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We use the diffusion Monte Carlo (DMC) method to calculate the doubly heavy tetraquark Tcc system in
two kinds of constituent quark models, the pure constituent quark model AL1/AP1 and the chiral
constituent quark model. When the discrete configurations are complete and no spatial clustering is
predetermined, the AL1/AP1 model gives an energy of Tcc close to the DD� threshold, and the chiral
constituent quark model yields a deeply bound state. We further calculate all doubly heavy tetraquark
systems with JP ¼ 0þ; 1þ; 2þ, and provide the binding energies of systems with bound states. The IðJPÞ ¼
0ð0þÞ bcn̄ n̄, 0ð1þÞ bbn̄ n̄, 0ð1þÞ bcn̄ n̄, 1

2
ð1þÞ bbs̄ n̄ systems have bound states in all three models. Since

the DMC method has almost no restriction on the spatial part, the resulting bound states have greater
binding energies than those obtained in previous works.

DOI: 10.1103/PhysRevD.109.074001

I. INTRODUCTION

The investigations of doubly heavy tetraquark states
QQq̄ q̄ (Q ¼ c, b, q ¼ u, d, s) can be traced back to forty
years ago. In the 1980s, several works used the non-
relativistic quark models to study whether a bound state of
QQq̄ q̄ exists below the dimesonQq̄ threshold [1–3]. It was
found that a bound state with MðQQq̄ q̄Þ < 2MðQq̄Þ can
always occur when mQ

mq
is sufficiently large. The bound state

system of QQq̄ q̄ has a very characteristic structure of the
baryon type Q̄0q̄ q̄, reflecting the heavy antiquark-diquark
symmetry [2]. After that, numerous theoretical studies had
concentrated on double-heavy tetraquark systems using
various approaches, including the color–magnetic interaction
model [4–6], nonrelativistic quark model [1–3,7–19], rela-
tivized quark model [20], relativistic quark model [21,22],
hadronic molecular picture [23–26], QCD sum rule [27–31],
lattice QCD [32–36], heavy-quark symmetry [37–39], and
others [40,41].
In 2021, the LHCb collaboration observed the first doubly

charmed tetraquark state Tþ
ccð3875Þ in the D0D0πþ mass

spectrum [42,43]. Its mass is very close to the D�þD0

threshold, with a binding energy of only about 300 keV.
It is a statewith quark composition ccn̄ n̄ (n ¼ u,d) favoring
the quantum number JP ¼ 1þ. The experimental findings
have sparked renewed interest in doubly heavy tetraquark
states [44–63]. One can see more comprehensive reviews
in Refs. [64–69]. The discovery of Tþ

cc sheds light on the
research of multiquark states, and suggests the possible
existence of other doubly heavy tetraquark states.
A minimal constituent quark model used to describe

multiquark states typically incorporates the one-gluon-
exchange interaction and the confinement effect. Some
quark models may also encompass additional interactions,
such as one-boson exchange (OBE) interactions. They
include pseudoscalar meson exchange interactions stem-
ming from the spontaneous breaking of chiral symmetry,
vector meson exchange interactions, and scalar meson
exchange interactions. Based on the inclusion or exclusion
of the OBE interaction, constituent quark models can be
broadly categorized into two types: the pure constituent
quark model (PCQM) without OBE and the chiral constitu-
ent quarkmodel (χCQM)withOBE.One of the objectives of
this study is to investigate the difference between these two
types of quark model interactions concerning their predic-
tions of the doubly heavy tetraquark states.
With the quark interactions, one can solve the four-body

Schrödinger equation based on the variational method via
the basis expansions. Apparently, the precision of the
solution depends on the choice of trial functions or
basis functions. In the practical calculation, the diquark-
antidiquark structure and the dimeson structure are two
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widely used structures to investigate tetraquark states. The
diquark-antidiquark structure has a color wave function
where two quarks (antiquarks) combine first and then
form a color singlet together, namely ½ðqqÞ3̄cðq̄ q̄Þ3c �1c
and ½ðqqÞ6cðq̄ q̄Þ6̄c �1c . In the spatial part, one can choose
the corresponding Jacobi coordinates to depict the corre-
lation as shown in Fig. 1, where the diquark and antidiquark
form two clusters separately and then form the tetraquark
state. The dimeson structure usually restricts the color wave
function to be ½ðqq̄Þ1cðqq̄Þ1c �1c . It should be noticed that
even if the ½ðqq̄Þ8cðqq̄Þ8c �1c is not included, the color bases
with two dimeson structures by exchanging (anti)quarks
is complete, though they are not orthogonal. In principle,
one could choose different structures for wave functions
of discrete quantum numbers and spatial wave functions.
For example, the spatial wave functions are the dimeson
structure, while allowing the color part to contain both
½ðqq̄Þ1cðqq̄Þ1c �1c and ½ðqq̄Þ8cðqq̄Þ8c �1c . If it is such a case, we
will specify it explicitly.
In previous investigations of the ccn̄ n̄ system with

ðI; JÞ ¼ ð0; 1Þ, it has been noted that the choice of different
structural configurations yields disparate outcomes. For a
PCQM, Yang et al. obtained a shallow bound state under
the dimeson structure, while they found no bound state
under the diquark-antidiquark structure [12]. For the
χCQM, they obtained a shallow bound state under
the dimeson structure and a deeply bound state under
the diquark-antidiquark structure. Similar discrepancy was
also observed in other χCQMworks [16,47,50,52]. In other
words, to accurately determine the ground state energies of
the multiquark states using a variational method-based
approach, one must either conceive a good conjecture about
the clustering behavior of the wave functions or employ
very general trial functions. Alternatively, the diffusion
Monte Carlo (DMC) method is a promising technique to
precisely and efficiently ascertain ground state energies,
without the need for a priori assignment of clustering
behaviors.
DMC has been well used in the simulations of the

molecular physics [70], solid physics [71], and nuclear
physics [72]. In hadronic physics, the DMC method has
been used in quark models in several works [73–79]. In the
DMC formalism, the distribution of the so-called walkers is
used to represent the spatial wave function, which gradu-
ally evolves to the ground state over time in principle. The

DMC approach does not select a specific basis for the spatial
wave function, resulting in a general wave function space.
This approach could be more suitable for exploring the
discrepancy caused by predetermined clustering structures.
This paper is arranged as follows. In Sec. II, the diffusion

Monte Carlo method is introduced. In Sec. III, the
Hamiltonians with different types of potential models are
presented. In Sec. IV, the construction of the wave function
for all doubly heavy tetraquark systems with JP ¼
0þ; 1þ; 2þ is presented. In Sec. V, we give the numerical
results for the Tcc system in different models, and the
bound states of all other doubly heavy tetraquark systems
with JP ¼ 0þ; 1þ; 2þ. Finally, a brief discussion and
summary are given in Sec. VI.

II. DIFFUSION MONTE CARLO METHOD

We adhere to the formalism presented in Ref. [78]. The
DMC algorithm can be derived from the imaginary-time
Schrödinger equation (in natural units ℏ ¼ c ¼ 1) and its
subsequent solution.

−
∂ΨðR; tÞ

∂t
¼ ½Ĥ − ER�ΨðR; tÞ; ð1Þ

Ĥ ¼ −
Xm
i¼1

1

2mi
∇2
ri þ VðRÞ; ð2Þ

ΨðR; tÞ ¼
X
i

ciΦiðRÞe−½Ei−ER�t; ð3Þ

where R≡ ðr1; r2;…; rmÞ represents the positions of m
particles. ER is the shift of energy, and ΦiðRÞ is the
eigenfunctions. When ER is taken close to the ground
state energy E0, the wave function ΨðR; tÞ will approach
Φ0ðRÞ after a sufficiently long time evolution (as long as c0
is not too small), and other components will be suppressed
exponentially [80].
The Eq. (1) has a solution in the form of path integral,

ΨðR0; tþ ΔtÞ ≈
Z

dR1dR2dRG0

�
R0;R1;

Δt
2

�

×G1ðR1;R2;ΔtÞG0

�
R2;R;

Δt
2

�
×ΨðR; tÞ; ð4Þ

where

G1ðR0;R; tÞ ¼
Ym
i¼1

�
2πt
mi

�
−3=2

e−
mi
2t ðr0i−riÞ2 ;

G0ðR0;R; tÞ ¼ e−ðVðRÞ−ERÞtδðR0 − RÞ; ð5Þ

Theoretically, this form of the solution can be readily
implemented using an algorithm. In this algorithm, a

FIG. 1. Two structures for the tetraquark system. (a) diquark-
antidiquark structure. (b) dimeson structure.
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substantial number of walkers sample the wave function
ΨðR; tÞ and the distribution of walkers represents the
amplitude of ΨðR; tÞ.
However, this algorithm is usually unstable due to the

drastic statistic fluctuation.We need to further use the impor-
tance sampling technique to reduce the fluctuation [81].
In this approach, rather than directly sampling the wave
function ΨðR; tÞ, we sample a newly defined function,
denoted as fðR; tÞ,

fðR; tÞ≡ ψTðRÞΨðR; tÞ; ð6Þ

where ψTðRÞ is a time-independent importance function,
which should be chosen as close toΦ0ðRÞ as possible. In this
work, we use the form following Ref. [74],

ψTðRÞ ¼
Y
i<j

e−aijrij : ð7Þ

Here aij are adjustable constants and their values are set to
minimize the fluctuation.
The Schrödinger equation with importance sampling

reads

−
∂fðR; tÞ

∂t
¼ −

Xm
i¼1

1

2mi
∇2
rifðR; tÞ

þ
Xm
i¼1

1

2mi
∇ri

�
FiðRÞfðR; tÞ

�
þ ½ELðRÞ − ER�fðR; tÞ; ð8Þ

where ELðRÞ ¼ ψTðRÞ−1ĤψTðRÞ is the local energy,
FiðRÞ ¼ 2ψTðRÞ−1∇riψTðRÞ is the drift force acting on
particle i. The path integral solution of Eq. (8) is

fðR0; tþ ΔtÞ ≈
Z

dR1dR2dR3dR4dR

×G3

�
R0;R1;

Δt
2

�
G2

�
R1;R2;

Δt
2

�
×G1ðR2;R3;ΔtÞ

×G2

�
R3;R4;

Δt
2

�
G3

�
R4;R;

Δt
2

�
× fðR; tÞ; ð9Þ

with

G1ðR0;R; tÞ ¼
Ym
i¼1

�
2πt
mi

�
−3=2

e−
mi
2t ðr0i−riÞ2 ;

G2ðR0;R; tÞ ¼
Ym
i¼1

δ

�
r0i − ri −

FiðRÞ
2mi

t

�
;

G3ðR0;R; tÞ ¼ e−ðELðRÞ−ERÞtδðR0 − RÞ: ð10Þ

The DMC algorithm employed to obtain the solution
described above, along with the formalism utilized to
address the coupled-channel, has been comprehensively
elucidated in Ref. [78].

III. HAMILTONIAN

The nonrelativistic Hamiltonian of a four-quark system
reads

H ¼
X4
i

�
mi þ

p2i
2mi

�
− TCM þ V; ð11Þ

where mi and pi are the mass and momentum of quark i.
TCM is the center-of-mass kinematic energy, which auto-
matically vanishes in the evolution, because the system will
tend to the lowest energy state.
In this study, we will employ two types of nonrelativistic

quark models: pure constituent quark model (PCQM) and
chiral constituent quark model (χCQM). The primary
distinction between these two types is that the χCQM
incorporates the OBE between quarks, a feature not
included in the PCQM.
For the PCQM, we adopt AL1 and AP1 quark

models [8,82], which contain the one-gluon-exchange
(OGE) interaction and the confinement effect. The poten-
tial reads

Vpure
ij ¼ −

3

16
λci · λ

c
j

�
−

κ

rij
þ λrpij − Λ

þ 8πκ0

3mimj

expð−r2ij=r20Þ
π3=2r30

si · sj

�
; ð12Þ

where r0 ¼ Að2mimj

miþmj
Þ−B. The power parameter p of the

confinements are 1 and 2=3 for AL1 and AP1, respectively.
λc represents the SU(3) colorGell-Mannmatrix. si is the spin
operator of quark i. The parameters of the two models are
taken fromRef. [82]. There are some similarmodels, such as
Barnes, Godefrey, and Swanson model [83]. However, the
parameters for the light quarks were not determined.
For the χCQM, we refer to the model introduced in

Refs. [84,85] as the Salamanca model (SLM), which
encompasses the OBE interaction, OGE interaction, and
a confinement potential with a screening effect,

Vchiral
ij ¼ VOBE

ij þ VOGE
ij þ VCON

ij : ð13Þ

In this work, only the central term is considered.
The OGE potential includes a Coulomb term and a spin-

dependent color-magnetic term,
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VOGE
ij ¼ 1

4
αijs λci · λ

c
j

×

"
1

rij
−

1

6mimj
σi · σj

e−rij=r0ðμijÞ

rijr20ðμijÞ

#
; ð14Þ

where r0ðμijÞ ¼ r̂0
μij
, μij is the reduced mass of quark i and j.

λc represents the SU(3) color Gell-Mann matrix. The
effective scale-dependent strong coupling constant αijs is
given by

αijs ¼ α0

lnðμ
2
ijþμ2

0

Λ2
0

Þ
: ð15Þ

The confinement part is

VCON
ij ¼ λci · λ

c
j ½−acð1 − e−μcrijÞ þ Δ�: ð16Þ

This screened form is introduced to simulate the string
breaking effect [84]. It exhibits a linear behavior at short
distances and becomes constant at large distances.
The meson exchange interactions only occur between the

light quarks q ¼ u, d, s. The OBE interactions read

VOBE
ij ¼ Vπ

ij

X3
a¼1

ðλai · λaj Þ þ VK
ij

X7
a¼4

ðλai · λaj Þ

þ Vη
ij½cos θPðλ8i · λ8jÞ − sin θP�

þ Vσ
ij; ð17Þ

where

Vχ
ij ¼

g2ch
4π

m2
χ

12mimj

Λ2
χ

Λ2
χ −m2

χ
mχðσi · σjÞ

×

�
YðmχrijÞ −

Λ3
χ

m3
χ
YðΛχrijÞ

�
; χ ¼ π; K; η;

Vσ
ij ¼ −

g2ch
4π

Λ2
σ

Λ2
σ −m2

σ
mσ

�
YðmσrijÞ −

Λσ

mσ
YðΛσrijÞ

�
: ð18Þ

YðxÞ is the Yukawa function YðxÞ ¼ e−x=x. rij is the
relative distance between quark i and j. σi is the spin
Pauli matrix for quark i. λa represents the SU(3) flavor
Gell-Mann matrix. For interaction between qiq̄j, λai · λ

a
j

should be replaced by λai · ðλaj ÞT. mπ , mK , and mη are the
pseudoscalar meson masses, and mσ is determined through
m2

σ ∼m2
π þ 4m2

u;d as suggested by Ref. [86]. The angle θP
is introduced to obtain the physical η meson instead of the
flavor octet state η8. The chiral coupling constant gch can be
determined from the πNN coupling constant through

g2ch
4π

¼
�
3

5

�
2 g2πNN
4π

m2
u;d

m2
N
: ð19Þ

The parameters of SLM listed in Table I are taken from
Ref. [85], which are fitted over all meson spectra.
The calculated meson masses in AL1, AP1, and SLM

models are shown in Table II. It can be seen that these
potential models can describe the experimental meson
spectra well.

IV. WAVE FUNCTION CONSTRUCTION

The experimental Tþ
ccð3875Þ [42,43] is a candidate of the

ccn̄ n̄ (n ¼ u and d) tetraquark state with quantum number

TABLE I. SLM parameters [85].

Quark masses mn (MeV) 313
ms (MeV) 555
mc (MeV) 1763
mb (MeV) 5110

Goldstone bosons mπ ðfm−1Þ 0.70
mσ ðfm−1Þ 3.42
mK ðfm−1Þ 2.51
mη ðfm−1Þ 2.77
Λπ ðfm−1Þ 4.20
Λσ ðfm−1Þ 4.20
ΛK ðfm−1Þ 4.21
Λη ðfm−1Þ 5.20
g2ch=4π 0.54
θp ð°Þ −15

OGE α0 2.118
Λ0 ðfm−1Þ 0.113
μ0 (MeV) 36.976

r̂0 ðMeV · fmÞ 28.327

Confinement ac (MeV) 507.4
μc ðfm−1Þ 0.576
Δ (MeV) 184.432

TABLE II. The masses (in MeV) of mesons in AL1, AP1, and
SLM models, compared with the experimental results taken from
Ref. [87]. The experimental results are averaged over the isospin
multiples.

Mesons mExp mAL1 mAP1 mSLM

Bs 5367 5362 5356 5348
B 5279 5294 5312 5275
Ds 1968 1964 1955 1984
D 1867 1863 1883 1896
B�
s 5415 5417 5419 5395

B� 5325 5351 5368 5319
D�

s 2112 2102 2108 2112
D� 2009 2017 2034 2019

MA, MENG, CHEN, and ZHU PHYS. REV. D 109, 074001 (2024)

074001-4



ðIÞJP ¼ ð0Þ1þ. We sequentially label the (anti-)quarks of
ccn̄ n̄ as 1, 2, 3, 4. The two heavy quarks, designated as 1
and 2, are indistinguishable, as are the two light quarks,
labeled as 3 and 4. The construction of the wave function
needs to fulfill the Pauli principle. For I ¼ 0, the flavor
wave function is symmetric for cc, while antisymmetric for
n̄ n̄. The remaining color-spin-spatial wave functions
allowed by the Pauli principle are

jT0
1i ¼

h
ð12Þ1s

3̄c
ð34Þ0s3c

i
1s

1c
ψSS
1 ð12; 34Þ; ð20Þ

jT0
2i ¼

h
ð12Þ0s6cð34Þ

1s
6̄c

i
1s

1c
ψSS
2 ð12; 34Þ; ð21Þ

jT0
3i ¼

h
ð12Þ1s

3̄c
ð34Þ1s3c

i
1s

1c
ψSA
3 ð12; 34Þ; ð22Þ

jT0
4i ¼

h
ð12Þ1s6cð34Þ

1s
6̄c

i
1s

1c
ψAS
4 ð12; 34Þ; ð23Þ

jT0
5i ¼

h
ð12Þ0s

3̄c
ð34Þ1s3c

i
1s

1c
ψAA
5 ð12; 34Þ; ð24Þ

jT0
6i ¼

h
ð12Þ1s6cð34Þ

0s
6̄c

i
1s

1c
ψAA
6 ð12; 34Þ; ð25Þ

where S represents exchange symmetric, and A represents
exchange antisymmetric. For the system with isospin
I ¼ 1, the flavor wave function for n̄ n̄ is symmetric.
The remaining color-spin-spatial wave functions need to
be changed accordingly

jT1
1i ¼

h
ð12Þ1s

3̄c
ð34Þ1s3c

i
1s

1c
ϕSS
1 ð12; 34Þ; ð26Þ

jT1
2i ¼

h
ð12Þ1s6cð34Þ

1s
6̄c

i
1s

1c
ϕAA
2 ð12; 34Þ; ð27Þ

jT1
3i ¼

h
ð12Þ1s

3̄c
ð34Þ0s3c

i
1s

1c
ϕSA
3 ð12; 34Þ; ð28Þ

jT1
4i ¼

h
ð12Þ1s6cð34Þ

0s
6̄c

i
1s

1c
ϕAS
4 ð12; 34Þ; ð29Þ

jT1
5i ¼

h
ð12Þ0s

3̄c
ð34Þ1s3c

i
1s

1c
ϕAS
5 ð12; 34Þ; ð30Þ

jT1
6i ¼

h
ð12Þ0s6cð34Þ

1s
6̄c

i
1s

1c
ϕSA
6 ð12; 34Þ: ð31Þ

In addition to the Tcc states, we will calculate the ground
states of all doubly heavy tetraquark systems with
JP ¼ 0þ; 1þ; 2þ. The two heavy quarks could be bb, cc,
and bc. The two light antiquarks could be n̄ n̄, s̄ s̄, and s̄ n̄.
In Table III, we list them specifically and their correspond-
ing dimeson thresholds. We use the same methods to
construct the wave functions satisfying the Pauli principle.
The spin-color configuration channels included in our
calculation are listed in Table IV. For each channel, the
exchange symmetry of its spatial part should be determined
according to the quark composition (and isospin) of the
system. In contrast to other frameworks, such as those
discussed in Refs. [88,89], the calculations do not presume
the clustering behavior of quarks.

TABLE III. The doubly heavy tetraquark states explored in this study and their associated dimeson thresholds.

Thresholds

System I 0þ 1þ 2þ

ccn̄ n̄ 0 ðD1DÞP=ðD�
0D

�ÞPa DD� ðD1DÞP=ðD�
0D

�ÞP
1 DD DD� D�D�

ccs̄ n̄ 1
2

DDs D�Ds=D�
sD D�D�

s

ccs̄ s̄ 0 DsDs DsD�
s D�

sD�
s

bbn̄ n̄ 0 ðB̄1B̄ÞP=ðB̄�
0B̄

�ÞP B̄B̄� ðB̄1B̄ÞP=ðB̄�
0B̄

�ÞP
1 B̄ B̄ B̄B̄� B̄�B̄�

bbs̄ n̄ 1
2

B̄B̄s B̄�
s B̄=B̄�B̄s B̄�B̄�

s

bbs̄ s̄ 0 B̄sB̄s B̄sB̄�
s B̄�

s B̄�
s

bcn̄ n̄ 0 DB̄ D�B̄=DB̄� D�B̄�
1 DB̄ D�B̄=DB̄� D�B̄�

bcs̄ n̄ 1
2

B̄sD=DsB̄ D�
s B̄=DsB̄�=D�B̄s=DB̄�

s D�
sB̄�=B̄�

sD�

bcs̄ s̄ 0 B̄sDs D�
s B̄s=DsB̄�

s B̄�
sD�

s

aThere is no relevant S-wave thresholds of two ground state mesons in this quantum numbers considering the exchange symmetry of
two identical bosons. The subscript represents the relative angular momentum is P-wave.
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V. NUMERICAL RESULTS

In our simulation, we employ 1 × 104 walkers to imple-
ment the DMC algorithm. The ensemble undergoes 2 × 104

steps, each with a time increment of Δt ¼ 0.01 GeV−1,
to ensure stability. The resulting energy is averaged over
the last 15000 steps to mitigate fluctuations. To estimate
statistical uncertainty, we consider correlations among
adjacent steps. To achieve this, we divide the steps into
blocks and calculate block averages. We observe that for
the four-quark systems, the blocks become uncorrelated
when the block size reaches 1000 steps. Consequently, we
partition the last 15000 steps into 15 blocks, each consist-
ing of 1000 steps. We then employ the Jackknife resam-
pling method [90] to calculate the uncertainty, which is
found to be less than 1 MeV. For more details about the
statistical uncertainty analysis, refer to Ref. [78].

A. Pure constituent quark model

The calculation is performed using the AL1 and AP1
potentials. We first give the results of the ðIÞJP ¼ ð0Þ1þ
system, which is the candidate of the experimental Tcc

state. A complete set of six spin-color-spatial configura-
tions fjT0

1i; jT0
2i;…; jT0

6ig is included. The results are
shown in Table V. The binding energy is zero and
−1 MeV for the AL1 and AP1 potentials respectively.
With the current level of uncertainty (less than 1 MeV), it is
still inconclusive whether they are below threshold or not.
But the results indicate that if they exist, the binding
energies are likely to be very small.
We further calculate the ground states of all doubly

heavy tetraquark systems with JP ¼ 0þ; 1þ; 2þ. The sys-
tems with bound state solutions in AL1 and AP1models are
shown in Table V. One can identify the unbound system by
comparing the Tables V and III. There could be resonance
solutions for these systems, which will not be investigated
in this work.
Comparing our results with those obtained in the same

potential models using the variational approach in Ref. [8],
we can find that most of our masses are lower than theirs,
and more bound states are obtained. In Ref. [18], Meng
et al. adopted a tuned AP1 model, using Gaussian expan-
sion method (GEM) [92] and obtained a binding energy of
−23 MeV. Due to the differences in parameters, only a

TABLE IV. The spin-color channels included for all JP ¼ 0þ; 1þ; 2þ. The spin part notations are
χAA0 ¼ ½ð12Þ0sð34Þ0s �0s , χSS0 ¼ ½ð12Þ1sð34Þ1s �0s , χSS1 ¼ ½ð12Þ1sð34Þ1s �1s , χSA1 ¼ ½ð12Þ1sð34Þ0s �1s , χAS1 ¼ ½ð12Þ0sð34Þ1s �1s ,
χSS2 ¼ ½ð12Þ1sð34Þ1s �2s . The color part notations are cAA ¼ ½ð12Þ3̄cð34Þ3c �1c , c

SS ¼ ½ð12Þ6cð34Þ6̄c �1c .

JP Spin ⊗ color configurations

0þ χAA0 ⊗ cAA χSS0 ⊗ cAA χAA0 ⊗ cSS χSS0 ⊗ cSS

1þ χSS1 ⊗ cAA χSA1 ⊗ cAA χAS1 ⊗ cAA χSS1 ⊗ cSS χSA1 ⊗ cSS χAS1 ⊗ cSS

2þ χSS2 ⊗ cAA χSS2 ⊗ cSS

TABLE V. Doubly heavy tetraquark systems with bound state solutions in AL1, AP1, and SLMmodels. I is the isospin. Eth, E andΔE
are the corresponding lowest dimeson threshold, system energy, and binding energy (in MeV) respectively in our calculations. “NB”
represents no bound solution. We also present the ΔE in literature using the same interactions. “…” represents it was not calculated in
the corresponding work.

AL1 AP1 SLM

JP System I Thresholds Eth E ΔE [8] Eth E ΔE [8] Eth E ΔE [91]

0þ bbn̄ n̄ 1 B̄ B̄ NB � � � NB � � � NB −13.1
bcn̄ n̄ 0 DB̄ 7157 7136 −21 1 7195 7164 −31 −13 7171 6986 −185 � � �
bcs̄ n̄ 1

2
B̄sD=DsB̄ NB � � � NB � � � 7244 7243 −1 � � �

1þ ccn̄ n̄ 0 DD� 3880 3880 0 11 3917 3916 −1 −1 3915 3759 −156 −0.387
bbn̄ n̄ 0 B̄B̄� 10645 10500 −145 −142 10680 10510 −170 −167 10594 10249 −345 −21.9
bbn̄ n̄ 1 B̄B̄� NB � � � NB � � � NB −10.5
bbs̄ n̄ 1

2
B̄�
s B̄=B̄�B̄s 10711 10660 −51 −56 10724 10667 −57 −61 10667 10653 −14 � � �

bcn̄ n̄ 0 D�B̄=DB̄� 7214 7200 −14 −5 7251 7224 −27 −20 7215 7012 −203 � � �
bcs̄ n̄ 1

2
D�

s B̄=DsB̄�=D�B̄s=DB̄�
s NB � � � NB � � � 7291 7287 −4 � � �

2þ bbn̄ n̄ 1 B̄�B̄� NB 24 NB 4 NB −7.1
bcn̄ n̄ 0 D�B̄� 7368 7367 −1 � � � 7402 7400 −2 � � � NB � � �
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qualitative comparison can be made. Our results are
generally consistent with theirs. In Ref. [12], Yang et al.
adopted a quark model which is very similar to the AL1 and
AP1 models. Their results showed that the ðI; JÞ ¼ ð0; 1Þ
ccn̄ n̄ system is unbound under the diquark-antidiquark
structure and bound with a binding energy of −1.8 MeV
under the dimeson structure. If the mixing of these two
structures is taken into account, a deeper bound state of
−23.7 MeV is obtained. For the ðI; JÞ ¼ ð0; 1Þ bbn̄ n̄
system, the diquark-antidiquark and dimeson structures
give the binding energies of −120.9 MeV and −11.5 MeV
respectively, and their mixing gives a deeper −160.1 MeV
binding energy. Our results are basically consistent with
their mixing picture with a loosely bound ccn̄ n̄ state and a
deeply bound bbn̄ n̄ state. This indicates that DMC is
effective even without the priori assignment of the cluster-
ing behaviors.

B. Chiral constituent quark model

As before, we first give the result of the ðIÞJP ¼ ð0Þ1þ
Tcc system. The calculation is performed using the SLM
potential. A complete set of six spin-color-spatial configu-
rations fjT0

1i; jT0
2i;…; jT0

6ig is included. The result is
shown in Table V. It can be seen that the SLM yields a
deeply bound Tcc with a binding energy of −156 MeV.
This indicates that once the spin-color configurations are
complete and the spatial wave function has no presumed
clustering, the χCQMwill give exactly a deeply bound state
instead of a shallow one near the threshold.
Using the SLM, we further calculate the ground states of

all doubly heavy tetraquark systems with JP ¼ 0þ; 1þ; 2þ.
Their corresponding dimeson thresholds are listed in
Table III. The bound states solutions are shown in
Table V. By comparing Tables III and V, one can identify
the unbound systems.
In Ref. [91], Ortega et al. used the same SLM model

and got a very shallow bound 0ð1þÞ ccn̄ n̄ state as listed
in Table V. This is perhaps due to the resonating group
method (RGM) they used. In this method, the meson
wave functions are calculated in advance and input
inside directly, where only the S-wave dimeson structure
is considered. The higher partial wave component inside
the qq̄ pair and the distortion effect of the meson
inside the tetraquark systems are neglected. This signifi-
cantly restricts the wave function space and shifts a
deeply bound state to the vicinity of the threshold.
In the DMC calculations in this work, the spatial wave
function is unclustered with no assumption of either
diquark-antidiquark or dimeson structure, and all
walkers diffuse freely in space. Therefore we can natu-
rally obtain a deeply bound state. Similarly, their Tbb

bound state with quantum number IðJPÞ ¼ 0ð1þÞ is also
shallower than ours. It should be noted that the corre-
sponding threshold of the 0ð0þÞ bbn̄ n̄ system actually

cannot be B̄ B̄, which is forbidden because of the Bose
symmetry.1

In Ref. [52], Deng et al. used a similar χCQM. In the
dimeson structure with only the 1c × 1c color configura-
tion, a bound state with a binding energy of only
−0.34 MeV was found. Even after adding the 8c × 8c
color configuration, it remains a shallow one. For
comparison, we also perform a calculation using
the same model and obtain a deep binding energy of
−110 MeV. The difference arises from the dimeson
S-wave constraint in their variational approach. So essen-
tially, it is for the same reason as described earlier about
RGM. The same situation happens in Ref. [12]. Two
shallow bound states with binding energies of −0.6 and
−0.2 MeV are obtained using two χCQMs under the
dimeson structure.
In Ref. [52], the results of the diquark-antidiquark

structure are also provided. They included two spin-color-
space configurations jT0

1i and jT0
2i, and the resulting binding

energy is −60 MeV, shallower than our −110 MeV.
Comparing with the configurations fjT0

1i; jT0
2i;…; jT0

6ig
included in our calculation, they only considered the two
channels corresponding to the spatial diquark-antidiquark
S-wave wave function. However, the ground state does
have higher partial wave components as explained
earlier, and the remaining four channels with higher partial
wave components should be included. In Ref. [12], Yang
et al. also gives the results under the diquark-antidiquark
structure and under the mixing of the dimeson and
diquark-antidiquark structures. Deeply bound states of
−142.4 MeV and −202.7 MeV are obtained respectively.
The mixing one is deeper because of the larger basis
function space.
There are some other works using the GEM under the

similar χCQM. Their results are qualitatively consistent
with ours. In Ref. [10], Vijande et al. used the same form of
the potential as SLM, but with different parameters. They
considered the spatial diquark-antidiquark structure and
obtained a −129 MeV ccn̄ n̄ bound state and a −341 MeV
bbn̄ n̄ bound state, both with ðS; IÞ ¼ ð1; 0Þ. In Ref. [17],
Tan et al. included both the dimeson and diquark-
antidiquark structures and obtained deeply bound ccn̄ n̄
and bbn̄ n̄ states.

1The B̄ meson is a boson with IðJPÞ ¼ 1
2
ð0−Þ. The total wave

function of two identical B̄mesons has to be exchange symmetric.
When constructing a IðJPÞ ¼ 0ð0þÞ B̄ B̄ total wave function, the
spin part 0s ⊗ 0s → 0s is symmetric. The isospin part 1

2I ⊗
1
2I →

0I is antisymmetric. To satisfy the exchange symmetry of two
boson B̄ B̄, the remaining spatial wave function has to be exchange
antisymmetric, i.e., the orbital angular momentum quantum
number l is odd. However, the parity P becomes ð−1Þl ¼ −1.
Therefore the 0ð0þÞ B̄ B̄ system is forbidden.
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VI. DISCUSSION AND SUMMARY

We perform a diffusion Monte Carlo (DMC) calculation
of the IðJPÞ ¼ 0ð1þÞTcc system and other doubly heavy
tetraquark systems with JP ¼ 0þ; 1þ; 2þ. We use two kinds
of potential models, the PCQM (specifically AL1 and AP1)
that contain the OGE and confinement interactions, as well
as the χCQM (specifically SLM) containing the OGE,
confinement, and OBE potentials.
We include a complete set of six spin-color configura-

tions to perform the DMC evolution with no spatial
clustering assumed. For the PCQM, we are not certain if
there are bound Tcc state due to the limitation of uncer-
tainty. But if it exists, the binding energy will be small.
We further calculate the ground states of all doubly heavy
tetraquark systems with JP ¼ 0þ; 1þ; 2þ and give the
binding energies of the systems with bound state solutions.
Among them, the IðJPÞ ¼ 0ð0þÞ bcn̄ n̄, 0ð1þÞ bbn̄ n̄,
0ð1þÞ bcn̄ n̄, 1

2
ð1þÞ bbs̄ n̄, and 0ð2þÞ bcn̄ n̄ systems are

found to have bound states. Our results are basically
consistent with the mixing picture ones using the
GEM [12], indicating that the DMC method can effectively
avoid the difference in results caused by clustering in GEM.
For the χCQM case, the results show that when the color-

spin-isospin configurations are complete and no spatial
clustering is assumed, the SLM yields a deeply bound state
with a binding energy of −156 MeV. This result is
qualitatively consistent with the works using diquark-
antidiquark structure or the mixing of dimeson and
diquark-antidiquark structure in GEM. The appearance
of the shallow bound states in some previous works are
due to the restricted basis space. While in the DMC
calculations in this work, the spatial wave function is
unconstrained with no assumption of diquark-antidiquark
or dimeson structure. Therefore we can obtain a deeply
bound state that faithfully presents the solution of
the χCQM.
Using SLM, we further calculate the ground states

of all other doubly heavy tetraquark systems with
JP ¼ 0þ; 1þ; 2þ. Among them, the IðJPÞ ¼ 0ð0þÞ bcn̄ n̄,
1
2
ð0þÞ bcs̄ n̄, 0ð1þÞ bbn̄ n̄, 0ð1þÞ bcn̄ n̄, 1

2
ð1þÞ bbs̄ n̄, and

1
2
ð1þÞ bcs̄ n̄ systems are found to have bound states.
The 0ð1þÞ bbn̄ n̄, 1

2
ð1þÞ bbs̄ n̄, 0ð0þ; 1þÞ bcn̄ n̄ are

systems that obtain bound states in all three models. For
0ð1þÞ bbn̄ n̄ and 1

2
ð1þÞ bbs̄ n̄ systems, the lattice QCD

simulations consistently predicted the existence of bound
states [35,61,62,93]. However, for the 0ð0þ; 1þÞ bcn̄ n̄
system, the lattice QCD simulations did not come to the
same conclusion [34,36,61,63].
The inability to directly obtain the experimentally

observed shallow bound state Tþ
ccð3875Þ under the

χCQM may be attributed to several reasons. The first
possible one is that the parameters of the models are
obtained by fitting the hadron spectrum and the hadron-
hadron scattering data. So extending them directly to the

tetraquark systems may no longer be applicable. The
original motivation of the SLM is aimed to depict the
nucleon-nucleon (NN) scattering phase [94] via RGM with
presuming dibaryon clustering behaviors. If one incorpo-
rates the more general correlation of the six quarks, one
perhaps obtains quite different solutions (e.g. deep bound
states) instead of the NN scattering states or deuteron. The
debate over whether the PCQM or χCQM is more suitable
for depicting NN scattering phase shifts has persisted for
many years, as exemplified in [95], but without arriving at a
definitive conclusion. The preceding analysis, grounded on
a single experimental result involving Tcc, does not imply
the superiority of the PCQM over the χCQM. We still have
substantial room for refining the parameters of a chiral quark
model that can effectively describe the tetraquark states.
Second, the calculations at hadron level or under the

dimeson structure usually result in shallow bound states,
which indicates that there may be other mechanisms that
favor the dimeson structure rather than all structures being
equally likely to participate in mixing. One can understand
it through the Born-Oppenheimer approximation. The
potential in constituent quark model should be regarded
as the Born-Oppenheimer (BO) energy in a scenario with
valence quarks as slow degrees of freedom, and sea quarks
and gluons as the fast degrees of freedom. Under the BO
approximation, one can first fix the positions of the valence
quarks and calculate the energy of the systems, so-called
BO energy, which should depend on the position of valence
quarks. In the second step, the BO energy is treated as the
potential of valence quarks, which is the interaction
appearing in the constituent quark models. For valence
quarks with different color configurations, the complicated
dynamics of sea quarks and gluons are quite different,
which are simplified as the flux-tubes with different
topological structures. For example the dimeson configu-
ration in Fig. 1 should be j1⟫ ¼ j½ðqq̄Þ1cðqq̄Þ1c �1cijFT1−1i,
where j½ðqq̄Þ1cðqq̄Þ1c �1ci and jFT1−1i represent the wave
functions of valence quarks (slow degrees of freedom) and
flux-tube (fast degrees of freedom) respectively. The
notation j…⟫ is introduced to discriminate with the naive
valence quark states. In this picture, the matrix elements of
j1⟫, j10⟫, j3⟫ and j6⟫ will depend on both the valence
quark wave function and flux-tube wave functions, where
j10⟫ represent another dimeson state by exchanging quarks.
It is possible that the j1⟫ and j10⟫ are favored in the
tetraquark states considering the dynamics of the fast
degrees of freedom [96]. In this way, it is reasonable to
incorporate the dimeson configurations in tetraquark states
exclusively. One can find a similar picture in Ref. [56].
The recent experimental observation of tetraquark states

provides us with a valuable opportunity to critically
examine the popular quark models on the market and
further advance them, where the diffusion Monte Carlo
method without the preassignment clustering shall play a
pivotal role.
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APPENDIX A: PROPORTIONS
OF CONFIGURATIONS

Due to the high computational cost required for the
calculation of physical quantities related to wave functions
in our current DMC coupled-channel scheme, we give the
proportions of configurations using GEM as in Ref. [97],
where the included discrete quantum number configura-
tions are the same as those in this work. The proportions
of configurations for all systems with bound solutions in
AL1 and SLM models are shown in Tables VI and VII
respectively. Since the AP1 results are close to those of
AL1, we do not show them here. From the results we can

find that the deeply bound state are often dominated by the
3̄c ⊗ 3c component.

APPENDIX B: ROOT-MEAN-SQUARE RADII

We calculate the root-mean-square (rms) radii for all
systems with bound solutions using GEM as Ref. [97]. The
rms radius is defined as

ffiffiffiffiffiffiffiffiffi
hr2iji

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jr2ijjψi
hψ jψi

s
; ðB1Þ

where jψi is the calculated ground state total wave
function. rij is the relative distance between quark i and j.
The results of AL1 and SLM models are shown in
Tables VIII and IX. We denote in the last column of the
tables whether the corresponding state is a compact tetra-
quark state or a molecular one. We can find that the deeply
bound states tend to form compact tetraquark states, and
the shallow bound states tend to form molecular states. For
compact tetraquark states, the heavier the masses of the
quarks, the closer they are to each other.

TABLE VI. The proportion of configurations of bound states in AL1 model. I is the isospin. E and ΔE are the system energy and
binding energy (in MeV).

JP Q1Q2q̄3q̄4 I E ΔE Spin ⊗ color configurations

0þ χ0s⊗0s
3̄c⊗3c

χ1s⊗1s
3̄c⊗3c

χ0s⊗0s
6c⊗6̄c

χ1s⊗1s
6c⊗6̄c

bcn̄ n̄ 0 7136 −21 38.4% 9.6% 6.9% 45.1%

1þ χ1s⊗0s
3̄c⊗3c

χ1s⊗1s
3̄c⊗3c

χ0s⊗1s
3̄c⊗3c

χ1s⊗0s
6c⊗6̄c

χ1s⊗1s
6c⊗6̄c

χ0s⊗1s
6c⊗6̄c

ccn̄ n̄ 0 3880 0 49.8% 0.3% 7.1% 15.3% 0.6% 26.9%
bbn̄ n̄ 0 10500 −145 96.4% 0.0% 0.1% 2.4% 0.0% 1.1%
bbn̄ s̄ 1

2
10660 −51 90.5% 0.0% 0.6% 5.3% 0.0% 3.6%

bcn̄ n̄ 0 7200 −14 51.5% 4.7% 2.8% 7.4% 20.5% 13.1%

2þ χ1s⊗1s
3̄c⊗3c

χ1s⊗1s
6c⊗6̄c

bcn̄ n̄ 0 7367 −1 28.3% 71.7%

TABLE VII. The proportion of configurations of bound states in SLM model. I is the isospin. E and ΔE are the system energy and
binding energy (in MeV).

JP Q1Q2q̄3q̄4 I E ΔE Spin ⊗ color configurations

0þ χ0s⊗0s
3̄c⊗3c

χ1s⊗1s
3̄c⊗3c

χ0s⊗0s
6c⊗6̄c

χ1s⊗1s
6c⊗6̄c

bcn̄ n̄ 0 6986 −185 92.7% 0.5% 2.9% 3.9%
bcn̄ s̄ 1

2
7243 −1 12.0% 19.7% 11.8% 56.5%

1þ χ1s⊗0s
3̄c⊗3c

χ1s⊗1s
3̄c⊗3c

χ0s⊗1s
3̄c⊗3c

χ1s⊗0s
6c⊗6̄c

χ1s⊗1s
6c⊗6̄c

χ0s⊗1s
6c⊗6̄c

ccn̄ n̄ 0 3759 −156 92.9% 0.1% 0.3% 4.3% 0.2% 2.2%
bbn̄ n̄ 0 10249 −345 98.1% 0.0% 0.0% 1.7% 0.0% 0.2%
bbn̄ s̄ 1

2
10653 −14 72.5% 0.1% 3.0% 10.3% 0.1% 14.0%

bcn̄ n̄ 0 7012 −203 95.2% 0.1% 0.1% 3.0% 0.7% 0.9%
bcn̄ s̄ 1

2
7287 −4 11.4% 13.6% 6.5% 11.3% 38.9% 18.3%
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TABLE IX. The rms radii for bound states in SLM model. I is the isospin. E and ΔE are the system energy and binding energy

(in MeV).
ffiffiffiffiffiffiffiffiffi
hr2iji

q
is the rms radius between i, j (in fm). C and M represent the compact tetraquark and molecular type respectively.

JP Q1Q2q̄3q̄4 I E ΔE
ffiffiffiffiffiffiffiffiffiffi
hr212i

p ffiffiffiffiffiffiffiffiffiffi
hr213i

p ffiffiffiffiffiffiffiffiffiffi
hr214i

p ffiffiffiffiffiffiffiffiffiffi
hr223i

p ffiffiffiffiffiffiffiffiffiffi
hr224i

p ffiffiffiffiffiffiffiffiffiffi
hr234i

p
Type

0þ bcn̄ n̄ 0 6986 −185 0.28 0.39 0.39 0.41 0.41 0.54 C
bcn̄ s̄ 1

2
7243 −1 1.50 1.52 0.61 0.71 1.50 1.62 M

1þ ccn̄ n̄ 0 3759 −156 0.23 0.28 0.28 0.28 0.28 0.36 C
bbn̄ n̄ 0 10249 −345 0.18 0.35 0.35 0.35 0.35 0.48 C
bbn̄ s̄ 1

2
10653 −14 0.48 0.58 0.50 0.58 0.50 0.74 C

bcn̄ n̄ 0 7012 −203 0.28 0.40 0.40 0.42 0.42 0.55 C
bcn̄ s̄ 1

2
7287 −4 1.54 1.55 0.67 0.75 1.53 1.67 M

TABLE VIII. The rms radii for bound states in AL1 model. I is the isospin. E and ΔE are the system energy and binding energy

(in MeV).
ffiffiffiffiffiffiffiffiffi
hr2iji

q
is the rms radius between i, j (in fm). C and M represent the compact tetraquark and molecular type respectively.

JP Q1Q2q̄3q̄4 I E ΔE
ffiffiffiffiffiffiffiffiffiffi
hr212i

p ffiffiffiffiffiffiffiffiffiffi
hr213i

p ffiffiffiffiffiffiffiffiffiffi
hr214i

p ffiffiffiffiffiffiffiffiffiffi
hr223i
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