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The P-wave charmonium electromagnetic Dalitz decays h, — y")¢+¢~ (¢ = e, ) with large recoil
momentum are investigated in the framework of perturbative QCD, and the contributions from the small-
recoil-momentum region are described by the overlap of soft wave functions. The transition form factors

F1.q»(¢*) and the normalized transition form factors F, ,« (¢*) in full kinematic region are derived for the

first time. It is noticed that there are no IR divergences at the one-loop level, and the transition form factors
with the relativistic corrections from the internal momentum of /4, are insensitive to both the shapes of 7
distribution amplitudes and the invariant mass of the lepton pair in the large-recoil-momentum region.
Intriguingly, unlike the situation in the S-wave charmonium decays J/y — n)£t¢~, we find that the
contributions from the small-recoil-momentum region are comparable with those from the large-recoil-
momentum region in the P-wave charmonium decays h, — n)#+t#~. By employing the obtained
Fj 0 (¢%), we give predictions of the branching ratios B(h, — )¢+ ¢~), which may come within the

range of measurement of present or near-future experiments.

DOI: 10.1103/PhysRevD.109.074003

I. INTRODUCTION

The electromagnetic (EM) Dalitz decays of charmonia
have received a great deal of attention in the last decade
both experimentally [1-9] and theoretically [10-16], since
they provide an ideal platform to probe the intrinsic struc-
ture of the charmonia and to study the fundamental
mechanisms of the interactions between photons and
hadrons [17,18]. One of the most interesting topics related
to these EM Dalitz decays is the decay of charmonia to the
mesons 7(), since it is directly related to the issue of #-1/
mixing, which could offer new opportunities to study the
U(1), anomaly [19-27] and the SU(3) breaking [25-29].
Under the classic assumption of pointlike particles [18,30],
the EM Dalitz decays J /y(y') — n") £+ £~ can be described
by quantum electrodynamics (QED). The transition form
factors (TFFs) f,, (¢*), which reflect the deviation from the
QED prediction [18,30], can provide the dynamical informa-
tion of the EM structure arising at the J/y (y(25)) — n")
transition vertex. Consequently, the TFFs f, o (¢*) may
help to distinguish transition mechanisms based on different
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dynamical pictures, such as the simple pole approximation
[10,13,14], the effective Lagrangian approach [11,16],
dispersion theory [12], and quantum chromodynamics
(QCD) analysis [15].

The P-wave charmonium /. cannot be directly pro-
duced in e™e™ collisions because of the quantum numbers
JP€ = 1*=, but it can be produced through y(2S) — 7°h,
[31,32]. In recent years, many more decay modes of 7,
have been searched for at BESIII [32-38]. Due to the
negative C parity, the /. most likely decays into a photon
and a pseudoscalar meson 7. or 7 (17'), in which the radiative
decays h, — yn") have first been observed by the BESIII
Collaboration using about 4 x 10% y(2S) events [33]. So
far, there have been around 3 x 10° y(2S) events collected
with the BESIII detector [39-41], and it represents about
an order-of-magnitude increase in statistics. This provides
a good opportunity to study the EM Dalitz decays
h. — ") ¢*¢~, and their branching ratios can be reached
by present or near-future experiments, especially for the #’
channels (reaching 10~>). These EM Dalitz decays could
not only offer useful information to constrain theoretical
models (as mentioned above) in the charmonium region,
but also shed light on the transition mechanism of i, — 5")
and the #-7’ mixing effects [25,42,43] in different kinematic
regions. Besides this, they are more interesting for the
P-wave charmonia decays. Generally, inclusive P-wave
charmonia decays suffer from IR divergences in the color-
singlet-state contributions with the zero-binding approxi-
mation [44—46], while similar IR divergences do not appear
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in exclusive P-wave charmonia decays [47-50]. This may
imply that effects beyond those contained in the derivative
of the nonrelativistic wave function at the origin play a
key role. Recently, it has been pointed out that the
relativistic corrections from the internal momentum of 7,
are extremely important in the decays 4, — yn!") [51]. This
indicates that relativistic corrections may also be important
in the EM Dalitz decays h, — n)#*¢~ due to the same
EM structure arising at the i, — ) transition vertex.

In this paper, one of the major concerns is to clarify the
dynamical picture of the EM Dalitz decays h, — )¢+ ¢~
in different kinematic regions. Phenomenologically, there
exist three types of contributions in the decay processes
h. = n"¢*¢=: (i) In the large-recoil-momentum region
(i.e., the square of the invariant mass of the lepton pair
q* = m% ,~ =0), the transition mechanism of 4, — n(’>
could be described by the perturbative QCD approach,
which has been reliably employed to treat the corresponding
radiative decays i, — yn'") [51,52]. We call this transition
mechanism the hard mechanism. (i) In the small-
recoil-momentum region [i.e., the square of the invariant
mass of the lepton pair ¢ ~ g2, = (M h, — mnm)z], the
transition mechanism of 4. — ) is governed by the over-
lapping integration of the soft wave functions, and this
transition mechanism is the so-called wave function
overlap [53-61] (i.e., the soft mechanism). The TFFs
f1.q0(q*) account for the size effects from the spatial wave

functions of the initial- and final-state hadrons. (iii) In
2 .2 2

resonance regions, such as g* ~ M, My, My, the transition
mechanism of /. — ") can be universally described by the
vector-meson dominance (VMD) model [62], in which the
resonance interaction between photons and hadrons is
predominant. However, on the one hand, the contributions
from VMD are negligibly small due to the narrow widths of
resonances (see Ref. [15] for more details), and on the other
hand, there are still some open questions for the VMD model,
such as the sign ambiguity in the amplitude from the
intermediate vector mesons and the off-mass-shell effects
of the coupling constants [63]. To make the dynamical
picture of the EM Dalitz decays i, — y")£+ ¢~ clear, we will
mainly present the detailed discussions about the hard
mechanism and the soft mechanism in the later parts of this
paper. In the large-recoil-momentum region, by employing
the Bethe-Salpeter (B-S) framework [51,64-68], we work
out the B-S wave function of 4., in which the internal
momentum is retained. Considering a large momentum
transfer, one can adopt the light-cone distribution amplitudes
(DAs) to describe the internal dynamics of the final light
mesons #"), and the involved quark-antiquark and gluonic
contents of ) are taken into account in our calculations.
By an analytic calculation of the involved one-loop integrals,
we find that the TFFs f hmm(qz) are UV and IR safe, and

they barely depend on the shapes of the light-meson
DAs. Furthermore, the gluonic contributions and the

quark-antiquark contributions are comparable in the
TFFs f, 0 (q*). It is compatible with the situation in

the corresponding radiative decays . — yn!") [51,52]. In
the small-recoil-momentum region, the TFFs are calculated
phenomenologically by the wave-function overlap. Through
a detailed calculation, we obtain the TFFs f, «(¢*) in the
whole kinematic region for the first time. It is worthwhile to
point out that the contributions from the soft mechanism and
those from the hard mechanism are comparable with each
other in the branching ratios B(h. — ) £+¢~), unlike
the situation in S-wave charmonium EM Dalitz decays
J/w = n")¢+¢~ [15], where the soft contributions are
suppressed because of the special form of the spin structure
of their amplitudes. In order to remove the main uncertainties
arising from the bound-state wave functions, we use the
normalized TFFs F, 0 (q%) = f,, 0 (q%)/ £}, (0) to obtain

the predictions of the branching ratios B(h, — )¢+ ¢7).

The paper is organized as follows: The theoretical
framework for the EM Dalit decays h, — n)¢t¢~ is
presented in detail in Sec. II. In Sec. III, we show our
numerical results and some phenomenological discussions,
and Sec. IV is our summary.

II. THEORETICAL FRAMEWORK

A. Hard mechanism

1. Contributions of the quark-antiquark content of 3"

In the large-recoil-momentum region of 5, the EM
Dalitz decays h. — #n)¢*¢~ can be described by the
perturbative QCD approach. The leading-order Feynman
diagrams for the quark-antiquark content of #") arise from
one-loop QCD processes. One of them is illustrated in
Fig. 1, and the other five diagrams come from permutations
of the photon and the gluon legs. Here and in what follows,
the involved kinematical variables are labeled in Fig. 1,
where u and # are the momentum fractions carried by the
light quark and the light antiquark, respectively. According
to the Feynman diagrams, one can obtain the amplitude of
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FIG. 1. One typical Feynman diagram for i, — n)¢* ¢~ with

the quark-antiquark content of (), and the kinematical variables
are labeled.
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M= _éA"/”s(,(K)ﬁ(ll)V/iv(lz)v (2.1)

where A% represents the amplitude of s, — n)y*; K and
e(K) stand for the momentum and polarization vectors of
h.., respectively; ¢ stands for the momentum of the virtual
photon, while ¢* = mZ, ,_ is the square of the invariant
mass of the lepton pair; and /; and /, stand for the momenta
of the leptons #~ and £, respectively.

It is convenient to convert the amplitude of , — n")y*
into two parts: the effective coupling of the process
h. — ¢g*¢g*y*, and that of the process g*g* — n). By
multiplying the two parts, inserting the gluon propagators,
and performing the loop integrations, one can obtain the
final amplitude of h, — n)y*.

In the rest frame of the P-wave charmonium #,, the
amplitude of . — ¢g*¢*y* can be written as [69-71]

Ae (K)en(q)e (ke (k)
V! / Tr ek, 0O 7))

where W(K, k) represents the B-S wave function of h,;
O(f.f) represents the hard-scattering amplitude; +/3
represents the color factor; e(g) represents the polarization
vector of the virtual photon; ki, k, and e(k;), e(k;)
represent the two gluons’ momenta and polarization
vectors; f and f represent the momenta of the quark ¢
and antiquark ¢; and they read

1%
f“zK—+kﬂ: <%+k0,k>,

(2.2)

2
_ K M
Fr=" k= <7—k°,—k>, (2.3)

with k being the relative momentum between the quark ¢
and antiquark ¢—i.e., the internal momentum of the
P-wave charmonium /.. Here, M is the mass of .. For
convenience in subsequent calculations, we divide the
internal momentum of /. into two parts: the transverse
component k with k- K = 0, and the longitudinal compo-
nent k| with k| - k = 0: i.e.,

A kg
k”:k’”'—i—k”, k"“ K

(2.4)
where both kx = &K and &> = k? — k% are Lorentz-invari-
ant variables. Cons1der1ng the rest frame of /., one can
easily know that k involves three degrees of freedom
(namely, the component k) orthogonal to the total momen-
tum K, and kg contains the remaining one degree of

freedom (namely, the component k°). Now, the volume
element of the internal momentum k can be expressed in the
form d*k = d3kdkg. Furthermore, with a more relevant
treatment where k° < M, we obtain the momenta

M Kt L M K* .
() For (o) For

(2.5)

and the hard-scattering amplitude

O(f.f) = O(k), (2.6)
and this treatment maintains the gauge invariance of the
hard-scattering amplitude [72].

By employing the B-S equation [64,65] of the P-wave
charmonium /., one can reduce the B-S equation to the
Salpeter equation under the covariant instantaneous ansatz
(CIA) [66-68]. The Salpeter wave function is defined as

w(h) :é / kg (K, k). 2.7)

Subsequently, we obtain an analytic Salpeter wave function
of h. by solving the Salpeter equation (more details can be
found in our recent investigation [51])

o =keo |1+ K T

}yﬁfu%z), (2.8)

where 71, is the effective mass of the ¢ quark, and the front
factor k - ¢(K) indicates that the wave function is the nature
of the P-wave, and the scalar function f(k*) reads

R 2\ 1 ki
f<k2>=NA(—) [kl ¥
3 7[4ﬂ2

(2.9)

with N, being the normalization constant and f, the
harmonic oscillator parameter. The normalization equation
of f(§%) reads

&k 40k® .,
/ ) 3’ ) =1

(2.10)

Using Egs. (2.6) and (2.7), we can rewrite the amplitude
of h, = yg*g":

AP e (K)ep(q)es (ky es (ky)

Y
i3 / %w@om (2.11)
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where the hard-scattering amplitude O(k) reads

k’z—ﬁ] £

+lé+mc

gk | 7
L 4 k+m

€(q) —¢* (ki)

O(k) = iQ.eqi i [ *(kz)(

Kt L B tom,

€
ki qk2+k) —m?
[

K=k -4 151

*

‘Hf*(kl)(

+ K+ m,

+e*(ky) e*(k

2
(kz ];1 fi+k> _mg
4R ftm,
(15 k) = m2

K ](7

+¢*(q) e

q—l—k—i—m

+ % (ky) e (k

1
(—1 22 + k> - m%

B R tom,

+¢(q) € (ky)

(e 1 -

with the c-quark mass m,..

To proceed, we treat the light mesons #) as a light-cone
object in the large-recoil-momentum region because of a
large momentum transfer. Using the light- cone expansion,

one can obtain the amplitude of ¢g*g* — 5 [52,73-76]:

fl
—i(47ary) 8, €Ky hry Y

v o [1
A = g / dug?(u)
g=u.,d,s 0
X ! + (u < n) (2.13)
u<i) |, .
ik? + uk3 — uim?
where m represents the mass of ), the values f' 4, are the
"

decay constants, and ¢4 (u) is the light-cone DA. The DA
can be expressed as [52,77]

¢ (u) = 6u(l — u) [1 + Y

n=24-

() Ca(2u — 1)}, (2.14)

with ¢}l (u) being the Gegenbauer moments, and we take
three typical models listed in Table 1 of Ref. [52] (see
Refs. [52,77] for more details). In our subsequent calcula-
tions, itis found that the TFFs f, 0 (g?) are insensitive to the

models of the light-cone DA. The decay constants f :(,), in the
quark-flavor basis, can be parametrized as [25,26,43,78,79]

£ —\];%COW’ fo=—fssing,
£l = %sm ¢ f=frcosd, (2.15)

m+k) -

ky+q—k ~\2
m? ($+k) — m?

k’ﬁ-ﬁ] k2+k+mc

K (—k‘+q k4 k) —m?

1
(kz+12<l ‘1+k) —m2

€ (ky)

B4 ftom,

€*(q)

K —K 7
LEZ 4k +m,

2 — ~ 2
<q+kz by k> — m?

2
<k1+/2<2 q—l—k) _m%

e (k)

k‘H(Z —Hé—i-m

€(q)

a+k -k /
gk Em (2.12)

(w%)“mﬁﬁ(k”]’

where the phenomenological parameters (¢, f;, and f) could
be determined by different methods [11,25,51,52,76,80-85].

By contracting the above two amplitudes, inserting the
gluon propagators, and integrating over the loop momen-
tum, we obtain the decay amplitude of i, — n)y*

1 [ d*%k i i
Aaﬁ _ _/ 1 afuv ) .
2) @7t T+ el + e

(2.16)

Considering parity conservation, Lorentz invariance, gauge
invariance, and current conservation, one knows that

aK/}
o (=g + L) 2.17
A < g7 + q-K) (2.17)
Then, the h, — #")y* TFFs can be defined by
ap 0 2 ] q°K’
A = _efhmm(q -9 + g K (2.18)

With the help of the projection operator

M2q2 -1 an/j
PP = <2 + q- K)2> <—gaﬁ + 7 K)’ (2.19)

the TFFs can be rewritten as

f}%n(,) (¢?) = ="' P AY. (2.20)
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Here, we show the expression of the TFFs more clearly:

_Bra Zf‘i, / / dug(u)

§ / d4k1 Ne o, N
(27‘[)4 D1D2D3D4 D1D2D3D4P
N n Ny

DD,D3Ds  DyD,D5Ds),
Ns Ng )

- +

DD,D3D4,Ds ' DD,D3D,Ds,,

+(u—>ﬁ)>,

£2 o

_|_

(2.21)

with u and & = (1 —u) being the momentum fractions

arising from the light mesons #"). The expressions of the
denominators read

Dl = k% + ie,
D, = (ky — p)* + ie,
D3 = (ky —up)* + ie,

. —\2
D4p:(k1+k+q2p> —m2 + e,

“ 2
Dsz(k1+k—q+7p) —m? + ie,

n 2
Dsp—(kl k W) m? + i (2.22)

and the expressions of the numerators N,
sented in the Appendix.
With the help of the algebraic identity (u # 0, 1)

~ N¢ are pre-

D, + D, D _,
um®>  (1—wym?® u(l—wym>

(2.23)

the TFFs f ;? 0 (¢?

point and three-point one-loop integrals. When u = 0, 1,
the denominators of the propagators have the relation
D; = D, D,, and the TFFs can also be decomposed into
four-point or three-point integrals. Then, one can analyti-
cally evaluate these one-loop integrals with the technique
proposed in Refs. [86-88] or the computer program
PACKAGE-X [89,90]. It is found that the TFFs are UV
and IR safe. Similarly to the situation in the radiative
decays h, — yn) [51,52], the TFFs are insensitive to the
DAs of ;1< ). Our numerical results show that the change in
the modulus of the TFFs does not exceed 1% with the
different models of the DAs. Therefore, the theoretical
uncertainties from the DAs are ignorable in our calculations

) can be decomposed into a sum of four-

of the TFFs, and we choose model I of the meson DA in
Table 1 of Ref. [52].

2. Contributions of the gluonic content of n"")

Generally speaking, the contributions of the gluonic
content of ") are expected to be small, because the gluonic
content cloud be seen as higher-order effects from the
point of view of the QCD evolution of the two-gluon DA,
which vanishes in the asymptotic limit. For example, the
gluonic contributions are strongly suppressed by the factor

/M jsy in the radiative decays J Jy = ") [76).

However there is no suppression factor in the P-wave
charmonium radiative decays h, — yn\") [51,52], due to the
special form of the spin structure in their amplitudes. So,
the gluonic contributions may become important in the
radiative decays of the P-wave charmonium /.. In fact, as
pointed out in Refs. [51,52], the gluonic contributions and
the quark-antiquark contributions are comparable with each
other in the radiative decays h. — yn("). Obviously, this
situation should be found in the large-recoil-momentum
region of #") of the decays h, — 7")£+#~, due to the same
spin structures in their hadronic matrix elements. The
corresponding Feynman diagram is depicted in Fig. 2,
and the other two diagrams arise from permutations of the
photon and the gluon legs.

At the leading twist level, the matrix elements of the
mesons ;") over two-gluon fields in the light-cone expan-
sion can be written as [77,91,92]

1 np¥ Cp 5%
4 “ﬁ””p nf 8

X/duei(up‘erﬁpy)

—|§—|> is a lightlike vector along the

VO S =5 (fh +

fl

¢*(u)
u(l—u)’
(2.24)

(n" (p)lAG(x)A(v)]0) =

where n = %(1

opposite direction of the mesons 7’

f4, + f,) are the effective decay constant, and the
1 n
gluonic twist-2 DA is [77,92,93]
()
f q
v (1)
Ky
he(K)
f " (p)
D)
7

FIG. 2. One typical Feynman diagram for i, — n)¢*¢~ with
the gluonic content of 7). The kinematical variables are labeled.
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FIG. 3. The dependence of the modulus square of the TFFs

$(u) = 3021 —u)* 3 ),

n=24-.

Qu—-1). (2.25)

After a series of calculations, we obtain the correspond-
ing TFFs fh 0 (q):

167ta ¢ (u) / d*k
G 2\ _ 1
Py @) === 1y / W(l—u) ) (2r)
N N, N
N SRS EE—. T (2.26)
CiC, (C,C5 GC5Cy
where the expressions of the denominators read
N K\?
C, = <k+q—3) —m? + ie,
~ K\?2
G = <k—ﬁp+2) —m? + ie,
K\2
Cy = <k—|—up—5> —m? + ie,
N K\?
Cy= <k -q+ 2) —m? + ie, (2.27)

and the expressions of the numerators N5
sented in the Appendix.

Performing the integral calculations of the TFFs
ff?m(’) (¢*) and fin(,) (g%), we find that the modulus square
of these TFFs is Very insensitive to the dilepton invariant
mass my+ - (or g°). In Fig. 3, the m,+,- dependence of the
modulus square |2 ) ,(¢*)|* is shown. Schematically, we

~ Ny are pre-

can clearly see that the modulus square | f]?"?,) (¢%)|* has

only negligible changes in the range of (0-1000) MeV.
Comparing the quark-antiquark contributions from

72, ()P with the
|F¢ o (d 2)|?, we find that the former is about twice that

of the latter. In other words, the gluonic contributions and

gluonic contributions  from

3000

12 (a7
2500
2000 | fhi q'(qz) | 2

1500

1000

500

0 200 400 600 800
my+,- (MeV)

1000

)|> on the dilepton invariant mass m +,- (or g2).

G
|f%n</> (512

the quark-antiquark contributions are both important in
these decay processes. It is compatible with the situation in
the corresponding radiative decays h, — yn!") [51,52].

Based on the foregoing dlscussmns in the large-recoil-
momentum region of ), the h, — y")y* TFFs can be
obtained by

H(g) = f2 (@) SO (D) (2.28)
which includes the dynamical structure information from
the quark-antiquark content and the gluonic content of ;).
In addition, the relativistic corrections related to the internal
momentum of /. are taken into account in the TFFs.
Specifically, there exist the kinematical corrections from
the annihilation amplitudes and the dynamical corrections
from the bound-state wave function of h.. Since the
physical picture in the large-recoil-momentum region of
the electromagnetic Dalitz decays h, — n)£+¢~ is the
same as the one in the corresponding radiative decays, these
electromagnetic Dalitz decays can be calculated by the
nonrelativistic quark model with the zero-binding approxi-
mation, as well as the Bethe-Salpeter formalism. Similarly
to the situations in the radiative decays h, — ")y [51,52],
we find that these relativistic corrections also play an
important role in the decay processes h, — n)¢+¢-.
Numerically, there is about a 2-times enhancement of
| o (d 2)|> over the results with the zero-binding

approximation.

B. Soft mechanism

Generally speaking, a perturbative QCD approach will
become invalid in the three-body decay processes i, —
n¢+¢~ with a small recoil momentum of 5, and a
special handling is needed in principle. To deal with this
issue properly, a picture of the soft wave function overlap is
proposed in Ref. [15], where the picture has been proved
valid in the decays J/w — nete™ with a small recoil
momentum. Because of the similar physical picture, the
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TFFs of the h. — #)y* in the small-recoil-momentum
region, which are dependent on the recoil momentum |p,7<,> |
and reflect the size effects from the spatial wave functions
of the initial- and final-state hadrons, can be adopted in the
empirical form in the rest frame of /. [53,57,60,94]:

S

5 (2.29)

2 q’
0(q7) = Iy €XP <— W)

Here, ¢°> = |pn<,>|2 = AM*, m?, q*)/(4M?), Gy denotes
the h. —n")-y* coupling and can be determined by the
continuity condition of the TFFs between the large- and the
small-recoil-momentum regions, and the parameter /3 is an
experiment-related quantity. We adopt f =400 MeV,
which is compatible with the fitted value in the J/w
decays [15]. And it is worth noting that the decay amplitude
A% in soft mechanism has the form ef? 0 (%) x

(g% — q°K?/q - K), in which the spin structure is deter-
mined just by the quantum number of the initial- and final-
state hadrons.

In the whole recoil-momentum region of #), the TFFs
can be given by

f ( 2) hHmW (qZ) q2 <l1 GCVZ, (2 30)
) = .

hen q fi _,7</) (qZ) q2 >1 Gev2'

Incidentally, the recoil momentum [p, )| = 2(M*,m?, %)/

(2M) is a monotonically decreasing function of the square of
the invariant mass of the lepton pair g%. The recoil momen-
tum is above 1 GeV when g*> <1 GeV?2. It is commonly
asserted that perturbative QCD is self-consistent when
the recoil momentum is above 1 GeV [95-98]. Namely,
the transition to perturbative QCD appears at about
g* = 1 GeV?, and the hard mechanism begins to dominate
as g® decreases. On the contrary, the contributions from the
soft mechanism would become important with the increase
of ¢*. Although we could obtain the hard contributions from
the large-recoil-momentum region with the perturbative
QCD approach and the soft ones from the small-recoil-
momentum region with the overlapping integration of the
soft wave functions, how to precisely match these two
contributions in the intermediate-recoil-momentum region
is still an open question and needs further investigation. Even
so, our description of the EM Dalitz decay processes h, —
n") ¢+ ¢~ may constitute an important step forward toward a
satisfactory description.

III. RESULTS AND DISCUSSIONS

In the rest frame of A, the g*-dependent differential
decay widths of h. — #n)¢T¢~ can be written as

dr(h, = n"¢te7)
dq?

B a_z/l%(Mz,m2,q2) Fayo (@) - 2m2
18z M3 q* q°

2\ 1 2.2
X <] _4m2f)2(1 + o 2M2q 2 2>’
q (M? —m* + ¢)

where m, is the lepton mass. In order to remove most of
the uncertainties from the TFFs (a brief discussion in
what follows), we relate the differential decay widths
dl'(h, = n")¢+¢7) to the corresponding radiative decay
widths T'(h, = n)y):

(3.1)

dr'(h, = ¢ 67)  a o 1 B(M2m?, ¢?)
3 = (@) 5
dg’C(he —»ny) 3z g (M?—m?)
2 2\ 4
x <1 +—2"§f> (1 —4—"?)2
q q

2M2q2 >
x (14 , (3.2
(1 G ) 0

where F, 0(q%) = f),,0(4*)/ [}, (0) are the normalized
TFFs, and the normalization is such that F, ) (0) = 1.

In the numerical calculations, all the values of the
involved meson masses, quark masses, decay widths
and decay constant are quoted from the Particle Data
Group [99]. By employing the two-loop renormalization
group equation, we obtain the strong coupling constant
as(m,) = 0.38. The effective mass of the ¢ quark and the
harmonic oscillator parameter appearing in the bound-state
wave function are taken as /. = 1490 MeV and f, =
590 MeV, respectively, and more discussions can be found
in Refs. [100-102]. For the Gegenbauer moments from n")
DAs, we just adopt model I in Table 1 of Ref. [52] due to the
negligibly small uncertainties from these Gegenbauer
moments, which have been mentioned in the foregoing
discussions. For the phenomenological parameters—i.e.,
the mixing angle ¢ and the decay constants f,(,—we adopt
the set of values [82]

¢ =335°£0.9° fq=(1.09£0.02)f,,

£y = (0.96 £ 0.04)f, (3.3)

extracted from the TFF F,.,,/(4-c0), which is in excellent
agreement with the BABAR measurement [103]. More
discussions about these phenomenological parameters can
be found in Refs. [11,51,52,76,80,104].

We now proceed with a full calculation of the branching
ratios B(h, = n)¢*¢~), and our numerical results are
shown in Table I. Here, we do not present the theoretical
uncertainties, which come mainly from B%P(h, — ny) =
(47£21)x10™* or B*(h, - n'y) = (1.54+0.4) x
1073 [33], and they are expected to be 30% ~ 50%.
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TABLE 1. The branching ratios B(h, — )¢+ ¢7).

Hard mechanism Soft mechanism Total
B(h. — nete™) 4.9 x 1076 3.7x10°%  85x107°
B(h, = nutu~) 1.0 x 107° 37x107% 4.6x1076
B(h, = n'ete”)  1.6x 107 0.7x1075  23x107°
B(h, = q'utu™) 03 %107 0.7x107  1.0x107

In the second column, the results from the hard mechanism,
which can be described by the perturbative QCD approach,
are presented; in the third column, we show the results
from the soft mechanism, which is governed by the
overlapping integration of the wave functions of the initial-
and final-state hadrons. The total contributions from both
the hard mechanism and the soft mechanism are presented
in the last column. First of all, it is noticed that the soft
contributions in the decay processes . — )ete™ are
equal to those in the decay processes h, — n\")u*u~ with
an accuracy of more than three (two) significant digits. This
is because the differential branching ratios are proportional
to (1 —O(m?}/q")) in the large-¢* region [see Egs. (3.1)
or (3.2)]. Therefore, the difference caused by the lepton
mass m, is ignorable in the small-recoil-momentum region.
At the same time, the hard contributions of the u*pu~
channel are about 5 times smaller than those of the e*e™
channel, since the phase space of the former shrinks in the
small-g> region. Besides this, we find that the hard
contributions and the soft ones are comparable with each
other. It is unlike the situation where the soft contributions
are negligibly small in the S-wave charmonium EM Dalitz
decays J/yw — n)¢¢~, because of a suppression of the
kinematic factor (i.e., p,7(,>|3 /q) [15]. It is worthwhile to

point out that there are around 3 x 10° y(2S) events
collected with the BESIII detector so far [39-41], and this
may imply that our predictions of the branching ratios
B(h, = n""¢*£~) may come within the range of meas-
urement of present or near-future experiments, especially
for the #' channels (reaching 1079).
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FIG. 4.

Last but not least, we concentrate on the g*>-dependent
TFFs f, ,0(¢%), which could provide the dynamical

information of the EM structure arising at the h, — 5"
transition vertex and offer a powerful probe of the intrinsic
structure of the P-wave charmonium /.. Experimentally,
one is interested in the normalized TFFs F Mm(qz),
because their modulus square |F), i (¢*)*
extracted by comparing the measured invariant mass
spectrum of the lepton pairs from the Dalitz decays with
the pointlike QED prediction [10,62]. On the other hand,
there exists a large uncertainty from sources such as the
bound-state wave function and the QCD running coupling

constant a, in the TFFs f hm(,)(qz). However, the depend-

can be directly

ence of the normalized TFFs F hon® (¢%) [i.e., the ratios
Ly ()/f n.y (0)] on the bound-state wave function and
the QCD running coupling constant is cut down to a large
extent. So, one can expect that the predictions of the
normalized TFFs are more reliable. Besides, the q2
dependence of the TFFs f), o (g?) is still retained in the
normalized TFFs F, o (g*) because of the constants
Fuq0(0). In Fig. 4, we present the g*> dependence of the
modulus square of the normalized TFFs |F), o (¢*)[* in
their full kinematic region. Here it should be noted that,
even though the normalized TFFs |F), o (¢*)|* are inde-
pendent of the lepton mass, the kinematic region of the
ete™ channel is different from that of the p™u~ channel.
Specifically, the value of the dilepton invariant mass 71+ .-
starts at 2m, in the e e~ channel, and it starts at 2m,, in the
utu~ channel. As shown schematically in Fig. 4, the
difference in the modulus squares |F), ,(¢*)* and
|F),y(¢*)]* mainly arise from their phase space. One
can find that the modulus square |F, ¢ (g*)]* is quite
steady in the small-g® region and increasing rapidly in the
large-g> region, which is compatible with the situation in
the EM Dalitz decay processes Jy — n)¢+¢~ [1,15].
Present or near-future experimental measurement is
expected to provide tests for these predictions.

40

[Fnem(a?)]?
N w
o o

-
o

0 500 1000 1500 2000 2500
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The dependence of the modulus square of the normalized TFFs |F), (¢?)|? on the dilepton invariant mass n,-,- (or g%).
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IV. SUMMARY

In this paper, we investigate the P-wave charmonium EM
Dalitz decays h, — n")¢+t¢~ with a QCD analysis. In the
large-recoil-momentum region of "), these decay processes
are described by the perturbative QCD approach. For the
primary heavy meson /., we work out its B-S wave function
in the framework of the B-S equation, and its internal
momentum is retained in both the wave function and the
hard-scattering amplitude; for the final light mesons "), the
light-cone DAs are adopted due to a large momentum
transfer. By an analytic calculation of the involved one-loop
integrals, we find that the TFFs are UV and IR safe, and the
gluonic contributions and the quark-antiquark contributions
are both important in the TFFs. In the small-recoil-momen-
tum region of #(), the picture of the soft wave function
overlap is adopted to describe the transition mechanism of
h. — ). By relating to their radiative decay processes,
the branching ratios B(h, — n)£+¢~) are obtained.
Intriguingly, the contributions from the soft mechanism
and those from the hard mechanism are comparable with
each other, unlike the situation in S-wave charmonium

|

decays J/y — n)¢+ ¢~ [15], where the soft contributions
are suppressed because of the special form of the spin
structure of their amplitudes. Furthermore, the g*>-dependent
TFFs are analyzed briefly, and we obtain the g> dependence
of the modulus square of the normalized TFFs [F), o (@)
in their full kinematic region. Lastly, it should be pointed out
that there are around 3 x 10° y(25) events collected with the
BESIII detector so far [39—41], and this may imply that our
predictions of the branching ratios B(h, — n)¢*£~) may
come within the range of measurement of present or near-
future experiments, especially for the 7/ channels.
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APPENDIX: THE EXPRESSIONS
OF THE NINE NUMERATORS

The expressions of the numerators N; (i = 1 ~9) read

(M2 —m? + ¢°)

N — 8if (k)
PTMA 4w gt = 2mE (MR A P + AMPgR) (M?
XL AR, + i) (-
+ky - p(4k; -

+ gk, -
X (M? —m? + ¢%) + 4ik - p(¢* +2M(M + m,) —

- M*) 4+ 2M%k - p(2k - p(m, — in,)

—2m2 = 2¢* + 4m? — 8k - p — 4i%)

— M (m? +2Mm, + ¢*)))

q(k* (m, + i) (M? = m? + ¢*) + ik - p(2Mm. — m? + ¢%))
+ i (m? = M? = @) (k- p(4k* + 4k - p + 3m® — 2M?
q(m? = M?* — @) (k - p(4k* + 4k - p 4 3m? — d4m? + ¢*) + 4k*m?) +

- M?+¢%)))
(k : p)2(4]}2(mc + ﬁ’lc)
o(m? =M% — ) (4kP(m? + M? - %)

—4m2 + ¢?) + 2k (m?

m?))) = ky - k(i

+ 4k p(m* + M? = @) + 3m* — m*(M? + 4m2 + 2¢%) + (M?* - ¢*)(q — 2m,)(2m, + q))

— 4k, - p(4M2k - p(in,

_ 8if(k*)

N,

mc) + ﬁlc(mz - M?* - qZ)(mZ - 2Mmc - qz)))]’

(M? —m? + ¢?)

(M* + m* + ¢*

X

1 N
2R + ) (m = 2

me
+4M2 (k- p)*(m. = i) + ek - g(m?
+4k2m? + 4(k - p)?) + ky - p(in(m?
—i—2/A€2(m2 -M?*+q?) +4(k p)?
+ k- p2Mm, — m?* + ¢%)))
X (2M? — m? + 2Mm, + g*))) + k; - k(
— 4k - p(m? + M? — ¢?) + 3m* — m*M
— 4k, - p(4M%k - p(m

e
) — 4k -

—2m?(M? + ¢*) + 4M?q?) (M?

- M* - ¢*)(~k-
- M? - (k-

q(k

— 4m?m?

—2m? = 2¢* + 4m? + 8k - p — 4i%)

— M* + ¢*) 4+ 2M*hk - p(m® 4+ 2Mm, + ¢%)

p(4k* +3m? — 4m? + %)
p(4k% + 3m? — 2M?% — 4m? + ¢?)
2(me + i) (m* = M* = ¢7)

—4(ky - p)2(K*(m, + i) (m? — M? = ) + ik - p
o(m? —M? —

P 4 - )

—2m*q* — AM*m? + M*q* + 4m2q® — q*)

c_”hc>+’/hc(m _Mz_q )(m _2Mmc_q2)))]’

074003-9



CHAO-JIE FAN and JUN-KANG HE PHYS. REV. D 109, 074003 (2024)

8if (k) (M?> = m* + ¢%)
(M* + m* + ¢* = 2m*(M* + ¢*) + AM*q*) (M? — 2m? = 2¢* + 4m?2 — 8k - p — 4k?)

N3:

X R 1) (= ) = M) + 2 plky - (R = +-7)
+m* + m?(3M?* = 8Mm, + 4m2 — 2¢*) — (M? + ¢*)(4m? — ¢*)) — 4kIM*(m* + 2Mm, + ¢*))
+8(k - p2(2KMA(m, — n,) + ik, - q(M? — m* + ¢%)) + 2k, - p(ink - p
x (4ky - g(2Mm, — m* + ¢*) + ¢*(4k* = 2m* + 3M? — 4m?2) + (m* — M?)(—4k* + m?
+2M? — 8Mm, + 4m?) + ¢*) + 2k*(m* — M?* — ¢*)(m.(m® = M? + ¢*) = 2k, - q(m,
+ i) +4(k - p)?(e(q* = m?) + M2 (3, = 2m,))) + 8(ky - p)2(K* (m, + i)
X (M2 = m? + ¢?) + fnck - p(—=m* + 2M(M + m.) + ¢%)) + 8K m*m ki - g(m* — M — ¢?)
+ky - k(4k - p(4MPk,y - p(ine — m.) + m*in, + m?(4MP (m; = fn.) = 21i.q?) + i,
X (q* = M*)) = i (m? — M = ¢)(4k; - p2Mm, — m® + ¢*) — 4K*(m?* + M? - ¢?)
+m* o+ m?(M? = 8Mm, + 4mg = 2q%) — (M — ¢°)(¢* = 2mz)))],
8if(k%) (M = m* + ¢%)
(M* +m* + ¢* —2m*(M? + ¢*) + AM?@%) (M? — 2m? — 2% + 4m? + 8k - p — &%)

N4:

1 . .
X (4K (me + i) ((m? — ¢2)2 = M*) + 27k - p(4kFMP(m? + 2Mm, + ¢°)

—ky - q(4IP(M? = m? + ¢2) + m* + m*(3M? = 8Mm, + 4m? — 2¢*) — (M? + ¢?)

x (4m2 — ¢*))) + 8(k - p)2(2K3M2(m, — i) + fky - q(M? — m® + %)) + 2k - p

x (i k- p(ak, - g(m® —2Mm, — q2) + ¢ (~4R> + 2m® = 3M2 + 4m?) — (m? ~ M?)

X (=42 + m? + 2M?* — 8Mm, + 4m?2) — g*) + 2> (m? — M? — ¢*)(m,(m* — M? + ¢?)
—2ky - q(m, + 1))+ 4(k - p)*(c(q* — m?) + M? (3, —2m,))) + 8(k; - p)*(K*

X (me + i) (M2 = m? + @%) + ik - p(m* = 2M(M + m,) — ¢*)) + 8K°m>m k; - g

X (m? = M? = q*) + ky - k(i (m* = M2 — ¢*)(4k; - p(2Mm, — m? + g*) — 4K° (m?

+ M? = @%) + m* + mA(M? — 8Mm, + 4m? = 2¢°) — (M2 — ¢*)(q® — 4m2)) + 4k - p
X (AMPky - p(ie = me) + m*ie +m*(4M> (m. = fne) = 2.q*) + e (q* = M*)))],

B 2if (k) (M?* = m?* + ¢?)
(M* + m* + ¢* = 2m*(M?* + ¢*) + 4M>q*) (M? = 2m? — 2¢* + 4m?2 — 8k - p — 4k?)

g (BRI (0 = ) = M) kR = M2 = ) (<A 4+ 0% = )

A

mc
+m*(M? = 4Mm, — 4m? = 2¢°) + (M? = ¢*)(4m (M —m.) = ¢°))
+ 412 (2m, — i) (m? + M? = g2)) = 4k - p(4(ky - p + ky - q) (m?(2m = i) — M7
+ g’ (e = 2m,)) + (m* + M? = ¢*) (in.(m* — ¢*) + M?(fn. — 2m.))) — 8,
X (m* = 2k; - p)ki-p+k - Q)(mz -M*-q%)) - 2k- p(k; - P(mc(—‘”‘%(mz +3M* - ¢?)
+ @*(=2m? 4 3M? — 4Mm, + 4m?) + (m — M) (m + M)(m> + 2M? — 4Mm, — 4m?) + ¢*)
+ 16k - g(ky - g = m?) + 4K (2m, — i) (m* = M* = ¢*)) + ki - g
X (e (—4ki(m® +3M* = ¢*) + m* + m*((M = 2m.)(3M +2m.) - 2¢°) — (M* + ¢*)
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X (4mo(M —m,) — ¢2)) — 8m2in k- q + 4K (2m, — i) (m* — M? — %)) + 4I2M>
X e (m? + M? = g%) = 8in (ki - p)*(m? = 4k; - q) + 16/ (k; - p)*) — 4k (m* — M? — ¢7)
x (ky - p(=4ky - p +m* = M? + %) + 2k, - q(m* = 2k, - p)) + 8m.(k; - /%)2((’"2 - ¢’ —M*)
+8(k-p)2(ky - p+ ki - q)(4(me = ie)(ky - p+ky - q) + e(m? = ¢*) + M (. — 2m,)))].
g2 2 2\ £(72
Ne = . M(M* + j;(llj q:in 2;2?1\/;{(+k q)2) +AM2g) (8K (m? ~ %) = M*)
+ ky - k(=(m?* = M? = @) (i (=43 (m? + M? — ¢?) + m* + m*(M? — 4Mm, — 4m? — 24
+ (M? = @) (dm (M = m,) = ¢*)) + 4K (2m, — i) (m* + M? = ) = 4k - p
x (4(ky - p + ki - q)(m*(2m, — i) = MPine + ¢* (i, = 2m,)) + (m* + M - ¢°)
x (i (m* = q%) + M?(in, = 2m.))) + 8in (m* = 2k - p)(ky - p + ky - q)(m* = M? = ¢*))
+ 2k - p(ky - p( (=43 (m? 4 3M? = ¢*) + ¢*(3M? = 2m? — 4AMm, + 4m?)
+ (m? = M?)(m? + 2M? — 4Mm, — 4m?2) + q*) + 167k - q(k; - g — m*) + 4&*(2m, — in,)
x (m* = M? = ¢%)) + ky - q(ih (—4ki (m® + 3M? = ¢%) + m* + m*((M —2m,)
X (3M +2m,) = 2q%) — (M* + ¢*)(4mc(M — m.) — g*)) — 8m?fn Ky - g + 41> (2m, — in,)
X (m? = M? = ¢*)) + 4k3M? 1. (m*> + M? — g*) — 8in.(k, - p)*(m* — 4k, - q)
+ 167 (k; - p)*) — 4k i (m? — M? — g*)(ky - p(=4k; - p +m?> = M* + ¢*) + 2k, - q
X (m? =2k - p)) + 8m(ky - k)2 ((m* = ¢*)* = M*) + 8(k - p)*(ky - p + Ky - q)
X (4(me =) (ky - p + ki - q) + e (m* = g*) + M (i, = 2m,.))],

Ny — — (M2 —m? + ) f (k) 1

2 M(M* +m* + g* = 2m*(M? + %) + AM?q%) (M2 + m? — > + 22(M?, >, m?))
R g A ) O k- ) i —m) - p) (1)
+ M2 —4Mm.u = 2¢%u + 7)) = I (m* = 2m?q* = M* + ¢*) (mu + i (u = 1))
+ 2(M?, g m*)(M*(k - p)(4(k - p)(m2(.(u—1) = mou) + M*(—mou + iou+ i)
+ ¢*(mou + mc(—u) +ime)) + e (=2m*(u — 1) + m*(M?(2u — 3) + 4Mm.u — 4m?)
+ M* —4MPmou + M2 (4m? — G2 Qu + 1)) + 4AMm.q*u + 4m2q* + 2q*u — 2¢*)) — k*
x (m* = M? — ¢*)((m* = 2m*(M* + ¢*) + (M?* = ¢*)*)(m.u + m(u — 1)) — 4M?in,
x (k- p))) + M (k- p)(4mJ*(m* = 2m2q* — M* + ¢*) — 4(k - p)(m*fr, — 2m> (i,
X 2M*u + ¢*) = 2M?m.u) + . (q* — M*)) — .(m* — M? = ¢*)(m*(4u - 3)
+m? (M? = 8Mmeu + 4mg +2¢°(1 = 2u)) = (M? = ¢°)(¢* — 4m7)))].

Ny = M2 —m? + @) f (k) 1

2mM(M* + m* + g* —2m*(M? 4 ¢%) + 4M*q*) (M? + m? — ¢* + 22(M2, ¢*, m?))
1
X 4—F——F—>5T
/ﬁ(Mz’qz’mQ)
+ i (=m* (M2 (1 = 2u)? — 4m2 + 4¢* (u — Du) + M*(1 = 2u)* — M?*(4m? + ¢*
X (8u? = 8u + 3)) 4+ 8Mm.q* — 4m2q* + 4¢* (u — )u)) = k> (m?> = M? — ¢*)(4M?*(2m,

(M, g7 m?) (M? (k- p)(4Q2u = 1) (k - p)(so(q* = m?) + M*(2m, — i)
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— i) (k- p) + i (2u = 1)(m* = 2m*(M? + ¢*) + (M? = ¢*)?))) + i A(M?, g, m?)

x (M2(k - p)(m2(1 = 2u)* + M?(1
—2m?q* = M* + ¢*))) + M (k- p)(-
+ M2(#, —2m,))
x (m*(1 = 2u)? + m*(M*(1 — 2u)?
+ (M = ¢*)(4Mm, — 4m? — ¢*)))],

i(M —m* + ) f (k)

—2u)? —4Mm, — ¢*

— 4k*(2m, — i) (m* — 2m%q
—4Mm, —4m? = 2q*(2u* = 2u + 1))

(1-2u)?) = 2u— 1)k*(m*
4(2u—1)(m2+M2—q2)(k p)(ic(m* = ¢°)
- M* 4 g¢*) = i (m* = M - ¢°)

1

Ng —
1 A .
XW[/I(MZ,qz,mz)(M2<k-p)(mc
+ qZ(ZM - 1)) - 4(” - 1)(mc - ”hc)(i{ : p))
+ineu)) = 2(MP, g2 m?) (K (m? — M2 = ¢?)((m* = 2m>(M? + ¢%) +

X (m.(u—1) + m.u)

+M*(m(u—1) =i (u—2)) +¢*(m

X (2u+1) +4Mm (u — 1) + 4m?) — M*

+ 4Mmcq2(u -1)

+4(k - p)(m*
- M? = g*)(m*(du—1) -
+ (M? - ¢*)(¢* — 4m3)))].

— P (m* —2m2q?

—4M?in (k- p)) + MP(k - p)(4(k - p)(m?(m

2 M(M* +m* + g* = 2m*(M? + %) + AM?q%) (M2 + m? — ¢ + 22(M?, >, m?))

(m?>(1 = 2u) + M*> + 4Mm (u — 1)

= M* + g*)(m(u—1)
(M? = q*)?)
c(u - 1) - ﬁ’lcu)

—u) + m, + mu)) + i (=2mu + m?(M?
—aMPm (u—1) + M?*(g?
—4m2q® + 2q*u))) + M*(k - p)(4in &> (m* — 2m* ¢
e = 2m* (M (u = 1)(m, = i) + fieq?) + i (q* = M*)) + dine(m?
m*(M?* + 8Mm,(u — 1) + 4m2 + 2¢*(2u — 1))

(3 —2u) — 4m?)
- M*+q*)

with A(a, b, ¢) = a* + b* + ¢* = 2(ab + bc + ac) as the usual Killén function.
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