalizations are fixed by the
nucleon tensor charge (axial-Pauli) and the nucleon
intrinsic spin (axial-Dirac). More specifically, the nucleon
tensor charge is defined by the matrix element

(3.18)

(PS|pic" yy|PS) = 25q(P*SY — PYSH). (3.19)
At a resolution of the order of the nucleon mass, lattice
evaluation gives [18]
6q = 6u + 6d ~ 0.839 — 0.231 = 0.608. (3.20)
The intrinsic spin of the nucleon is mostly due to the
mixing with the gluons from the U(1), anomaly
(PS|wiyty yw|PS) = 2M yX(0)S . (3.21)
The estimation from the QCD instanton vacuum gives
%(0) = 0.3 at a resolution of about the nucleon mass [19],
while lattice simulations give £(0) = 0.4, at a resolution
of about twice the nucleon mass [20]. Therefore, at the
nucleon mass resolution, we set

F,(0) = 0.608. (3.22)
Using (3.18) we readily obtain the charge radius
) 3
(rP) =5 (re—4r(r + 1)
2kj,
x GFOMO (1 r 41,04 1,-3)
4, P9 r 4104 1,-3)), (3.23)

where y is the Euler-Mascheroni constant. For 7 = 3 and
k, = 0.3875 GeV we obtain

\/(r*) =2.733 GeV~! = 0.540 fm.

For comparison, we note that the Odderon-nucleon coupling
as a C-odd and un-Reggeized 3-gluon exchange in [13], is
assumed monopolelike with unit normalization. Also in the
eikonal dipole analysis at low-x [14], the Odderon-nucleon
form factor is argued to be fixed by the leading twist quark
Generalized Parton Distribution, with a normalization to 1.
In contrast, the Reggeized BKP Odderon-nucleon form
factor in [15] is relatively large, with even a rapid sign
change at the origin.

The form factors are displayed in Fig. 3 with
¢ = k32> = k22> = k?Z* for the open string sector and

(3.24)

Fy

1.5 2.0 25 3.0
K? [GeV?]

FIG. 3. C-even and C-odd nucleon form factors in the approxi-
mation xy = k, with the normalization fixed by the charge,
magnetic moment and (3.22).

¢ = k37> = 4x?7? for the closed string sector. We fix k by
the p meson pole in the (timelike) photon bulk-to-boundary
propagator, as is required by VMD, giving

(kp. Ky, ky) = (0.775,0.3875,0.3875) GeV.  (3.25)
For moderate K> the dominant contribution on the light
front stems from the F, contribution of the photon, in
analogy to, but not as pronounced as, the Primakoff effect.
This is due to the absence of the photon pole in VMD. At
larger K? the C-odd contribution will dominate the differ-
ential cross section due to the kinematical nature of
the coupling in (2.2), in agreement with pQCD calculations
[14,16].

C. Threshold vertices

At threshold, the Odderon-#,. ,y vertices in the spacelike
region are given by

(3.26)

Vo (K) = dzp(2)V(K, 2).

e

The pertinent LSZ reduction for the production of 7. ;, at the
boundary results in a substitution rule for the bulk-to-
boundary propagator

¢<Qv Z) - ¢n( ) gSCnKZL ( : 2)
I x 4gs(n + 1)xzL,(k*z?), (3.27)
mn
hence reducing to a simple vertex factor
Zz
d —
VBny 2\/7 Z¢n 2
fr](,‘.
=e., (mm: V- (3.28)
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The absence of the dilaton/metric in the Chern-Simons term
implies that (3.28) is divergent in the IR. Note that this is
not the case if we were to use a slab geometry with a hard
wall. With this in mind, to obtain an estimate for the
coupling Vg, , we use the simple hard-wall cutoff obtained

from (A38) to obtain Vg, = —ﬁmg /4.

The vertex containing a single virtual and one real
photon is given by

dze,(2)V(K,z). (3.29)

As is the case for the Kalb-Ramond field, LSZ reduction
picks out the pertinent normalizable mode, and we obtain
the same vertex as in (3.28):

(3.30)

with V,,, = K, 20 ¢/4. For the numerical analysis we

\/7

fix the decay constant f,. by the leading order decay rate
from pQCD [21],

2
477Q4 2 f’?

. (3.31)
’7 144 1‘4'7

with Q. the charm quark charge. From the experimental
value T’ =5.376 x 1075 GeV [22] we obtain

where we used M, = 2.9839 GeV. The value for I, _,,, is
not reported. However, from heavy quark symmetry, it
follows that

M
@ = [ (3.33)
Ioe My,
which amounts to
Sy, = 0.184 GeV, (3.34)

with M, = 9.3897 GeV.

IV. DIFFERENTIAL CROSS SECTION

The differential cross section is obtained by averaging
over the initial state spins and polarizations and by
summing over the final state spins

da ,
dr 167 (s M2 222 Z|‘A 5,1 rp—»np| (4.1)
pol spin
The cross sections are then obtained from
~Tmax dJ
= - 4.2
ols) /_t T (4.2)

min

with 7, / max fixed by the kinematics of the process, which
are detailed in Appendix C.

Carrying out the polarization and fermion spin sums we
arrive at

d 2e%e?, g% 2
aﬂx<fx) (Fo(s,t, My, My)

e dt 16a(s— M%)~ \My
fy, = 0327 GeV, (3.32) + F,(s,t. My, My) + Fo,(s.t, My, My)),  (4.3)
|
with respectively, the C-even Fg, photon F,, and mixed Fg, contributions
Fo(s,t,My,Myx) = —% <K2s(1<2 +2M3, + M%) + M3 K*(M% — M%) + M% — K2s2)
N
F,(s.t.My,My) = e*e3V2,
y <F2(K)2K2(—K2s(K2 +2M3% + M%) + M3 (K*(2K* + M%) + 3K*M% + My) + K*s?)
M3,
+4F,(K)F(K)K*(K? + M%)? 4+ 2F,(K)? <K6 +2K4(M% — 5)
+ K2(=2M%(M% + 25) + 2M$, — 2sM% + M% + 25%) — 2M%VM§))
Fo,(s.t, My, My) =0 (4.4)

with zero mixing between the tensor contributions.
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A. Estimate of gg,,

The overall magnitude of the cross section (4.2) hinges
considerably on the value of the bulk coupling gg,,. For an
estimate, we can take the eikonal limit where the B exchange
as a closed string is exchanged between two open string
dipoles. As aresult, the coupling is of order gz, ~ ,/g,, with
the string coupling g, = A/4zN, [pure anti—de Sitter (AdS)
geometry]. For 4 ~ 10, we obtain g, ~ 0.5.

Alternatively, if we use the identification (2.5) for the
boundary operator, then the near forward C-odd gluonic
matrix element in the QCD instanton vacuum is about [23]

(P'S|d**G*PGh G| PS)
K2 -
~%f(qp)<P’S|u76"”wlPS>- (4.5)
Here f(gp) is the induced form factor by an instanton of size
p. For the kinematical range of interest in Fig. 10,

PV |tmin] ~ 1, and f(gminp) ~ 1. Indeed, for a “dense instan-
ton ensemble” [24], the instanton packing fraction is x;,; ~

0.7 with a mean instanton size p N% fm. It follows that a

simple estimate for the dual coupling is gg,, ~ K'? .;~0.5,in
agreement with the string estimate. For a “dilute instanton
ensemble” [25], the packing fraction is k;,; ~ 0.1, with a
weaker dual coupling gp,, ~ K'% .7 ~ 0.01. The suppression of
the gluons compared to the quarks in a topologically active
vacuum, at the resolution 1/p, is similar to the suppression
factor noted for the gluons in comparison to the quarks in the
nucleon spin budget [19]. It would be very useful to carry a
lattice simulation check for the QCD instanton vacuum

estimate (4.5).

B. Numerical results

With this in mind, the total cross section for threshold
production of 7, with «’s fixed to the mass spectra, and

102~ 2102
10'F

10°

N
2

do/dt [pb/GeV?]
3

0 1 2 3 4 5 6
[t-tminl [GEV?]

(a)

FIG. 4.

ggy = {1,0.5} is 6(W = 4.3 GeV) = {10.3,2.76} pb. It
is sensitive to the overall value of gp, which we estimated
above. In pQCD it corresponds to the fraction of gluons
contributing to the nucleon tensor charge as measured by
the quarks in (3.19). In the numerical results to follow, all
the holographic results will be quoted for gg, = {1,0.5}.

In Fig. 4(a) we show the differential cross section for
W =43 GeV versus the threshold ¢, with the P-wave
photon contributions (dotted green: Pauli and solid green:
Dirac), the Odderon contribution (solid red) and the sum
total (solid black). At this center of mass energy and
modulo the value of gp,, the differential cross section is
dominated by the Odderon exchange near threshold, but
is rapidly overtaken by the P-wave photon exchange. In
Fig. 4(b) we compare our results for the differential cross
section, to the recent estimate using the Primakoff photon
exchange estimate (open blue dots) in [16]. The holo-
graphic result is substantially larger.

In Fig. 5(a) we show the same differential cross section
for 5. production at the center of mass energy
W =10 GeV. The total cross section at this energy is
o(W =10 GeV) = {202,50} pb. Again, the P-wave pho-
ton contributions (dotted green: Pauli and solid green:
Dirac) are compared to the Odderon contribution (solid
red) and the sum total (solid black). At this energy, the
Odderon contribution is dominant throughtout the thresh-
old region. In Fig. 5(a) the holographic results are
compared to the results obtained using the eikonalized
dipole approximation for the Odderon in [14]. The holo-
graphic results for the P-wave photon exchange (solid
green), the Odderon (solid red) and total (solid black), are
compared to Odderon (red triangle), photon (green dia-
mond) and total (black diamond) in [14]. The sum total
of the differential cross section are about comparable at
t =t,,;, with the eikonalized results falling off much
faster, although there is a substantial difference in the

102 7102
£ — Sum 3

—— Odderon

10k

—— Photon

100k

N
<
o

102f

do/dt [pb/GeV?]

0 1 2 3 4 5 6
[t-tminl [GEV?]

(b)

(a) Holographic differential cross section for threshold photoproduction of 5. at W = 4.3 GeV, with the P-wave photon

exchange (solid green, Dirac; dotted green, Pauli), the Odderon exchange (solid red with gp, = {1,0.5}) and their coherent sum (solid
black with gg,, = {1,0.5}). (b) Holographic differential cross section as in (a), compared to the Primakoff photon exchange estimate

(open blue circles) in [16].
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.
1.5
[t-tminl [GEV?]

(b)

(a) Holographic differential cross section for threshold photoproduction of 7. at W = 10 GeV, with the P-wave photon

exchange (solid green, Dirac; dotted green, Pauli), the Odderon exchange (solid red with gg,, = {1,0.5}) and their coherent sum (solid
black with g, = {1,0.5}). (b) Holographic differential cross section as in (a), compared to the eikonalized dipole approximation in [14]
with the Primakoff photon exchange (green diamonds), the Odderon exchange (red triangles) and their sum (black diamonds).

respective contributions, with no crossing in the holo-
graphic case in this kinematical range. The difference in
the photon contribution stems from the VMD nature of the
holographic photon exchange in the bulk in comparison to
the simple Primakoff exchange used in [14] which dwarfs
the Odderon contribution at threshold. In Fig. 6(b) we
show the differential cross section at W = 50 GeV, the
relevant kinematical range for the future Electron Ion
Collider (EIC). The integrated cross sections are given
by o(W =50 GeV) = {242,59} pb.

At much higher center of mass energy, say W =
300 GeV, the integration interval becomes very large since
tmin ~ 0 and —t,,, ~ W? and the integrated cross section
starts to diverge. Although the Reggeization may start to be
important in this kinematical range, we show our un-
Reggeized C-odd bulk Odderon exchange in Fig. 7(a) with
the P-wave photon exchange (solid green: Dirac and dotted
green: Pauli), the Odderon exchange (solid red) and the

3103

4102

410’

do/dt [pb/GeV?]

0.4 0.6 0.8 1.
It-tminl [GEV?]

(a)

FIG. 6.

sum total (solid black). In Fig. 7(b) the holographic results
are compared to the estimate for photon-exchange (open
blue dots) in [16], and the Odderon model exchange (green
triangle) from [26] and the Odderon model exchange
(orange diamond) from [27].

In Fig. 8(a) we show the same differential cross section
for photoproduction of 7, at W = 11 GeV, with the P-wave
photon exchange (solid green: Dirac and dashed green:
Pauli), the Odderon exchange (solid red) and the sum total
(solid black). The unseparated contributions are shown in
Fig. 8(b) for the photon (solid green), Odderon (solid red)
and sum (solid black). For 7, production the integrated
cross sections are o(W = 11 GeV) = {0.002,0.001} pb
and o(W =22 GeV) = {1.20,0.29} pb. For #,, the pho-
ton contribution crosses the Odderon contribution twice in
the threshold region, underlying the sensitivity to the
unfixed overall g, parameter.

In Fig. 9 we compare the holographic results for the
differential cross section for photoproduction of J/W¥ (blue

3103

4102

410’

do/dt [pb/GeV?]

— Sum

— Odderon

—— Photon

0.4 0.6 0.8 1.

It-tminl [GEV?]

(b)

0.2

(a) Holographic differential cross section for threshold photoproduction of 7. at W = 50 GeV, with the P-wave photon

exchange (solid green, Dirac; dotted green, Pauli), the Odderon exchange (solid red with g, = {1,0.5}) and their coherent sum (solid
black with gg,, = {1,0.5}). (b) Holographic differential cross section as in (a), but with the photon contribution summed.
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do/dt [pb/GeV?]

Fy

0.4 0.6 0.8
It=tminl [GEV?]

(a)

FIG. 7.
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0.2

(a) Holographic differential cross section for threshold photoproduction of 7. at W = 300 GeV, with the P-wave photon

exchange (solid green, Dirac; dotted green, Pauli), the Odderon exchange (solid red with g, = {1,0.5}) and their coherent sum (solid
black with gg,, = {1,0.5}). (b) Holographic differential cross section as in (a), compared to the Primakoff photon-exchange (blue open
circles) from [16], the Odderon model (orange diamonds) from [27] and the Odderon model (green triangles) from [26].

1072 T 1072 1072 1072
l Sum Fo Fy ==e- F ] — Sum
— Odderon

1072 —— Photon §10°

(% ‘% 10 10
Q Q
e} e}
= =

g § 10 310°
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10 0.0 0.5 1.0 1.5 2.0 25 3.80 10 0.0 0.5 1.0 1.5 2.0 25 3.80
It=tuinl [GeV?] It=tuinl [GeV?]
(2) (b)
FIG. 8. (a) Differential cross section for threshold photoproduction of 7, at W = 11 GeV, with the P-wave photon exchange (solid

green, Dirac; dotted-green, Pauli), the Odderon exchange (solid red with 9By = {1,0.5}) and their coherent sum (solid black with
9py = {1,0.5}). (b) Holographic differential cross section as in (a), for the unseparated contributions.

spread) [9], with that of 7, (black spread) from this work:
(a) W =4.58 GeV, (b) W =4.30 GeV, (c) W =10 GeV,
(d) W =50 GeV, (e) W = 300 GeV. The holographic total
cross section for threshold photoproduction of J /¥ and its
comparison to 7, is shown in (f). The black data points are
from GlueX [28]. The magenta and green data points are
from SLAC [29] and Cornell [30], respectively. The holo-
graphic result from [9] uses the normalization constant
N =4.637 £ 3.131, and replaces A(t) by A(t) + n?D(t) in
Eq. (VIIL.58) of [9], where 7 is the skewness parameter
given explicitly by Eq. (II.33) in [10]. We have used the
holographic gluonic gravitational form factors A(z) and
D(t) = 4C(t) extracted by the J/¥ — 007 collaboration at
JLab [11]. Note that we have ignored the D-term for the
total cross section (f). Also note that the upper limit in the
shaded region corresponds to N = 4.637 + 3.131 = 7.768
used by the J/¥ — 007 collaboration at JLab [11].

V. CONCLUSIONS

We have analyzed the differential and integrated cross
sections for photoproduction of heavy pseudoscalars 7. ;, in
the threshold regime using dual gravity. In this limit, we
have suggested that the dominant contribution stems from
the exchange of a Kalb-Ramond B,-field in the bulk, which
is the dual of a 17~ glueball. The glueballs are sourced by a
twist-5 boundary operator, which we have argued to be tied
to the tensor coupling of Dirac fermions in the bulk as dual
to nucleons, modulo an overall constant gz, not fixed by
holography. This gluon mediated constant was estimated
to be small, using the QCD instanton vacuum at low
resolution.

A possible measure of the diffractive gluon mediated
photoproduction of heavy mesons near threshold would
bring an important insight on the C-odd gluonic mass
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FIG. 9. Holographic differential and total cross sections for threshold photoproduction of J /¥ (blue-shaded) from [9], and the present
results for #, (black-shaded with gp, = {1,0.5}). (a) W =4.58 GeV, (b) W =4.30 GeV, (c) W =10 GeV, (d) W =50 GeV,
(e) W = 300 GeV; and holographic total cross section for threshold photoproduction of J/W¥ (f). The black data points are from GlueX
[28]. The magenta and green data points are from SLAC [29] and Cornell [30], respectively.

content of the proton, at about the nucleon mass resolution.
It would also be an important precursor for the elusive
Odderon, expected to set in at higher energies through
Reggeization of the C-odd glueballs.

Near threshold, the 7, ;, photoproduction cross sections
through diffractive 17~ glueballs are shown to be very
sensitive to the value of this coupling ggy. This notwith-
standing, we have found that the ensuing diffractive

differential cross sections overtake the P-wave photon
mediated differential cross sections for ggpy = 0.5-1, as
suggested by both a string estimate, and an estimate using
the dense QCD instanton vacuum for the dual boundary
operator. The production is depleted by almost two orders
of magnitude, say for gg, = 0.01 using the (dilute) QCD
instanton vacuum for the dual boundary operator. These
observations hold for the current electron facility at JLab
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with W ~ 5 GeV, and the future electron facility at the EIC
with W ~ 50 GeV.
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APPENDIX A: BULK FIELDS

1. Bulk Dirac fermions

Throughout we will use the definitions and partial results
in [31], to which we also refer for further details. The free
bulk Dirac action in terms of the nucleon doublet

v
Vo= < p1,2> (A1)
anl,Z
is given by
1 | - -
SF=57 dee—fﬁ(z)\/g(;Wl,zngFA(Dg-R - DRy,
9s

— (M + V(Z))q’l.z‘lﬁz), (A2)

with V(z) =k} 2%, @,,, = —1/z1,,, anomalous dimension

M=+(A-2)==%(r—3/2) and
— 1 v a
Dll\}R 0 N + 8 CONAB[FA F ] lXNT
— 1 ,
DER = aN+8wNAB[F 8] +iX4Te.  (A3)

The equations of motion governed by (A2) are given by

<leA MDLR - (aN¢)e1AYrA — (£M + V(z)))qJL2 =0,

(Ad)
with the normalizable solutions in the bulk
Wi (p.zn) = wr(zn)¥Ye(p) + v (zn)¥7 (p)
¥ (p.zin) = wr(z:n)W) (p) +wi(z:n)¥y(p).  (AS)

wr(zin) = 2% x p(zin) = 2% x (”Ré;\’_%Lg’T_Z)(gND
wi(zn) =28 x g (zn) = 28 x ("L@TVIL a (g"’))

(A6)

and lPR/L( )= Pi“(!’)»q’%ﬂ(l’) =u(p)
tive chiral projections. Here A = T+%, &y = k%7% and

P their respec-

L,({')(fN) are the generalized Laguerre polynomials. The
free boundary spinors are normalized to

i(p)u(p) =2My. (A7)
The ; g are normalized in the bulk
[z (i) =5 (A8)
with
ng = an
" KN(17_2> (215((:—:_ n1))>2' (A9)

The mass spectrum resulting from the non-normalizable
modes of (A4) displays Regge behavior

m? =43 (n+7-1). (A10)
The bulk-to-boundary Dirac field following from the non-
normalizable solutions to the Dirac equation in the bulk
(A4) are given in terms of Kummer functions

2
P 3—1@)

1 ’ :N U - El
WR(P Z) R ( 4K12V

2
. P
WL(va):NLU<_4272_T’§N>a (A11)

Ky
with Ng/N; = p/2ky and
2
N =~ "
L r<f—1)

Note that (A11) can be recast as the resummed Regge poles

fnpl//R n;z)
l// e ———
; p* —m;,
~ fnmnl// n,z
WL(p’Z):Ziz L(2 ) (A12)
n=0 p-—my
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with the couplings f, = 2ky/(ngl'(z — 1)). For later con-
venience we also define F,, = —m,,f,,.

During the reduction of the chiral spinors in the
interaction terms to 4D, we will encounter the following
expressions:

WiH) + Wy, = (wk + i )iytu
P = By Wy = (wk —wi)artu
Wity — Warty Wy = 2y Ry ity Y u. (A13)
2. Bulk pseudoscalar fields

The pseudoscalar fluctuations are contained in A, of the
5d vector field Aj,. The equation of motion following from
the quadratic part of the action (2.3) is given by

[Vt O @) = 0 (AT8)
and ¢, = % The ensuing mass spectrum follows as
m? =4kt (n+ 1), (A19)

and displays again the expected Regge behavior. Note that
the decay constant given by

— <e-¢l,azf¢n<z'>) (A20)

9s <

7=0

is strictly divergent at 7/ = 0. The correct UV boundary
condition should be set by a heavy brane with 7/ ~ mi With
this in mind the bulk wave functions can be written as

ou(\/ge ™ FMN) = 0. (A14)
I
In particular we obtain ¢n(2) = . 4gs(n + rzL, (22%),  (A21)
OV# + ze?9 < e—(pl 9 V”) —0 with f, = —F,/m, fixed to its experimental value in the
¢ z° main text.
av,-o,(0,V¥) =0 (A15)
) N 3. Bulk spin-1 fields
subject to the gauge condition a. Top-down Kalb-Ramond field
4 ~ ¢1 In type-II SUGRA the fields B, and C, (IIA) and Cy
0, V# + ze?0. | e Evz =0. (Al6) (ITB) are mixed via a topological mass term. In particular a
consistent solution to the equations of motion studied in
The normalizable modes are given by [32] is only given by B,, and C,, for 17~ and B,, and C,,,,
for 177, where 7 is the supersymmetry breaking compacti-
¢n(2) = c,kzL, (K*2%) (A17) fied direction of the Witten model [33]. For example, the
relevant linearized type IIA equations of motion in 10D
with the normalization fixed by string frame are given by
1
VO(e_z(/)HOMN) - . (4!)2—_g€MNO]...08F01"-O4F05-~08 = 0,
1
VPFPMNO - m€MN0P1MP7HP1P2P3FP4---P7 = 0, (A22)
which are coupled through a nonvanishing F, flux gen- _ 3 u
erated by the N color branes. To solve them for the 17~ b(r) o0 ¢ a(r) ’ (A24)

polarization, we start with the radial ansatz

a(r)

S

C/u/r = CW()C”), B;tr - b(r)n/ucempaauépa (xﬂ)7

(A23)

where we suppress the plane wave factors e’**. The
equation of motion for H; gives

and upon substituting this result into the equation of motion
for C; we get the equation of motion for the 17~ glueball.
The factor ¢* pertains to the metric factors on M, with
ds3,, = e*pdxtdx”, and r is the holographic coordi-
nate. One can check that all other linearized equations of
motion resulting from the type IIA closed string action are
satisfied, and the Lagrangian is diagonal. To project out the
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three polarizations of a massive spin-1 field, we use

C () = \/— €520,V (x*), which ultimately leads us to
2 3
Co=20) L p B, = ——eYa(r)V,.  (A25)

;w‘r*\/igs Y22 ur \/E

and a canonically normalized kinetic term pertinent for a
spin-1 field. This projection will also result in the correct
Kinetic term in (2.3). For the 11~ polarization the situation
is precisely reversed: C,,. ~V, and B,, ~ F,,. Note that
the relevant interactions originate from the Chern-Simons
term, which leads to the correct parity assignments of the
interactions.

b. Soft-wall

As discussed above, after dimensional reduction, the
SUGRA action for the Kalb-Ramond field reduces to an
effective spin-1 action in 5d. The subsequent formulas thus
also hold for the bulk photon fields, with mass scale set by
x, and the corresponding bulk wave functions substituted
by Jy(m,.z) > J(m,z) and V,(K,z) > V(K,2).
Following [34] we describe the t-channel exchange of
the Kalb-Ramond field via the exchange of a massive spin-
1 field with bulk wave function

$u(2) = CaG2LUGR) = Ty(m,2). (A26)
Note that the coupling of the closed string sector is twice
that of the open string sector; hence the dilaton is given by
¢ = k32> = (2x,)*2* = (2x)*z?, and gs is to be understood
as ¢s. The wave functions are normalized via

[ et O @) = 5 (220
giving ¢, = \/2/(n + 1). With a decay constant given by

2
=——c,(n+ )2,

7/=0 gs
(A28)
and a Reggeized mass spectrum
m? =4x*(n+1). (A29)

Fixing the mass spectrum to correspond to the lowest
glueball state on the Odderon trajectory, we would obtain

kp, = 1.925 GeV~!, K, = 1.47 GeV~!, (A30)
for the 17~ glueball with mass M = 3.85 GeV and the 17~
glueball with mass M = 2.94 GeV, respectively. For our
computations, we fix the mass spectrum by the rho meson
pole of the timelike photon bulk-to-bulk propagato. With a
rho mass of m, = 0.775 GeV we thus obtain

k, = 0.3875 GeV~',

Ky = 2, = 0.775 GeV~". (A31)

With this in mind, we can rewrite the bulk wave function as

$a(2) = ,{1— X 2gsk3 22 L) (k3.2%) (A32)

n
where f, = —F,/m,. At the production threshold, the
external wave functions are localized at the boundary. In

this limit, the bulk-to-bulk propagator in the mode sum
representation

$ulz
z k2 g (A33)
reduces to
¢n(z - 0) _g5Fn¢n(Z/)
G, 0,
(Z ” Z) —gsF, K — m%
2
=T x VD). (A%)
For spacelike k> = —K? we thus have
gsFupu(2) _ 2 ;
=— K A
G (z—=0,7) 22 K2+m ZXV( ), (A35)
with

V(K. z) = 22 D(1 + ag)U(1 + ag, 2, k32%)

_Kzzz/1 dx YK exp | — —
b 0 (1—x)2 P 1-

and with ax = K*/4x3, U(a,b,c) the confluent hyper-
geometric function of the second kind and normalized to
V(0,z) = V(K,0) = 1. Note that the bulk-to-boundary
propagator for an on shell photon is trivially represented
by V(0,z) = 1 in the Witten diagram of Fig. 2(a).

2-21 0 (A36
beZ ] ( )

c. Hard wall

In the hard-wall model (x = 0), the normalizable bulk
wave functions are given by

Pn(2) = ezt i (my. 2), (A37)

where ¢, = v/2/z9J(m,z) and the mass spectrum is fixed
by the n-th root, r,, of the Bessel function
To(myzo) = 0. (A38)

Fixing the lowest mass to the p meson pole in the photon
bulk-to-bulk propagator we obtain z, = 3.103 GeV~!,
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which we use as a hard-wall cutoff in the divergent parts of
the Chern-Simons interactions.

APPENDIX B: COUPLINGS IN WITTEN-SAKAI-
SUGIMOTO MODEL

For reference, we also give the type ITA 1%~ vector
couplings obtained in the Witten-Sakai-Sugimoto model,
which were first studied in [35] and recently extended and
completed in [36]. The interactions are fully governed by
the Chern-Simons term, which we assumed to also carry
over to the soft-wall computations in the main text. For the
177 vector fluctuation one obtains

1
EGVHV = M trl—IFW*F (Bl)
where
g/ = a M
l 16 \/7M KR3 (Z 4( ))
0.31
= . B2
VN (B2)

R is the AdS radius, M4(z) the normalizable mode of the
bulk spin-1 glueball, V(g, z) is the photon bulk-to-boun-
dary propagator and the numerical value is obtained for an
on shell photon with V(0, z) = 1. Note that z here is related
to the radial coordinate in the Sakai-Sugimoto model by

U \3
1427 = (—) :
UKK

The mass scale is again fixed by the rho meson pole, which
gives Myx = 949 MeV, and the 't Hooft coupling is
fixed by the pion decay constant to be 1= 16.63,
k = AN./21673. The corresponding coupling for the 17~
fluctuation is given by

Le,my = ——thrHF JFEY (B3)
Mpy
where
45 [k 1 dz
bY =—>/= N,
=S e |
2.25
=—, B4
VN o
with the normalizable 17~ bulk mode N,(z). Taken

at face value we have —bV/2Msz—0.2 GeV~! and
24,,2 fo./my Vi, & —0.05 GeV™', where we used Mpy =

3.2 GeV from unquenched lattice QCD [37]. However, note
that the Witten-Sakai-Sugimoto model treats quarks as

massless and quarkonia receive large mass contributions
from their quark content.

APPENDIX C: KINEMATICS

The invariants for the meson photoproduction are s and ¢,
respectively. Here s = (g, + p;)? is related to the center of
mass energy W = /s and ¢ = A? is related to the momen-
tum transfer A¥ = (p, — p;)*. For photoproduction
Q% =0, but leptoproduction can also be analyzed with
minor variations. In the center of mass frame, the four-
momenta of the incoming photon, incoming proton, out-
going proton and outgoing meson X are denoted by ¢, p1,
P2, and g, respectively. Each external state is given by the
on shell conditions defined as

pr=p=My,  ¢i=0, ¢ =M
Using the on shell conditions, the four-momenta in the
center of mass frame, can be written as

s — M3, s — M3
q1 = ’0’_
2/s 2./s
(s+M§(—M]2\,
2= \"T2m
NG

b= s+M]2V0s—M12V
U 2ys T2
P2=<

s — M} + M3
2Vs
where My is the nucleon mass, My is the produced meson
mass, and 6 is the scattering angle in the center of mass
frame. The magnitude of the outgoing three-momentum
reads as

v—|l3x|Sin9,—|13Xcos¢9)

|y sind. |ﬁx|cose> €

§— UMy V) ls = (Mx =My )* ]\ Y
i = (ML= MR ()

The scattering angle is fixed by the invariant ¢,

2st+ (s = M%)? = M% (s + M%)
2V/s|px| (s = My)
with p* =1 (p; + p2)*. In the threshold limit /s —

My + My, the momentum transfer ¢ is near the threshold
value t,,:

0s6 =

(C3)

My M3
fy = = NEX (C4)
My + My

The kinematically allowed regions are shown on the
(W, /—t) plane in Fig. 10 for 5. and 7, respectively. In
the near threshold region s > (M + My )?, the factorization
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FIG. 10. Minimal and maximal transverse momentum transfer f,;,, f,n.x in the physical region for 7. (a) and 7, (b) versus W = /5.
The photon momentum is taken to be at the optical point g> = —Q? = 0, and the hadron masses are given by My = 0.938 GeV,

m, =2.984 GeV and M,, = 9.399 GeV.

1,

for the proton occurs when the outgoing meson is heavy
enough, so that the proton target moves fast enough to be
factorized in partons. In the heavy limit, the incoming and
outgoing nucleon velocity is of order 1 modulo M%/M%
corrections. In this regime, factorization holds near threshold
for photoproduction, with a nonrelativistic outgoing meson
with a skewness of order 1 [12,38,39].

APPENDIX D: TOP-DOWN FERMIONIC
COUPLINGS

Since in type I SUGRA minimal couplings of the form

fermion couplings by those resulting for the mesinos on
the flavor branes we have [40]

SDP:)iTDp/dp+1x€_¢\/gqu"1_2(rMbM_A)LPI,Z (D1)
12

with

9%

Dy =DO02 46, @ W5y, A=A 45 @A®

o"NB,,y are actually absent due to the strict constraints (D2)
from supersymmetry, we explore various different top-
down couplings in this Appendix. By identifying the = where
|
0)(1.2 1 1
Dz(u)( ) =0y + ZwMABFAB + 11 HyapT"?
1 1 1
Waom = §€¢ <:F F I — ;FABCFABC F ﬁFABCDFABCD>FM
A =L, e L g,
(12) =3 md £ 5= Hasc
2 1 p) 1 A 1 ABC
Alwzzae :l:EFAF +2'—3'FABCF s (D3)

and I+ the antisymmetrized product of gamma matrices.
By introducing the chiral spin connection

+)AB 1
W\ AE = B £ —eMeHyyo.

12 (D4)

which is amenable to a spin connection with torsion

P = wlf + he T, (03

where T is the antisymmetric part of the Christoffel
symbol, the Kalb-Ramond field can be viewed as a source
for torsion, which was first observed in [41]. The couplings
arising from H; in the covariant derivative, and in
particular A, in (D1) for the 17~ field V° in the main
text reduce to

(Wi +WR)Vo(K, 2)€oap, V KZVu(p2)r“y’y'u(p,), (D6)
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where we note that the H,, I'“** coupling vanishes after
the reduction to the 4D spinor is carried out. This means
that also the B, fluctuation corresponding to 17~ does not
couple through this term. However the fluctuations
B,,.C,; and B,;,C,, form the physical 1%~ states, and
we obtain from F3I'®) in A® for the 1=~ field V°

2u Ly RV (K, 2)€5ap, V K2V py)y vy’ u(py). (D7)

Note that both couplings have the correct 5D parity. After
the spin sums, the resulting squared matrix elements are
highly suppressed at low K. Other couplings yield the
nucleon axial-tensor charge

(L (p2) = g (pa2))ou(p1) = u(p2)r’e*u(py).  (D8)
up to a factor V' K2, which is again suppressed in the near-
forward regime.
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