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We explore the quantum chromodynamics (QCD) phase diagram’s complexities, including quark
deconfinement transitions, liquid-gas phase changes, and critical points by using the chiral mean-field
(CMF) model that is able to capture all these features. We introduce a vector meson field redefinition within
the CMF framework, enabling precise adjustments of meson masses and coupling strengths related to
vector meson interactions. Performing a new fit to the deconfinement potential, we are able to replicate
recent lattice QCD results, low-energy nuclear physics properties, neutron star observational data, and key
phase diagram features as per modern constraints. This approach enhances our understanding of vector
mesons’ roles in mediating nuclear interactions and their impact on the equation of state, contributing to a
more comprehensive understanding of the QCD phase diagram and its implications for nuclear and
astrophysical phenomena.
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I. INTRODUCTION

Hot and/or dense quantum chromodynamics (QCD)
matter is a fascinating area of research and its under-
standing requires knowledge of theoretical and experimen-
tal nuclear physics, astrophysics, particle physics, and
gravity [1–3]. It includes the extreme conditions of temper-
ature that existed shortly after the big bang, during the early
moments of the Universe’s formation. These conditions are
believed to be reproduced in relativistic particle collisions,
such as those created in high-energy particle accelerators
like the Large Hadron Collider (LHC) and the Relativistic
Heavy-Ion Collider (RHIC) [4,5]. On the other hand, QCD
matter at effectively zero temperature (in the range of MeV)
in neutron stars is another fascinating and complex area of
study within nuclear astrophysics [6,7]. Neutron stars are
incredibly dense celestial objects formed when massive stars
undergo supernova explosions at the end of their life cycles.
Significant interest is focused on trying to find exotic degrees
of freedom like hyperons or deconfined quarks in the core of
neutron stars [8–10], since this would be the only regime in
the Universe where they could be stable.
The QCD phase diagram delineates phases of strongly

interacting matter, usually under varying temperature (T)

and baryon chemical potential (μB). At low T and μB,
quarks and gluons are confined within hadrons (hadronic
phase) and are expected to transition to an effective
liberated state called deconfined quark matter at high T
and/or μB (see recent reviews [11,12] from lattice QCD). In
addition to the confinement/deconfinement quark hadron
phase transition, there also exists a phase transition from
nuclei to bulk hadronic matter known as liquid-gas phase
transition at TLG

c ≃ 15–17 MeV (μLGB;c ≈ 910 MeV) [13–15].
The QCD phase diagram is believed to encompass two
critical points, the liquid-gas and hadron-quark. In both
cases, the first-order phase transition coexistence lines are
thought to end at the respective critical points and become
indistinct after that, which is referred to as a crossover regime
(seeFig. 1). LatticeQCDhas proven to be highly effective for
investigating strong interactions in thevicinity of and beyond
the deconfinement phase transition zone within the QCD
phase diagram in the high-T and low-μB regime, primarily
due to its ability to handle nonperturbative aspects [12].
Based on the latest lattice results, no sign of critical behavior
has been found up to μB ≈ 300 MeV [16,17], and the
critical temperature is expected to be smaller than THQ

c ¼
132þ3

−6 MeV for isospin symmetric matter with zero baryon
(μB), charge (μQ) and strange (μS) chemical potential [18].
Within lattice QCD results, the crossover or pseudocritical
temperature (atμB ¼ 0 axis) hasbeen identifiedwith extreme
accuracy as Tp

c ¼ 158� 0.6 MeV [16], in addition to a
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first-order deconfinement phase transition for pure glue
(without quarks) at a temperature of Td

c ¼ 270 MeV [19].
On the other side of the diagram, in neutron stars, the critical
density ndB;c, which marks the initial stage of the transition
from hadronic matter to quark deconfinement is still not yet
well-constrained.
A core requirement for dense matter theories is the

accurate reproduction of experimental data for isospin-
symmetric nuclear matter at low temperature and around
nuclear saturation density nsat. This entails crucial observ-
ables, such as the binding energy per nucleon B=A,
compressibility K, symmetry energy Esym, and slope
parameter L. Notably, recent progress has been made in
the measurement of the parity-violating asymmetry term
APV through elastic scattering of longitudinally polarized
electrons on 208Pb. With this, the PREX Collaboration’s
findings have facilitated the determination of the nuclear
saturation density value nsat ¼ 0.1480� 0.0038 fm−3 [20].
The binding energy per nucleon values were determined to
be B=A ¼ −15.677 MeV at a saturation density of nsat ¼
0.16146 fm−3 [21] and B=A ¼ −16.24 MeV at nsat ¼
0.16114 fm−3 [22]. These values were obtained by analyz-
ing experimental data from heavy nuclei masses and
ground state masses of nuclei with neutron (N) and proton
(Z) numbers greater than or equal to 8, respectively. The
isovector giant monopole resonance (ISGMR) collective
nucleon excitations from nuclei such as 90Zr and 208Pb have
suggested a value of K ¼ 240� 20 MeV for the incom-
pressibility of infinite nuclear matter [23–26]. But note that,

in a comprehensive review [27], various methodologies
and theories used between 1961 and 2016 led to a much
larger range of K values, from 100 MeV to 380 MeV,
with relativistic mean-field models often predicting higher
values. Finally, a range of 250 MeV < K < 315 MeV was
obtained without assuming any specific microscopic
model, except for the Coulomb effect [27].
Going further, the symmetry energy Esym is the energy

(per baryon) difference between nuclear matter with equal
numbers of protons and neutrons (isospin-symmetric) and
pure neutron matter. The slope parameter (L) is a measure
of how rapidly Esym (at nsat) changes with the baryon
density. Both Esym and L are important quantities for
understanding various nuclear phenomena, such as neutron
star properties and low-energy heavy-ion collisions [28].
In Ref. [29], a comprehensive assessment based on 28
model evaluations utilized terrestrial nuclear experiments
and astrophysical data to determine Esym and L at saturation
density. Fiducial values emerged as ð31.6�2.7ÞMeV for
Esym and ð58.9�16ÞMeV for L. Extracting Esym from
experimental nuclearmasses yieldedL¼ð50.0�15.5ÞMeV
at nsat ¼ 0.16 fm−3 [30]. Interestingly, addressing 208Pb’s
neutron skin thickness, PREX-II constrained the symmetry
energy, revealing a large slope L ¼ ð106� 37Þ MeV [31],
consistently exceeding current bounds. On the other hand,
another PREX-II study examined the parity-violating asym-
metry APV for 208Pb, leading to a neutron skin thickness
R208
skin ¼ ð0.19� 0.02Þ fm and a much smaller value of slope

L ¼ ð54� 8Þ MeV [32], consistent with prior astrophysical
estimates. Furthermore, the hyperon potential (UH) describes
the interactions between hyperons and nucleons at nsat
for isospin-symmetric matter. The Λ-nucleon potential,
obtained from1980s experiments, is firmlynegative at around
UΛ ∼ −28 MeV [33], with recent estimates clustering
between −32 MeV and −30 MeV [34]. The measurements
from KEK Japan indicate a repulsive potential for
Σ (UΣ ¼ 30� 20 MeV) and a joint collaboration between
KEK and JPARC Japan give an attractive potential for Ξ
(UΞ ¼ −21.9� 0.7 MeV) [35]. The ALICE Collabora-
tion’s p-Ξ correlation functions report a less attractive
potential of UΞ ¼ −4 MeV, aligning with HAL-QCD
Collaboration’s ð2þ 1ÞD lattice QCD calculations, yielding
UΞ ¼ −4 MeV, UΛ ¼ −28 MeV, and UΣ ¼ þ15 MeV,
with a statistical error of approximately �2 MeV [36–38].
The nuclear matter characteristics exhibit significant

correlations with macroscopic observables of neutron
stars, such as the maximum mass (Mmax), radius RMmax

,
and tidal deformability (Λ̃). The determination of neutron
star radii from NICER’s x-ray observations yield values
of 12.39þ1.30

−1.98 km for a 2.072þ0.067
−0.066 solar mass (M⊙) [39]

and 13.7þ2.6
−1.5 km for a 2.08þ0.07

−0.07M⊙ [40] neutron star,
respectively. Additionally, the gravitational wave event
GW170817, resulting from the merger of binary neutron
stars (BNSs), imposes a constraint on the tidal deform-
ability, indicating Λ̃ < 800 for neutron stars with a mass of

FIG. 1. A rough sketch of the QCD phase diagram showing
different phases, lattice QCD results, and experimental data. Td

c

and Tp
c denote the deconfinement phase transition and pseudoc-

ritical phase transition respectively (both at μB ¼ 0) while μB;c
and THQ

c represent the critical baryon chemical potential and
critical temperature for hadron quark phase transition, and TLG

c
the critical temperature for liquid-gas phase transition.
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1.4 solar masses [41]. A more detailed discussion about
constraints from first principles, low-energy nuclear experi-
ments, heavy-ion experiments, and astrophysical observa-
tions is given in our recent review article [42].
Solving QCD analytically is a complex task, despite a

well-defined Lagrangian. Lattice QCD represents space-
time on a lattice where quarks reside at the vertices,
connected by gluon lines [43]. It works very well at
μB ¼ 0 axis but cannot be applied directly to finite μB
region due to the sign problem [44,45]. However, the
Taylor and alternative expansion schemes at μB ¼ 0, enable
the derivation of the lattice QCD equation of state (EOS) up
to a chemical potential μB ∼ 3.5T using expansion coef-
ficients at μB ¼ 0 [17,46]. The Polyakov loop is a gauge-
invariant quantity that can be used to characterize the
behavior of quarks in the presence of a thermal bath. At
μB ¼ 0, the scalar field Φ associated with the Polyakov
loop serves as an order parameter for Zð3Þ symmetry in the
context of pure gluonic interactions. With quarks included,
the transition from the confined phase to the deconfined
phase becomes a crossover rather than a sharp phase
transition. This means that the behavior of the Polyakov
loop may show gradual changes rather than a sudden jump,
indicating a smoother transition from confined hadronic
matter to the deconfined QGP phase. Therefore, it acts as an
approximate order parameter when quarks are added [19].
Perturbative QCD (pQCD) is applicable at large μB and/or
T, but breaks down near the deconfinement phase transition
due to large coupling constants [47–49]. At high temper-
ature and low μB, resummed pQCD calculations are in
agreement with lattice data for T ≥ 250 MeV [50–54].
Chiral effective theory (χEFT) is suitable at low densities and
temperatures [55]. Despite these methods, the QCD phase
diagram remains largely uncharted (see Fig. 1 of Ref. [42]).
That is where effective models come in, to bridge the gap
between QCD complexities and first-principle limitations,
providing valuable insights across a broad spectrum of QCD
phenomena and constructing Lagrangians with the appro-
priate degrees of freedom [56–58]. In particular, relativistic
chiral mean-field models can reproduce the restoration of
chiral symmetry and quantify how hadronic masses are
influenced by the medium [56,59–62].
From the latter class, nonlinear chiral models stand

out, based on a nonlinear realization of chiral symmetry
[60,63–66]. The introduction of a Polyakov loop-inspired
potential in a nonlinear chiral model as a mechanism to
deconfine quarks gave rise to the chiral mean-field (CMF)
model [67]. Within the mean-field approximation, the
CMF model agrees well with nuclear data [68]. It offers
a unified description, allowing one to investigate the
properties of strongly interacting matter in heavy-ion
collisions and compact stars, integrating quark deconfine-
ment through an order parameter Φ with values dependent
upon a Polyakov looplike potential [19,69]. The CMF
model accommodates various temperatures, densities, and
magnetic fields [70–74], enabling it to be used to explore

various regions of QCD phase diagram [67,74–77].
However, these past works did not include a consistent
treatment of mesons. The mesons lacked in-medium con-
tributions and the vector-mesons masses were degenerate.
Understanding the importance of vector meson masses

and interactions is a necessary step in the direction of
incorporating thermal mesons in the formalism. In chiral
models, hadronic masses are generated by interactions with
the medium and can depend on T, μB, etc. In relativistic
mean-field models, vector interactions play a significant
role in describing the behavior of hadrons and their
connection within the framework of QCD. For example,
vector mesons (such as the ω meson) couple to nucleons
and interact with other hadrons, which further play a
significant role in determining the stiffness of the EOS
of nuclear matter in heavy-ion collisions and neutron stars.
The role of vector mesons has been extensively studied in
different theoretical approaches to determine properties of
nuclear matter and compact stars [6,78–114].
In the hadronic nonlinear chiral model [63,65,68,115],

vector mesons (ω, ρ, and ϕ) were also introduced as
mediators of the strong interaction between nucleons
and hyperons. The degenerate masses of different vector
mesons (ω, ρ, and ϕ) were broken by introducing a
renormalization of vector mesons through the utilization
of proper invariants [63,115]. For finite nuclei, the renorm-
alization of vector mesons was used to break the mass
degeneracy of ω, ϕ, and K� mesons [63]. In particular, in
Ref. [115], utilizing a combination of two invariants, vector
meson renormalization was employed to lift the mass
degeneracy among ω, ϕ, and ρ mesons. Note that, the
renormalization of vector meson in chiral models involves
adjusting parameters related to the coupling strengths or
masses of the vector mesons to achieve a better match
between the model predictions and experimental data. This
is a complex and iterative process, often requiring sophis-
ticated computational techniques and comparisons with
experimental observables.
In the present study, the term “renormalization” is

replaced by “field redefinition” due to its potential con-
fusion with the renormalization method aimed at address-
ing divergences in pQCD calculations. We employ vector
meson field redefinition to break the mass degeneracy
between the vector mesons in the CMF model for the first
time. We refit the vector meson coupling strengths to
nucleons such as gNω, gNρ and g4 (the coupling strength
related to the effective self-interactive vector Lagrangian) to
the saturation properties of the nuclear matter. The addition
of a vector meson field redefinition then significantly
affects other properties within the CMF model, such that
we need to reparametrize other parameters that we detail
here. These changes then require that we must refit the
coupling constants related to the Polyakov looplike poten-
tial within the CMF model to reproduce recent lattice data.
We also incorporate updated information about the phase
diagram that has changed since the last time the finite
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temperature CMF model parameters were parametrized (in
2008). The changes include state-of-the-art and updated
information about the deconfinement phase transition,
pseudocritical temperature, liquid-gas critical point, decon-
finement critical point, and observational data for neutron
stars. Note that the field-redefined vector mesons signifi-
cantly affect the in-medium properties of vector mesons,
which will be studied in a future work.
The outline of this paper is as follows. In Sec. II A, the

details of the CMF model are given along with the
Polyakov loop-like potential. In Sec. II B, a detailed
derivation of field redefined vector meson is provided
and the same is applied for different self-interactions of
vector mesons. In Sec. III, the results are presented for each
part of QCD phase diagram. Finally, we present a summary
with discussions in Sec. III B 5.

II. FORMALISM

A. Chiral mean-field model

In this work, we build on the CMF model, which incor-
porates fundamental QCD aspects like the trace anomaly,
spontaneous breaking of chiral symmetry and deconfine-
ment [60,116]. Based on a nonlinear realization of chiral
symmetry, this framework employs scalar and vector fields
to describe meson-baryon/quark interactions. The scalar-
isoscalar field σ corresponds loosely to the light quark
composed meson σ0ð500Þðud̄Þ. A strange scalar-isoscalar
field ζ is linked to the strange quark-containing meson ss̄,
crucial to describe strange matter [117]. Additionally, the
scalar-isovector field δ addresses isospin asymmetric matter
and introduces mass splitting between isospin multiplet and
being associatedwith themeson ðūu − d̄dÞ [118,119]. These
fields mediate interactions among nucleons, hyperons,
and quarks, contributing to attractive medium-range forces
(scalar fields) and short-range repulsion (vector fields, e.g.,
vector-isoscalar ω, strange vector-isoscalar ϕ, and vector-
isovector ρ) depending onT; μB, etc. The scalar dilaton field,
χ, representing the hypothetical glueball field, is introduced
to replicate QCD’s trace anomaly [63]. Nevertheless, due to
the little overall contribution of χ field to baryon thermody-
namic quantities, we use the so-called frozen glueball
approximation (χ ¼ χ0), where χ0 is the vacuum value of
the dilaton field.
The mean field approximation (MFA) involves replacing

the meson fields with their respective expectation values,
effectively treating them as classical fields. As a result, only
mesons along the diagonal of the scalar meson matrix X
[Eq. (A3)] have nonzero values due to the preservation of
parity. Furthermore, all scalar and vector mesons are
simplified into constants that are independent of both time
and space. As a result of this approximation, the mean-field
CMF Lagrangian reads [67],

LCMF ¼ Lkin þ Lint þ Lscal þ Lvec þ Lesb − UΦ: ð1Þ

Above, Lkin stands for the kinetic energy of spin-1=2
fermions (octet baryonsþ quarks), Lint represents inter-
actions of spin-1=2 fermions with vector and scalar
mesons, Lscal stands for the self-interactions of scalar
mesons, while Lvec contributes to vector meson masses
and includes quartic self-interaction terms (see Sec. II B for
details). Lesb denotes an explicit chiral symmetry breaking
contribution with the second term [Lesb of Eq. (2)] allowing
the CMF model to reproduce the experimental values of
hyperon potentials and UΦ denotes the deconfinement
potential. Explicitly, these terms can be written as

Lkin ¼
X

i∈ fermions

½ψ̄ iiγμ∂μψ i�;

Lint ¼ −
X

i∈ fermions

ψ̄ i½γ0ðgiωωþ giρρþ giϕϕÞ þm�
i �ψ i;

Lscal ¼ −
1

2
k0χ20ðσ2 þ ζ2 þ δ2Þ þ k1ðσ2 þ ζ2 þ δ2Þ2

þ k2

�
σ4 þ δ4

2
þ ζ4 þ 3ðσδÞ2

�
þ k3χ0ðσ2 − δ2Þζ

− k4χ40 þ
ϵ

3
χ40 ln

�ðσ2 − δ2Þζ
σ20ζ0

�
;

Lvec ¼ discussed in Sec: IIB;

Lesb ¼ −
�
m2

πfπσ þ
� ffiffiffi

2
p

m2
KfK −

1ffiffiffi
2

p m2
πfπ

�
ζ

�

−m3

X
i∈ hyperons

½ψ̄ ið
ffiffiffi
2

p
ðσ − σ0Þ þ ðζ − ζ0ÞÞψ i�; ð2Þ

and

UΦ ¼ ða0T4 þ a1μ4B þ a2T2μ2BÞΦ2

þ a3T4
0 ln ð1 − 6Φ2 þ 8Φ3 − 3Φ4Þ; ð3Þ

where ψ represents the fermionic field, g0s denote the
corresponding coupling constants of fermions with meson
mean fields, k0s are the fitting parameters associated with
the scalar mesons, and ϵ is a model parameter related to the
QCD trace anomaly. The variables mK , mπ , fK , and fπ are
the masses and decay constants of the kaons and pions,
respectively. The parameter m3 is associated with the
explicit chiral symmetry breaking and is fitted to reproduce
hyperon potentials. The expansion of the mean-field
hadronic chiral nonlinear model into quark degrees of
freedom (CMF model) shares similarities with the
Polyakov loop-extended Nambu-Jona-Lasinio (PNJL)
model [69]. The CMF utilizes a scalar field Φ, analogous
to the PNJL model, to suppress quark degrees of freedom at
low densities and/or temperatures. In our context, Φ is the
scalar field associated with the PNJL-like effective poten-
tial that drives the transition from confined to deconfined
phases. This transition is phenomenologically captured
by the order parameter Φ∈ ½0; 1�. The modification of
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Polyakov loop potential (UΦ) from its original PNJL model
form [19,69] includes the incorporation of terms dependent
on the baryon chemical potential [67]. In Eq. (3), the a’s
and T0 are parameters fitted to the known constraints of
QCD phase diagram at higher temperatures and are dis-
cussed in Sec. III B. This adaptation enables the exploration
of low-temperature and high-density scenarios, such as
those encountered in neutron stars.
The presence of the scalar field Φ is introduced as an

additional contribution to the effective masses of the
baryons,

m�
i ¼ giσσ þ giζζ þ giδδþ Δmi þ giΦΦ2; ð4Þ

and quarks

m�
i ¼ giσσ þ giζζ þ giδδþ Δmi þ giΦð1 −ΦÞ: ð5Þ

In the above equations, Φ ∼ 0 denotes a system dominated
by hadrons, Φ ∼ 1 represents a quark-dominated state, and
intermediate values indicate a coexistence of hadrons and
deconfined quarks (relevant only at high temperatures).
Moreover, in those equations, the g0s are the corresponding
coupling constants of fermions with the scalar fields. Note
that the parameter Δmi incorporates effects from additional
sources, such as the Higgs field mq

0 (pertaining to quarks),
bare mass m0 (for octet baryons) and explicit symmetry
breaking term m3 (relevant to hyperons),

ΔmN ¼ m0;

ΔmΛ ¼ m0 −m3ð
ffiffiffi
2

p
σ0 þ ζ0Þ;

ΔmΣ ¼ m0 −m3ð
ffiffiffi
2

p
σ0 þ ζ0Þ;

ΔmΞ ¼ m0 −m3ð
ffiffiffi
2

p
σ0 þ ζ0Þ;

Δmu ¼ Δmd ¼ mu
0; Δms ¼ ms

0: ð6Þ

The coupling constants g0s between baryons and scalar
mesons are fitted in order to obtain correct masses of the
baryons in vacuum. The other parameters (k’s and ϵ),
related to scalar interactions, are computed in order to
obtain correct vacuum expectation values for the σ, ζ,
and χ field equations and to reproduce σ, η, and η0 vacuum
masses [67]. In Table I, a list of CMF parameters associated

with baryons is tabulated, whereas Table II reflects the
CMF parameters related to quark sector (the only ones we
do not modify in this work). The quark scalar couplings are
fixed as approximately one third of nucleon scalar cou-
plings, whereas vector couplings are set to zero as sug-
gested by Ref. [120]. In the next section, we discuss the
vector meson interaction Lagrangian Lvec in detail.

B. Field redefinition of the Lagrangian

1. Kinetic and mass terms for vector mesons

We start with the simplest scale invariant mass term of
the field redefined vector interaction Lagrangian denoted
by “tildes”,

L̃m
vec ¼

1

2
m2

VTrṼμṼμ; ð7Þ

where Ṽμ is the degenerate field redefined vector meson
matrix given by Eq. (A5). Simplifying,

L̃m
vec ¼ m2

V

�
ω̃2

2
þ ϕ̃2

2
þ 3ρ̃2

2
þ 2K̃�2

�
; ð8Þ

dividing the ρ and K� terms by the degeneracy factor 3 and
4, respectively, we obtain

L̃m
vec ¼

1

2
m2

Vðω̃2 þ ϕ̃2 þ ρ̃2 þ K̃�2Þ: ð9Þ

The equation above suggests that the vector meson nonet is
mass degenerate. To correct that and split the masses, one
can add the chiral invariant (CI)1 [63],

L̃CI
vec ¼

1

4
μTr½ṼμνṼμνhXi2�; ð10Þ

where hXi is the scalar meson matrix in the mean-field
approximation given by Eq. (A3) (for simplicity, we have
taken vacuum values of the scalar meson fields), Vμν is the
field redefined vector meson tensor matrix given by
Eq. (A6) and μ is a fit parameter to the vector mesons
vacuum mass constraints with mass dimension of negative

TABLE I. Parameters related to the scalar interaction for
baryons.

σ0 ¼ −93.3 MeV δ0 ¼ 0 ζ0 ¼ −106.56 MeV
gNσ ¼ −9.83 gNδ ¼ −2.34 gNζ ¼ 1.22
gΛσ ¼ −5.52 gΛδ ¼ 0 gΛζ ¼ −2.3
gΣσ ¼ −4.01 gΣδ ¼ −6.95 gΣζ ¼ −4.44
gΞσ ¼ −1.67 gΞδ ¼ −4.61 gΞζ ¼ −7.75
k0 ¼ 2.37 k1 ¼ 1.40 k2 ¼ −5.55
k3 ¼ −2.65 χ0 ¼ 401.93 MeV ϵ ¼ 2=33

TABLE II. Parameters related to the scalar and vector inter-
action for quarks.

gqω ¼ 0 gqϕ ¼ 0 gqρ ¼ 0

guσ ¼ −3.00 guδ ¼ 0 guζ ¼ 0

gdσ ¼ −3.00 gdδ ¼ 0 gdζ ¼ 0

gsσ ¼ 0 gsδ ¼ 0 gsζ ¼ −3.00
mu

0 ¼ 5 MeV md
0 ¼ 5 MeV ms

0 ¼ 150 MeV

1In Eq. (10), μ represents Lorentz index whereas μ denotes the
fit parameter.

MODERN NUCLEAR AND ASTROPHYSICAL CONSTRAINTS OF … PHYS. REV. D 109, 074008 (2024)

074008-5



two [63]. In Ref. [121], an additional invariant term,
ðTrVμνÞ2, was incorporated into the expression presented
in Eq. (10) to lift the mass degeneracy between the ρ and ω
mesons; however this provides a small correction and does
not offer an explanation for the vector kaon masses. Since
the process of renormalizing the vector kaons is a crucial
initial step, laying the groundwork for future work beyond
mean-field theory, we focus on Eq. (10).
Expanding it gives,

L̃CI
vec ¼

1

4
μ
�
σ20
2
ðṼμν

ω Þ2 þ 3
σ20
2
ðṼμν

ρ Þ2 þ ðṼμν
ϕ Þ2ζ20

þ ðṼμν
K�Þ2ðσ20 þ 2ζ20Þ

�
: ð11Þ

Dividing the ρ term by 3 and the K� term by 4 based on
their respective degeneracies, we obtain

L̃CI
vec ¼

1

4
μ
�
σ20
2
ðṼμν

ω Þ2 þ σ20
2
ðṼμν

ρ Þ2 þ ðṼμν
ϕ Þ2ζ20

þ ðṼμν
K� Þ2
2

�
σ20
2
þ ζ20

��
: ð12Þ

The kinetic energy vector term Lkin
vec ¼ − 1

4
TrðVμνVμνÞ

under field redefinition becomes

L̃kin
vec ¼ −

1

4
TrðṼμνṼμνÞ;

¼ −
1

4
ððṼμν

ρ Þ2 þ ðṼμν
K� Þ2 þ ðṼμν

ω Þ2 þ ðṼμν
ϕ Þ2Þ: ð13Þ

Now, combining the contributions from Eq. (10) with
Eq. (13) and identifying them to the old kinetic energy
term,

Lkin
vec ¼ L̃kin

vec þ L̃CI
vec;

¼ −
1

4

�
1− μ

σ20
2

�
ðṼμν

ρ̃ Þ2 − 1

4

�
1− μ

σ20
2

�
ðṼμν

ω̃ Þ2

−
1

4

�
1−

1

2
μ
�
σ20
2
þ ζ20

��
ðṼμν

K̃�Þ2 − 1

4
½1− μζ20�ðṼμν

ϕ̃
Þ2;

¼ −
1

4Zρ
ðṼμν

ρ̃ Þ2 − 1

4Zω
ðṼμν

ω̃ Þ2 − 1

4ZK�
ðṼμνeK�

Þ2

−
1

4Zϕ
ðṼμν

ϕ̃
Þ2; ð14Þ

we obtain

Ṽμν
ξ ¼ ∂

μξ̃ν − ∂
νξ̃μ ¼ Z1=2

ξ ð∂μξν − ∂
νξμÞ ¼ Z1=2

ξ Vμν
ξ ; ð15Þ

and

ξ̃ ¼ Z1=2
ξ ξ; ð16Þ

where ξ ¼ ρ;ω; K�;ϕ. Explicitly, the constants related to
field redefinition are given as

Zρ ¼ Zω ¼ 1

ð1 − μ σ2
0

2
Þ
; Zϕ ¼ 1

ð1 − μζ20Þ
;

ZK� ¼ 1

ð1 − 1
2
μðσ20

2
þ ζ20ÞÞ

: ð17Þ

The net Lagrangian for the vector meson fields (with
implicit field redefinition) is evaluated by adding
Eqs. (9) and (14) using Eqs. (15) and (16),

Lvec ¼ Lkin
vec þ Lm

vec;

¼ −
1

4
ððVμν

ρ Þ2 þ ðVμν
K� Þ2 þ ðVμν

ω Þ2 þ ðVμν
ϕ Þ2Þ

þ 1

2
ðm2

ρρ
2 þm2

K�K�2 þm2
ωω

2 þm2
ϕϕ

2Þ; ð18Þ

where

m2
K� ¼ ZK�m2

V; m2
ω=ρ ¼ Zω=ρm2

V; m2
ϕ ¼ Zϕm2

V; ð19Þ

denote the respective vector meson masses in the vacuum.
The parameters, mV ¼ 687.33 MeV and μ ¼ 0.41=σ20 are
fitted to obtain the correct ω;ϕ, ρ, and K� masses that are
tabulated in Table III, together with the mass without field
redefinition.

2. Self-interaction term for vector mesons

We start by adding a self-interactive Lagrangian term to
Eq. (18),

Lvec ¼ Lkin
vec þ Lm

vec þ LSI
vec: ð20Þ

The different possible self-interaction (SI) terms of the
vector mesons that are chiral invariant [103] can be written
as the following coupling schemes (shown here in field
redefined version for the first time):

RC1∶ L̃SI
vec ¼ 2g̃4TrðṼ4Þ; ð21Þ

RC2∶ L̃SI
vec ¼ g̃4

�
3

2
½TrðṼ2Þ�2 − TrðṼ4Þ

�
; ð22Þ

RC3∶ L̃SI
vec ¼ g̃4½TrðṼ2Þ�2; ð23Þ

TABLE III. Vacuum masses of vector mesons before (old) and
after (new) employing the field redefinition.

Meson ω ρ K� ϕ

Old mass (MeV) 687.33 687.33 687.33 687.33
New mass (MeV) 770.87 770.87 865.89 1007.76
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RC4∶ L̃SI
vec ¼ g̃4

½TrðṼÞ�4
4

; ð24Þ

where superscript “R” denotes the field redefined coupling
scheme. The coupling scheme C2, is a linear combination

of C1 and C3 and is constructed in order to eliminate theωρ
mixing term.
Now, after substituting the matrix V [Eq. (A5)] in the

above equations and simplifying them, we obtain the
following equations:

(i) RC1:

L̃SI
vec ¼ g̃4ðω̃4 þ 6ω̃2ρ̃2 þ ρ̃4 þ 2ϕ̃4Þ;

LSI
vec ¼

g4
Z2
ω
ðZ2

ωω
4 þ 6ZωZρω

2ρ2 þ Z2
ρρ

4 þ 2Z2
ϕϕ

4Þ ¼ g4

�
ω4 þ 6

Zρ

Zω
ω2ρ2 þ

�
Zρ

Zω

�
2

ρ4 þ 2

�
Zϕ

Zω

�
2

ϕ4

�
; ð25Þ

(ii) RC2:

L̃SI
vec ¼ g̃4

�
ω̃4 þ ρ̃4 þ ϕ̃4

2
þ 3ρ̃2ϕ̃2 þ 3ω̃2ϕ̃2

�
;

LSI
vec ¼

g4
Z2
ω

�
Z2
ωω

4 þ Z2
ρρ

4 þ Z2
ϕ

ϕ4

2
þ 3ZρZϕρ

2ϕ2 þ 3ZωZϕω
2ϕ2

�
;

¼ g4

�
ω4 þ

�
Zρ

Zω

�
2

ρ4 þ
�
Zϕ

Zω

�
2 ϕ4

2
þ 3

�
Zρ

Zω

Zϕ

Zω

�
ρ2ϕ2 þ 3

�
Zϕ

Zω

�
ω2ϕ2

�
; ð26Þ

(iii) RC3:

L̃SI
vec ¼ g4ðω̃4 þ 2ω̃2ρ̃2 þ ρ̃4 þ 2ω̃2ϕ̃2 þ ϕ̃4 þ 2ρ̃2ϕ̃2Þ;

LSI
vec ¼

g4
Z2
ω
ðZ2

ωω
4 þ 2ZωZρω

2ρ2 þ Z2
ρρ

4 þ 2ZωZϕω
2ϕ2 þ Z2

ϕϕ
4 þ 2ZϕZρρ

2ϕ2Þ;

¼ g4

�
ω4 þ 2

Zρ

Zω
ω2ρ2 þ

�
Zρ

Zω

�
2

ρ4 þ 2
Zϕ

Zω
ω2ϕ2 þ

�
Zϕ

Zω

�
2

ϕ4 þ 2

�
Zρ

Zω

Zϕ

Zω

�
ρ2ϕ2

�
; ð27Þ

(iv) RC4:

L̃SI
vec ¼ g̃4

�
ω̃4 þ 2

ffiffiffi
2

p
ω̃3ϕ̃þ 3ω̃2ϕ̃2 þ

ffiffiffi
2

p
ω̃ϕ̃3 þ ϕ̃4

4

�
;

LSI
vec ¼

g4
Z2
ω

�
Z2
ωω

4 þ 2
ffiffiffi
2

p
Z3=2
ω ω3Z1=2

ϕ ϕþ 3Zωω
2Zϕϕ

2 þ
ffiffiffi
2

p
Z1=2
ω ωZ3=2

ϕ ϕ3 þ Z2
ϕϕ

4

4

�
;

¼ g4

�
ω4 þ 2

ffiffiffi
2

p �
Zϕ

Zω

�
1=2

ω3ϕþ 3

�
Zϕ

Zω

�
ω2ϕ2 þ

ffiffiffi
2

p �
Zϕ

Zω

�
3=2

ωϕ3 þ 1

4

�
Zϕ

Zω

�
2

ϕ4

�
; ð28Þ

which are obtained using the field redefined expressions
of the fields in Eq. (16) and defining a coupling con-
stant g4 ¼ Z2

ωg̃4.
The vector coupling constants gNω, gNρ, and g4 are

adjusted to match nuclear saturation properties, as
explained in Sec. III A. Additionally, it is worth noting
that the couplings involving interactions between nucleons
and ω mesons, as well as nucleons and ρ mesons, are

influenced by the field redefinitions, leading to correspond-
ing field redefined coupling constants: gNω ≡ 3g8V

ffiffiffiffiffiffi
Zω

p
and

gNρ ≡ g8V
ffiffiffiffiffi
Zρ

p
[115]. Furthermore, it is important to high-

light that the coupling scheme labeled as RC4 has a unique
characteristic, involving contributions that exhibit linearity
with respect to the isoscalar vector field ϕ, leading to
significant changes in the model’s behavior that help to
reproduce astrophysical data, such as 2M⊙ neutron stars.
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III. RESULTS AND DISCUSSIONS

In this section, we present our numerical findings
concerning the vector mesons, their masses and the
deconfinement potential in the CMF model. These param-
eters have been adjusted to accurately replicate experimen-
tal data in the realms of low-energy nuclear physics,
astrophysics, and first principle theories. In earlier works,
we constrained the CMF model to match low-energy
nuclear physics and astrophysical observations [68,122],
as well as lattice QCD results [67] available at that time. We
have also compared our results with perturbative QCD [76].
However, with the emergence of new theoretical methods,
techniques, and experiments both on Earth and in space,
there has been significant enhancements in the determi-
nation of these constraints. In this work, we have leveraged
the most up-to-date constraint data extracted from Ref. [42]
and upgraded our model to account for the mass degen-
eracy of vector mesons. As a result, we have successfully
replicated and improved various characteristics within our
model associated with different phases or regions of the
QCD phase diagram (presented in Fig. 1).
In Table IV, we have compiled the CMF model free

parameters, the Lagrangian term they are associated with,
and the specific constraints to which they have been
calibrated in this work. Note that different parameters
affect different constraints (shown in different lines of
Table IV). Our table structure only reflects the order in
which we chose to fit those parameters. The numerical

values corresponding to these constraints can be found in
their respective sections.

A. Parameter fitting for the self-interacting
vector meson Lagrangian

In Table V, we provide the values of the microscopic and
macroscopic properties reproduced through the field rede-
fined coupling schemes related to the vector sector of the
CMF model. Also in Table VI, we tabulate the values ofm3

parameter, which is fitted to reproduce hyperon potential
for all couplings. Note that the model’s scalar sector
remains unaltered because it was originally configured to
reproduce vacuum properties. These values have not been
significantly updated over time. In contrast, the coupling
constants related to the vector sector are configured to
reasonably reproduce constraints coming from nuclear and
astrophysical data. Due to the larger amount of freedom in
this case we call them “free”. The vector coupling constants
gNω and gNρ represent the interactions of nucleons with the
ω and ρ mean-fields, respectively. We set gV1 ¼ ffiffiffi

6
p

gV8 and

αV ¼ 1 in gNϕ ¼
ffiffi
1
3

q
gV1 −

ffiffi
2

p
3
gV8 ð4αV − 1Þ, which cancels

terms to ensure that nucleons do not couple to the strange
meson ϕ, i.e., gNϕ ¼ 0.
Additionally, the parameter g4 denotes the coupling

constant for the self-interaction component of the vector
field redefined Lagrangian. We adjust the values of gNω and
g4 to reproduce key modern constraints from low-energy

TABLE IV. The free parameters used to fit the constraints in this work.

Parameter Term Used to constrain

gV1 , g
V
8 , αV , g4 Lint þ LSI

vec gNϕ ¼ 0, gV1 ¼ ffiffiffi
6

p
gV8 , nsat, B

sat=A, Esat
sym, Lsat, K

mV , μ Lm
vec þ LCI

vec mω, mρ, mϕ

m3 Lesb UΛ
a0 Td

c
a1 ndB;c
a2 THQ

c , μB;c
a3 UΦ Φ∈ 0, 1
T0ðpureglueÞ Td

c , Φ∈ 0, 1
T0ðcrossoverÞ Tp

c , Φ∈ 0, 1
gqΦ, gBΦ Tp

c

TABLE V. Best fit of free parameters (m0, gNω, gNρ and g4) for different self-interaction coupling schemes of field redefined vector
mesons including low-energy nuclear saturation properties (nsat, B=A, K, Esym and L) and astrophysics observables (Mmax, RMmax

and
RM1.4

). The symbol “�” marks the cases that do not include hyperons when calculating stellar properties at T ¼ 0.

Coupling m0 gNω gNρ g4 nsat (fm−3) B
A (MeV) K (MeV) Esym (MeV) L (MeV) MmaxðM⊙Þ RMmax

(km) RM1.4
(km)

RC1� 0 13.54 4.77 60.66 0.151 −15.76 275.70 28.95 66.03 1.90 11.66 13.28
RC2� 0 13.54 3.77 60.66 0.151 −15.76 275.70 28.91 89.28 1.98 12.14 13.95
RC3� 0 13.54 4.13 60.66 0.151 −15.76 275.70 28.92 78.97 1.93 11.86 13.60
RC4� 150 11.80 3.98 43.93 0.151 −15.70 303.43 28.95 86.42 2.20 12.16 14.07
RC4 150 11.80 3.98 43.93 0.151 −15.70 303.43 28.95 86.42 2.16 12.07 13.96
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nuclear physics for isospin symmetric matter, specifically
the nuclear saturation density nsat, binding energy per
nucleon B=A, and compressibility K. These values fall
within the ranges of nsat ¼ 0.14 fm−3 to 0.17 fm−3, B=A ¼
−15.68 MeV to −16.24 MeV, and K ¼ 220 MeV to
315 MeV, respectively. As mentioned earlier, the RC4
coupling scheme for self-interacting vector mesons stands
out from the others due to its linearity with respect to the
strange vector meson ϕ. This distinctive feature requires
special treatment compared to other coupling schemes. For
example, it introduces a bare mass of m0 ¼ 150 MeV for
nucleons to reproduce a lower compressibility, bringing it
in better alignment with nuclear physics data.
Conversely, the parameter gNρ is responsible for the

isospin asymmetry within the medium, and it is therefore
adjusted to calibrate the model for achieving specific values
of the symmetry energy (Esym) and the slope parameter (L).
These values fall within the ranges of Esym ¼ 28.9 MeV to
34.3 MeVand L ¼ 42.16 MeV to 143 MeV, respectively. It
is worth noting that the parameters related to compress-
ibility and the slope parameter are not tightly constrained
based on current experimental data [42]. We anticipate
more precise constraints from future experiments. In our
current study, we have deliberately chosen the minimum
values for Esym and L while maximizing the neutron
star mass (Mmax ≲ 2M⊙) and minimizing the radius
(RM1.4

∼ 13 km) for hadronic matter, in accordance with
observational constraints [123,124].
The parameter m3 plays a crucial role in determining the

level of strangeness content in the medium, and its adjust-
ment is carried out to fit the Λ hyperon potential (UΛ) with
value around −28 MeV and reasonable values for the other
parameters [125]. We determine the maximum masses
attained by stars generated by each coupling scheme

by employing the Tolman-Oppenheimer-Volkoff (TOV)
equations [126,127]. In order to obtain the correct neutron
star radii, it is important to incorporate a distinct EOS that
takes into account the proper microphysics for the crust. The
crust is necessary below nsat because at this point the nuclei
becomes more stable than the hadronic degrees of freedom.
In this study, we opt for the widely used Baym-Pethick-
Sutherland EOS, which encompasses an inner crust, an outer
crust, and an atmosphere [128]. Note that the calculations for
neutron stars include a free Fermi gas of electrons andmuons
in chemical equilibrium and ensure charge neutrality i.e.,P

i niQi ¼ 0, where ni and Qi are the number density and
electric charge of ith particle, respectively.

B. Parameter fitting for the Polyakov loop-inspired
deconfinement potential

The CMF model allows us to investigate strongly inter-
acting systems involving hadrons and/or quarks. With this
approach, we can delve deeply into the processes governing
the restoration of chiral symmetry and the occurrence of
deconfinement, particularly under conditions of high temper-
ature or density. This versatility allows our formalism to
comprehensively explore e.g., hybrid stars, utilizing a single
EOS that accommodates various degrees of freedom. In this
section, we provide a detailed exploration of the various
parameters associated with the deconfinement potential
[Eq. (3)] within the CMF model. In Table IV, we listed
the free parameters related to UΦ which are meticulously
fitted to reproduce the rigorous theoretical constraints
derived from lattice QCD (briefly discussed in the intro-
duction). The connection between the UΦ parameter(s) and
the corresponding constraint are mentioned in the following
sections. Specific values of these parameters can be found in
Table VII. Within our field redefined approach, we thor-
oughly examine the impact of each parameter within their
respective following sections, discussing the constraints they
are linked to. Our goal is to offer a comprehensive under-
standing of how these parameters interact with theory and
observation, shedding light on the intricate dynamics of the
high-energy part of the QCD phase diagram.

1. Deconfinement phase transition

The deconfinement phase transition in QCD is a pivotal
shift in the state of matter. It represents the transition from

TABLE VI. The fitted value of parameter m3 for different self-
interaction coupling schemes of field redefined vector mesons
reproducing the Λ hyperon potential (UΛ).

Coupling m3 UΛðMeVÞ
RC1 1.256 −27.96
RC2 1.256 −27.96
RC3 1.256 −27.96
RC4 0.8061 −28.09

TABLE VII. Summary of free parameters related to deconfinement for different vector couplings, where
gBΦ ¼ 3gqΦ. The values of gqΦ and T0 are given in MeV.

Coupling a0 a1ð10−3Þ a2ð10−3Þ a3 gqΦ T0ðglueÞ T0ðcrossoverÞ
RC1 2.50 2.05 0.51 0.396 500 292 200
RC2 3.00 1.95 11.70 0.396 490 306 200
RC3 2.75 2.03 0.55 0.396 500 299 200
RC4 2.45 1.81 88.69 0.396 470 290 200
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confinement, where quarks and gluons are enclosed within
particles like protons and neutrons, to a deconfined state
where these fundamental constituents can effectively roam
freely. This transition is of paramount importance for
understanding the behavior of matter in extreme densities
and/or temperatures. In lattice QCD for pure glue at
μB ¼ 0, the deconfinement phase transition occurs at Td

c ∼
270 MeV [19]. In Fig. 2, we present the CMF pressure for
the pure glue case compared to lattice QCD calculations.
Our CMF results encompass the RC1–RC4 field redefined
coupling schemes and one coupling scheme without field
redefinition, as shown in Table VIII. The coupling scheme
C4 (without field redefinition) was the only one for which
deconfinement was previously studied and fitted to be
qualitatively similar to the calculations of Refs. [19,69]. It
is evident that all couplings lead to a steadily increasing
pressure at temperatures above the first-order phase tran-
sition temperature of T ∼ 270 MeV, indicating that decon-
fined gluons (in our case, exchange mesons and the fieldΦ)
have a finite pressure in the deconfined phase. To reproduce
the lattice results [129] for Td

c, we perform a parameter
fitting for a0 and T0 (refer to Table VII for values)
associated with the deconfinement potential, as described
in Eq. (3). All of our parametrizations are within the lattice
band for T ≲ 280 MeV.

2. Pseudocritical transition temperature

The chiral phase transition and the deconfinement phase
transitions are distinct yet seem to be interconnected
phenomena in QCD (at least at μB ¼ 0). The chiral phase
transition involves a modification of the QCD vacuum
characterized by condensates, crucial for generating hadron
masses with chiral symmetry restoration occurring at high
temperatures and/or baryonic densities. Conversely, the
deconfinement phase transition marks the transition from
hadronic degrees of freedom to quarks and gluons. These
transitions are characterized by distinct order parameters
(usually σ for chiral phase transition and Φ for deconfine-
ment phase transition). According to lattice QCD findings
at μB ¼ 0, the chiral phase transition from the hadronic
phase to the quark phase is not a sharp discontinuity but
rather a crossover [130]. This crossover’s central point is
denoted as the pseudocritical or crossover transition tem-
perature Tp

c , with a known value of 158� 0.6 MeV as per
latest lattice results [16].
In Fig. 3, we present the change in the order parameters σ

and Φ with temperature at μB ¼ μQ ¼ μS ¼ 0. In the CMF
model, to reproduce the constraints from the theory for Tp

c ,
we perform parameter fitting for T0 and gqΦ, whose values
are provided in Table VII. The figure illustrates that the
chiral condensate (σ) is equal to its vacuum value (σ0) in
the low-temperature regime. However, as T increases, σ
decreases, indicating the transition from the chirally broken
phase into the chirally restored phase. Additionally, the
maximum change in the chiral condensate (peak of chiral
susceptibility) occurs around Tp

c ¼ 161 MeV for all field
redefined coupling schemes, and these values are tabulated
in Table VIII. Note that, in our model the maximum change
in the deconfinement order parameter Φ is approximately
the same as the maximum change in the chiral condensate
σ. For reference, we also mention the value of Tp

c for the

FIG. 2. Deconfinement phase transition for the pure glue case
for different vector couplings with lattice QCD error band taken
from Ref. [129].

TABLE VIII. Pseudocritical temperature for different vector
couplings.

Coupling Tp
c ðMeVÞ

RC1 162.40
RC2 158.90
RC3 161.65
RC4 162.70
C4 170.82

FIG. 3. Chiral symmetry restoration represented by the con-
densate σ and deconfinement represented by Φ for different
couplings at μB ¼ μS ¼ μQ ¼ 0.
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older C4 coupling, which was initially fixed based on the
older constraint of the pseudocritical transition temperature
[67], and therefore presents slightly different results.

3. Deconfinement critical point

The transition from hadronic to quark phase is charac-
terized by a crossover at low values of baryon chemical
potential, but it is believed that eventually a critical point is
reached at μB, beyond which a first-order phase transition
line exists [131]. The existence of a critical point is
supported by symmetry arguments together with an indi-
cation from experiments, where hints of a critical point
have been seen in net-proton fluctuation data from the
STAR’s beam energy scan [132]. This phase transition line
would intersect the T ¼ 0 axis at a point a few times the
nuclear saturation density. On the theory side, recent lattice
QCD results have not shown signs of critical behavior up to
μB ≈ 300 MeV, with a critical temperature estimated to be
less than THQ

c < 132þ3
−6 MeV [16,18]. A machine learning

approach in [133] based on the lattice QCD equation of
state coupled to a critical point found on the grounds of
causality and stability found that the critical point is heavily
skewed towards μB ≳ 400 MeV. To accommodate these
constraints, we adjust our model (as provided in Table VII)
to position the critical point at temperatures lower than T <
135 MeV and baryon chemical potentials greater than
μB > 300 MeV. Note that in a study that used the holo-
graphic gauge/gravity correspondence to map out the QCD
phase diagram [134], the authors of [135] were able to
constrain the location of the critical point at Tc ∼ 105 MeV
and μB;c ∼ 580 MeV by using a Bayesian analysis con-
strained to state-of-the-art lattice QCD results.
In our model, to locate the critical point in the region

provided by first principles, we make adjustments to the a2
parameter, which is associated with the mixed term μ2BT

2 in
the deconfinement potential equation [Eq. (3)]. This
parameter modification has a direct impact on how the
phase diagram behaves in the region where both μB and
temperature T are nonzero. Figure 4 illustrates the first-
order deconfinement phase transition lines alongside the
respective critical points for various vector coupling
schemes. We have also included the phase-transition line
associated with the older C4 coupling scheme, which was
fitted to older constraint data. Detailed values of the critical
temperature Tc, and critical baryon chemical potential μB;c
for different vector couplings are provided in Table IX. In
the cases of RC1–RC3, it is notable that the critical point
appears naturally at lower values of μB and higher values of
T (in comparison with RC4) no matter how we fix the
parameters.
Note that chiral symmetry restoration in the presence of

only hadrons appears as a smooth crossover in the CMF
model. When quarks are added, a discontinuity in the order
parameter σ appears whenever there is a discontinuity in the

order parameter Φ. Nevertheless, we refer to this as a
deconfinement phase transition, as the discontinuity in its
order parameter is much larger and at low temperature it
switches from having just hadrons to just quarks. The
overall change in σ and, e.g., baryon masses (away from the
discontinuity) is much more gradual.

4. Liquid-gas critical point

In the context of nuclear physics, the term “liquid-gas
phase transition” is often used to describe a phase transition
akin to what is observed in the behavior of ordinary liquids
and gases. In this scenario, the transition occurs within
nuclear matter, which transitions from a phase of nuclei
(analogous to a gaseous phase) to bulk nuclear matter
(analogous to a more dense liquid phase). In our model, we
do not have nuclei as explicit degrees of freedom, making it
a vacuum-to-bulk nuclear matter phase transition. Similar
to the hadron-quark crossover observed at low baryon
chemical potentials, the liquid-gas phase transition also
becomes a crossover beyond a threshold temperature. The
point that separates the crossover regime from the first-
order line is then a critical point TLG

c . Beyond this point, it
features a distinct discontinuous line known as the liquid-
gas phase transition.
In this study, we have determined for the first time the

liquid-gas critical points for various coupling schemes, as
documented in Table X. We do not include hyperons as
their influence (if any) would be very small at such μB0s and
T 0s. We have depicted the liquid-gas phase transition lines
for different couplings with critical points in Fig. 4. This
determination is based on the behavior of the chiral
condensate σ near μB ∼ 938 MeV, which corresponds to
the mass of nucleons. The liquid-gas critical points were

TABLE IX. Deconfinement critical point for different cou-
plings.

Coupling THQ
c ðMeVÞ μB;c (MeV)

RC1 132.0 1028.85
RC2 127.9 1042.38
RC3 132.8 1014.26
RC4 113.8 1076.39
C4 167.0 354.00

TABLE X. Nuclear liquid-gas critical point for different cou-
plings for μQ ¼ 0.

Coupling TLG
c ðMeVÞ μLGB;c (MeV)

RC1 14.91 911.55
RC2 14.91 911.55
RC3 14.91 911.55
RC4 16.34 908.94
C4 16.41 908.32

MODERN NUCLEAR AND ASTROPHYSICAL CONSTRAINTS OF … PHYS. REV. D 109, 074008 (2024)

074008-11



found (without any parameter fitting) to match experimen-
tal observations closely, with values TLG

c ranging from
15 MeV to 17 MeV [13–15]. The couplings C1–C3 present
slightly different values than C4. This is due to the unique
characteristic of C4 involving a linear term in ϕ and
consequently different parametrizations including a bare
mass term for the baryons.

5. Equation of state at T = 0

In this section, we delve into the T ¼ 0 axis of the QCD
phase diagram, which is approximated by matter in the
interior of fully evolved (beyond the protoneutron star
stage) neutron stars. At T ¼ 0, the EOS elucidates the
intricate relationship between various thermodynamic
properties of matter within a neutron star and can help
to reveal the relevant microscopic degrees of freedom.
Leptons (electrons and muons) are included through
chemical equilibrium, i.e., μe ¼ μμ ¼ −μQ, where μQ is
determined by ensuring electric charge neutrality. μS is set
to zero, since strangeness is allowed to increase.
In Fig. 5, we present pressure versus number density at

T ¼ 0 for four different configurations (one shown also
with hyperons). As previously discussed, our model incor-
porates a deconfinement potential [see Eq. (3)] designed to
transition between hadronic and quark contributions. In the
figure, for each coupling scheme, we observe an increase in
Fermi pressure within the hadronic system as the number
density rises, ultimately culminating in a strong first-order
phase transition (where the horizontal line can be identified
with a Maxwell construction, noting that the two extremes
in each curve correspond to the same μB [75]). This
transition results in a substantial increase in number density
as the pressure surges in the quark regime. Within our

newly proposed parametrization, by adjusting the quark
couplings to Φ i.e., gqΦ, we arrive at a smaller (more
realistic) number density jump during the phase transition
compared to the old C4 scheme.
In our quest to gain deeper insights into the threshold of

the hadron-to-quark phase transition, characterized by the
critical baryonic deconfinement density (ndB;c), we have
adjusted the parameter a1 to obtain a lower value of ndB;c,
typically ranging around 3.4 nsat (compatible with the
approximate range of density at which baryons start to
overlap). For reference, we have compiled the values of
critical densities (ndB;c) obtained within our work in
Table XI. Furthermore, the degree of softness or stiffness
in the EOS serves as a key determinant of a neutron star’s
ability to resist gravitational collapse. From the behavior of
pressure versus energy density in the quark sector (not
shown here), we observe that all of the new coupling
schemes exhibit stiffer EOS compared to the old C4
scheme. We also find that in the RC4 coupling scheme
the stiffness (pressure in relation to number/energy density)
is almost the same, independently of the presence of

FIG. 4. Deconfinement phase transition as well as liquid-gas
coexistence lines and respective critical points for μQ ¼ 0 and
zero net strangeness. The shaded regions show the exclusion of
quark hadron critical point by lattice QCD [136], finite-size
scaling [137], and transition line curvature [138]. It also shows a
critical point from holographic QCD [134,135].

FIG. 5. Equation of state for neutron-star matter at T ¼ 0 for
different vector couplings. The symbol “�” marks the cases that
do not include hyperons at T ¼ 0.

TABLE XI. Starting point of deconfinement phase transition
for neutron-star matter at T ¼ 0 using different vector couplings.
The symbol “�” marks cases that do not that include hyperons
at T ¼ 0.

Coupling ndB;cðnsatÞ
RC1� 3.53
RC2� 3.44
RC3� 3.46
RC4� 3.22
RC4 3.22
C4 4.00
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hyperons, as they tend to appear in small numbers.
However, the inclusion of hyperons for (RC1–RC3) cou-
plings would lead to an extremely soft EOS due to larger
number of hyperons. As such scenario is not compatible
with recent observations of neutron stars, we chose not to
show these results.
In Fig. 6, we depict the mass-radius curves for various

field redefined coupling schemes, both with and without
hyperons, within a system governed by hadronic degrees of
freedom. To provide context, we also include the mass-
radius curve from our widely used work (C4 coupling
with hyperons) [67,68,70–77,103–105,122,139]. When
examining hadronic matter without hyperons, we observe
that the field redefined RC4 coupling scheme yields the
highest maximum mass (Mmax), which can be compared to
other field redefined coupling schemes and the old C4
scheme. The inclusion of hyperons results in a slight
reduction in Mmax for RC4, but it still remains higher than
the other coupling schemes. From the figure, for RC4 we
can conclude that the incorporation of field-redefined
vector mesons leads to a stiffer EOS, resulting in a higher
Mmax. On the other hand, for the other field redefined
coupling schemes (RC1–RC3), we also achieve a Mmax of
approximately 2M⊙.
Concerning radius and by extension tidal deformability,

better agreement with the results from NICER [39,40],
LIGO and VIRGO [41] can be achieved by modifying
the vector-isovector interactions (ωρ). This has been
explored, e.g., in Refs. [140–150] and in the CMF model
[68,103,104,125]. In the present work, we do not focus on
vector-isovector interactions because they do not modify

the finite temperature part of the QCD phase diagram.
Also, we did not vary the crust in the present work but a
different crust will influence agreement with LIGO/NICER
constraints.
While we now have a complete equation of state that

includes the deconfinement phase transition, a thorough
study of its macroscopic properties on neutron stars will
wait for a later work. The primary reason is that including
the EOS as it is in the TOV equations implies that the
surface tension of quark matter is infinite, which would
generate an impenetrable “wall” between the hadronic and
quark phases. Under the influence of gravity, points with
similar pressure would be side by side and there would be
no region with the baryon densities corresponding to the
jump in Fig. 5. In this case, the mass-radius diagram would
show a kink. To assess the stability of the star in the
decreasing mass branch, we would have to consider the
speed of hadron ↔ quark conversion [151], which could in
turn make hybrid stars unstable. Second, if the surface
tension of quark matter is below a certain threshold, a
mixture of phases appears, which enhances stellar stabi-
lity. In this case, another dimension (μQ) appears, which
allows the baryon density to increase smoothly while
connecting the hadronic and quark phases [151–154].
Mixed phases have been extensively studied within the
CMF model [75,76] and more will be reported soon.
Alternatively, by altering the deconfined potential (for

example, from a1μ4B to a01μ
2
B) to make it less responsive to

the baryon chemical potential, we can achieve a less pro-
nounced first-order phase transitions, resulting in smaller
changes in baryon density across the deconfinement phase
transition even for infinite surface tension [155–160]. This
facilitates producing stable hybrid stars without mixed
phases [105,125,139]. Note that quark superconductivity
can also influence the mass-radius of neutron stars if the
gap size is large enough [161,162], with recent constraints
setting a gap limit around a few hundreds of MeV [163].

IV. CONCLUSIONS

In this work we take the CMF model, which can describe
most key features across the QCD phase diagram, and
break degeneracies in the mass of the vector mesons for the
first time. We explore different self-interaction vector
couplings (C1–C4) and for the first time, we study some
of them (C1–C3) including deconfinement to quark matter
and finite temperature effects. These crucial steps give us a
better understanding of the role of vector mesons play in the
equation of state and pave the way for future studies of in-
medium masses of thermal meson within the CMF model.
Because of the complexity of the CMF model and its
inherent interconnectedness across the entire phase dia-
gram, the changes we make also required a full revision
of the model. Furthermore, over the past decade signifi-
cant advances have been made across the QCD phase
diagram. We incorporate these new constraints in the latest

FIG. 6. Mass-radius curve for neutron star matter with different
field redefined vector coupling including a BPS crust [128]. The
shaded regions in color green denote the NICER data for PSR
J0030þ 6620 and J0740þ 0451, employing the Illinois-Mary-
land analysis [39]. Meanwhile, the violet region illustrates the
NICER data for the same pulsars analyzed through the Am-
sterdam analysis [40]. The symbol “�”marks the cases that do not
include hyperons at T ¼ 0.

MODERN NUCLEAR AND ASTROPHYSICAL CONSTRAINTS OF … PHYS. REV. D 109, 074008 (2024)

074008-13



parametrization of the CMF model for the first time in this
work as well.
As the vector mesons play a crucial role in mediating the

repulsive forces between baryons and quarks, their field
redefinition strongly affects the properties of hadronic and
quark matter. Therefore, the entire model needs to be
reparametrized. By incorporating appropriate chiral invar-
iants into the vector interactive Lagrangian, we successfully
eliminate the mass degeneracy among the vector mesons by
refitting the parameters related to the mass term of the
vector meson Lagrangian, aligning them more closely with
empirical data. We also discuss the fitting of parameters
for the baryon/quark-meson interaction and self-interacting
vector mesons. These adjustments aim to match key modern
experimental constraints, such as the saturation density,
the binding energy per nucleon, the compressibility, the
symmetry energy, the slope parameter, and the Lambda
hyperon potential in addition to constraints for the liquid-gas
critical point and constraints from astrophysics. In particular,
we find that the redefinition of vector fields plays a
significant role in reproducing neutron stars with higher
masses,when compared to the previousC4 coupling scheme.
Furthermore, we explore the parameters associated

with the Polyakov loop-inspired deconfinement potential.
This includes reproducing lattice QCD constraints, such as
the location of the deconfinement phase transition, the
pseudocritical transition temperature, and constraints that
exclude the location of the hadron-quark critical point in
certain regions of the phase diagram. The uniqueness of
our new parameter fit is grounded in our careful selection
of distinctive constants by spanning the search over a
whole phase diagram, encompassing novel constraints not
previously considered in the field. Rigorous validation,
including extensive consistency checks, demonstrates the
robustness of our results.
Looking forward, this work opens up multiple new

avenues to explore. For starters, we can study the effect
of the new field redefinition schemes on the in-medium
masses of thermal mesons, which have not yet been
considered. At the moment, we can easily add a gas of
free thermal mesons to our calculations, but they would be
present in both hadronic and quark phases. Once in-
medium masses guarantee that the thermal mesons are
suppressed in the quark phase, then, we can use a wider set
of lattice QCD results to fit or test our formalism, such as
partial pressures [164]. On the experimental side, the EOS
derived from the CMF model can be used to connect the
physics of neutron stars with that of heavy-ion collisions
when exploring different isospin and strangeness. The EOS
at T ¼ 0 is valuable for gaining insights into both the micro
and macroscopic properties of neutron stars, providing a
framework to study, e.g., different net strangeness and
quark content in neutron stars, as well as input for
simulations of neutron-star cooling and, in the case of
finite T, input for simulations of neutron star mergers and

supernovae. It would be interesting to study these new
parametrizations of the CMF EOS in different astrophysical
scenarios and also in simulations of heavy-ion collisions.
Finally, the knowledge gained on the effect of the param-
eters across the entire CMF model in terms of how they
connect to key features of the QCD phase diagram will play
an important role in future work (such as a Bayesian
analysis) that uses statistical methods to constrain model
parameters.

ACKNOWLEDGMENTS

We acknowledge support from the National Science
Foundation under Grants No. PHY1748621, No. MUSES
OAC-2103680, and No. NP3M PHY-2116686. We also
acknowledge support from the Illinois Campus Cluster, a
computing resource that is operated by the Illinois Campus
Cluster Program (ICCP) in conjunction with the National
Center for Supercomputing Applications (NCSA), which is
supported by funds from the University of Illinois at
Urbana-Champaign. The authors would like to thank
Claudia Ratti for providing comments and assistance in
finding the lattice QCD results.

APPENDIX: PARTICLE MULTIPLETS

(i) Baryon matrix

B ¼

0
BBB@

Σ0ffiffi
2

p þ Λ0ffiffi
6

p Σþ p

Σ− −Σ0ffiffi
2

p þ Λ0ffiffi
6

p n

Ξ− Ξ0 −2 Λ0ffiffi
6

p

1
CCCA; ðA1Þ

(ii) Scalar matrix

X ¼

0
BBB@

δ0þσffiffi
2

p δþ μþ

δ− −δ0þσffiffi
2

p μ0

μ− μ0 ζ

1
CCCA; ðA2Þ

(iii) Scalar matrix in the mean-field approximation

hXi ¼

0
BBB@

δ0þσffiffi
2

p 0 0

0 −δ0þσffiffi
2

p 0

0 0 ζ

1
CCCA; ðA3Þ

(iv) Vector meson matrix

Vμ ¼

0
BBB@

ρ0μþωμffiffi
2

p ρþμ K�þ
μ

ρ−μ
−ρ0μþωμffiffi

2
p K�0

μ

K�−
μ K̄�0

μ ϕμ

1
CCCA; ðA4Þ
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(v) Degenerate mector meson matrix

Vμ ¼

0
BBB@

ρμþωμffiffi
2

p ρμ K�
μ

ρμ
−ρμþωμffiffi

2
p K�

μ

K�
μ K̄�

μ ϕμ

1
CCCA; ðA5Þ

(vi) Degenerate vector meson tensor matrix

Vμν ¼

0
BBB@

Vμν
ρ þVμν

ωffiffi
2

p Vμν
ρ Vμν

K�

Vμν
ρ

−Vμν
ρ þVμν

ωffiffi
2

p Vμν
K�

Vμν
K� Vμν

K̄� Vμν
ϕ

1
CCCA: ðA6Þ
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