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Radiative decays X → ψð1SÞγ and X → ψ 0ð2SÞγ might be expected to have a ratio of branching
fractions following the phase space volumes ratio. However data suggest the opposite, indicating a
value for R ¼ Bðψ 0γÞ=BðψγÞ consistently larger than one. In this paper we present a calculation
of R for both a compact diquark-antidiquark ðcqÞðc̄ q̄Þ state and a DD̄� molecule. In the former
case R ∼ 1 or larger is found. In contrast, in the molecular picture, with D and D̄� mesons described by
the universal wave function used by Voloshin, Braaten and Kusunoki, we find R to be of order 10−2.
These starkly different predictions are to be confronted with forthcoming high-statistics data analyses;
a more precise experimental measure would be extremely helpful in clarifying the true nature of
the Xð3872Þ.
DOI: 10.1103/PhysRevD.109.074009

I. INTRODUCTION

It is widely accepted that the Xð3872Þ is a tetraquark.
There are two competing models for the way in which the
two quarks, c and u, and the two antiquarks, c̄ and ū are
distributed in the X.1 In the “molecular” model a weakly
bound state is formed of a D and a D̄� mesons. This
molecule is very big. The reason is as follows. The
attractive force responsible for the binding is described
by a spherical potential well, much like the nuclear force
that binds nucleons in a nucleus. The known mass of the X
implies an extremely small binding energy resulting in a
very large wave function. The picture in the alternative
“compact” tetraquark model is quite different; here a uc
pair binds into a color antitriplet, which makes a bound
state via the Coulomb-plus-linear potential with the c̄ ū
color triplet. This is a different kind of object; the overall
size is significantly smaller than the molecular model’s, and
the pairs of quarks are bound into colored objects that are
significantly larger than the charmed mesons of the
molecular model.

The Xð3872Þ is certainly the outlier with respect
to all other exotic resonances observed so far in that
it has a mass almost perfectly equal to the sum of
the masses of D and D� mesons. This represents a
peculiar source of fine tuning in both of the above
interpretations [1].
The meson constituents of the loosely bound X state are

expected to have a relative momentum in the center of
mass2 p≲ 30 MeV and there are very few DD̄� pairs in
that kinematical region in high-energy collisions, especially
when high pT cuts are included [2–4]. On the other hand a
compact component of the X in the description of the
prompt production in pp collisions allows us to explain the
high-production cross sections observed. Problems with
the molecular production of the X are found also in high-
multiplicity final states; in [5] it is shown that deuteron
production can be explained very well with a pn coales-
cence model, whereas, using the same model for DD̄�
coalescence, available data on the X cannot be reproduced.
Then there is the much discussed problem of the

determination of the effective radius r0 from the line-shape
of the Xð3872Þ made by the LHCb Collaboration [6].
According to Weinberg [7], a negative and large effective
radius can be taken as the token of a compact particle, if in
combination with a positive scattering length, and this is the
case of the measured r0, as discussed in [8]. The con-
clusions reached in [8] are corroborated by the analysis

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We ignore the fact that the Xð3872Þ may be a superposition
α½cc̄uū� þ β½cc̄dd̄�, since the dependence from α and β cancels in
the ratio of the decay rates into ψ ð0Þγ.

2This can be computed assuming a λδ3ðrÞ potential binding the
DD̄� pair and using the quantum virial theorem.
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in [1] and, albeit with larger errors, by the BESII
Collaboration [9],3 see also [11].4

In this paper we point out that Xð3872Þ radiative decays
can give a strong indication about the nature of the X.
Indeed the ratio of branching ratios,

R ¼ BðX → ψ 0γÞ
BðX → ψγÞ ð1Þ

observed in data, being of order unity or larger, is in conflict
with basic molecular models, unless arbitrary assumptions
on the couplings are made [14]. In the following we present
a calculation of this ratio in both scenarios, finding an R
value of order one for the compact tetraquark, about thirty
times larger than the expected R found with minimal
molecular assumptions.
The precision in the measurement of this ratio has

dramatically improved recently and we look forward to
the forthcoming more precise determination of R. The
value from the PDG [15] is approximately R ≃ 2.6� 0.6.
The reason why R should discriminate well between
models is that the final state charmonium has much larger
spatial extent in the numerator ψ 0 than in the denominator
J=ψ , and in order to produce a photon via uū annihilation
the two quarks have to come to a common point. This will
be described in the next section.

II. MODELING X RADIATIVE DECAY

Assuming the tetraquark has no significant charmonium
component, so that it is truly a tetra-quark, its radiative
decay must involve uū annihilation. To leading order this is
from uū → γ. We adopt a nonrelativistic potential quark
model for the tetraquark. The 4-quark wave function
contains fast (u-quarks) and slow (c-quarks) degrees of
freedom, and much like in molecular physics the full wave
function can be well-approximated using the method of
Born and Oppenheimer [16,17].
The full wave function Ψðrc; rc̄; ru; rūÞ is approximated

by the product of wave functions of fast and slow degrees of
freedom. The former is computed as the wave function of
the u-quarks in the potential due to static sources of color
charge produced by the c-quarks. Moreover, in our work

we will approximate this as the product of separate
“atomic” wave functions, χMðjru − rc̄jÞχMðjrū − rcjÞ for
the molecular picture and χCðjru − rcjÞχCðjrū − rc̄jÞ for the
compact tetraquark.
These are used to compute the energy of the system as a

function of separation between the c and c̄, which is used as
a potential in the computation of the wave function
ΨCðjrc − rc̄jÞ of the c and c̄ 2-body system. Thus we have
Ψðrc; rc̄; ru; rūÞ ≈ χCðjru − rcjÞχCðjrū − rc̄jÞΨCðjrc − rc̄jÞ
in the compact tetraquark picture and Ψðrc; rc̄; ru; rūÞ ≈
χMðjru − rc̄jÞχMðjrū − rcjÞΨMðjrc − rc̄jÞ in the molecular
picture. The ΨM wave function is derived from the treat-
ment of shallow bound states in nonrelativistic scattering
theory, see Sec. IV.
In this nonrelativistic setting the calculation of the decay

rate proceeds identically for the molecular and compact
models. The distinction between these is exclusively from
the different wave functions adopted.5

Without loss of generality, we assume that the annihi-
lation takes place in the origin of the tetraquark’s rest-frame
K in Fig. 1. Let ψ be the wave function of the ψð1SÞ or
ψ 0ð2SÞ. The transition amplitude A in the X rest frame, at
fixed photon three-momentum k, is6

AðX → ΨγÞ ¼ F
Z

d3Rd3ξd3ηδ3ðηþ R − ξÞe−i12k·ðξþηÞ

× ψðjRjÞΨðjRjÞχðjξjÞχðjηjÞ

¼ F
Z

d3Rd3ξe−ik·ðξ−R
2
ÞψðjRjÞΨðjRjÞ

× χðjξjÞχðjξ − RjÞ; ð3Þ

where χ can be either χM or χC and Ψ can be ΨM or ΨC
respectively, whereas ψ is the charmonium wave function.
The exponential factor takes into account the recoil of the
cc̄ pair against the photon emitted in the uū annihilation.7

All factors which get canceled in the ratio of branching

3In the convention where f−1 ¼ −1=aþ 1=2r0k2, Ref. [8],
based on LHCb data [6], and BESIII [9] give

a≃þ28 fm −2.0≥ r0 ≥−5.3 fm ðLHCbÞ
a¼þ16.5þ27.6þ27.7

−7.0−5.6 fm r0 ¼−4.1þ0.9þ2.8
−3.3−4.4 fm ðBESIIIÞ:

In a recent paper it is claimed that a combined analysis of LHCb
and Belle data gives r0 ≃ −4 fm [10]; a value for the binding
energy B ≃ 1 MeV is used.

4In this paper we discuss the cases of a pure tetraquark or a
pure molecule; the possibility that multiquark-type and the
molecular-type configurations play complementary roles is dis-
cussed in [12,13].

5Additional distinctions from, e.g., color factors cancel in the
ratio R.

6The integrals in Eq. (3) may be computed by choosing frame
orientations such that

ξ¼

0
B@
rsinθcosϕ

rsinθ sinϕ

rcosθ

1
CA; R¼

0
B@

Rsinλ

0

Rcosλ

1
CA; k¼

0
B@
0

0

k

1
CA; ð2Þ

so that d3ξ ¼ r2dr d cos θdϕ and d3R ¼ 2πR2dRd cos λ. Here
k ¼ ðM2

X −M2
ψ ð0Þ Þ=2MX.

7Upon photon emission the heavy quarks recoil against k, the
momentum of the photon, with velocity v ∼ k=2Mc. This allows
to use a Galileo boost expð−iK · vÞ on the quantum state Φ of the
heavy quarks. Since expðiK · vÞΦq ¼ Φq−2Mv on momentum
eigenstates, the boost introduces a phase in the wave function
ψðxÞ ¼ ðΦx;ΦÞ, equal to expði 1

2
k · ðξ þ ηÞÞ. This gives the

phase used in (3), where ψ�ðxÞ is taken.
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ratios R ¼ Bðψ 0γÞ=BðψγÞ are absorbed in the prefactor F ,
except for the product of the polarization vectors of X;ψ ð0Þ
and γ which comes in the combination of a mixed product
ϵðe�ðψ ð0ÞÞ;e

�
ðγÞ;eðXÞÞ ¼ ϵijke�

iðψ ð0ÞÞe
�
jðγÞekðXÞ. Summing its square

modulus over polarizations in the rest frame of the X,

Sψ ð0Þ ¼
X
pols

jϵðe�ðψ ð0ÞÞ; e
�
ðγÞ; eðXÞÞj2

¼ ϵijkϵi0j0k

 
δii0 þ

kiki0

M2
ψ ð0Þ

!�
δjj0 −

kjkj0

k2

�

¼ 4þ 2
k2

M2
ψ ð0Þ

; ð4Þ

where jkj ¼
ðM2

X−M
2

ψð0Þ
Þ

2MX
, one finds Sψ 0=Sψ ¼ 0.98.

Only the real part of the exponential factor, contributes
appreciably to the amplitude and all the plots in the
following are calculated using the real part.
For the charmonium wave function ψðRÞ, we solve

numerically the Schrödinger equation in the Cornell
potential [18],

VðRÞ ¼ −
4

3

αs
R
þ κR; ð5Þ

with αs ¼ 0.331 and κ ¼ 0.18 GeV2, and using Mc ¼
1.317 GeV for the charm quark mass. With these param-
eters, including hyperfine and tensor interactions derived
from the potential (5), one obtains a reasonable description
of the low-energy charmonium levels, including the differ-
ence in mass between ψð2SÞ and ψð1SÞ, see Refs. [19,20].
For the 1S and 2S charmonium we use the ground-state

and first excited-state eigenfunctions, respectively. Figure 2
shows these as well as the cc̄ wave functions of both the
compact and molecular models.

III. COMPACT TETRAQUARK
RADIATIVE DECAY

The diquark wave function χC is evaluated using the
variational principle. The two-body Hamiltonian is
assumed to have a potential,

VðrÞ ¼ −
1

3

αs
r
þ κ0r: ð6Þ

The smallest diquarks are obtained with κ0 ¼ κ, larger sizes
can be obtained by decreasing κ0 down to κ0 ¼ 1

4
κ as

predicted in the Born-Oppenheimer (BO) picture we use.8

A trial wave function

χCðrÞ ¼
2C3=2ffiffiffiffiffiffi
4π

p e−Cr ð7Þ

is used, with the constant C determined by minimizing
ðχ; HχÞ=ðχ; χÞ. In the calculation of the amplitude in
Eq. (3), the Born-Oppenheimer wave function is used

ΨðRÞ → ΨBOðRÞ≡ΨCðRÞ; ð8Þ

as computed from the potential

VBOðRÞ ¼
1

6

αs
R
− 2

7αs
6

I1ðRÞ þ
αs
6
I4ðRÞ

þ kθðR − R0sÞðR − R0sÞ: ð9Þ

The first term in the BO potential corresponds to the octet
repulsion between the two heavy quarks. The term con-
taining the function I1ðRÞ corresponds to cq̄ and qc̄
interactions, with the Fierz coefficient 7=6 calculated as
detailed in [16]. The term containing the I4ðRÞ function
describes qq̄ interactions, and the same octet coefficient of
1=6 appearing in the first term is included here. The
functions I1 and I4 are given by

I1ðRÞ ¼
Z
ξ
χCðjξjÞ2

1

jξ − Rj ;

I4ðRÞ ¼
Z
ξ;η

χCðjξjÞ2χCðjηjÞ2
1

jξ − R − ηj : ð10Þ

Finally, we include in VBO a confining, linearly rising,
potential of the colored diquarks, starting at R ¼ R0s. For

FIG. 1. The light quarks annihilate in the origin of the frame K,
where the X is initially at rest. The photon is taken in the
x-z plane.

8We consider the color arrangement jðcc̄Þ8ðqq̄Þ8i ¼ffiffi
2
3

q
jðcqÞ3̄ðc̄ q̄Þ3i −

ffiffi
1
3

q
jðcqÞ6̄ðc̄ q̄Þ6i so that the coupling λcq ¼

2
3
1
2
ð− 4

3
Þ þ 1

3
1
2
ð2
3
Þ ¼ − 1

3
. In [21] it is discussed that the string

tension in the potential formula should also scale with the λ
coupling (Casimir scaling). In the formula (5) for the Cornell
potential we would confirm κeff ¼ 3

4
jλcc̄jκ ¼ 3

4
j − 4

3
jκ ¼ κ, but in

place of κ in (6) we might also consider a smaller effective string
tension, making a larger diquark; κeff ¼ 3

4
jλcqjκ ¼ 3

4
j − 1

3
jκ ¼ 1

4
κ.
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orientation, we choose R0s ¼ 3� 1 fm, i.e. greater than
2C−1which is the sizewhere the twoorbitals start to separate.
With the given parameters we find that the smallest

possible value for R in the compact picture is

Rmin ¼
BðX → ψ 0γÞ
BðX → ψγÞ ¼ 0.95þ0.01

−0.07 ð11Þ

despite the fact that the ratio of the phase space volumes is
Φðψ 0γÞ=ΦðψγÞ ¼ 0.26. The reason for this can partially be
captured by comparing the ΨCðRÞ with the charmonium
ΨðRÞ, as done in Fig. 2. Note, however, that the super-
position integral (3) includes as well the oscillating factor
which is not displayed in Fig. 2. We will return to this point
in the discussion Sec. V. For the moment observe that the
valueRmin is obtained using κ0 ¼ κ in (6) which makes the
smaller diquarks size ðrrmsÞcu ≃ 0.83 fm, see Fig. 3.
Allowing smaller string tensions κ0 makes looser diquarks,
as large as ðrrmsÞcu ¼ 1.3 fm in size, corresponding to
κ0 ¼ 1

4
κ, see Fig. 3.

IV. MOLECULE RADIATIVE DECAY

There is a universal prediction for the D0D̄�0 or D̄0D�0
wave function [22,23] (see also [24] and especially the
discussion in [25])

ΨMðRÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πR0

p e−R=R0

R
; ð12Þ

where R0 ≃ 1=
ffiffiffiffiffiffiffiffiffiffi
2mB

p
, B being the molecule binding

energy. We assume R0 ≈ 10 fm (B ≃ 200 KeV), corre-
sponding to Rrms ≈ 7 fm, and in the calculation of the
amplitude in (3) we substitute,

ΨðRÞ → ΨMðRÞ; ð13Þ

as given in (12).
For the quark orbitals in the D and D� mesons, χM, we

use Isgur-Scora-Grinstein-Wise (ISGW) functions [26],

χMðrÞ ¼
b3=2

π3=4
e−

1
2
b2r2 ; ð14Þ

where b ¼ 0.35 GeV [giving ðrrmsÞD;D� ≃ 0.69 fm] is cal-
culated at the given value of αs.
Using ðRrmsÞM ¼ 7 fm and ðrrmsÞD;D� ¼ 0.68 fm we find

R ¼ BðX → ψ 0γÞ
BðX → ψγÞ ¼ 0.036: ð15Þ

As can be seen in Fig. 4, this ratio slowly saturates at larger
molecular sizes remaining quite smaller than the observed

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

FIG. 2. The reduced, normalized, wave functions uðrÞ¼ rRðrÞ,
where RðrÞ is the radial component of the wave function,
ΨðrÞ ¼ RðrÞYlm. For standard 1S and 2S charmonia, the reduced
normalized functions are uð1SÞ and uð2SÞ, and for the cc̄
component in the universal molecular wave function discussed
in Sec. IV, we plot the normalized uM in place of ΨM. As for the
compact tetraquark computed in the Born-Oppenheimer potential
in Eq. (9), the reduced wave function is uC.
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FIG. 3. The ratio R as a function of the size ðrrmsÞcu of the
diquarks in the compact tetraquark picture. For the two values
discussed in the text after Eq. (11), R varies from R ∼ 1,
at ðrrmsÞcu ¼ 0.83 fm to R ∼ 12, at ðrrmsÞcu ¼ 1.3 fm.
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FIG. 4. The ratio R as a function of the molecular size around
the value ðRrmsÞM ¼ 7 fm (R0 ¼ 10 fm) discussed in the text.
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value. The ratio R found for the compact tetraquarks,
Eq. (11), is therefore at least thirty times larger than that of
the molecular picture.

V. DISCUSSION

The calculation above shows a remarkable disparity in
the predictions of the 2S-to-1S ratio of radiative branching
fractions R. Working within the framework explained in
Sec. II, but artificially modifying the wave functions, we
can investigate the dependence of our results on the specific
assumptions of the models used for the compact and
molecular pictures of the tetraquark. We will see that the
main conclusion, that R is much bigger for the compact
tetraquark than for the molecular picture, is very robust.
The detailed shape of the wave functions matter little. The
determining factor turns out to be the singular nature of the
universal wave function in the molecular picture, (12), that
amplifies the small distance effect and hence the size of the
1S amplitude relative to the 2S amplitude. As we will see, a
factor in reducingR in the molecular picture relative to the
compact tetraquark is the smaller size of the heavy-light
systems, that is, that of the Dð�Þ mesons in the molecular
case, relative to the size of the diquark in the compact
tetraquark picture. Lastly, we will see that in the molecular
picture the ratio R depends quite sensitively on the size of
the 1S and 2S charmonia.
For this exploration we model ΨðrÞ in Eq. (3) by the

function in Eq. (12) for the molecule, while that of the
compact tetraquark by a ground-state single harmonic
oscillator (SHO) wave function, chosen to reflect the linear
potential between diquarks:

ΨSHOðrÞ ¼
�

3

2πR2
rms

�
3=4

e−3r
2=4R2

rms : ð16Þ

Both of these are functions of a single parameter, the rms
size of the state, Rrms ¼

ffiffiffiffiffiffiffiffi
hr2i

p
, e.g., Rrms ¼ R0=

ffiffiffi
2

p
in

Eq. (3). In addition, χMðrÞ and χCðrÞ are both modeled by
ΨSHO,

9 each characterized by a radius, rrms ¼
ffiffiffiffiffiffiffiffi
hr2i

p
[we

denote the size parameters as ðRrmsÞM and ðrrmsÞD;D� for the
molecule, and ðRrmsÞC and ðrrmsÞcu for the compact
tetraquark].
For the ψð1SÞ and ψð2SÞ wave functions we use SHO

ground and first excited wave functions. With b ¼ 0.4 fm
(rrms ¼ 0.49 fm) these are a good approximation to the

numerical solutions shown in Fig. 2 that are solutions of the
Coulomb plus linear potential.
To see that the short distance singular structure of the

universal wave function in the molecular picture is respon-
sible for the small value of the ratio R, we consider an
alternate, artificial molecular wave function,

ΨMol;fakeðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π3=2Rrms

p e−r
2=2R2

rms

r
; ð17Þ

that is, an SHO ground state divided by r to amplify the
short distance effects.
Figure 5 shows in blue the resulting ratio R of this

modified wave function of the universal wave function and
in orange the result of the actual universal wave function,

FIG. 5. The ratio R of radiative decay branching fractions as a
function of Dð�Þ meson size, computed with the universal wave
function in Eq. (12) (higher curve) and with the fake molecular
function in Eq. (17) (lower curve). In both cases the hadron size is
fixed at ðRrmsÞM ¼ 7 fm. The ψð1SÞ and ψð2SÞ wave functions
are approximated as ground and first excited state solutions to
Schrödinger’s SHO equation, with rrms ¼ 0.5 fm for the 1S state.

FIG. 6. The ratioR as a function of the size ðRrmsÞC in the mock
model of the compact tetraquark of Sec. V, assuming ðrrmsÞcu ¼
0.69 fm (continuous curve) or ðrrmsÞcu ¼ 0.83 fm (dot-dashed
curve). The unphysically small value ðrrmsÞcu ¼ 0.69 fm is the
realistic size of the D and D� mesons, rrmsÞD;D� , showing that
some of the suppression of R in the molecular relative to the
compact models is due to the smaller size of the constituents.

9This SHO function with rrms ¼ 0.62 fm is precisely the Dð�Þ
meson wave function in the ISGW model, which we have
adopted for the molecular picture with an updated value,
rrms ¼ 0.69 fm. ISGW uses a linear combination of ground
and first excited SHO functions in a variational principle with
a Coulomb plus linear potential, and finds that the first excited
state component is negligible. The diquark is formed in a weaker
potential, due to a reduction in the string tension κ → 1

4
κ in

Eq. (6), following the observation in Footnote 8 resulting in a
larger rms radius.
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both as function of the size of the molecule. The curves are
remarkably similar, and although quantitatively different,
they are both numerically much smaller than the measured
value as long as ðrrmsÞD;D� ≲ 1.1 fm.
Additional evidence that emphasis on the small distance

weight of the overlap of wave functions produces a very
suppressed ratioR can be seen in Fig. 6, which showsR in
the mock compact tetraquark model as a function of hadron
size. As the wave function support concentrates around the
origin, the contribution to the 1S amplitude is accentuated
while the one to the 2S amplitude is suppressed for small
sizes of the cu diquark, like those of D;D� mesons.
Turning to the other parametric dependence, we have

already shown that the ratio R depends quite sensitively
on the size rrms of the χM and χC wave functions; see
Figs. 3 and 7. We see that for both models the ratio R
increases rapidly with ðrrmsÞcu for ðrrmsÞcu ≳ 0.6 fm, and
the molecular model exhibits a minimum in the vicinity
of ðrrmsÞD;D� ∼ 0.55 fm. This minimum is at R ¼ 0; it
reflects the vanishing of the 2S amplitude at this particular
meson size.
The rapid growth of these curves can be understood by

comparing the 1S and 2S amplitudes as functions of rrms.
They both decrease towards zero, but the 1S amplitude does
faster than the 2S amplitude. And the reason for this is that
the oscillatory cosine factor10 in (3) has shorter wavelength
for 1S than for 2S. This can be verified by artificially
changing the photon energy k in Eq. (3). Figure 8 shows the
amplitude for X radiative decay to ψð1SÞ (left panel) and
ψð2SÞ (right panel) as function ofD-meson or diquark size,
for three different values of (artificially modified) photon
energy: k ¼ 0.181 GeV (blue), corresponding to the

physical one for the decay into ψð2SÞ, 0.698 GeV (orange),
corresponding to the physical value for decay to ψð1SÞ, and
1.0 GeV (green) corresponding to a lighter than physical
final state ψð1SÞ. In the region ðrrmsÞD;D� ≳ 0.5 fm the
physical 1S amplitude decreases, becoming negligible for
ðrrmsÞD;D� ≳ 1.5 fm. At this meson size the physical 2S
amplitude, while also decreasing, is very sizable, leading to
the very enhanced value ofR. The advertised zero in the 2S
amplitude is also made evident by these graphs.
Lastly, we have investigated the dependence of R in the

molecular picture on the size of the final state charmonium
states. Figure 9 shows the ratioR as a function of molecular
size ðRrmsÞM (left) and Dð�Þ-meson size ðrrmsÞD;D� , using
the approximate wave functions described above, for
several artificial sizes of the 1S and 2S states. The left
plot, which is computed at meson size rrms ¼ 0.69 fm,
shows that R remains very small and fairly constant as a
function of hadron size. The right panel has molecular size
ðRrmsÞM ¼ 10 fm, although its precise value is irrelevant,
as shown by the left panel. One sees that as the size of the
charmonium states decreases, the location of the minimum
in these curves moves left, towards a smaller value of
ðrrmsÞD;D� . Any attempt to increase R in the molecular
model by decreasing the size of charmonium states by
changing the interquark potential would be frustrated by a
corresponding decrease in the size of the D-meson.11

VI. CONCLUSIONS

We have computed the ratio of branching fractions R ¼
BðX → ψ 0γÞ=BðX → ψγÞ in the molecular hypothesis fol-
lowing [22,23], finding R ≈ 0.04, a value much smaller
than Rexp ≃ 2.6� 0.6 [15]. While we assume binding
energies around B ∼Oð100Þ KeV, leading to molecular
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FIG. 7. The ratioR as a function of the size of theD orD� meson keeping the characteristic size of the moleculeRrms ≃ 7 fm. The value

used in the text is ðrrmsÞD;D� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iψM

q
≃ 0.69 fm. With respect to Fig. 3, the small distance region has a much lower R and is flatter.

10The cosine factor is

cos

�
k

�
cos λ

�
R
2
− r cos θ

�
− r sin θ sin λ cosϕ

��
; 11Unless one invokes different quark forces in the heavy-light

system from the heavy-heavy one.
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sizes of ∼10 fm, we show that the result is quite insensitive
to the characteristic molecular size. In contrast, R is a fast
increasing functions of the size of the Dð�Þ meson, and our
result is obtained for 0.69 fm. The price to pay to get larger
R values in the molecular hypothesis is that of allowing
larger D and D� mesons, well above expectations.
We present a similar calculation for the X described as

a compact tetraquark, that is, a diquark-antidiquark color-
molecule, treated in the Born-Oppenheimer approxima-
tion [16]. We find that the result is also very sensitive to
the size of the diquark and not much to the size of the
whole tetraquark. This time however, sizes in excess of
0.7 fm are expected, 1 fm not unrealistic. Using the
parameters for the compact tetraquark in Ref. [16] we find
R ∼ 0.95, about thirty times larger than the predicted
value in the molecular model. This value corresponds to
the most conservative determination we have (with rms
radius ≃0.8 fm). If we adopt the Casimir scaling of the
string tension used to determine the diquark orbitals
described in Sec. III, and therefore allow slightly larger
rms radius, we obtain significantly larger R values as

seen in Fig. 3. If a molecular-compact dual description of
the state is considered as a model of the X [12,13], we
find that R can have significant value, say R≳ 1, only
if the physical state is dominated by the compact-X
configuration.
The conclusions obtained are rather robust under rea-

sonable parameter variation and even changes in wave
function shape. Hence, we have found, rather remarkably,
that there is a qualitative distinction between what is
obtained in the molecular and compact pictures.
A better knowledge of the experimental uncertainty in

Rexp would be extremely helpful in clarifying the true
nature of the Xð3872Þ.

ACKNOWLEDGMENTS

We wish to thank Vanya Belyaev for interesting dis-
cussions on this topic. The work of B. G. was supported in
part by the Sapienza University visiting professor program
and by the U.S. Department of Energy Grant No. DE-
SC0009919.

FIG. 9. Ratio R of 2S to 1S branching fractions in the molecular model as a function of molecular size ðRrmsÞM (left) and
Dð�Þ-meson size ðrrmsÞD;D� (right), for several artificially modified sizes of the 1S and 2S states. The curves are labeled by the rms size
(fm) of the 1S approximate wave function of Sec. V. The left plot is computed at meson size ðrrmsÞD;D� ¼ 0.69 fm while the right panel has
hadron size ðRrmsÞM ¼ 7 fm.

FIG. 8. Amplitude for X radiative decay to ψð1SÞ (left panel) and ψð2SÞ (right panel) as function ofD-meson or diquark size, for three
different values of (artificially modified) photon energy. The curves, in blue, orange and green, have k ¼ 0.181 GeV [as in the decay to
ψð2SÞ], 0.698 GeV [as in the decay to ψð1SÞ], and 1.0 GeV, respectively. This is computed at hadron size Rrms ¼ 7 fm with the
approximate charmonium wave functions of Sec. V at rrms ¼ 0.5 fm.
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