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Differential cross sections of the elastic pion-proton scattering are investigated at very small momentum
transfer in a holographic QCD model, considering both the strong and Coulomb interaction in the Regge
regime. The strong interaction is described by the Pomeron and Reggeon exchange, and the Coulomb
interaction is characterized by the one photon exchange. The two interactions are linked through an
interference term and we only need to determine a single adjustable parameter involved in this term. As to
the parameters for the strong interaction, we can utilize the values determined in the previous studies. The
differential cross sections can be predicted without any additional parameters, and it is shown that our
predictions are consistent with the experimental data. We explicitly show the momentum transfer
dependence for the interference effect. The energy dependence of the contribution ratios for each
component is also discussed.
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I. INTRODUCTION

The two-body elastic scattering of hadrons is one of the
simplest processes and has played an important role in
investigating the partonic structure of the involved hadrons
for several decades. However, it still presents a challenge for
the theory to describe it. The differential cross section is a
fundamental experimental characterization determined
by studying the elastic scattering involving hadrons. In the
present work we investigate the differential cross section of
elastic pion-proton (πp) scatteringwith relatively high center-
of-mass energy s and quite lowmomentum transfer t. Among
the fundamental forces associated with hadron interactions,
two fundamental interactions have commonlybeen employed
to describe the differential cross section of two charged
hadrons: the short-ranged strong interaction and the relatively
weak but long-ranged Coulomb interaction.
Quantum chromodynamics (QCD) is a well-established

theory of the strong interaction, and all phenomena

associated with strong interactions are expected to be
described by the fundamental QCD Lagrangian. Since
before the establishment of QCD, there has been a time-
honored theory, the Regge theory, which is a theory for the
analytic properties in high energy scattering as a function of
angular momentum, where the angular momentum is not
restricted to integer multiples, but is allowed to take any
complex values. The Regge theory is a useful framework
for analyzing the properties of scattering amplitudes for
various high energy forward scattering processes [1–7].
The Regge theory successfully describes the proton-proton
ðppÞ and proton-antiproton ðpp̄Þ scattering by considering
the soft Pomeron and Reggeon exchange [8–11], with their
respective slope and intercept parameters. Subsequently,
the birth of string theory was originally intended to unravel
the modes of the strong interaction, and it is intimately
linked with the Regge theory, where the S matrix in the
Regge theory can be described by the bosonic strings and
the string amplitude can explicitly reproduce the Regge
behavior for various cross sections. Later on, QCD replaced
the string theory as the fundamental theory of the strong
interaction. However, low momentum transfer character-
izes hadronic elastic scattering, and the coupling of QCD
becomes large at low energy scales. Therefore, these
scattering cross sections in QCD are essentially nonper-
turbative physical quantities that are difficult to analyze
directly using QCD. In some quite limited kinematic
region, perturbative QCD is available and important results
have been obtained [12–14], but for most of the kinematic
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region we need effective methods to calculate the cross
sections. Over the past decades, instead of describing the
elastic scattering from first principles, various theoretical
models [15–22] have been developed to elucidate the
experimental results for the elastic scattering.
In this work we consider the strong interaction in the

framework of holographic QCD, a nonperturbative method
for QCD that has been established using the AdS=CFT
correspondence [23–26], which correlates a four-
dimensional conformal field theory with the theory of
gravity in the higher dimensional anti–de Sitter (AdS)
space. Based on the AdS=CFT correspondence, many
holographic models [27–37] have been widely studied.
Aimed at better understanding the internal structure of
hadrons, various holographic QCD models have been
proposed and successfully implemented for high energy
scattering [38–54]. A holographic model inspired by the
Regge theory and the structure of string scattering ampli-
tudes was used to simulate scattering in the Regge regime,
where s ≫ t, for pp and pp̄ and successfully described the
experimental data for the scattering cross sections
[51,55,56]. The string dual models of QCD developed
on the basis of the AdS=CFT correspondence allow
the perturbative calculations of string theory to map the
dynamics of nonperturbative strong interaction in the
higher dimensional curved space. Glueball states are dual
to closed strings and meson states are dual to open strings,
which correspond to the Pomeron and Reggeon exchange,
respectively. The leading Pomeron trajectory has an inter-
cept slightly larger than 1, corresponding to the increasing
behavior of the total cross section with the energy

ffiffiffi
s

p
. In

contrast, the intercept of the Reggeon trajectory is smaller
than 1, corresponding to the decreasing behavior of the
total cross section.
For theCoulomb interaction, the electromagnetic effect—

soft photon radiation and Coulomb scattering—is an
integral element for any processes involving charged
hadrons. Occasionally, this effect hampers the observation
of specific strong interaction phenomena, but meanwhile
they provide a unique source of information about important
details of hadron amplitudes. Within the leading approxi-
mation (one photon exchange), the Coulomb scattering
amplitude is calculated in the framework of quantum
electrodynamics (QED). As described in Ref. [57], there
are reasons to believe that this approximation is sufficient in
the region of very low momentum transfer, where the
Coulomb amplitude dominates. Between the regions, in
which the scattering is mostly Coulomb or mostly strong
interaction, there is an interval of angles, where the two
interactions have similar strengths. The interference effect
can be observed in this region, caused by the cross term of
the Coulomb and strong interaction, the so-called Coulomb-
nuclear interference (CNI). This effect is the third contri-
bution to the differential cross section, in addition to the two

fundamental interactions. The CNI effect has been consid-
ered in experimental studies of pp and pp̄ scattering to
reveal the amplitude structure of hadron scattering [58–67].
This interference is clearly visible only in a very limited
range of scattering angles. It has been shown inRefs. [68,69]
that the contribution of the Coulomb interaction and its
interference termwith the strong interaction nearly vanishes
at jtj ¼ 0.01 GeV2. However, analyzing the differential
cross section in this interval can give us important informa-
tion about the internal structure of hadrons.
In Ref. [52], a holographic QCD model, considering the

Pomeron and Reggeon exchange contributions, has been
employed for successfully describing the high energy πp
cross section data in the kinematic range of 0.01 < jtj <
0.45 GeV2 and

ffiffiffi
s

p
> 10 GeV. In their model, for the

Pomeron-hadron couplings, the gravitational form factors
obtained from the bottom-up AdS/QCD models [70,71]
were used. The present work is an extension of Ref. [52] by
additionally considering the Coulomb interaction, as well
as the interference effect with the strong interaction in πp
scattering. Since the observable range of these two con-
tributions is very limited, we need to consider an even
smaller range of momentum transfer, which we study in the
range 0 < jtj < 0.01 GeV2. The Coulomb interaction is
described in terms of the purely real photon exchange QED
amplitude, and there have been various theoretical studies
of the CNI effect [72–79]. In addition, the electromagnetic
form factors obtained from the bottom-up AdS/QCD
models [71,80] are utilized. By combining all the compo-
nents, we derive an expression for the total scattering
amplitude and numerically calculate the differential cross
section. We show that our predictions for the πþp and π−p
differential cross sections are consistent with the exper-
imental data. Additionally, we explicitly exhibit how the
contribution of each component varies with energy, focus-
ing on the contribution ratio.
The composition of this paper is as follows. In Sec. II, we

derive the complete scattering amplitude and show each of
the components. In Sec. III, comparisons between our
predictions for the differential cross sections and the
experimental data are presented, and the t and

ffiffiffi
s

p
depend-

ence of each contribution are shown in detail. Concluding
remarks are given in Sec. IV.

II. MODEL SETUP

A. Holographic description
of strong interaction amplitude

In the preceding study [52], the formalism for strong
interaction that describes the πp scattering with the
Pomeron and Reggeon exchange was developed in the
Regge regime. According to the formalism, the strong
interaction amplitude is obtained by combining the
Pomeron and Reggeon exchange, which are described
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by the massive spin-two glueball and the vector meson
exchange, respectively. The strong interaction amplitude
for the πp scattering can be written in the following
form:

Fπp
N ¼ Fπp

g þ Fπp
v ; ð1Þ

where Fπp
g is the glueball exchange amplitude, and Fπp

v is
the vector meson exchange amplitude. The upper index
“πp” stands for “πþp” or “π−p”.
In the Regge limit, the proton-glueball-proton and pion-

glueball-pion vertex can be expressed as

Γμν
gpp ¼ iλgppApðtÞ

2

�
γμpν

p þ γνpμ
p
�
; ð2Þ

Γμν
gππ ¼ 2iλgππAπðtÞpμ

πpν
π; ð3Þ

respectively, where pp and pπ are the four-momenta of the
corresponding hadrons, λgpp and λgππ are the coupling
constants for the glueball exchange, and ApðtÞ and AπðtÞ
represent the proton and pion gravitational form factor,
respectively. Similarly, the proton-vector-proton and pion-
vector-pion vertex can be written as

Γμ
vpp ¼ −iλvppγμ; ð4Þ

Γν
vππ ¼ −2iλvππpν

π; ð5Þ

respectively, where λvpp and λvππ are the coupling constants
for the vector meson exchange.
The massive spin-two glueball exchange amplitude is

obtained by combining the proton-glueball-proton vertex,
pion-glueball-pion vertex, and corresponding propagator.
The vector meson exchange amplitude can be obtained in a
similar way. Propagators of the glueball and vector meson
can be expressed as [81,82]

Dg
αβγδðkÞ ¼

−iðηαγηβδ þ ηαδηβγÞ
2ðk2 þm2

gÞ
; ð6Þ

Dv
μνðkÞ ¼

i
k2 þm2

v
ημν; ð7Þ

respectively, where k2 ¼ t, and mg and mv are the glueball
and vector meson mass. Hence amplitudes of the glueball
and vector meson exchange can be written as

Fπp
g ¼ Γαβ

gππū4Γ
γδ
gppu2D

g
αβγδðkÞ; ð8Þ

Fπp
v ¼ Γμ

vππū3Γν
vppu1Dv

μνðkÞ; ð9Þ

respectively.
Combining the above equations, the invariant strong

interaction amplitude for the elastic πp scattering is
derived as

Fπp
N ¼ λgππλgppAπðtÞApðtÞs2

×
1

t −m2
g
− 2λvππλvpps ×

1

t −m2
v
: ð10Þ

The differential cross section for strong interaction can be
expressed as

dσN
dt

¼ 1

16πs2
jFπp

N ðs;tÞj2

¼ λ2gππλ
2
gppAπðtÞ2ApðtÞ2s2
16πjt−m2

gj2

−
λgππλgppλvππλvppAπðtÞApðtÞs

4πjt−m2
gjjt−m2

vj
þ λ2vππλ

2
vpp

4πjt−m2
vj2

: ð11Þ

Here the invariant amplitude only contains the lightest
states on the Pomeron and Reggeon trajectory. In order to
include the higher spin states, the string excited states need
to be considered. The higher states on the Pomeron and
Reggeon trajectory correspond to the excited states of the
closed and open string, respectively. Following the preced-
ing work [82], the Reggeized Pomeron propagator is
obtained as

1

t −m2
g
→

�
α0g
2

�
e−

iπαgðtÞ
2

Γ½−χg�Γ
h
1 − αgðtÞ

2

i

Γ
h
−χg − 1þ αgðtÞ

2

i
�
α0gs
2

�
αgðtÞ−2

;

ð12Þ

where χg ¼ α0gmp
2 þ 3

2
αgð0Þ − 3, andmp is the protonmass.

The propagator of the Reggeon needs to be replaced by

1

t −m2
v
→ α0v e−

iπαvðtÞ
2 sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1 Γ½−αvðtÞ�:

ð13Þ

With the Reggeized Pomeron and Reggeon propagator
introduced above, the invariant strong interaction amplitude
for the πp scattering is expressed as
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FNðs; tÞ ¼ −sλgππλgppAπðtÞApðtÞe−
iπαgðtÞ

2

Γ½−χg�Γ
	
1 − αgðtÞ

2



Γ
h
αgðtÞ
2

− 1 − χg
i
�
α0gs
2

�
αgðtÞ−1

þ 2sλvππλvppα0ve−
iπαvðtÞ

2 sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1Γ½−αvðtÞ�: ð14Þ

The above equation involves nine adjustable parameters in
total, and all the values we used in this study are shown in
Table I. Because of the universality of the Pomeron and
Reggeon, we can use the values determined in previous
works. Three of those parameters, the intercept αgð0Þ, slope
α0g, and proton-glueball coupling constant λgpp, were
obtained in the high energy pp(pp̄) scattering considering
only the Pomeron exchange [48]. Another three para-
meters, the intercept αvð0Þ, slope α0v, and proton-vector
coupling constant λvpp, were determined in the medium
energy pp(pp̄) scattering considering both the Pomeron
and Reggeon contribution [51]. For the other three
parameters, pion-glueball coupling constant λgππ and pion-
vector coupling constants λvπ−π− and λvπþπþ , we utilize the
results obtained in Ref. [52].

B. Proton and pion gravitational form factors

To complete the description of the strong interaction
amplitude presented in the previous subsection, it is neces-
sary to specify the gravitational form factors of proton and
pion, Ap and Aπ, which can be obtained from the bottom-up
AdS/QCD models [70,71]. We employ the results derived
with the hard-wall model, in which the AdS geometry is
sharply cut off at the infrared (IR) boundary z ¼ z0. The
metric of five-dimensional AdS space is given by

ds2¼gMNdxMdxN ¼ 1

z2
ηMNdxMdxN; ε<z<z0; ð15Þ

where ηMN ¼ diagð1;−1;−1;−1;−1Þ. The fifth coordinate
z runs from ε → 0, which corresponds to the ultraviolet
boundary.

For the proton gravitational form factor [71], the proton
is characterized by the solution of the five-dimensional
Dirac equation. Coupling the Dirac field in the five-
dimensional AdS space with a vector field, the classical
action can be expressed as

SF ¼
Z

ddþ1x
ffiffiffi
g

p �
i
2
Ψ̄eNAΓADNΨ

−
i
2
ðDNΨÞ†Γ0eNAΓAΨ −MΨ̄Ψ

�
; ð16Þ

where eNA ¼ zδNA is the inverse vielbein, DN ¼ ∂N þ
1
8
ωNAB½ΓA;ΓB� − iVN represents the covariant derivative,

andM stands for the mass of the bulk spinor. The field Ψ is
a solution of the Dirac equation

½ieNAΓADN −M�Ψ ¼ 0: ð17Þ

The Dirac field can be expressed in terms of right- and left-
handed spinors ΨR;L ¼ ð1=2Þð1� γ5ÞΨ. The normalizable
ground state wave functions can be expressed after impos-
ing boundary conditions as

ψLðzÞ ¼
ffiffiffi
2

p
z2J2ðmpzÞ

zp0J2ðmpz
p
0 Þ

;

ψRðzÞ ¼
ffiffiffi
2

p
z2J1ðmpzÞ

zp0J2ðmpz
p
0 Þ

: ð18Þ

The IR boundary parameter satisfies the condition
J1ðmpz

p
0 Þ ¼ 0 and is found to be zp0 ¼ 1=ð245 MeVÞ.

TheQCD energy-momentum tensormatrix element can be
expressed in terms of three gravitational form factors [83],

TABLE I. Parameter values for the strong interaction.

Parameter Value Source

αgð0Þ 1.086 Fit to pp(pp̄) data at high energies [48]
α0g 0.377 GeV−2 Fit to pp(pp̄) data at high energies [48]
λgpp 9.699 GeV−1 Fit to pp(pp̄) data at high energies [48]
αvð0Þ 0.444 Fit to pp(pp̄) data at medium energies [51]
α0v 0.925 GeV−2 Fit to pp(pp̄) data at medium energies [51]
λvpp 7.742 Fit to pp(pp̄) data at medium energies [51]
λgππ 3.361 GeV−1 Fit to πp data at medium energies [52]
λvπ−π− 4.528 Fit to πp data at medium energies [52]
λvπþπþ 6.049 Fit to πp data at medium energies [52]
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hp0; s0jTμνð0Þjp; si ¼ ūðp0; s0Þ
�
ApðQÞ γμPν þ γνPμ

2

þ BpðQÞ iðPμσνρ þ PνσμρÞqρ
4mp

þCpðQÞ ðqμqν − ημνq2Þ
mp

�
uðp; sÞ;

ð19Þ

where q ¼ p0 − p, t ¼ q2, Q2 ¼ −t, and P ¼ ðpþ p0Þ=2.
Since in the Regge regime both the BpðQÞ and CpðQÞ
contribution can be neglected, we only need to consider the
contribution of the ApðQÞ involved term. The proton gravi-
tational form factor is obtained as

ApðQ2Þ ¼
Z

zp
0

ϵ
dz

1

2z3
HðQ; zÞðψ2

LðzÞ þ ψ2
RðzÞÞ: ð20Þ

In the hard-wall model, the bulk-to-boundary propagator as
the solution to the linearized Einstein equation can be
expressed as [70]

HðQ; zÞ ¼ 1

2
Q2z2

�
K1ðQzp0 Þ
I1ðQzp0 Þ

I2ðQzÞ þ K2ðQzÞ
�
: ð21Þ

For the pion gravitational form factor, the effective action
for the meson fields on the five-dimensional AdS space is
given by [84]

SM ¼
Z

d5x
ffiffiffi
g

p �
Tr

�
jDXj2 þ 3jXj2 − 1

4g25
ðF2

L þ F2
RÞ
��

;

ð22Þ

where Xðx; zÞ ¼ 1
2
Iðmqzþ σz3Þ exp ð2itaπaÞ is the bulk

field and its covariant derivative is given by DMX ¼
∂
MX − iAM

L X þ iXAM
R . In this study, for simplicity, we

only consider the chiral limit, i.e., the quark mass mq ¼ 0

and the pion is massless. Then the action containing the
pion field π and the axial-vector field A up to the second
order is obtained as

SA ¼
Z

d5x
ffiffiffi
g

p �
vðzÞ2
2

gMNð∂Mπa − Aa
MÞð∂Nπa − Aa

NÞ

−
1

4g25
gKLgMNFa

KMF
a
LN

�
; ð23Þ

where Fa
KM ¼ ∂KAa

M − ∂MAa
K, and A ¼ ðAL − ARÞ=2.

Taking the variation of this equation on Aa
M, one can

obtain the equation of motion. The pion wave function can
be obtained as [80]

ΨðzÞ ¼ zΓ
�
2

3

��
β

2

�1
3

×

�
I−1

3
ðβz3Þ − I1

3
ðβz3Þ

I2
3
ðβðzπ0Þ3Þ

I−2
3
ðβðzπ0Þ3Þ

�
;

ð24Þ

where β ¼ g5σ=3with g5 ¼
ffiffiffi
2

p
π. The IR boundary param-

eter satisfies the condition J0ðmρzπ0Þ ¼ 0, wheremρ is the ρ
meson mass and is found to be zπ0 ¼ 1=ð323 MeVÞ [26].
The pion decay constant can be written as

f2π ¼ −
1

g25

�
1

z
∂zΨðzÞ

�
z¼ϵ→0

: ð25Þ

This formula, combined with Eq. (24), relates the parameter
σ to the pion decay constant

f2π ¼ 3 · 21=3
Γ½2=3�
Γ½1=3�

I2=3ðβðzπ0Þ3Þ
I−2=3ðβðzπ0Þ3Þ

β2=3

g25
: ð26Þ

Comparing with the experimental data fπ ¼ 131 MeV,
we can extract the parameter σ, and it is found that
β1=3 ¼ 424 MeV.
In general, hadrons with spin-zero have two gravitational

form factors [70]. Focusing on the relevant part of the
action, the matrix element can be obtained in terms of two
independent form factors

hπaðp2ÞjTμνð0Þjπbðp1Þi

¼ δab
�
2AπðQÞpμpν þ 1

2
CπðQÞðq2ημν − qμqνÞ

�
; ð27Þ

where CπðQÞ can be represented with AπðQÞ as
CπðQÞ ¼ AπðQÞ=3. Therefore, it is sufficient to consider
only AπðQÞ for the pion gravitational form factor. Then we
obtain the transverse traceless component of the stress
tensor matrix element at the origin in coordinate space,

hπaðp2ÞjT̂μνð0Þjπbðp1Þi

¼ 2δabAπðQ2Þ
�
pμpν þ 1

12
ðq2ημν − qμqνÞ

�
: ð28Þ

Utilizing these expressions and combining with the bulk-
to-boundary propagator, Eq. (21), the pion gravitational
form factor is expressed as

AπðQ2Þ ¼
Z

zπ
0

ϵ
dzHðQ; zÞ

�ð∂zΨðzÞÞ2
g25f

2
πz

þ vðzÞ2ΨðzÞ2
f2πz3

�
:

ð29Þ

C. Proton and pion electromagnetic form factors

In addition to the gravitational form factors, to consider
the Coulomb interaction, which is discussed in the next
subsection, we also need to specify the electromagnetic
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form factors of the proton and pion. In this study, we
employ those obtained in Refs. [71,80]. Similar to the
gravitational form factors, both the proton and pion
electromagnetic form factors can be calculated using the
hard-wall AdS/QCD model with the same metric, Eq. (15).
For the proton electromagnetic form factor [71], the

electromagnetic current matrix element can be represented
by two independent form factors,

hp2;s2jJμð0Þjp1;s1i

¼uðp2;s2Þ
�
F1ðQÞγμþF2ðQÞiσ

μνqν
2mn

�
uðp1;s1Þ; ð30Þ

where q ¼ p2 − p1 and Q2 ¼ −q2. The proton current
operator can be written in terms of isoscalar and isovector
currents,

Jμp;n ¼ χi

�
1

2
JμSδij þ JaμV taij

�
χj; ð31Þ

where χ ¼ ð1; 0Þ for the proton.
According to the AdS=CFT correspondence, the four-

dimensional isoscalar JμS and isovector JaμV current
operators correspond to the five-dimensional gauge field
isoscalar and isovector parts, respectively. Both the iso-
scalar and isovector current matrix elements can be
extracted from the three-point function,

h0jT Oi
RðxÞJaμðyÞŌj

RðwÞj0i: ð32Þ

The relevant term in the action, Eq. (16), that contributes to
the three-point function is given by

SF ¼
Z

d5x
ffiffiffi
g

p
e−ΦΨ̄eMA ΓAVMΨ: ð33Þ

However, the above equation provides only the F1ðQÞ
form factor. Hence, one needs to add the following
gauge invariant term to the action to obtain the both form
factors:

ηS;V

Z
d5x

ffiffiffi
g

p
e−Φi

1

2
Ψ̄eMA eNB ½ΓA;ΓB�FðS;VÞ

MN Ψ; ð34Þ

where ηS and ηV are determined by the experimental value
of the proton magnetic moment and used for the isoscalar
and isovector components, respectively.
The invariant functions are given by

C1ðQÞ ¼
Z

zp
0

ϵ
dz

VðQ; zÞ
2z3

ðψL
2ðzÞ þ ψR

2ðzÞÞ; ð35Þ

C2ðQÞ ¼
Z

zp
0

ϵ
dz

∂zVðQ; zÞ
2z2

ðψL
2ðzÞ − ψR

2ðzÞÞ; ð36Þ

C3ðQÞ ¼
Z

zp
0

ϵ
dz

2mpVðQ; zÞ
z2

ψLðzÞψRðzÞ; ð37Þ

where VðQ; zÞ is the vector bulk-to-boundary propagator
for the hard-wall model and satisfies the equation

z∂z

�
1

z
∂zVðQ; zÞ

�
¼ Q2VðQ; zÞ ð38Þ

with boundary conditions VðQ;0Þ¼1 and ∂zVðQ; z0Þ ¼ 0.
Its explicit form is expressed as

VðQ; zÞ ¼ Qz

�
K0ðQz0Þ
I0ðQz0Þ

I1ðQzÞ þ K1ðQzÞ
�
: ð39Þ

The electric and magnetic form factor for the proton are
given by

GEðQÞ ¼ C1ðQÞ þ ηpC2ðQÞ − τηpC3ðQÞ; ð40Þ

GMðQÞ ¼ C1ðQÞ þ ηpC2ðQÞ þ ηpC3ðQÞ; ð41Þ

respectively, where ηp ¼ ðηV þ ηSÞ=2 ¼ 0.224 and
τ ¼ Q2=4m2

p. The effective electromagnetic form factor
for the proton is obtained as

GpðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ τ
½G2

EðQÞ þ τG2
MðQÞ�

r
: ð42Þ

On the other hand, the pion electromagnetic form factor
is derived as [80]

GπðQ2Þ ¼
Z

zπ
0

ϵ
dzVðQ; zÞ

�ð∂zΨðzÞÞ2
g25f

2
πz

þ vðzÞ2ΨðzÞ2
f2πz3

�
:

ð43Þ

Note that, except for the bulk-to-boundary propagator
VðQ; zÞ, this form factor is similar to the pion gravitational
form factor introduced in the previous subsection. The Q2

dependence of the four form factors is displayed in Fig. 1. It
can be seen that the proton form factors decrease faster than
the pion form factors. Moreover, for the proton and pion,
the electromagnetic form factors decrease faster than the
gravitational ones.

D. Total scattering amplitude

The elastic scattering of hadrons is realized mainly due
to the strong interaction. However, in the scattering of
charged hadrons, in addition to the strong interaction, the
Coulomb interaction and CNI effect also exist simulta-
neously. The influence of both the strong and Coulomb
interaction in the πp scattering is presently being described
with the total elastic amplitude Fπp

CþN , which is written in
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the standard way as the sum of strong interaction amplitude
Fπp
N and Coulomb amplitude Fπp

C ,

Fπp
CþNðs; tÞ ¼ Fπp

N ðs; tÞ þ eiαϕðs;tÞFπp
C ðs; tÞ; ð44Þ

where α is the fine structure constant, and ϕðs; tÞ is the
Coulomb interference phase.
In this work, the amplitude of Coulomb interaction is

calculated in the leading approximation (one photon
exchange) under the framework of QED, which can
naturally explain the nucleon structure and its anomalous
magnetic moments by introducing the electromagnetic
form factor. The Coulomb interaction amplitude for point-
like charges considering the electromagnetic form factor
can be expressed as

Fπp
C ðs; tÞ ¼ ∓ 8παs

jtj GπGp; ð45Þ

in which the upper (lower) sign corresponds to the πþp
(π−p) scattering.
Historically, there have been two ways to calculate the

interference phase between the two fundamental inter-
actions: the Feynman calculus or using the eikonal model.
In the former one, the basic idea is to evaluate diagrams that
include the Coulomb and strong interactions, and the result
proposed by West and Yennie (WY) [73] is

ϕWYðs; tÞ ¼ ∓
�
ln

�
−t
s

�
þ
Z

0

−4p2

dt0

jt − t0j
�
1 −

FNðs; t0Þ
FNðs; tÞ

��
:

ð46Þ

The complexity of this result is evident as it involves the
integration over all permissible values of momentum
transfer t0. Furthermore, in WY’s work the form of the
strong interaction is not explicitly specified. For practical
use, the authors employed a series of simplifying approx-
imations to perform the analytical integration. The
assumption has been made of a slow variation of the
hadronic amplitude phase and a purely exponential decay
of the hadronic amplitude. After adding some other high
energy approximations and simplifications, the following
simplified expression can be obtained:

ϕWYðs; tÞ ¼ ∓
�
ln

�
BðsÞjtj

2

�
þ γ

�
; ð47Þ

where γ is the Euler constant, and BðsÞ is the diffractive
slope at t ¼ 0 generally expressed as

BðsÞ ¼ lim
t→0

d½ln ðdσN=dtÞ�
dt

: ð48Þ

For the eikonal model [74], the scattering amplitude can
be obtained via the Fourier-Bessel transform

Fðs; q2 ¼ −tÞ ¼ s
4πi

Z
d2beiqb½e2iδðs;bÞ − 1�; ð49Þ

where δðs; bÞ is the eikonal, and b is the two-dimensional
Euclidean vector. Because of the additivity of correspond-
ing potentials, the complete eikonal of two charged hadrons
can be obtained by combining the Coulomb and hadronic
eikonal,

δtotðs; bÞ ¼ δCðs; bÞ þ δNðs; bÞ: ð50Þ

Using this assumption, the total scattering amplitude can be
written as

Ftotðs; q2 ¼ −tÞ ¼ FCðs; tÞ þ FNðs; tÞ

þ i
πs

Z
d2q0FC

�
s; q02

�
FN

�
s; ½q − q0�2�:

ð51Þ

The eikonal calculation has been investigated in various
works [74–79], and the commonly utilized eikonal model
for the study of interference term begins with Eq. (51).
Based on this formula, Cahn made a series of simplifica-
tions and limited to small momentum transfer [75].
Cahn’s results mainly tend to retrieve the formalism of
WY on the basis of the eikonal model, taking into account
the influence of the electromagnetic form factor, and a
general expression for the Coulomb phase is obtained as

ϕCahnðs; tÞ ¼∓
Z

∞

0

dt0 ln
�
t0

t

�
d
dt0

�
f2ðt0ÞFNðs; t0Þ

FNðs;0Þ
�
: ð52Þ

FIG. 1. Gravitational and electromagnetic form factors of the
proton and pion as a function of Q2. The solid and dotted curves
represent results for the pion gravitational and electromagnetic
form factors, respectively. The dashed and dash-dotted curves
represent results for the proton gravitational and electromagnetic
form factors, respectively.
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Similarly, by assuming that the hadronic amplitude under-
goes the pure exponential decay with t and the correspond-
ing electromagnetic form factors are included in the
derivation of the Coulomb phase, the following simplified
form can be obtained:

ϕCahn ¼ ∓
�
ln

�
Bjtj
2

�
þ γ þ C

�
; ð53Þ

C ¼ ln

�
1þ 8

BΛ2

�
þ ð4jtj=Λ2Þ ln ð4jtj=Λ2Þ þ 2jtj=Λ2;

ð54Þ

where Λ2 is a parameter involved in the dipole form factor
fðQ2Þ ¼ ð1þQ2=Λ2Þ−2. In the present study, we deter-
mine Λ2 by comparing this dipole form factor with the
electromagnetic form factor GpðQ2Þ ×GπðQ2Þ, which we
previously introduced for the proton and pion.
In addition, within the leading approximation of α,

another significant work by Kundrát et al. (KL) [76,77]
derived a closed-form interference formula. The complete
form of the total scattering amplitude was derived using
the eikonal model, instead of calculating the relative phase
between the Coulomb and strong interaction. The main
difference between KL’s and Cahn’s results lies in the
derivation of Eq. (51). Cahn directly simplified it, while
KL took it as a whole and derived the complete scattering

amplitude. However, in terms of numerical calculations,
both approaches demonstrated excellent consistency with
experimental data, and there was virtually no difference.
According to Ref. [66], the results of WY exhibit an
approximate 1% deviation in numerical computations.
Furthermore, it is pointed out in Ref. [77] that, fromWY’s
result, high energy elastic hadron scattering is usually
interpreted as central scattering and strongly limits the t
dependence of the hadron phase. WY’s integral formula
has significant limitations on physical properties.
Recently, the TOTEM Collaboration [63] has used the

eikonal model to extract the value of the ρ parameter from
pp differential cross section data at the LHC. The
simplified formula, Eq. (53), was employed in our
previous work [50] to account for the Coulomb interaction
in the pp and pp̄ scattering within the framework of
holographic QCD, and it was presented that the resulting
differential cross sections are consistent with the data.
Hence, in this study, we adopt the eikonal model.
Furthermore, since the strong interaction model presented
in Sec. II A is highly complex, to simplify the numerical
calculations we employ the simplified version, Eq. (53),
of Cahn’s formula.
With the Coulomb interference phase introduced above,

by combining the Coulomb and strong interaction ampli-
tude and the corresponding form factors, the total ampli-
tude can be obtained as

FCþNðs; tÞ ¼ −eiαϕ
8παs
jtj GπGp − sλgππλgppAπðtÞApðtÞe−

iπαgðtÞ
2

Γ½−χg�Γ
h
1 − αgðtÞ

2

i

Γ
h
αgðtÞ
2

− 1 − χg
i
�
α0gs
2

�
αgðtÞ−1

þ 2sλvππλvppα0ve−
iπαvðtÞ

2 sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1Γ½−αvðtÞ�; ð55Þ

and the differential cross section is given by

dσCþN

dt
¼ 1

16πs2
jFCþNðs; tÞj2: ð56Þ

III. NUMERICAL RESULTS

A. Differential cross sections

In this section, we numerically evaluate the parametrized
form of the differential cross section for the π−p and πþp
scattering. The strong interaction part involves nine relevant
adjustable parameters, but the gravitational form factors do
not bring any additional adjustable parameters. For those
nine parameters, as shown in Table I, we use the values
obtained in the previousworks [48,51,52]. In order to ensure
the feasibility of the calculations, we choose the simplified
form, Eq. (53), for the interference phase. Since the value of

parameter Λ2 in Eq. (53) depends on the involved hadron, it
is necessary to newly determine Λ2, which is related to the
electromagnetic form factor. Once this parameter is deter-
mined, the πp differential cross sections can be calculated
without any additional parameters. In this study, we deter-
mine this parameter using the pion and proton electromag-
netic form factor in the range of 0 < jtj < 0.05 GeV2. The
best fit value for both the π−p and πþp scattering is found to
be Λ2 ¼ 1.02 GeV2.
Since the chosen range of momentum transfer jtj is quite

small, in this study we consider the kinematic region withffiffiffi
s

p
≥ 5 GeV, which satisfies the condition s ≫ t. We

display in Fig. 2 our predictions for the π−p differential
cross section, which are compared with the experimental
data [85–89]. It can be seen that our predictions are overall
consistent with the data in the considered kinematic region.
The results for the πþp scattering are shown in Fig. 3, in
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FIG. 2. The differential cross section of the π−p scattering as a function of jtj. The dashed curves represent our calculations. The
experimental data, represented by stars, are taken from Refs. [85–89].
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which the experimental data are taken from Ref. [90].
Although the available data are much less than those for the
π−p case, it is found that our predictions agree with
the data.

B. Contribution ratios

Here we investigate in detail the contribution of the
interference effect between the Coulomb and strong inter-
action, defining the contribution ratio,

R ¼
dσCþN
dt − dσN

dt − dσC
dt

dσCþN
dt

: ð57Þ

The resulting ratios for the π−p and πþp scattering are
shown in Fig. 4. From the results, strong jtj and

ffiffiffi
s

p
dependence can be seen. For both the π−p and πþp
scattering, the absolute value of the ratio becomes

maximum around t ¼ 0.002 GeV2. In the π−p case, the
ratio increases with

ffiffiffi
s

p
, and the ratios at

ffiffiffi
s

p ¼ 5 and
10 GeV are negative in the considered jtj range, while that
at

ffiffiffi
s

p ¼ 20 GeV is positive, but its magnitude is quite
small. In the πþp case, the ratio decreases with

ffiffiffi
s

p
, and the

ratios at
ffiffiffi
s

p ¼ 5 and 10 GeVare positive in the considered
jtj range, while that at ffiffiffi

s
p ¼ 20 GeV is negative. It is found

that the π−p scattering at relatively low center-of-mass
energy is more sensitive to the interference effect.
We also investigate ratios of the three contributions from

the strong interaction, Coulomb interaction, and interfer-
ence term in the π−p and πþp differential cross section at
jtj ¼ 0.002 GeV2. The resulting ratios are displayed in
Fig. 5. From the results, it is seen that in this very low jtj
region the contribution from the Coulomb interaction,
including the interference term, is substantial in the quite
wide range of center-of-mass energy. Since the currently

FIG. 4. Contribution ratios of the interference effect in the π−p (left) and πþp (right) differential cross section as a function of jtj forffiffiffi
s

p ¼ 5, 10, 20 GeV.

FIG. 3. The differential cross section of the πþp scattering as a function of jtj. The dashed curves represent our calculations. The
experimental data, represented by stars, are taken from Ref. [90].
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available πp differential cross section data concentrate in
relatively narrow

ffiffiffi
s

p
range and there are no data at higher

energies, it is expected that these nontrivial contribution
ratios obtained in this study will be tested by future
experiments.

IV. CONCLUSION

We have studied the elastic πp scattering in a holo-
graphic QCD model, focusing on the Regge regime. To
investigate differential cross sections of π−p and πþp
scattering in a wider kinematic region, we have taken into
account both the strong and Coulomb interaction. The
strong interaction is realized by considering the Pomeron
and Reggeon exchange, which are described by the
Reggeized spin-two glueball and vector meson propagator,
respectively. To obtain the strong interaction amplitude, we
have combined the vertex factors, Reggeized propagators,
and gravitational form factors derived with the bottom-up
AdS/QCD model. The Coulomb interaction amplitude is
represented by the one photon exchange amplitude, utiliz-
ing the pion and proton electromagnetic form factors. The
total amplitude for the scattering process is not merely the
addition of the two interactions. There is the interference
effect between the two interactions, which is expressed
with the relative phase. To obtain this phase, the eikonal
model is adopted in this study.

There are nine adjustable parameters in the strong
interaction part, but for all of them the values determined
in the previous studies can be used. There is one adjustable
parameter in the interference term, and we have determined
it using electromagnetic form factors of the pion and
proton. Once this parameter is determined, differential
cross sections of the πp scattering can be predicted without
any additional parameters. We have numerically evaluated
the differential cross sections of the π−p and πþp scattering
and shown that our predictions are consistent with the
experimental data in all of the considered kinematic region.
Furthermore, we have investigated in detail the jtj and ffiffiffi

s
p

dependence of the interference term and the ratios of each
contribution in the differential cross sections. To pin down
those nontrivial quantities, more data, especially at higher
center-of-mass energies, are necessary. It is expected that
future experiments will help to deepen our understanding of
the Coulomb interaction in hadron-hadron scattering.
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