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Modifications of the QCD perturbative expansions by the subtraction of the dominant infrared
renormalon have been proposed recently as attempts to solve the longstanding discrepancy between
fixed-order and contour-improved perturbation theory for the hadronic τ decays. In this approach, the
modified perturbative series is supplemented by a modified gluon condensate in the operator product
expansion of the Adler function. Motivated by these works, we revisited recently a formulation of the QCD
perturbation theory, proposed some time ago, which takes into account the renormalons by means of the
conformal mapping of the Borel plane. One expects that the modified perturbative series obtained in this
framework should be accompanied by modified power-suppressed nonperturbative corrections. However,
in the previous studies the focus was on the perturbative series and the question of the possible power
corrections has not been considered. In the present paper, we investigate for the first time this problem.
Using techniques from the mathematical resurgence theory, we derive the expression of the dominant
power correction to the perturbative series obtained by conformal mapping of the Borel plane, and discuss
its implications for phenomenological applications.
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I. INTRODUCTION

The data on the inclusive hadronic decay width of the τ
lepton allow the measurement of the strong coupling αsðμ2Þ
at the relatively low scale μ ¼ mτ. By analyticity, the τ
hadronic width is expressed as a weighted integral of the
Adler function DðsÞ along the circle jsj ¼ m2

τ in the
complex s plane, where one can use perturbation theory
and the operator product expansion (OPE) [1]. The per-
turbative part can be expanded in powers of αsðm2

τÞ [1], a
formulation known as fixed-order perturbation theory
(FOPT), or the powers of the running coupling αsð−sÞ
can be integrated along the circle [2], an approach known as
contour-improved perturbation theory (CIPT).
Contrary to expectations based on renormalization-group

invariance, there is a significant numerical difference
between the results of the twomethods [3]. This discrepancy,
which sets the most important limitation on the precision of
αs extracted from hadronic τ decay, has been discussed in
many papers. In particular, in [4] it was noticed that the
difference does not decreasewhenmore terms are included in

the perturbative series, the reason being the fact that theQCD
perturbative expansions are divergent series. More recently,
the crucial role of the renormalons, which encode the large-
order behavior of the perturbative series [5], has been
emphasized in several papers. Thus, in [6–8], the leading
infrared renormalon divergence related to the gluon con-
densate was subtracted from the perturbative series of the
Adler function. By this modification, the difference between
the fixed-order and the contour-improved perturbative
expansions was considerably reduced. On the other hand,
the modified perturbative series is accompanied in this
approach by a modified gluon condensate in the OPE.
Stimulated by these works, in the recent paper [9] we

brought into attention a different modification of the QCD
perturbation theory, which also takes into account the
renormalons. The new expansions, proposed for the first
time in [10] and investigated further in [11–18], are
obtained by expanding the Borel transform of the Adler
function in powers of a new variable, which performs the
conformal mapping of the Borel plane, with cuts along the
real axis due to renormalons, onto the unit disk of a new
complex plane. The original function is then recovered
from the Borel transform by Laplace-Borel integral with
principal value (PV) prescription. In [9] we revisited some
of the properties of these expansions, and compared the
method of conformal mapping with the modified series
proposed in [6–8]. In particular, since the expansions based
on conformal mapping have a tamed behavior at large
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orders, they lead to a reduced discrepancy between the
fixed-order and contour-improved formulations.
In the previous studies of the method, the primary focus

was on the perturbative series, and the modification of the
power corrections was not mentioned as a dedicated aim.
But, as remarked in [6], one may expect that this approach
represents effectively a realization of a renormalon-free
OPE scheme. In the present paper we investigate this
problem, and derive for the first time the specific form of
the power corrections to the series based on conformal
mapping of the Borel plane.
Since the perturbative series in QCD is not Borel

summable due to the infrared renormalons, which are
located on the positive axis of the Borel plane, we resort
to the mathematical theory of Borel nonsummable series,
the so-called resurgence theory. In this approach, the sought
function is expected to “resurge” by supplementing the
perturbative series with terms singular at the expansion
point, which cannot be seen perturbatively. These terms,
denoted generically as “nonperturbative,” can be organized
sometimes as a “transseries,” i.e., a sequence of power
series, the expansion parameter of each series being
exponentially suppressed with respect to that of the
previous series. Remarkably, insights on the form of the
additional terms can be obtained from perturbation theory
itself, more exactly from the large-order behavior of the
perturbative asymptotic expansion.
Several mathematical approaches to resurgence and

transseries have been proposed (see Refs. [19–26] and
references therein), and there are some applications of
these mathematical methods to QCD. One such application
is developed in a series of papers [27–29], where the
truncated perturbation series of some QCD correlators have
been supplemented by nonperturbative terms related to the
first infrared renormalon, in the spirit of the hyperasymp-
totic formalism from [20,21]. Other application is the
resurgent representation of the Adler function in the
large-β0 approximation, derived in [30,31], based on
the previous works [32,33], where is was shown how
the renormalization-group equation satisfied by the Adler
function ensures the applicability to this function of the
resurgence approach developed in [23–25].
On the other hand, in phenomenological analyses, the

QCD perturbative series has been supplemented since a
long time by power-suppressed corrections, which can be
viewed as terms singular at the origin of the coupling plane.
They have been proposed for the first time in [34] by
extending the validity of the OPE to the nonperturbative
regime, and are expressed in terms of nonzero quark and
gluon vacuum matrix elements (condensates). However,
one must keep in mind that the validity of the OPE is
proven rigorously only within perturbation theory, its
extension to the nonperturbative regime being a conjecture.
One must recall also that the power corrections depend of
the formulation of the perturbative series. For instance, the

redefinition of the perturbative series proposed in [6–8], is
accompanied by a simultaneous redefinition of the gluon
condensate.
Our aim in this paper is to derive the power corrections

for the modified QCD perturbative series based on the
conformal mapping of the Borel plane. To achieve this goal,
we resort to the mathematical theory of resurgence devel-
oped in [23–25] for the solutions of differential equations.
In this framework, the nonperturbative corrections are
obtained from the discontinuity of the Borel transform
across the lines of singularities (Stokes lines) in the Borel
plane. As shown in [32,33], the applicability of the method
to the QCD Adler function is ensured by the renormaliza-
tion-group equation satisfied by this function. Actually, as
mentioned above, the algorithm developed in [23–25] was
applied in [30,31] for deriving the resurgent representation
of the Adler function in the large-β0 approximation.
The outlineof the paper is as follows: in the next sectionwe

briefly review the standard perturbative expansion of the
QCDAdler function and themodified expansion basedon the
conformalmapping of theBorel plane. InSec. IIIwe illustrate
the application of the algorithm proposed in [23–25] to the
standard perturbative expansion, assuming for simplicity that
the Borel transform consists from a single branch point. In
Sec. IV we apply the same algorithm to the series based on
conformal mapping and derive the form of the power
corrections in this scheme. In Sec. V we briefly discuss
some numerical and phenomenological implications of our
results. Finally, Sec.VI contains the summaryof thework and
our conclusions.

II. PERTURBATIVE EXPANSIONS
OF THE ADLER FUNCTION

We consider the reduced Adler function [4]

D̂ðsÞ≡ 4π2DðsÞ − 1; ð2:1Þ

where DðsÞ ¼ −sdΠðsÞ=ds is the logarithmic derivative of
the invariant amplitude ΠðsÞ of the two-current correlation
tensor. From general principles of field theory, it is known
that D̂ðsÞ is an analytic function of real type [i.e., it satisfies
the Schwarz reflection property D̂ðs�Þ ¼ D̂�ðsÞ] in the
complex s plane cut along the timelike axis for s ≥ 4m2

π.
In QCD perturbation theory, D̂ðsÞ is expanded as

D̂ðsÞ ¼
X
n≥1

cn;1½asð−sÞ�n; ð2:2Þ

in powers of the strong running coupling asð−sÞ≡
αsð−sÞ=π, which satisfies the renormalization-group
equation

−μ
das
dμ

≡ βðasÞ ¼
X
n≥1

βnanþ1
s ð2:3Þ
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in a certain renormalization scheme. The coefficients cn;1
are real, since D̂ðsÞ satisfies Schwarz reflection. They are
known for n ≤ 4 in the MS scheme, cf. [35] and references
therein:

cn;1¼1; c2;1¼1.64; c3;1¼6.37; c4;1¼49.07: ð2:4Þ

At high orders, the coefficients increase factorially, cn;1 ∼
n! [5]. Therefore, the series (2.2) has zero radius of
convergence and can be interpreted only as an asymptotic
expansion to D̂ðsÞ for as → 0. This indicates the fact that
the Adler function, viewed as a function of the strong
coupling as, is singular at the origin as ¼ 0 of the
coupling plane.
In some cases, the expanded functions can be recovered

from their divergent expansions through Borel summation.
The Borel transform of the Adler function is defined by the
power series

BD̂ðuÞ ¼
X∞
n¼0

bnun; ð2:5Þ

where the coefficients bn are related to the perturbative
coefficients cn;1 by

bn ¼
cnþ1;1

βn0n!
: ð2:6Þ

Here we used the standard notation β0 ¼ β1=2, and in our
convention β0 ¼ 9=4.
The large-order increase of the coefficients of the

series (2.2) is encoded in the singularities of the Borel
transform in the complex u plane. In the present case, it is
known that BD̂ðuÞ has singularities at integer values of u on
the semiaxes u ≥ 2 (infrared renormalons), and u ≤ −1
(ultraviolet renormalons) [5]. In a particular limit of pertur-
bative QCD, known as large-β0 approximation [36–38], the
singularities are poles, but in full QCD they are branch
points.
From the definition (2.5), it follows that the function

D̂ðsÞ can be obtained formally from the Borel transform
BD̂ðuÞ by the Laplace-Borel integral

D̂ðsÞ ¼ 1

β0

Z
∞

0

exp

�
−u

β0asð−sÞ
�
BD̂ðuÞdu: ð2:7Þ

Actually, due to the singularities of BD̂ðuÞ for u ≥ 2,
the integral (2.7) is not defined and requires a regulariza-
tion. As shown in [39], the PV prescription, where the
integral (2.7) is defined as the semisum of the integrals
along two lines parallel to the real positive axis u ≥ 0,
slightly above and below it, is consistent with some of the
analytic properties of the true function D̂ðsÞ, in particular
the absence of cuts on the spacelike axis s < 0 outside
the Landau region. This prescription was adopted actually

in [23–25] for the Borel summation of the perturbative part,
and also in the previous studies of the method of conformal
mapping, which we use in the present work.
The series (2.5) converges in the disk juj < 1, limited by

the first ultraviolet renormalon at u ¼ −1. On the other
hand, the Laplace-Borel integral (2.7) includes the range
u > 1, where the series (2.5) is divergent. This is the reason
of the divergence of the original series (2.2), obtained
formally by inserting (2.5) in (2.7) and integrating term
by term.
The domain of convergence can be enlarged by reex-

panding the function BD̂ðuÞ in powers of the variable which
achieves the conformal mapping of the original complex u
plane onto the unit disk of a new complex plane. This
mapping, written for the first time in [10], has the form

w̃ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p : ð2:8Þ

One can check that w̃ðuÞ maps the complex u plane cut
along the real axis for u ≥ 2 and u ≤ −1 onto the interior of
the circle jwj ¼ 1 in the complex plane w≡ w̃ðuÞ, such that
the origin u ¼ 0 of the u plane corresponds to the origin
w ¼ 0 of the w plane, and the upper (lower) edges of the
cuts are mapped onto the upper (lower) semicircles in the
w plane.
Consider now the expansion of BD̂ðuÞ in powers of the

variable w:

BD̂ðuÞ ¼
X∞
n¼0

cnwn; w≡ w̃ðuÞ; ð2:9Þ

where the coefficients cn are obtained from bk, k ≤ n, using
Eqs. (2.5) and (2.8). We recall that these coefficients are
real, since bk are real and the function w̃ðuÞ defined in (2.8)
is real analytic. For completeness, we quote the values of
the low-order coefficients cn, obtained using the perturba-
tive coefficients cn;1 given in (2.4):

c0 ¼ 1; c1¼ 1.94; c2¼ 5.77; c3 ¼ 18.50: ð2:10Þ

We emphasize that, by expanding BD̂ðuÞ according
to (2.9), one makes full use of its holomorphy domain,
because the known part of it (the first Riemann sheet)
is mapped onto the convergence disk. Therefore, the
series (2.9) converges in the whole u plane, up to the cuts
along the real axis, i.e., in a much larger domain than the
original series (2.5).
By inserting the expansion (2.9) of the Borel transform

in the Laplace-Borel integral (2.7) regularized by PV
prescription, and permutting the order of the integration
and summation, we obtain new perturbative series for the
Adler function in the complex s plane. For convenience, we
use the notation from [9,11], writing
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D̂ðsÞ ¼ 1

β0
I
�
β0asð−sÞ

�
: ð2:11Þ

Here I denotes the series

IðaÞ ¼
X∞
n¼0

cnInðaÞ; ð2:12Þ

where the coefficients cn appear in (2.9) and the expansion
functions are

InðaÞ ¼ PV
Z

∞

0

�
w̃ðuÞ�ne−u=adu: ð2:13Þ

As proved in [9,11], unlike the original series (2.2)
which is divergent, the expansion (2.12) converges in the
complex s plane, in particular along the circle jsj ¼ m2

τ , if
some conditions are fulfilled. On the other hand, the
expansion functions InðaÞ are analytic in the complex a
plane and bounded for Rea > 0, but have a cut along the
axis a < 0 and an essential singularity [∼ expð−1=aÞ] at the
origin a ¼ 0. As a consequence, when expanded in powers
of a, InðaÞ have divergent expansions, with coefficients
exhibiting factorial growth.

III. POWER CORRECTIONS TO THE
STANDARD PERTURBATIVE SERIES

The presence of power-suppressed corrections to the
standard series (2.2) has been advocated for the first time
in [34] by extending the validity of OPE to the non-
perturbative regime. For the Adler function, these correc-
tions are parametrized as

DOPEðsÞ ¼ C4;0

�
αsð−sÞ

�
s2

hO4;0i

þ
X∞
d¼6

1

ð−sÞd=2
X
i

Cd;i

�
αsð−sÞ

�hOd;γii: ð3:1Þ

Here the terms hOd;γii are nonperturbative vacuum matrix
elements of light quark and gluon field operators with
anomalous dimensions γi, called condensates, and the
functions Cd;i are the corresponding Wilson coefficients,
computed perturbatively in terms of the coupling αs.
For massless quarks, the leading correction with dimen-

sion d ¼ 4 consists of a single term, related to the well-
known gluon condensate matrix element hasG2i. To leading
order in αs and setting s ¼ −Q2, the dominant term in (3.1)
is usually parametrized as [4,6]

DOPE
4 ð−Q2Þ ¼ 2π2

3

hasG2i
Q4

; ð3:2Þ

wherewe recall the standardvalue hasG2i¼0.012GeV4 [34].
Factors depending logarithmically on Q2 are produced

in (3.2) by higher perturbative corrections in the Wilson
coefficients.
The mathematical approach to resurgence developed

in [23–25] requires the knowledge of the Borel transform
of the perturbative series. The perturbative part is expressed
as the principal value of the Laplace-Borel integral, and the
nonperturbative corrections are obtained from the disconti-
nuity of the integral across the positive semiaxis. Therefore,
the infrared renormalons predict the form of the power
corrections, up to an overall unknown constant. The
application of the algorithm to full QCD is not possible,
since the exact form of the Borel transform is not known.
To illustrate the method, let us assume that BD̂ðuÞ consists
from a single infrared renormalon, taken to be a branch-
point at u ¼ 2:

BD̂ðuÞ ¼
N

ð2 − uÞγ ; ð3:3Þ

where γ is a positive noninteger number and the residue N
is real.
The discontinuity of the Laplace-Borel integral is given

by [4]

N
2i

�Z
∞

0

e−u=ðβ0asÞ

2 − u − i0
du −

Z
∞

0

e−u=ðβ0asÞ

2 − uþ i0
du

�

¼ N
ΓðγÞ ðβ0asÞ

1−γe−2=ðβ0asÞ: ð3:4Þ

According to the algorithm presented in [23–25], the term
generated by resurgence, which supplements the perturba-
tive part, is equal to this discontinuity multiplied by an
arbitrary real constant C. Using for simplicity the one-loop
solution of the renormalization-group equation (2.3), which
we parametrize in terms of the QCD parameter Λ as

asðQ2Þ ¼ 1

β0 ln
Q2

Λ2

: ð3:5Þ

we obtain from (3.4)

Dresurg
4 ð−Q2Þ ¼ NC

ΓðγÞ ðlnQ
2=Λ2Þ1−γ Λ

4

Q4
; ð3:6Þ

where the subscript indicates the dimension of the power
correction.
This expression, derived in a formal way, contains an

unknown real constant C. We combine this constant with
the normalization N and the QCD parameter Λ, to define a
parameter G2 by

NC
ΓðγÞΛ

4 ¼ G2: ð3:7Þ

With this definition, the expression (3.6), predicted for-
mally by resurgence, becomes
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Dresurg
4 ð−Q2Þ ¼ ðlnQ2=Λ2Þ1−γ G

2

Q4
: ð3:8Þ

Compared to the standard power correction (3.2) pre-
dicted by OPE, one may note the additional logarithmically
dependent factor present to leading order in (3.8). As for the
dimension-4 constant G2, it is an arbitrary parameter which
cannot be interpreted a priori as a gluon condensate. This
shows that the power corrections depend on the form in
which the perturbative part is written: for the standard
truncated series in powers of the coupling, the power
corrections are assumed to have the expression (3.2), while
for a single infrared renormalon of a generic branch-point
form, the power correction is given by (3.8). One may
expect a different form of the power corrections for the
modified perturbative series based on conformal mapping
of the Borel plane. We shall investigate this problem in the
next section.

IV. POWER CORRECTIONS TO THE EXPANSION
BASED ON CONFORMAL MAPPING

We consider now the perturbative expansion based on
conformal mapping of the Borel plane, defined in
Eqs. (2.11)–(2.13). As proved in [9], the series (2.12) is
convergent when some conditions are fulfilled. In particu-
lar, if the Borel transform BD̂ consists from a finite number
of poles or branch points on the real axis of the Borel plane,
the series converges along the circle jsj ¼ m2

τ . On the other
hand, the expansion functions InðaÞ are no longer powers
of the coupling, as in the standard perturbation theory, but
complicated functions singular at a ¼ 0, defined by means
of the Laplace-Borel integral (2.13). As mentioned at the
end of Sec. II, each function InðaÞ, when expanded in
powers of a, has a divergent expansion, with coefficients
exhibiting factorial growth. Therefore, although the expan-
sion (2.12) is convergent, resurgence theory predicts the
existence of additional terms to it. As in the previous
section, for obtaining these terms we apply the algorithm
from [23–25]. The application is straightforward, since the
perturbative series (2.12) is expressed as an exact Laplace-
Borel integral, as required in [23–25].
We write the perturbative expansion of the Adler

function for s ¼ −Q2 as

D̂confð−Q2Þ¼
X∞
n¼0

cn
1

β0
PV

Z
∞

0

e−u=ðβ0asðQ2ÞÞ�w̃ðuÞ�ndu:
ð4:1Þ

The function w̃ðuÞ, defined in (2.8), has a branch point at
u ¼ 2, and becomes complex for u > 2. Moreover, since
the region u ≥ 2 is mapped onto the unit circle in the w
plane, we can write, for u ≥ 2,

w̃ðuÞ ¼ e�iψðuÞ; ð4:2Þ

where the � signs correspond to the upper (lower) edge of
the cut and

ψðuÞ ¼ arctan
2

ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p ffiffiffiffiffiffiffiffiffiffiffi
u − 2

p

3
: ð4:3Þ

The discontinuity (the imaginary part) of the integrand
in (4.1) is obtained easily by noting that, for u ≥ 2,

Im
�
w̃ðuÞ�n ¼ sin nψðuÞ: ð4:4Þ

These expressions follow from the fact that the infrared
renormalons are mapped on the unit circle of the w
plane. We note that the ultraviolet renormalons are also
mapped on the unit circle, but their contribution is real
for u ≥ 2. This is seen from Eq. (2.8), where the relevant
factor

ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
is real for u ≥ −1. On the other hand, this

factor enters the expression of the discontinuity, as seen
from (4.3) and (4.4). So, the ultraviolet renormalons show
their presence in the expression of the power corrections.
According to the algorithm from [23–25], in order to

obtain the term to be added to the perturbative part, we must
calculate the Laplace-Borel integral of the discontinuity
and multiply the result by a constant (real in the present
case). The integrand has only one singularity on the
positive axis, at u ¼ 2. Therefore, we can write

Dresurg
conf ð−Q2Þ ¼

X∞
n¼0

cn
C0

β0

Z
∞

2

e−u=ðβ0asðQ2ÞÞ sin nψðuÞdu;

ð4:5Þ

where C0 is an arbitrary real constant. By making the
change of variable

t ¼ u − 2 ð4:6Þ

we write (4.5) as

Dresurg
conf ð−Q2Þ¼C0

β0
e−2=ðβ0asðQ2ÞÞ

×
X∞
n¼0

cn

Z
∞

0

e−t=ðβ0asðQ2ÞÞ sinnψðtÞdt; ð4:7Þ

where

ψðtÞ ¼ arctan
2

ffiffiffiffiffiffiffiffiffiffi
3þ t

p ffiffi
t

p
3

: ð4:8Þ

As in the previous section, in the one-loop approxima-
tion (3.5) of the coupling, the exponential in front of the
integral can be written as Λ4=Q4, leading to
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Dresurg
conf ð−Q2Þ ¼ Λ4

Q4

C0

β0

X∞
n¼0

cn

Z
∞

0

e−t=ðβ0asðQ2ÞÞ sin nψðtÞdt:

ð4:9Þ

The integrals appearing in this equation are nonzero for
n ≥ 1 and depend logarithmically on Q2. We can obtain an
analytic expression of these integrals, valid with good
approximation, by noting that, for small coupling as, the
contribution of large t to the integrals is suppressed.
Therefore, we can use the approximate expression

ψðtÞ ≈ 2ffiffiffi
3

p ffiffi
t

p
; ð4:10Þ

which follows from (4.8) at small t. By inserting

sin nψðtÞ ¼ 1

2i

�
ei

2nffiffi
3

p
ffiffi
t

p
− e−i

2nffiffi
3

p
ffiffi
t

p �
ð4:11Þ

in the right-hand side (rhs) of (4.9), we obtain the exact
result

Z
∞

0

e−t=ðβ0asðQ2ÞÞ sin nψðtÞdt

¼ n

ffiffiffi
π

3

r
ðβ0as

�
Q2Þ�3=2e−n2

3
β0asðQ2Þ: ð4:12Þ

Then (4.9) can be written as

Dresurg
conf ð−Q2Þ ¼ C0 Λ

4

Q4

ffiffiffiffiffiffiffiffi
πβ0
3

r
FðQ2Þ; ð4:13Þ

where

FðQ2Þ ¼ ðasðQ2ÞÞ3=2
X∞
n¼1

ncne−
n2
3
β0asðQ2Þ: ð4:14Þ

The power correction (4.13), derived in a formal way,
contains the unknown constant C0. As in the previous
section, we define a dimensionful parameter G2

conf by the
relation

C0Λ4

ffiffiffiffiffiffiffiffi
πβ0
3

r
¼ G2

conf ; ð4:15Þ

similar to (3.7). Then the dimension d ¼ 4 power correc-
tion in the scheme based on conformal mapping of the
Borel plane, predicted by resurgence, is written as

DOPE
4;confð−Q2Þ ¼ FðQ2Þ

Q4
G2

conf : ð4:16Þ

Compared to the standard power correction (3.2), the
expression (4.16) contains the additional function FðQ2Þ,

defined in (4.14). Also, the arbitrary parameter G2
conf

appearing in this expression cannot be interpreted as a
gluon condensate. As shown already in the previous
section, the expression of the power corrections depend
on the form in which the perturbative part is written.
Before ending this section, it is of interest to inves-

tigate the convergence of the series appearing in the
definition (4.14) of the function F. As discussed in [9], if
the Borel transform BD̂ðuÞ consists from a finite sum of
poles or branch points on the real axis, the coefficients cn
of the expansion (2.9) are bounded as jcnj < expð ffiffiffi

n
p Þ,

and the perturbative series (2.12) is convergent along the
circle jsj ¼ m2

τ . In order to test the convergence of the
series (4.14) along the circle, we consider the ratio

rn ¼
ncn expð−n2ξÞ

ðn − 1Þcn−1 expð−ðn − 1Þ2ξÞ ; ð4:17Þ

where ξ ¼ β0Reasð−sÞ=3. Using the above estimate of cn
we obtain, for large n,

rn ∼ expð1=ð2 ffiffiffi
n

p Þ − 2nξÞ ð4:18Þ

which implies

lim
n→∞

rn < 1; ð4:19Þ

since ξ > 0 for s on the circle jsj ¼ m2
τ . According to the

ratio test, the series appearing in (4.14) is convergent.
Therefore, for a finite number of poles and branch points
in the Borel transform BD̂, both the modified perturbative
series (2.12) and the series entering the d ¼ 4 power
correction (4.14) are convergent in a region of the s
complex plane, in particular on the circle jsj ¼ m2

τ . We
shall exemplify numerically this statement in the next
section.

V. NUMERICAL AND
PHENOMENOLOGICAL IMPLICATIONS

To illustrate the properties of the function F, we show
first in Fig. 1 the expression (4.14) with the series truncated
at n ≤ 3, calculated using the low-order coefficients cn
from (2.10) and the one-loop coupling (3.5) with
Λ ¼ 0.2 GeV, which gives αsðm2

τÞ ¼ 0.32, for Q2 in a
range of the Euclidian axis. One may note the slow
decrease of FðQ2Þ with increasing Q2. In Fig. 2 we show
the real and the imaginary parts of F, calculated with the
same input, for complex Q2 ¼ −s along the circle
s ¼ m2

τeiϕ, as functions of ϕ.
Our results have implications for the calculation of the

spectral function moments

δð0ÞW ¼ 1

2πi

I
jsj¼s0

ds
s
Wðs=s0ÞD̂ðsÞ; ð5:1Þ
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which are important for the determination of the strong
coupling αs from the data on hadronic τ decay. Since

H
ds
s
sj

s2

is nonzero only for j ¼ 2, the contribution of the standard
power correction (3.2) due to the gluon condensate van-
ishes identically if the weight function W contains only
terms sj with j ≠ 2. In [6], these moments are referred to as
“gluon condensate suppressed moments.” An example is
the kinematical weight, WτðxÞ ¼ ð1 − xÞ3ð1þ xÞ, entering
the expression of the total hadronic decay rate of the τ
lepton.
The presence of logarithmic factors in the expression of

the power correction modifies this result, leading to non-
zero values also for terms sj with j ≠ 2. For the standard
OPE, these contributions are tiny and can be neglected in
practical applications [4,6]. On the other hand, due to the
function F, the contribution of the power correction (4.16)
to moments with j ≠ 2 can be more substantial.

For illustration, we shall investigate the spectral func-
tion moments in the framework based of conformal
mappings, using for generating the higher-order perturba-
tive coefficients a model proposed in [4] and used after-
ward in many studies of the QCD Adler function (see for
instance [6–8,13–15,17]). In this model, the Adler func-
tion is defined as a PV-regulated Laplace-Borel integral,
with the Borel transform written in terms of the few
infrared and ultraviolet renormalons

BDðuÞ¼BUV
1 ðuÞþBIR

2 ðuÞþBIR
3 ðuÞþdPO0 þdPO1 u; ð5:2Þ

parametrized as

BIR
p ðuÞ ¼ dIRp

ðp − uÞγp ½1þ b̃1;pðp − uÞ þ � � ��; ð5:3Þ

BUV
p ðuÞ ¼ dUVp

ðpþ uÞγ̄p ½1þ b̄1;pðpþ uÞ þ � � ��: ð5:4Þ

Here γp; γ̄p; b1;p, and b̄1;p are determined from renorm-
alization-group arguments and the free parameters have
been obtained in [4] as

dUV1 ¼−1.56×10−2; dIR2 ¼ 3.16; dIR3 ¼−13.5;

dPO0 ¼ 0.781; dPO1 ¼ 7.66×10−3; ð5:5Þ

by the requirement to reproduce the perturbative coeffi-
cients cn;1 in MS scheme for n ≤ 4, given in (2.4), and the
estimate c5;1 ¼ 283.
In Fig. 3 we present the results of our analysis for the

kinematical moment and other three moments considered in
recent studies. Except the second one,WðxÞ ¼ ð1 − xÞ3, all
are “gluon condensate suppressed moments,” i.e., do not
contain terms proportional to s2. With red points we present
the results of the perturbative series improved by conformal
mappings, given above in Eqs. (2.11)–(2.13). We emphasize
that this corresponds to the CIPT formulation, which, as
discussed in [9], has better properties than FOPT for
expansions based on conformalmappings.With green points
we show the contributions of the power correction (4.16),
with the functionF defined by the series (4.14). In both cases
the series have been truncated at the order n. We took s0 ¼
m2

τ and used αsðm2
τÞ ¼ 0.32. Finally, we adopted for the

normalization of (4.16) the value G2
conf ¼ 0.01 GeV4. We

recall that this parameter is arbitrary, and the magnitude
similar to that of the standard gluon condensate quoted
below (3.2) has no particular significance.
The results show the impressive convergence of both

the perturbative and nonperturbative series up to a high
truncation order n. We recall that for the perturbative part
the convergence was proved in [9] and was noticed

0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

FIG. 2. Real part (solid line) and imaginary part (dashed line) of
the function Fð−sÞ, along the circle s ¼ m2

τeiϕ.
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FIG. 1. The function FðQ2Þ defined in (4.14), truncated at
n ≤ 3, on the Euclidian axis Q2 > 0.
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numerically in the previous papers [13–15,17], while for
the nonperturbative part the convergence was proved in the
previous section of this paper.
We note also that, for the reasonable choice of G2

conf
quoted above, the contribution of the power corrections is
considerably smaller than that of the perturbative part. The
only exception is the second moment, where the non-
perturbative contribution becomes larger than the pertur-
bative one above a certain order n. This is explained by the
fact that the weight of this moment contains a term
proportional to s2, i.e., it is not a “gluon condensate
suppressed moment” in the terminology of [6]. Thus, the
pattern noticed for the contribution to the moments of the
standard OPE is preserved qualitatively by the power
correction (4.16), with of course some corrections brought
by the function F. The remark is useful for choosing the
adequate moments for a phenomenological analysis of the
data on hadronic decay of the τ lepton, which will allow
also the determination of the normalization G2

conf .

VI. SUMMARY AND CONCLUSIONS

In the present work we investigated the power correc-
tions to the modified perturbative series (2.12) based on
conformal mapping of the Borel plane. As recalled in
Sec. II, the expansion functions defined in (2.13) are
singular at the origin of the coupling plane, exhibiting a
nonperturbative behavior. So, unlike the standard expan-
sions in powers of the coupling, which are holomorphic
functions of as when truncated at finite orders, the modified
perturbative expansion (2.12) exhibits, even at finite orders,
a singular behavior, much like the expanded function itself.
Therefore, it is reasonable to expect that the additional
nonperturbative terms, if present, will be different from the
standard power corrections (in [17] it was even assumed
that these terms can be neglected).
The power corrections to the standard perturbative series

in QCD, proposed for the first time in [34], have been
obtained by extending the operator product expansion to
the nonperturbative regime. For the expansions based on

0 5 10 15 20 25

Perturbative order n
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FIG. 3. Spectral function moments in the framework based on conformal mapping: perturbative series (red points) and power
corrections (green points), as functions of the perturbative order n. The multirenormalon Borel model proposed in [4] was used for
generating the higher-order perturbative coefficients.
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conformal mapping, a physical argument for generating the
power corrections is not evident. Therefore, we resorted to
the mathematical resurgence theory, specifically to the
algorithm described in [23–25] for the solutions of differ-
ential equations. The algorithm requires the knowledge of
the Borel transform of the perturbative series, and expresses
the additional nonperturbative contribution in terms of the
discontinuity of this function across the positive axis of the
Borel plane. The algorithm has been used in [30,31] for
deriving the resurgent representation of the Adler function
in the large-β0 approximation [36–38], when the exact
expression of the Borel transform is known.
In full QCD, the Borel transform of the standard

perturbative expansion in not known exactly. In Sec. III
we illustrated the algorithm given in [23–25] in the simple
case of a single branch point at u ¼ 2, showing that the
nonperturbative terms depend on the form of the perturba-
tive part.
In Sec. IV we derived the nonperturbative corrections to

the perturbative expansion (2.12) based on conformal
mapping of the Borel plane. In this case the perturbative
expansion is already expressed as a Laplace-Borel inte-
gral, allowing the straightforward application of the
algorithm of [23–25]. The expression of the dominant
power correction is given in Eq. (4.16). Compared to the
standard term (3.2), it contains the additional function

FðQ2Þ, defined in (4.14) as a series, which was shown to
converge. We emphasize also that the quantity denoted as
G2

conf , defined in (4.15), is an arbitrary parameter, with no
obvious physical interpretation. One can speculate that it
should be small, since the perturbative expansion (2.12)
already captures the singular behavior of the Adler
function at as ¼ 0.
The properties of the nonperturbative corrections derived

in this paper have been discussed in Sec. V for several
spectral moments of interest for the determination of the
strong coupling from hadronic τ decays. Using a Borel
model for generating higher-order perturbative coefficients
of the Adler function, we obtained a remarkable conver-
gence of both the perturbative series and the nonperturba-
tive one in the framework based on conformal mapping.
Also, for a reasonable normalization of the power correc-
tions, their contribution is much smaller than the perturba-
tive one for all the moments where also the standard gluon
condensate is suppressed.
The results of this paper, besides their conceptual

interest, are relevant for the determination of the strong
coupling from data on hadronic τ decay in the framework
based on the conformal mapping of the Borel plane. We
plan to present a detailed phenomenological analysis in a
future work.
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