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An updated analysis of the two-body D → PP; VP, and VV decays within the framework of the
topological diagram approach is performed. A global fit to the Cabibbo-favored (CF) modes in the VP
sector gives many solutions with similarly small local minima in χ2. The solution degeneracy is lifted once
we use them to predict for the singly-Cabibbo-suppressed modes. Topological amplitudes are extracted for
the η − η0 mixing angles ϕ ¼ 40.4° and 43.5°. The K0

S − K0
L asymmetries in D → K0

S;LM decays denoted

by RðD;MÞ are studied. While the predicted RðD0; PÞ for P ¼ π0; η and η0 agree with experiment, the
calculated RðDþ; πþÞ, RðDþ

s ; KþÞ, RðD0;ωÞ, and RðD0;ϕÞ deviate from the data. We conjecture that the
relative phase between the topological amplitudes (Cþ A) and (T þ C) should be slightly smaller than 90°
in order to explain the first two discrepancies and that additional singlet contributions due to the SU(3)-
singlet nature of ω and ϕ are needed to account for the last two. For doubly-Cabibbo-suppressed (DCS)
D → VP decays, their topological amplitudes (double primed) cannot be all the same as the corresponding
ones in the CF modes. The assumption of E00

V;P ¼ EV;P for the W-exchange amplitude leads to some
inconsistencies with the experiment. Through the measured relative phases between CF and DCS channels,
the relations of E00

V;P with EV;P are determined. Long-distance contributions to the D0 − D̄0 mixing
parameter y are evaluated in the exclusive approach. In particular, we focus on D → PP and VP decays
where y can be reliably estimated. We conclude that yPP ∼ ð0.110� 0.011Þ% and the lower bound on yVP
is ð0.220� 0.071Þ%. It is thus conceivable that at least half of the mixing parameter y can be accounted for
by the two-body PP and VP modes. The main uncertainties arise from the yet-to-be-measured DCS
channels and their phases relative to the CF ones.

DOI: 10.1103/PhysRevD.109.073008

I. INTRODUCTION

Contrary to the bottom sector, where the physics of
two-body nonleptonic B decays can be formulated in a
QCD-inspired approach, a theoretical description of the
underlying mechanism for exclusive hadronic D decays
based on QCD is still absent today. This has to do with the
mass of the charm quark, of order 1.5 GeV. It is not heavy
enough to allow for a sensible heavy quark mass expansion
and not light enough for an application of chiral perturba-
tion theory. Nevertheless, a model-independent analysis of
charm decays based on the topological diagram approach
(TDA) is achievable. In this approach, the topological

diagrams are classified according to the topologies of weak
interactions with strong interaction effects at all orders
implicitly taken into account.
Analyses of D → PP and VP decays have been per-

formed in Refs. [1–6] within the framework of the TDA,
where P and V denote, respectively, pseudoscalar and
vector mesons. In this work, we shall perform an updated
analysis for the following reasons: (i) In previous analyses,
we have set ΓðK̄0Þ ¼ 2ΓðK0

SÞ for decay modes involving a
neutral K0

S. But this relation can be invalidated by the
interference between Cabibbo-favored (CF) and doubly-
Cabibbo-suppressed (DCS) amplitudes. (ii) Branching
fraction measurements of several CF and singly-
Cabibbo-suppressed (SCS) D → VP modes have been
significantly improved in recent years. These new data
provide valuable information and modify the sizes and
phases of the relevant topological amplitudes. (iii) DCS
decays were not carefully studied in the previous analyses,
particularly due to the lack of sufficiently precise data in the
VP channels. We shall examine whether the topological
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amplitudes in the DCS sector are the same as those in the
CF decays. We will calculate the K0

S − K0
L asymmetries in

D → K0
S;LM decays with M ¼ P, V and compare them

with the experiment. This will provide information on the
DCS topological amplitudes. (iv) Thanks to BESIII, many
new data on Dþ

s and Dþ decays to VV became available in
the past few years. It turns out that several D → VV modes
are dominated by the D-wave amplitude and some domi-
nated by the P-wave amplitude, contrary to the naive
expectation of S-wave dominance. Moreover, the decay
D0 → ωϕ has been observed by BESIII to be transversely
polarized with negligible longitudinal polarization [7]. In
the end, there are many puzzles in the VV sector that need
to be resolved. (v) One of our goals is to evaluate the D0 −
D̄0 mixing parameter, which we are going to elaborate
on below.
The D0 − D̄0 mixing occurs because the mass eigen-

statesD1;2 are not the same as the flavor eigenstatesD0 and
D̄0. D mixing is conventionally described by the two
parameters x≡ Δm=Γ and y≡ ΔΓ=2Γ, whereΔm ¼ m1 −
m2 is defined to be positive and ΔΓ ¼ Γ1 − Γ2. Evidence
for the D0 − D̄0 mixing has been established and the
current world averages for the CP allowed case are [8]

x ¼ ð0.409þ0.048
−0.049Þ%; y ¼ ð0.615þ0.056

−0.055Þ%: ð1:1Þ

The absence of mixing, namely, x ¼ y ¼ 0, is excluded at
11.5σ. Very recently, LHCb has made a model-independent
measurement of charm mixing parameters in B → D0ð→
K0

Sπ
þπ−Þμ−ν̄μX decays and obtained the results [9]

x ¼ ð0.401� 0.049Þ%; y ¼ ð0.55� 0.13Þ%; ð1:2Þ

which are consistent with current averages given
in Eq. (1.1).
Early calculations of short-distance contributions to the

D mixing parameters already indicated that both x and y
were very small, of order 10−6, due to the Glashow-
Iliopoulos-Maiani suppression [10,11]. This implies that
the observed D0 − D̄0 mixing is dominated by long-
distance processes. Indeed, it is well known that charm
physics is governed by nonperturbative effects. In the
literature, the D0 − D̄0 mixing is usually studied in three
different approaches: inclusive, exclusive, and dispersive.
In the inclusive approach, the mixing parameters are
systematically investigated based on heavy quark expan-
sion (HQE) dictated by the parameter 1=mc [12–16] (for a
review, see Ref. [17]). Since the lifetime ofDþ

s and the ratio
τðDþÞ=τðD0Þ have been found to be in good agreement
with experiment within the framework of HQE [18], it is
natural to expect that this approach might also be viable for
the mixing parameters. However, it turns out that the
suppression of short-distance contributions cannot be
alleviated in HQE.

Contrary to the HQE approach at the quark level, long-
distance contributions from the intermediate hadronic states
are summed over in the exclusive approach [19–26]. As
pointed out in Ref. [21], the mixing parameters x and y
vanish in the flavor SU(3) limit. In general, there are large
cancellations of CF and DCS decays with the contributions
from SCS decays. The cancellation will be perfect in the
limit of SU(3) symmetry, and the D0 − D̄0 mixing would
occur only at the second order in SU(3) breaking. For
example, contributions from SCS decays D0 →
πþπ−; KþK− are canceled by contributions from the CF
D0 → K−πþ decay and the DCS D0 → Kþπ− decay. Since
the intermediate states in this case are related by U-spin
symmetry, it has been shown in Ref. [25] that the D0 − D̄0

mixing in the Standard Model occurs only at the second
order in U-spin breaking.
A dispersive relation between x and y has been derived in

Ref. [27] in the heavy quark limit

Δm ¼ −
1

2π
P
Z

∞

2mπ

dE

�
ΔΓðEÞ
E −mD

þO
�
ΛQCD

E

��
: ð1:3Þ

For a given model of ΔΓðEÞ or yðEÞ, it is conceivable to
have x comparable to y in magnitude. Writing

Z
Λ

0

ds0
yðs0Þ
s − s0

¼ πxðsÞ −
Z

∞

Λ
ds0

yðs0Þ
s − s0

ð1:4Þ

and choosing the scale Λ large enough to justify the
perturbative calculation of y on the right-hand side and
below the b quark threshold to avoid the b quark con-
tribution to the left-hand side, the authors of Ref. [28]
showed that the study of the D meson mixing was
converted into an inverse problem: the mixing parameters
at low masses are solved as source distributions, which
produce the potential observed at high masses. The analysis
is further improved in Ref. [29] in which SU(3) breaking is
introduced through physical thresholds of different D
meson decay channels.
In this work, we shall focus on the exclusive scenario for

the D0 − D̄0 mixing parameters. Since the two-body D0 →
PP decays and quasi-two-body decays such as D0 →
VP; VV; SP; SV; AP; AV; TP; TV account for about 3=4
of the total hadronic rates, where S, A, and T denote,
respectively, the scalar, axial-vector, and tensor mesons, it
is arguable that these two-body and quasi-two-body chan-
nels dominate and provide a good estimate of the mixing
parameters. Data on two-body D → PP;VP decays have
been accumulated in the past few years with substantially
improved precision [30]. For example, the measurements of
all D0 → PP channels are available except for three of the
DCS modes. Hence, in principle, one can estimate yPP
directly from the data. The DCS decays are related to the
CF ones through the relations such as BðD0 → K0ηð0ÞÞ ¼
tan4θCBðD0 → K̄0ηð0ÞÞ, where θC is the Cabibbo angle.
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However, we have applied the TDA in Ref. [24] to estimate
the D mixing parameters for the following reasons: (i) to
predict the branching fractions of yet-to-be-measured SCS
and DCS modes in the D → VP decays, (ii) to understand
SU(3)-breaking effects in the SCS and DCS modes, (iii) to
see explicitly the vanishing mixing parameters in the SU(3)
limit, and (iv) to reduce the uncertainties in the estimate of the
parameter y. A similar study based on the so-called factori-
zation-assisted topological-amplitude (FAT) approach has
been carried out in Ref. [26].
The layout of the present paper is as follows. The

analysis of D → PP decays within the framework of the
TDA is presented in Sec. II for ϕ ¼ 40.4° and 43.5° with ϕ
being the η − η0 mixing angle. As forD → VP decays, their
analysis is much more complicated. We shall discuss the
CF, SCS, and DCS decays separately and consider theK0

S −
K0

L asymmetries in D → K0
S;LV channels in Sec. III.

Section IV is devoted to the discussions of D → VV
decays. We evaluate the D0 − D̄0 mixing parameter y in
Sec. V with a focus on the contributions from the PP and
VP sectors. Section VI gives our conclusions.

II. D → PP DECAYS

A. Cabibbo-favored D → PP decays

It was established some time ago that a least model-
dependent analysis of heavy meson decays could be carried
out in the TDA [31–33]. For the present purposes, it
suffices to consider tree amplitudes: color-allowed tree
amplitude T, color-suppressed tree amplitude C, W-
exchange amplitude E, and W-annihilation amplitude A.
The topological amplitudes for CF D → PP decays [30]
are shown in Table I, where ϕ is the η − η0 mixing angle
defined in the flavor basis

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
; ð2:1Þ

with ηq ¼ 1ffiffi
2

p ðuūþ dd̄Þ and ηs ¼ ss̄. For the η − η0 mixing

angle, an early study gave ϕ ¼ ð39.3� 1.0Þ° [34]. This
mixing angle has been measured by KLOE to be ϕ ¼
ð40.4� 0.6Þ° [35]. We have previously followed the LHCb

measurement of ϕ ¼ ð43.5þ1.4
−1.3Þ° [36] to fix ϕ to be 43.5°.

Recent precision measurements of Dþ
s → ηð0Þeþνe and

Dþ
s → ηð0Þμþνμ by BESIII yield ϕ ¼ ð40.0� 2.0� 0.6Þ°

[37] and ϕ ¼ ð40.2� 2.1� 0.7Þ° [38], respectively. In this
work, we will study the cases for ϕ ¼ 40.4° and 43.5°.
Though these two choices differ by only a few degrees, they
do produce observable differences in fitting the data. We
shall see that the former mixing angle is preferred by the
D → PP data, whereas the latter is slightly favored by the
D → VP data.
The topological amplitudes for the Cabibbo-favored

D → PP decays [30] are shown in Table I. For the CF
decay modes involving a neutral kaon K0

S or K0
L, it was

customary to use the relation ΓðK̄0Þ ¼ 2ΓðK0
SÞ. However,

this relation can be invalidated by the interference between
CF and DCS amplitudes. Using the phase convention that
K0

S ¼ 1ffiffi
2

p ðK0 − K̄0Þ and K0
L ¼ 1ffiffi

2
p ðK0 þ K̄0Þ in the absence

of CP violation, we have

AðD → K0
SMÞ ¼ −

1ffiffiffi
2

p ½AðD → K̄0MÞ − AðD → K0MÞ�;

AðD → K0
LMÞ ¼ 1ffiffiffi

2
p ½AðD → K̄0MÞ þ AðD → K0MÞ�;

ð2:2Þ

where M ¼ P or V. Consequently, BðD → K0
SMÞþ

BðD → K0
LMÞ ¼ BðD → K̄0MÞ þ BðD → K0MÞ. Hence,

we shall use BðD → K̄0MÞ ≅ BðD → K0
SMÞ þ BðD →

K0
LMÞ, which is valid to a good approximation. For

example, using the measured branching fractions of
D0 → K0

S;Lπ
0 to be discussed later, we shall get

BðD0 → K̄0π0Þ ¼ ð2.311� 0.036Þ%. Of course, one can
also perform a fit to the data ofD → K0

SP and/orD → K0
LP

instead of D → K̄0P, assuming that the DCS (double-
primed) amplitudes are the same as the CF (unprimed)
ones. We shall see later that it is more convenient to
consider the CFD0 → K̄0P and DCS D0 → K0P decays in
order to compute the D0 − D̄0 mixing parameter y.
It is clear from Table I that we have eight data points for

seven unknown parameters. Hence, the topological

TABLE I. Topological-amplitude representation and branching fractions for the CF D → PP decays. Data are taken from Ref. [30].
Here λsd ≡ V�

csVud.

Mode Representation Bexpt (%) Mode Representation Bexpt (%)

D0 → K−πþ λsdðT þ EÞ 3.947� 0.030 D0 → K̄0η λsd½ 1ffiffi2p ðCþ EÞ cosϕ − E sinϕ� 0.958� 0.0020

D0 → K̄0π− 1ffiffi
2

p λsdðC − EÞ 2.311� 0.036 D0 → K̄0η0 λsd½ 1ffiffi2p ðCþ EÞ sinϕþ E cosϕ� 1.773� 0.047

Dþ → K̄0πþ λsdðT þ CÞ 3.067� 0.053
Dþ

s → K̄0Kþ λsdðCþ AÞ 2.202� 0.060 Dþ
s → πþη λsd½

ffiffiffi
2

p
A cosϕ − T sinϕ� 1.68� 0.09

Dþ
s → πþπ0 0 < 0.012 Dþ

s → πþη0 λsd½
ffiffiffi
2

p
A sinϕþ T cosϕ� 3.94� 0.25
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amplitudes T, C, E, and A can be extracted from the CF
D → PP decays through a χ2 fit, as shown in Table II for
ϕ ¼ 40.4° and 43.5°, respectively. The fitted χ2 value
almost vanishes with the fit quality of 99.6% for ϕ ¼
40.4° and is 1.46 per degree of freedom with the fit quality
of 22.7% for ϕ ¼ 43.5°. Previous fits obtained in 2010 [1]
and 2019 [5] are also listed in Table II for comparison. We
see that the errors in T, C, E, and A are substantially
reduced, especially for the annihilation amplitude A, thanks
to the improved data precision from the Particle Data Group
(PDG) [30].
We have noticed before [5] that, since we fit only the

observed branching fractions, the results will be the same if
all the strong phases are subject to a simultaneous sign flip,
resulting in a twofold ambiguity. Throughout this paper, we
only present one of them. Presumably, such a degeneracy in
strong phases can be resolved by measurements of suffi-
ciently many CP asymmetries. For example, a measure-
ment of direct CP asymmetry in D0 → K0

SK
0
S will allow us

to resolve the discrete phase ambiguity [5].
We see in Table II that the topological amplitudes respect

the hierarchical pattern jTj > jCj > jEj > jAj. The phase
between C and T is 150°, not far from the expectation of
180° from naive factorization. The W-exchange amplitude
E is sizable with a large phase of order 120°. This implies
the importance of 1=mc power corrections as the short-
distance contributions to E are helicity suppressed. Notice
that the W-annihilation amplitude is smaller than the
W-exchange amplitude. Under naive factorization, all the
predicted topological amplitudes except T are too small
compared to the values extracted from the data, implying
that topological amplitudes C, E, and A are dominated by
long-distance, nonfactorizable effects.

B. Singly- and doubly-Cabibbo-suppressed
D → PP decays

We follow the conventional practice to denote the primed
amplitudes for SCS modes and double-primed amplitudes
for DCS decays. In the flavor SU(3) limit, primed and
unprimed amplitudes should be the same. It is known that

there exists significant SU(3) breaking in some of the SCS
modes from the symmetry limit. For example, the rate of
D0 → KþK− is larger than that of D0 → πþπ− by a factor
of 2.8 [30], while the magnitudes of their decay amplitudes
should be the same in the SU(3) limit. The observation of
theD0 → K0K̄0 decay indicates that SU(3) symmetry must
also be broken in the topological amplitude E. Indeed, as
explained in detail in Ref. [5], the large rate disparity
betweenKþK− and πþπ− cannot rely solely on the nominal
SU(3) breaking in the tree or W-exchange amplitude.
We note in passing that Ref. [5] also studied the

possibility of explaining the KþK− and πþπ− rate differ-
ence through the penguin mechanism, as proposed, e.g., in
Ref. [39]. This would require a huge ΔP comparable to or
even larger than T in size, where ΔP was dominated by the
difference of s and d quark penguin contractions of four-
quark tree operators. However, we had estimated their ratio
to be only ofOð0.01Þ. We therefore do not include penguin
amplitudes in the current analysis because they have
negligible contributions to the branching fractions, though
they are crucial in CP asymmetry analyses.
SU(3)-breaking effects in the topological amplitudes T 0

andC0 can be estimated in the factorization approach, as the
topological unprimed amplitudes extracted from the CF
D → K̄π decays have the expressions

T ¼ GFffiffiffi
2

p a1ðKπÞfπðm2
D −m2

KÞFDK
0 ðm2

πÞ;

C ¼ GFffiffiffi
2

p a2ðKπÞfKðm2
D −m2

πÞFDπ
0 ðm2

KÞ: ð2:3Þ

SU(3)-breaking effects in the T 0 and C0 amplitudes of
SCS modes are then addressed by comparing them with
the factorizable amplitudes given by Eq. (2.3) [3]. For
example, we found jTKK=Tj ¼ 1.269 and jTππ=Tj ¼ 0.964
in Ref. [5].
We can fix the SU(3)-breaking effects in theW-exchange

amplitudes from the following four D0 decay modes,
KþK−, πþπ−, π0π0 and K0K̄0:

TABLE II. Topological amplitudes extracted from the CF D → PP decays in units of 10−6 GeV. The color-allowed amplitude T is
taken to be real. Previous fits obtained in 2010 [1] and 2019 [5] are also listed for comparison.

Year T C E A

2010 3.14� 0.06a ð2.61� 0.08Þe−ið152�1Þ° ð1.53þ0.07
−0.08 Þeið122�2Þ° ð0.39þ0.13

−0.09 Þeið31
þ20
−33 Þ°

2019 3.113� 0.011b ð2.767� 0.029Þe−ið151.3�0.3Þ° ð1.48� 0.04Þeið120.9�0.4Þ° ð0.55� 0.03Þeið23þ7
−10Þ°

2023a 3.134� 0.010a ð2.584� 0.014Þe−ið151.9�0.3Þ° ð1.472� 0.024Þeið121.7�0.4Þ° ð0.394� 0.020Þeið14.1þ11.0
−8.5 Þ°

2023b 3.175� 0.010b ð2.711� 0.014Þe−ið152.1�0.3Þ° ð1.350� 0.025Þeið123.8�0.4Þ° ð0.541� 0.021Þeið9.4þ6.5
−5.2 Þ°

aFor θ ¼ 40.4°.
bFor θ ¼ 43.5°.
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AðD0 → πþπ−Þ ¼ λdð0.96T þ EdÞ;

AðD0 → π0π0Þ ¼ 1ffiffiffi
2

p λdð−0.78Cþ EdÞ;

AðD0 → KþK−Þ ¼ λsð1.27T þ EsÞ;
AðD0 → K0K̄0Þ ¼ λdEd þ λsEs; ð2:4Þ

where λq ≡ V�
cqVuq with Vqq0 denoting the qq0 element of

the Cabibbo-Kobayashi-Maskawa matrix, and Eq refers to
the W-exchange amplitude associated with cū → qq̄
(q ¼ d; s). A fit to the data (see Table III) yields two
possible solutions [5],

I∶ Ed ¼ 1.244ei13.7°E; Es ¼ 0.823e−i17.9°E;

II∶ Ed ¼ 1.244ei13.7°E; Es ¼ 1.548e−i12.3°E; ð2:5Þ

for ϕ ¼ 40.4° and

I∶ Ed ¼ 1.325ei12.9°E; Es ¼ 0.795e−i17.7°E;

II∶ Ed ¼ 1.325ei12.9°E; Es ¼ 1.665e−i13.5°E; ð2:6Þ

for ϕ ¼ 43.5°. In the PP sector, we thus need SU(3)
breaking in the W-exchange diagrams in order to induce
the observed D0 → K0

SK
0
S decay and explain the large rate

TABLE III. Branching fractions of the CF and SCS D → PP decays in units of 10−2 and 10−3, respectively. Experimental branching
fractions are taken from Ref. [30]. Theory predictions are based on the topological-amplitude sets PPa and PPb denoted by 2023a and
2023b, respectively, in Table II corresponding to ϕ ¼ 40.4° and 43.5°. SU(3)-breaking effects in SCS decays have been taken into
account (see Table I of Ref. [5]).

Mode Bexpt Btheo (PPa) Btheo (PPb) Mode Bexpt Btheo (PPa) Btheo (PPb)

D0 → K−πþ 3.947� 0.030 3.947� 0.063 3.943� 0.067 Dþ → K̄0πþ 3.067� 0.053 3.067� 0.048 3.062� 0.049
D0 → K̄0π0 2.311� 0.036 2.311� 0.034 2.322� 0.036 Dþ

s → K̄0Kþ 2.920� 0.060 2.920� 0.048 2.922� 0.135
D0 → K̄0η 0.958� 0.020 0.958� 0.004 0.951� 0.027 Dþ

s → πþη 1.68� 0.09 1.68� 0.14 1.72� 0.11
D0 → K̄0η0 1.773� 0.047 1.773� 0.044 1.764� 0.045 Dþ

s → πþη0 3.94� 0.25 3.94� 0.17 4.19� 0.15
D0 → πþπ− 1.454� 0.024 1.454� 0.021 1.454� 0.023 Dþ → πþπ0 1.247� 0.033 0.973� 0.017 0.951� 0.017
D0 → π0π0 0.826� 0.025 0.826� 0.017 0.826� 0.017 Dþ → πþη 3.77� 0.09 3.30� 0.09 4.00� 0.11
D0 → π0η 0.63� 0.06 0.67� 0.02 0.91� 0.02 Dþ → πþη0 4.97� 0.19 4.56� 0.06 4.68� 0.05
D0 → π0η0 0.92� 0.10 1.00� 0.02 1.41� 0.03 Dþ → KþK̄0 6.08� 0.18 8.44� 0.18 8.81� 0.16
D0 → ηη 2.11� 0.19 2.00� 0.02a 1.81� 0.02b Dþ

s → πþK0 2.18� 0.10 2.74� 0.07 2.57� 0.06
D0 → ηη0 1.01� 0.19 0.82� 0.03c 0.77� 0.03d Dþ

s → π0Kþ 0.74� 0.05 0.54� 0.02 0.54� 0.02
D0 → KþK− 4.08� 0.06 4.08� 0.04 4.08� 0.03 Dþ

s → Kþη 1.73� 0.06 0.85� 0.02 0.84� 0.02
D0 → K0K̄0 0.282� 0.010 0.282� 0.011 0.282� 0.013 Dþ

s → Kþη0 2.64� 0.24 1.56� 0.06 1.67� 0.07
aThe branching fraction becomes 2.17� 0.03 for the second solution of W exchange.
bThe branching fraction becomes 2.10� 0.03 for the second solution of W exchange.
cThe branching fraction becomes 1.79� 0.07 for the second solution of W exchange.
dThe branching fraction becomes 1.77� 0.07 for the second solution of W exchange.

TABLE IV. Topological-amplitude decompositions, experimental and predicted branching fractions for the DCSD → PP decays. All
branching fractions are quoted in units of 10−4. Here λds ≡ V�

cdVus.

Mode Amplitude Bexpt [30] Btheo (PPa) Btheo (PPb)

D0 → Kþπ− λdsð1.23T þ EÞ 1.50� 0.07 1.74� 0.02 1.72� 0.02
D0 → K0π0 1ffiffi

2
p λdsðC − EÞ � � � 0.66� 0.01 0.66� 0.01

D0 → K0η λds
h

1ffiffi
2

p ðCþ EÞ cosϕ − E sinϕ
i � � � 0.273� 0.001 0.271� 0.001

D0 → K0η0 λds
h

1ffiffi
2

p ðCþ EÞ sinϕþ E cosϕ
i � � � 0.51� 0.01 0.50� 0.01

Dþ → K0πþ λdsðCþ 0.71AÞ � � � 2.11� 0.08 2.18� 0.07
Dþ → Kþπ0 1ffiffi

2
p λdsð1.23T − 0.71AÞ 2.08� 0.21 2.54� 0.06 2.46� 0.05

Dþ → Kþη λds
h

1ffiffi
2

p ð1.05T þ AÞ cosϕ − 0.81A sinϕ
i

1.25� 0.16 1.04� 0.01 0.95� 0.01

Dþ → Kþη0 λds
h

1ffiffi
2

p ð1.05T þ AÞ sinϕþ 0.81A cosϕ
i

1.85� 0.20 1.07� 0.01 1.39� 0.07

Dþ
s → K0Kþ λdsð1.27T þ 1.03CÞ � � � 0.73� 0.01 0.71� 0.01
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difference between the D0 → KþK− and D0 → πþπ−
decays. Since the W-exchange and W-annihilation ampli-
tudes are mainly governed by long-distance physics, their
SU(3)-breaking effects are obtained by fitting to the data,
see Eq. (2.6).
Topological amplitudes for the SCS D → PP decays

including perturbative SU(3)-breaking effects in the T and
C amplitudes and nonperturbative SU(3) breaking in the E
amplitude are summarized in Table I of Ref. [5].1 The
measured and fitted branching fractions are shown in
Table III for the CF and SCS D → PP decays and in
Table IV for the DCS decays.

C. K0
S −K0

L asymmetries

Assuming that the double-primed amplitudes in the DCS
sector are the same as that in the CF one, the calculated
D → K0

S;LP decays and their asymmetries defined by

RðD;PÞ≡ ΓðD → K0
SPÞ − ΓðD → K0

LPÞ
ΓðD → K0

SPÞ þ ΓðD → K0
LPÞ

ð2:7Þ

are summarized in Table V. It is expected that D0 →
K̄0ðπ0; η; η0Þ and D0 → K0ðπ0; η; η0Þ contribute construc-
tively to D0 → K0

Sðπ0; η; η0Þ and destructively to D0 →
K0

Lðπ0; η; η0Þ and hence,

RðD0; ðπ0; η; η0ÞÞ ¼ 2 tan2 θC ¼ 0.107: ð2:8Þ

This prediction is in agreement with CLEO for RðD0; π0Þ
[40] and with BESIII for RðD0; ηð0ÞÞ [41].

However, our prediction of RðDþ; πþÞ is opposite to
experiment in sign and the calculated RðDþ

s ; KþÞ is too
small compared to the data, though they are consistent if
errors are taken into account. This can be traced back to the
relative phase between (Cþ A) and (T þ C) which is 94.5°.
Consequently, Dþ → K̄0πþ and Dþ → K0πþ will contrib-
ute destructively to Dþ → K0

Sπ
þ and constructively to

Dþ → K0
Lπ

þ. This is the opposite of the pattern observed
experimentally. We find that if the phase difference is
decreased slightly by 10°, that is, ðC00 þ A00Þ →
ðCþ AÞei10° in Dþ → KS;Lπ

þ and ðT 00 þ C00Þ →
ðT þ CÞe−i10° in Dþ

s → KS;LKþ, then we will be able to
accommodate both RðDþ; πþÞ and RðDþ

s ; KþÞ.
In the so-called factorization-assisted topological

approach [43], RðDþ; πþÞ and RðDþ
s ; KþÞ are predicted

to be 0.025� 0.008 and 0.012� 0.006, respectively [44].
While the former agrees with experiment, the latter is
wrong in sign.

III. D → VP DECAYS

A. Cabibbo-favored D → VP decays

For D → VP decays, there exist two different sets of
topological diagrams since the spectator quark of the
charmed meson may end up in the pseudoscalar or vector
meson. A subscript of P or V is attached to the flavor
amplitudes and the associated strong phases denote, respec-
tively, whether the spectator quark in the charmed meson
ends up in the pseudoscalar or vector meson in the final state.
As mentioned in passing, for the CF decay modes

involving a neutral kaon K0
S or K0

L, it was customary to
use the relation ΓðK̄0Þ ¼ 2ΓðK0

SÞ, but this relation can be
invalidated by the interference between CF and DCS
amplitudes. Just as the PP decays, we also prefer to apply
the relation BðD→ K̄0VÞ≅BðD→K0

SVÞþBðD→K0
LVÞ

in the VP sector. Unfortunately, we have the data of

TABLE V. Topological-amplitude decompositions, branching fractions, and K0
S − K0

L asymmetries RðD;PÞ for D → K0
S;LP decays

using solution PPa denoted by 2023a in Table II. Experimental results for R are taken from Refs. [40–42].

Mode Representation Bexptð%Þ [30] Btheoð%Þ Rexpt Rtheo

D0 → K0
Sπ

0 1
2
ðλsd − λdsÞðC − EÞ 1.240� 0.022 1.282� 0.017 0.108� 0.035 0.107� 0.009

D0 → K0
Lπ

0 1
2
ðλsd þ λdsÞðC − EÞ 0.976� 0.032 1.035� 0.014

D0 → K0
Sη

1
2
ðλsd − λdsÞ½ðCþ EÞ cosϕ − 1ffiffi

2
p E sinϕ� 0.509� 0.013 0.531� 0.006 0.080� 0.022 0.107� 0.008

D0 → K0
Lη

1
2
ðλsd þ λdsÞ½ðCþ EÞ cosϕ − 1ffiffi

2
p E sinϕ� 0.434� 0.016 0.429� 0.005

D0 → K0
Sη

0 1
2
ðλsd − λdsÞ½ðCþ EÞ sinϕþ 1ffiffi

2
p E cosϕ� 0.949� 0.032 0.983� 0.024 0.080� 0.023 0.107� 0.017

D0 → K0
Lη

0 1
2
ðλsd þ λdsÞ½ðCþ EÞ sinϕþ 1ffiffi

2
p E cosϕ� 0.812� 0.035 0.794� 0.019

Dþ → K0
Sπ

þ 1ffiffi
2

p ½λsdðT þ CÞ − λdsðCþ AÞ� 1.562� 0.031 1.524� 0.030 0.022� 0.024 −0.013� 0.013

Dþ → K0
Lπ

þ 1ffiffi
2

p ½λsdðT þ CÞ þ λdsðCþ AÞ� 1.460� 0.053 1.563� 0.029

Dþ
s → K0

SK
þ 1ffiffi

2
p ½λsdðCþ AÞ − λdsðT þ CÞ� 1.450� 0.035 1.462� 0.044 −0.021� 0.025 −0.006� 0.020

Dþ
s → K0

LK
þ 1ffiffi

2
p ½λsdðCþ AÞ þ λdsðT þ CÞ� 1.485� 0.060 1.478� 0.040

1In order to discuss CP violation in charmed meson decays, we
have included QCD penguin, penguin exchange, and penguin
annihilation in Table I of Ref. [5], which can be neglected in the
present study.
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BðD → K0
LVÞ for V ¼ ω and ϕ, but not for V ¼ ρ0; ρþ and

K�þ. Since the double-primed topological amplitudes in
DCS decays are not the same as unprimed ones extracted
from CF modes, as we shall discuss later, we will fit to the
measured rates of D0 → K̄0ðω;ϕÞ, Dþ → K0

Sρ
þ, and

Dþ
s → KSK�þ, but not toD0 → K0

Sρ
0. Owing to the absence

of the data on BðD0 → K0
Lρ

0Þ, we shall assume that the
experimental branching fraction of D0 → K̄0ρ0 be 2
times BðD0 → K0

Sρ
0Þ.

The partial decay width of the D → VP decay can be
expressed in two different ways,

ΓðD → VPÞ ¼ pc

8πm2
D

X
pol

jMj2; ð3:1Þ

or

ΓðD → VPÞ ¼ p3
c

8πm2
V
jM̃j2; ð3:2Þ

with M ¼ M̃ðϵ · pDÞ. Because the additional SU(3)-
breaking factor in phase space has been taken care of,
we prefer to use Eq. (3.2). By performing a χ2 fit to the CF

D → VP decay rates (see Table VI), we extract the
magnitudes and strong phases of the topological amplitudes
TV , CV , EV , AV and TP, CP, EP, AP from the measured
partial widths through Eq. (3.2) and find many possible
solutions with local χ2 minima. Here we take the con-
vention that all strong phases are defined relative to the TV

amplitude. We obtain five best χ2-fit solutions (F1)–(F5) in
Table VII for ϕ ¼ 40.4° and (F1’)–(F5’) in Table VIII for
ϕ ¼ 43.5°, where we have restricted ourselves to those with
χ2min < 10. The topological amplitudes of all these solutions
respect the hierarchy pattern,

jTPj > jTV j > jCPj > jEPj > jCV j≳ jEV j > jAP;V j: ð3:3Þ

This is slightly different from the hierarchy pattern pre-
viously found by us in 2021 [6],

jTPj > jTV j≳ jCPj > jCV j ≳ jEPj > jEV j > jAP;V j: ð3:4Þ

Comparing Tables VII and VIII with the previous five
best solutions (S1’)–(S5’) obtained in Table II of [6], it is
evident that (i) the magnitudes of jCV j and jAV − APj are

TABLE VI. Flavor amplitude decompositions, experimental branching fractions, and predicted branching fractions for CF D → VP
decays. Data are taken from the Particle Data Group [30] unless specified otherwise. The column of Btheo shows predictions based on
solution (F4) presented in Table VII and solution (F1’) in Table VIII. All branching fractions are quoted in units of %.

Meson Mode Amplitude decomposition Bexpt Btheo (F4) Btheo (F1’)

D0 K�−πþ λsdðTV þ EPÞ 5.34� 0.41 5.45� 0.34 5.37� 0.33
K−ρþ λsdðTP þ EVÞ 11.2� 0.7 11.4� 0.8 11.3� 0.7
K̄�0π0 1ffiffi

2
p λsdðCP − EPÞ 3.74� 0.27 3.61� 0.18 3.70� 0.18

K̄0ρ0 1ffiffi
2

p λsdðCV − EVÞ 1.26þ0.12
−0.16 1.25� 0.09 1.25� 0.09

K̄�0η λsd
h

1ffiffi
2

p ðCP þ EPÞ cosϕ − EV sinϕ
i

1.41� 0.12 1.35� 0.06 1.41� 0.07

K̄�0η0 λsd
h

1ffiffi
2

p ðCP þ EPÞ sinϕþ EV cosϕ
i

< 0.10 0.0055� 0.0004 0.0043� 0.0003

K̄0ω 1ffiffi
2

p λsdðCV þ EVÞ 2.22� 0.12 2.29� 0.11 2.29� 0.11

K̄0ϕ λsdEP 0.825� 0.061 0.830� 0.034 0.828� 0.034
Dþ K̄�0πþ λsdðTV þ CPÞ 1.57� 0.13 1.58� 0.13 1.58� 0.13

K0
Sρ

þ 1ffiffi
2

p ½λsdðTP þ CVÞ − λdsðCV þ APÞ� 6.14þ0.60
−0.35 6.38� 0.44 6.26� 0.52

Dþ
s K̄�0Kþ λsdðCP þ AVÞ 3.79� 0.09 3.80� 0.10 3.79� 0.09

K0
SK

�þ 1ffiffi
2

p ½λsdðCV þ APÞ − λdsðTP þ CVÞ� 0.77� 0.07a 0.79� 0.04 0.78� 0.03

ρþπ0 1ffiffi
2

p λsdðAP − AVÞ � � � 0.012� 0.003 0.011� 0.002

ρþη λsd½ 1ffiffi2p ðAP þ AVÞ cosϕ − TP sinϕ� 8.9� 0.8 9.25� 0.35 8.75� 0.31

ρþη0 λsd½ 1ffiffi2p ðAP þ AVÞ sinϕþ TP cosϕ� 5.8� 1.5 3.24� 0.11 3.60� 0.11

πþρ0 1ffiffi
2

p λsdðAV − APÞ 0.0112� 0.0013b 0.011� 0.003 0.011� 0.002

πþω 1ffiffi
2

p λsdðAV þ APÞ 0.238� 0.015c 0.24� 0.01 0.24� 0.01

πþϕ λsdTV 4.50� 0.12 4.49� 0.11 4.50� 0.11
aThis is the average of the branching fractions ð2.7� 0.6Þ% [45], ð0.612� 0.099Þ% [46], and ð0.927� 0.099Þ% [47].
bThis is from the new LHCb analysis of Dþ

s → πþπþπ− decays [48].
cThe new LHCb measurement of Dþ

s → πþω [48] is taken into account in the world average.
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decreased, whereas jEV j is increased, and (ii) the uncer-
tainties in the magnitudes and phases of AP;V are signifi-
cantly improved. These can be traced back to the improved
branching fractions of CF D → VP modes shown in
Table VI. The branching fraction BðDþ

s → K̄0K�þÞ ¼
ð2.7� 0.6Þ% reported by CLEO in 1989 [45] has been
found to be much smaller, ð0.77� 0.07Þ%, by BESIII
[46,47] very recently with a greater precision. Since the
annihilation amplitude AP is very suppressed compared to
CV , this implies that the magnitude of CVðF4Þ,
1.38� 0.03, (see Table VII) is smaller than jCVðS30Þj ¼
1.69� 0.04 [6]. Since AðD0 → K̄0ρ0Þ ∝ ðCV − EVÞ, a
decrease in jCV j implies an increase in jEV j. A new
measurement of Dþ

s → πþρ0 indicates that its branching
fraction is significantly improved from ð1.2� 0.6Þ × 10−4

[30] to ð1.12� 0.13Þ × 10−4 [48] with a much better
precision. This in turn implies a smaller jAV − APj and
more precise values of AV and AP. The extremely small
branching fraction of Dþ

s → πþρ0 compared to that of
Dþ

s → πþω (see Table VI) implies that AV and AP should

be comparable in magnitude and roughly parallel to each
other with a phase difference not more than 25°.

B. Singly-Cabibbo-suppressed D → VP decays

Although the five solutions generally fit the CF modes
well (see Table VI), there is one exception, namely,
Dþ

s → ρþη0, whose prediction is smaller than the exper-
imental result. As explained in Ref. [4], this mode has a
decay amplitude respecting a sum rule,

AðDþ
s → πþωÞ

¼ cosϕAðDþ
s → ρþηÞ þ sinϕAðDþ

s → ρþη0Þ: ð3:5Þ

The current data of BðDþ
s → πþωÞ and BðDþ

s → ρþηÞ give
the bounds 1.6% < BðDþ

s → ρþη0Þ < 3.9% at 1σ level,
significantly lower than the current central value. A recent
update by BESIII yields BðDþ

s → ρþη0Þ ¼ ð6.15� 0.31Þ%
[49]. This seems to imply that it is necessary to take into

TABLE VII. Solutions for the topological amplitudes in CF D → VP decays with χ2min ≤ 10 obtained using Eq. (3.2) and ϕ ¼ 40.4°.
The amplitude sizes are quoted in units of 10−6ðϵ · pDÞ and the strong phases in units of degrees.

jTV j jTPj δTP
jCV j δCV

jCPj δCP
jEV j δEV

Set jEPj δEP
jAV j δAV

jAPj δAP
χ2min Fit quality

(F1) 2.17� 0.03 3.56� 0.06 301þ5
−4 1.47� 0.03 134� 2 2.07� 0.02 201� 1 1.02� 0.04 63� 2

1.65� 0.04 107� 2 0.21� 0.01 320� 2 0.24� 0.01 351� 2 2.51 47.31%
(F2) 2.17� 0.03 3.59� 0.06 32þ4

−5 1.52� 0.03 197� 2 1.99� 0.02 201� 1 0.93� 0.04 267� 2

1.65� 0.03 106� 3 0.18� 0.01 337þ6
−3 0.26� 0.01 345þ4

−7 3.10 37.61%
(F3) 2.17� 0.03 3.50� 0.06 183� 4 1.39� 0.03 13� 2 1.97� 0.02 159� 1 1.12� 0.04 301� 2

1.65� 0.04 254� 2 0.23� 0.01 279� 1 0.22� 0.01 255þ2
−1 3.29 37.86%

(F4) 2.17� 0.03 3.51� 0.06 14� 4 1.38� 0.03 185� 2 2.00� 0.02 201� 1 1.14� 0.04 257� 2
1.66� 0.03 107� 3 0.26� 0.01 78� 3 0.18� 0.01 67þ4

−3 3.87 27.60%
(F5) 2.17� 0.03 3.29� 0.06 178� 4 1.17� 0.03 357� 2 1.99� 0.02 201� 1 1.36� 0.03 69� 2

1.66� 0.03 107� 2 0.24� 0.01 324þ1
−2 0.21� 0.01 301þ2

−1 5.20 15.75%

TABLE VIII. Same as Table VII except for ϕ ¼ 43.5°.

jTV j jTPj δTP
jCV j δCV

jCPj δCP
jEV j δEV

Set jEPj δEP
jAV j δAV

jAPj δAP
χ2min Fit quality

(F1’) 2.17� 0.03 3.58� 0.06 327þ5
−4 1.53� 0.03 161� 2 2.06� 0.02 159� 1 0.92� 0.04 92� 2

1.65� 0.03 253� 3 0.20� 0.01 329� 2 0.25� 0.01 349� 2 2.24 52.44%
(F2’) 2.17� 0.03 3.55� 0.06 65þ4

−5 1.49� 0.03 232� 2 2.05� 0.02 159� 1 1.00� 0.04 303� 2

1.65� 0.04 253� 2 0.25� 0.01 19� 2 0.20� 0.01 41� 2 2.49 47.75%
(F3’) 2.17� 0.03 3.50� 0.06 143þ5

−4 1.41� 0.03 333� 2 2.00� 0.02 201� 1 1.10� 0.04 261� 2

1.66� 0.03 106� 3 0.24� 0.01 77� 1 0.21� 0.01 100þ1
−2 3.28 35.06%

(F4’) 2.17� 0.03 3.54� 0.06 165þ4
−5 1.49� 0.03 333� 2 1.91� 0.02 201� 1 0.99� 0.04 43� 2

1.66� 0.04 105� 2 0.22� 0.01 99� 1 0.23� 0.01 123þ1
−2 4.34 22.66%

(F5’) 2.17� 0.03 3.25� 0.06 173� 4 1.15� 0.03 353� 2 1.92� 0.02 201� 1 1.37� 0.03 65� 2
1.66� 0.04 106� 2 0.20� 0.01 310� 2 0.25� 0.01 288� 2 7.94 4.72%
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account the extra contribution from the flavor-singlet
topological amplitude S available for the η0 meson [50].
The five solutions (F1)–(F5) or (F1’)–(F5’), although

describing the CF decays well, may lead to very different
predictions for some of the SCS modes. In particular, the
decays D0;þ → π0:þω, D0;þ → π0;þρ0, and D0 → ηω are
very useful in discriminating among the different solutions.
Their topological amplitudes read

AðDþ → πþρ0Þ ¼ 1ffiffiffi
2

p λdðTV þ CP − AP þ AVÞ;

AðDþ → πþωÞ ¼ 1ffiffiffi
2

p λdðTV þ CP þ AP þ AVÞ; ð3:6Þ

and

AðD0 → π0ωÞ ¼ 1

2
λdðCV − CP þ EP þ EVÞ;

AðD0 → π0ρ0Þ ¼ 1

2
λdðCV þ CP − EP − EVÞ;

AðD0 → ηωÞ ¼ 1

2
λdðCV þ CP þ EP þ EVÞ cosϕ

−
1ffiffiffi
2

p λsCV sinϕ: ð3:7Þ

Experimental measurements indicate that (in units of 10−3,
see Table IX)

BðDþ→ πþρ0Þ¼ 0.83�0.14

>BðDþ → πþωÞ¼ 0.28�0.06;

BðD0→ π0ρ0Þ¼ 3.86�0.23

>BðD0 → ηωÞ¼ 1.98�0.18;

≫BðD0→ π0ωÞ¼ 0.117�0.035: ð3:8Þ

Since AV and AP are comparable in magnitude and
roughly parallel to each other, it is tempting to argue
from Eq. (3.6) that Dþ → πþω should have a rate larger
than Dþ → πþρ0, which is the opposite of the experi-
mental finding. Since CP is comparable to TV in magni-
tude, there is a large cancellation between TV and the real
part of CP. In general, the experimental constraint from
Eq. (3.8) can be satisfied provided that the imaginary part
of CP has a sign opposite to that of the imaginary part of
AV or AP. We find explicitly that the only allowed
solutions are (F3), (F4), (F3’), and (F5’).
As for the π0ρ0; π0ω, and ηω modes, we see from

Eq. (3.7) that the smallness of BðD0 → π0ωÞ, the sizable
BðD0 → ηωÞ, and the large BðD0 → π0ρ0Þ imply that the
strong phases of CV and CP should be close to each other
[5]. An inspection of Tables VII and VIII shows that the
phase difference between CV and CP is small only for
solutions (F2), (F4), and (F1’). All the other solutions yield
BðD0 → π0ωÞ > BðD0 → ηωÞ, in contradiction to the
observation of BðD0 → π0ωÞ ≪ BðD0 → ηωÞ. However,
as just noted in passing, (F2) and (F1’) will lead to the
prediction of BðDþ → πþωÞ=BðDþ → πþρ0Þ > 1, not
consistent with the experiment (see Table IX).

TABLE IX. Branching fractions (in units of 10−3) of SCS D → VP decays. The predictions have taken into account SU(3)-breaking
effects under solution (i) in Table X.

Mode Bexp t Btheo (F4) Btheo (F1’) Mode Bexp t Btheo (F4) Btheo (F1’)

D0 → πþρ− 5.15� 0.25 5.42� 0.12 5.23� 0.18 D0 → π0ω 0.117� 0.035 0.157� 0.015 0.153� 0.021
D0 → π−ρþ 10.1� 0.4 10.6� 0.5 10.2� 0.6 D0 → π0ϕ 1.17� 0.04 0.93� 0.02 0.99� 0.02
D0 → π0ρ0 3.86� 0.23 2.86� 0.06 3.38� 0.10 D0 → ηω 1.98� 0.18 1.71� 0.05 1.99� 0.06
D0 → KþK�− 1.65� 0.11 1.65� 0.04 1.55� 0.04 D0 → η0ω � � � 0.017� 0.001 0.009� 0.001
D0 → K−K�þ 4.56� 0.21 4.57� 0.22 4.56� 0.15 D0 → ηϕ 0.181� 0.046 0.175� 0.007 0.186� 0.004
D0 → K0K̄�0 0.246� 0.048 0.246� 0.011 0.246� 0.021 D0 → ηρ0 � � � 0.26� 0.02 0.25� 0.02
D0 → K̄0K�0 0.336� 0.063 0.336� 0.021 0.336� 0.015 D0 → η0ρ0 � � � 0.059� 0.002 0.059� 0.002
Dþ → πþρ0 0.83� 0.14 0.55� 0.06 0.57� 0.05 Dþ → ηρþ � � � 0.38� 0.18 0.36� 0.19
Dþ → π0ρþ � � � 5.20� 0.33 5.25� 0.38 Dþ → η0ρþ � � � 0.97� 0.03 1.12� 0.03
Dþ → πþω 0.28� 0.06 0.31� 0.05 0.88� 0.07 Dþ → KþK̄�0 3.71� 0.18 5.78� 0.15 5.26� 0.14
Dþ → πþϕ 5.70� 0.14 4.74� 0.10 5.03� 0.10 Dþ → K̄0K�þ 17.3� 1.8 15.8� 0.5 15.6� 0.5
Dþ

s → πþK�0 2.55� 0.35a 2.06� 0.06 1.58� 0.05 Dþ
s → ηK�þ � � � 0.37� 0.07 0.39� 0.09

Dþ
s → π0K�þ 0.75� 0.25b 0.71� 0.03 0.67� 0.03 Dþ

s → η0K�þ � � � 0.40� 0.02 0.42� 0.02
Dþ

s → Kþρ0 2.17� 0.25 1.01� 0.03 1.11� 0.03 Dþ
s → Kþω 0.99� 0.15 1.16� 0.03 1.17� 0.03

Dþ
s → K0ρþ 5.46� 0.95b 7.54� 0.27 7.30� 0.26 Dþ

s → Kþϕ 0.18� 0.04 0.11� 0.01 0.29� 0.02
aThe new measurement of BðDþ

s → πþK�0Þ ¼ ð2.71� 0.72� 0.30Þ × 10−3 from BESIII [51] is taken into account in the world
average.

bData from BESIII [51], but not cited in PDG [30].
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Just like the PP sector, we also need SU(3) breaking in
the W-exchange amplitudes in the VP sector because the
ratios ΓðD0 →KþK�−Þ=ΓðD0→ πþρ−Þ¼ 0.32�0.03 and
ΓðD0 →K−K�þÞ=ΓðD0→ π−ρþÞ¼ 0.45�0.03 [30] devi-
ate sizably from unity expected in the SU(3) limit. Also, the
predicted rates of D0 → K0K̄�0 and D0 → K̄0K�0 modes
are too large by 1 order of magnitude compared to the
experiment [5]. Writing

Ed
V ¼ edVe

iδedVEV; Es
V ¼ esVe

iδesVEV;

Ed
P ¼ edPe

iδedPEP; Es
P ¼ esPe

iδesPEP; ð3:9Þ

and replacing λdEV;P by λdEd
V;P and λsEV;P by λsEs

V;P in the
SCS D0 → VP decay amplitudes (see Ref. [5] for detail),
we fit the eight unknown parameters edV; e

d
P; e

s
V; e

s
P and

δedV; δe
d
P; δe

s
V; δe

s
P using the branching fractions of the

following eight modes: D0 → πþρ−; π−ρþ; π0ρ0; π0ω and
D0 → KþK�−; K−K�þ; K0K̄�0; K̄0K�0. Table X shows the
four solutions of SU(3)-breaking effects in theW-exchange
amplitudes for solutions (F4) and (F1’). In the SU(3) limit,
ed;sV;P ¼ 1 and δed;sV;P ¼ 0. Unlike solution (S3’) found
previously in Ref. [6], which leads to exact solutions for
ed;sV;P and δed;sV;P (i.e., χ2 ¼ 0), here we do not have exact
solutions and the values of χ2 are 22.3 and 5.6 per degree of
freedom for solutions (F4) and (F1’), respectively. Indeed,

we see from Table IX that the measured branching fraction
of D0 → π0ρ0 is not well reproduced. The four different
solutions of SU(3) breaking in W-exchange amplitudes
here can be discriminated using the SCS modeD0 → ηϕ. It
turns out that solution (i) is preferred for both (F4)
and (F1’).
Topological-amplitude decompositions for SCS D →

VP decays are given in Table IV of Ref. [6]. As stressed
in Refs. [5,6], the consideration of SU(3) breaking in TV;P

and CV;P alone would render even larger deviations from
the data. That is why we focus only on SU(3) breaking in
theW-exchange amplitudes for SCSD0 decays. As for SCS
VP decays of Dþ and Dþ

s , we have found a rule of thumb:
It is necessary to consider the SU(3)-breaking effects if
only one of the TV;P and CV;P topological amplitudes
appears in the decay amplitude [6].
Based on solutions (F4) and (F1’), the calculated branch-

ing fractions of SCS D → VP decays are displayed in
Table IX. We note in passing that none of the solutions
(F1’)–(F5’) can accommodate all the data of SCS channels
D0;þ → π0:þω,D0;þ→ π0;þρ0, andD0 → ηω. Nevertheless,
(F1’) is the best solution among the (F’) set as it accom-
modates the data of D0 → π0ρ0; π0ω, and ηω, although its
prediction of BðDþ → πþωÞ is too large compared to the
experiment, as shown in Table IX. For this reason, we
compare the predictions ofD → VP based on solutions (F4)
and (F1’).

C. Doubly-Cabibbo-suppressed D → VP decays

Topological-amplitude decompositions forDCSD → VP
decays are listed in Table XI, wherewe have set T 00

V;P ¼ TV;P

and C00
V;P ¼ CV;P. In the table, we have also introduced Ẽ00

V

and Ẽ00
P for reasons to be discussed below. When setting the

double-primedW-exchange amplitudes to be the same as the
unprimed amplitudes, we find some inconsistency with the
experiment, as we are going to describe below.
In order to evaluate the D0 − D̄0 mixing parameter y to

be discussed in Sec. V, we need to know the strong phase
difference δn between the D0 → n and D0 → n̄ [see
Eq. (5.1) below]. In principle, this can be evaluated in
the TDA. For example, the followingD → VPmodes have
the expressions

AðD0 → K�−πþÞ ¼ λsdðTV þ EPÞ; AðD0 → K�þπ−Þ ¼ λdsðTP þ E00
VÞ;

AðD0 → K−ρþÞ ¼ λsdðTP þ EVÞ; AðD0 → Kþρ−Þ ¼ λdsðTV þ E00
PÞ;

AðD0 → K̄�0π0Þ ¼ 1ffiffiffi
2

p λsdðCP − EPÞ; AðD0 → K�0π0Þ ¼ 1ffiffiffi
2

p λdsðCP − E00
VÞ;

AðD0 → K̄0ϕÞ ¼ λsdEP; AðD0 → K0ϕÞ ¼ λdsẼ00
V;

AðD0 → ρ−πþÞ ¼ λdðTV þ Ed
PÞ; AðD0 → ρþπ−Þ ¼ λdðTP þ Ed

VÞ;
AðD0 → K�−KþÞ ¼ λsðTV þ Es

PÞ; AðD0 → K�þK−Þ ¼ λsðTP þ Es
VÞ; ð3:10Þ

TABLE X. The parameters ed;sV;P and the phases δed;sV;P (in units
of degrees) describing SU(3)-breaking effects in theW-exchange
amplitudes Ed;s

V and Ed;s
P for solutions (F4) (upper rows) and (F1’)

(lower rows), respectively, with the corresponding values of χ2

being 22.3 and 5.6 per degree of freedom.

edV δedV edP δedP esV δesV esP δesP

(i) 0.53 18 0.21 282 0.78 30 0.16 340
(ii) 0.53 18 0.21 282 0.78 30 0.84 146
(iii) 0.53 18 0.21 282 0.92 207 0.16 340
(iv) 0.53 18 0.21 282 0.92 207 0.84 146
(i) 0.92 16 0.50 335 0.30 50 0.02 294
(ii) 0.92 16 0.50 335 0.30 50 0.87 145
(iii) 0.92 16 0.50 335 1.47 223 0.02 294
(iv) 0.92 16 0.50 335 1.47 223 0.87 145
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in the diagrammatic approach, where Ed;s
V;P are introduced before in Eq. (3.9) to account for SU(3) violation in the

W-exchange amplitudes EV and EP appearing in SCS decays. The strong phases are then given by

δK�þπ− ¼ arg½ðTP þ E00
VÞ=ðTV þ EPÞ�; δKþρ− ¼ arg½ðTV þ E00

PÞ=ðTP þ EVÞ�;
δK�0π0 ¼ arg½ðCP − E00

VÞ=ðCP − EPÞ�; δK0ϕ ¼ arg½Ẽ00
V=EP�;

δρþπ− ¼ arg½ðTP þ Ed
VÞ=ðTV þ Ed

PÞ�; δK�þK− ¼ arg½ðTP þ Es
VÞ=ðTV þ Es

PÞ�: ð3:11Þ

In the TDA, a fit to the CFD → VPmodes indicates that EV and EP differ in both magnitude and phase. For example, in
solution (F4) we have (see Table VII)

EV ¼ ð1.14� 0.04Þeið257�2Þ°; EP ¼ ð1.66� 0.03Þeið107�3Þ°; ð3:12Þ

in units of 10−6ðϵ · pDÞ. When setting E00
V ¼ EV and

E00
P ¼ EP, we find that δK�þπ− ¼ δKþρ− ¼ 48° and

δK�0π0 ¼ 72°. They are too large compared to the exper-
imental values of jδK�þπ− j ¼ ð6.1� 0.7Þ° obtained by Belle
[52] and ð2.4� 1.1Þ° by BABAR [53] both extracted from
D0 → K0

Sπ
þπ− decays2 and δKππ0 ¼ ð18� 10Þ° extracted

from D0 → K−πþπ0 [30]. To overcome this difficulty, we
shall consider the SU(3)-breaking effects in W-exchange
amplitudes in the DCS D → VP sector such that TP þ E00

V
in D0 → K�−πþ is almost parallel to TV þ EP in
D0 → K�þπ−. This can be achieved by having

E00
V ¼

�
1.4ei220°EV; solution ðF4Þ;
0.8e−i230°EV; solution ðF10Þ: ð3:13Þ

and

TABLE XI. Topological-amplitude decompositions, experimental and predicted branching fractions for DCS D → VP decays. For
Dþ → VP decays, we have set A00

V;P ¼ AV;P. All branching fractions are quoted in units of 10−4.

Mode Amplitude Bexpt [30] Btheo (F4) Btheo (F1’)

D0 → K�þπ− λdsðTP þ E00
VÞ 3.39þ1.80

−1.02 3.54� 0.28 3.46� 0.17
D0 → Kþρ− λdsðTV þ E00

PÞ � � � 1.30� 0.07 1.32� 0.04
D0 → K�0π0 1ffiffi

2
p λdsðCP − E00

VÞ � � � 0.84� 0.04 0.48� 0.02

D0 → K0ρ0 1ffiffi
2

p λdsðCV − E00
PÞ � � � 0.25� 0.02 0.27� 0.01

D0 → K�0η λds
h

1ffiffi
2

p ðCP þ E00
VÞ cosϕ − E00

P sinϕ
i � � � 0.34� 0.02 0.20� 0.01

D0 → K�0η0 λds
h

1ffiffi
2

p ðCP þ E00
VÞ sinϕþ E00

P cosϕ
i � � � 0.0019� 0.0001 0.0016� 0.0001

D0 → K0ω − 1ffiffi
2

p λdsðCV þ Ẽ00
PÞ � � � 0.66� 0.03 0.51� 0.02

D0 → K0ϕ −λdsẼ00
V � � � 0.22� 0.01 0.05� 0.01

Dþ → K�0πþ λdsðCP þ A00
VÞ 3.45� 0.60 2.52� 0.07 2.51� 0.06

Dþ → K�þπ0 1ffiffi
2

p λdsðTP − A00
VÞ 3.4� 1.4 4.17� 0.15 4.12� 0.14

Dþ → K0ρþ λdsðCV þ A00
PÞ � � � 1.40� 0.06 1.38� 0.05

Dþ → Kþρ0 1ffiffi
2

p λdsðTV − A00
PÞ 1.9� 0.5 1.84� 0.05 1.54� 0.04

Dþ → K�þη λds
h

1ffiffi
2

p ðTP þ A00
VÞ cosϕ − A00

P sinϕ
i � � � 1.44� 0.05 1.29� 0.04

Dþ → K�þη0 λds
h

1ffiffi
2

p ðTP þ A00
VÞ sinϕþ A00

P cosϕ
i � � � 0.016� 0.001 0.021� 0.001

Dþ → Kþω 1ffiffi
2

p λdsðTV þ A00
PÞ 0.57þ0.25

−0.21 2.09� 0.05 2.42� 0.05

Dþ → Kþϕ λdsA00
V 0.090� 0.012 0.057� 0.002 0.032� 0.003

Dþ
s → K�þK0 λdsðTP þ CVÞ � � � 1.47� 0.09 1.44� 0.11

Dþ
s → K�0Kþ λdsðTV þ CPÞ 0.90� 0.51 0.20� 0.02 0.11� 0.02

2The relative phase difference was measured to be ð173.9�
0.7Þ° by Belle [52] and ð177.6� 1.1Þ° by BABAR [53]. These
results are close to the 180° expected from Cabibbo factors, i.e.,
the relative minus sign between λsd and λds.
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E00
P ¼

�
0.6ei140°EP; solution ðF4Þ;
0.2ei230°EP; solution ðF10Þ: ð3:14Þ

The results of δn ’s evaluated using solutions (F4) and (F1’)
for topological amplitudes are summarized in Table XII.
CLEO has analyzed the decays D0 → K0

SK
−πþ and D0 →

K0
SK

þπ− and obtained the phase δK�K ¼ ð−16.6� 18.4Þ°
[54]. Our results for δK�0K0 and δK�−Kþ are consistent with the
experiment. Our predictions of cos δn for those D → VP
modes that are not CP eigenstates are generally different
from that calculated in the FATapproach [26] where cos δn is
close to unity.
Considering the possible resonant contributions of

D0 → K�þπ−, K�0π0, and Kþρ− to the DCS decay

D0 → Kþπ−π0, our prediction of BðD0 → Kþρ−Þ ∼ 1.30 ×
10−4 (see Table XI) is consistent with BðD0 → Kþπ−π0Þ ¼
ð3.13þ0.60

−0.56 � 0.15Þ × 10−4 measured by BESIII [55].
Using the double-primed amplitudes given in Eqs. (3.13)

and (3.14) and assuming that Ẽ00
V;P ¼ E00

V;P, the calculated
D → K0

S;LV decay rates and their asymmetries RðD;VÞ
defined in analog to Eq. (2.7) are shown in Tables XIII
and XIV, respectively. We predict that BðD0 → K0

SVÞ >
BðD0 → K0

LVÞ for V ¼ ρ0;ω;ϕ, BðDþ → K0
Sρ

þÞ <
BðDþ → K0

Lρ
þÞ and BðDþ

s →K0
SK

�þÞ<BðDþ
s →K0

LK
�þÞ.

Experimentally, we see that BðD0 → K0
SωÞ≳ BðD0 →

K0
LωÞ and BðD0 → K0

SϕÞ ≈ BðD0 → K0
LϕÞ. The last one

implies that Ẽ00
V is nearly orthogonal to EP rather than that

given by Eq. (3.13). Indeed, this can be achieved by letting

TABLE XII. Strong phase difference δn (in units of degrees) betweenD0 → n andD0 → n̄ evaluated using solutions (F4) and (F1’) for
topological amplitudes in D → VP decays.

Solution F4 F1’ Solution F4 F1’

Mode jδnj cos δn jδnj cos δn Mode jδnj cos δn jδnj cos δn

K�−πþ 3.1 0.999 2.1 0.999 K−ρþ 22 0.927 28 0.886
K̄�0π0 3.0 0.999 16 0.959 K̄0ρ0 2.7 0.999 26 0.897
K̄�0η 6.9 0.993 38 0.787 K̄�0η0 5.4 0.996 1.5 1
K̄0ω 6.7 0.993 18 0.949 K̄0ϕ 10 0.984 31 0.856
ρ−πþ ∼0 1 2.3 0.999 ρþπ− ∼0 1 2.3 0.999
K̄�0K0 4.3 0.997 7.3 0.992 K�−Kþ 7.2 0.992 33 0.839

TABLE XIII. Topological-amplitude decompositions and branching fractions (in units of %) for D → K0
S;LV decays. Experimental

results are taken from Ref. [30]. Predictions based on the FAT approach [44] are included for comparison.

Mode Representation Bexp t Btheo (F4) Btheo (F1’) Btheo (FAT)

D0 → K0
Sρ

0 1
2
½λsdðCV − EVÞ − λdsðCV − E00

PÞ� 0.63þ0.06
−0.08 0.68� 0.05 0.68� 0.05 0.50� 0.11

D0 → K0
Lρ

0 1
2
½λsdðCV − EVÞ þ λdsðCV − E00

PÞ� � � � 0.57� 0.04 0.58� 0.04 0.40� 0.09
D0 → K0

Sω
1
2
½λsdðCV þ EVÞ − λdsðCV þ Ẽ00

PÞ� 1.11� 0.06 1.27� 0.06 1.25� 0.06 1.18� 0.19

D0 → K0
Lω

1
2
½λsdðCV þ EVÞ þ λdsðCV þ Ẽ00

PÞ� 1.16� 0.04 1.03� 0.05 1.05� 0.05 0.95� 0.15

D0 → K0
Sϕ

1ffiffi
2

p ðλsdEP − λdsẼ00
VÞ 0.413� 0.031 0.458� 0.018 0.431� 0.017 0.40� 0.04

D0 → K0
Lϕ

1ffiffi
2

p ðλsdEP þ λdsẼ00
VÞ 0.414� 0.023 0.374� 0.016 0.397� 0.017 0.33� 0.03

Dþ → K0
Sρ

þ 1ffiffi
2

p ½λsdðTP þ CVÞ − λdsðCV þ APÞ� 6.14þ0.60
−0.35 6.38� 0.44 6.26� 0.52 4.99� 0.50

Dþ → K0
Lρ

þ 1ffiffi
2

p ½λsdðTP þ CVÞ þ λdsðCV þ APÞ� � � � 7.19� 0.44 7.03� 0.52 5.37� 0.50

Dþ
s → K0

SK
�þ 1ffiffi

2
p ½λsdðCV þ APÞ − λdsðTP þ CVÞ� 0.77� 0.07 0.79� 0.04 0.78� 0.04 1.20� 0.36

Dþ
s → K0

LK
�þ 1ffiffi

2
p ½λsdðCV þ APÞ þ λdsðTP þ CVÞ� � � � 1.09� 0.04 1.07� 0.04 1.37� 0.33

TABLE XIV. K0
S − K0

L asymmetries for D → K0
S;LV decays. Experimental measurements are taken from

Ref. [41].

RðD0; ρ0Þ RðD0;ωÞ RðD0;ϕÞ RðDþ; ρþÞ RðDþ
s ; K�þÞ

(F4) 0.090� 0.052 0.106� 0.034 0.101� 0.029 −0.060� 0.046 −0.164� 0.032
(F1’) 0.083� 0.050 0.089� 0.035 0.041� 0.029 −0.058� 0.055 −0.159� 0.028
Expt. � � � −0.024� 0.031 −0.001� 0.047 � � � � � �
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Ẽ00
V ¼ EVei300° using solution (F4), which leads to

BðD0 → K0
S;LϕÞ ≈ 0.415%. However, if we set E00

V ¼
EVei300°, wewill have δK�þπ− ¼ 32° andBðD0 → K�þπ−Þ ¼
1.06 × 10−4, both not consistent with the experiment. In the
spirit of the TDA, there should be only one double-primed
amplitude for W exchange; that is, one should have
Ẽ00
V ¼ E00

V . It is conceivable thatD
0 → K0ω and K0ϕ decays

receive additional singlet contributions Sω and Sϕ [50],
respectively, owing to the SU(3)-singlet nature of the vector
mesons ω and ϕ. We shall leave this and the above-
mentioned issues to a future study.
In the FAT approach [44], the double-primed topological

amplitudes are taken to be the same as the unprimed ones;
that is, E00

V ¼ EV and E00
P ¼ EP. Moreover, it is assumed

that EP ¼ EV . Consequently, this assumption leads to [44]

RðD0; ρ0Þ ¼ RðD0;ωÞ ¼ RðD0;ϕÞ ¼ 2 tan2 θC ¼ 0.107:

ð3:15Þ

Obviously, the predicted K0
S − K0

L asymmetries RðD0;ωÞ
and RðD0;ϕÞ are wrong in sign (see Table XIV).

IV. D → VV DECAYS

The underlying mechanism for D → VV decays is more
complicated than PV and PP modes, as each V involves
three polarization vectors. In general, the decay amplitudes
can be expressed in several different but equivalent bases.
The helicity amplitudes H0; Hþ and H− can be related to
the spin amplitudes in the transversity basis ðA0; Ak; A⊥Þ,
defined in terms of the linear polarization of the vector
mesons, or to the partial-wave amplitudes ðS; P;DÞ via

A0 ¼ H0 ¼ −
1ffiffiffi
3

p Sþ
ffiffiffi
2

3

r
D;

Ak ¼
1ffiffiffi
2

p ðHþ þH−Þ ¼
ffiffiffi
2

3

r
Sþ 1ffiffiffi

3
p D;

A⊥ ¼ 1ffiffiffi
2

p ðHþ −H−Þ ¼ P; ð4:1Þ

or

S ¼ 1ffiffiffi
3

p ð−A0 þ
ffiffiffi
2

p
AkÞ ¼

1ffiffiffi
3

p ð−H0 þHþ þH−Þ;

P ¼ A⊥ ¼ 1ffiffiffi
2

p ðHþ −H−Þ;

D ¼ 1ffiffiffi
3

p ð
ffiffiffi
2

p
A0 þ AkÞ ¼

1ffiffiffi
6

p ð2H0 þHþ þH−Þ; ð4:2Þ

where we have followed the sign convention of Ref. [56].
The decomposition of topological diagram amplitudes of
CF, SCS, and DCS D → VV decays is collected in
Table XV. Note that, although the decays D0 → K̄�0ϕ,
K�0ϕ, and Dþ → K�þϕ are kinematically prohibited, they
can proceed through the finite width of K�ð892Þ. Indeed,
D0 → K̄�0ϕ has been observed in the four-body decay
D0 → K−K−Kþπþ [57]. The decay D0 → ϕϕ is also
kinematically disallowed, but we include it in Table XV
in order to show that the mixing parameter yVV to be
discussed in Sec. V vanishes in the SU(3) limit.
For charmless B → VV decays, it is naively expected

that the helicity amplitudes Hh respect the hierarchical
patternH0∶H−∶Hþ¼1∶ðΛQCD=mbÞ∶ðΛQCD=mbÞ2. Hence,
they are expected to be dominated by the longitudinal
polarization states and satisfy the scaling law,

1 − fL ¼ O
�
m2

V

m2
B

�
; ð4:3Þ

with

fL≡ΓL

Γ
¼ jA0j2
jA0j2þjAkj2þjA⊥j2

¼ jH0j2
jH0j2þjHþj2þjH−j2

:

ð4:4Þ

This prediction has been confirmed in the tree-dominated B
decays such as B0 → ρþρ− and Bþ → ρþρ0. However, the
large fraction of transverse polarization observed in the
penguin-dominated decays B → ϕK�, Bþ → ωK�þ, and
B → K�ρ (except Bþ → K�þρ0) [30] is a surprise and
poses an interesting challenge for theoretical interpreta-
tions. In D → VV decays, we shall see that naive factori-
zation leads to the prediction that fL is comparable to or
smaller than the transverse polarization.

Under factorization, the factorizable matrix element for the D → V1V2 decay reads

XðDV1;V2Þ
h ≡ hV2jJμj0ihV1jJ0μjDi

¼ −ifV2
mV2

�
ðε�1 · ε�2ÞðmD þmV1

ÞADV1

1 ðm2
V2
Þ

− ðε�1 · pDÞðε�2 · pDÞ
2ADV1

2 ðm2
V2
Þ

mD þmV1

þ iϵμναβε
�μ
2 ε�ν1 pα

Dp
β
1

2VDV1ðm2
V2
Þ

mD þmV1

�
; ð4:5Þ
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where use of the conventional definition for form factors [58] has been made. The longitudinal (h ¼ 0) and transverse

(h ¼ �) components of XðDV1;V2Þ
h are given by

XðDV1;V2Þ
0 ¼ ifV2

2mV1

�
ðm2

D −m2
V1

−m2
V2
ÞðmD þmV1

ÞADV1

1 ðq2Þ − 4m2
Dp

2
c

mD þmV1

ADV1

2 ðq2Þ
�
;

XðDV1;V2Þ
� ¼ −ifV2

mDmV2

��
1þmV1

mD

�
ADV1

1 ðq2
�

∓ 2pc

mD þmV1

VDV1ðq2Þ
�
: ð4:6Þ

We see from Eq. (4.1) that the amplitude Ak is governed by
the form factor ADV1

1 , while A⊥ is related to VDV1 . The
decay rate reads

ΓðD → V1V2Þ ¼
pc

8πm2
D
ðjH0j2 þ jHþj2 þ jH−j2Þ;

¼ pc

8πm2
D
ðjA0j2 þ jA⊥j2 þ jAkj2Þ;

¼ pc

8πm2
D
ðjSj2 þ jPj2 þ jDj2Þ: ð4:7Þ

In the factorization framework, we find that jH−j2≳
jH0j2 > jHþj2, jAkj2≳ jA0j2> jA⊥j2, and jSj2 > jPj2 >
jDj2. Therefore, the longitudinal polarization fL is
expected to be in the vicinity of 0.5 or smaller. Indeed,

fL ¼ 0.475�0.271 was found by Mark III inD0 → K�−ρþ
[59]. This is not the case in tree-dominated charmful or
charmless B → VV decays where the longitudinal polariza-
tion dominates, i.e., jH0j2 > jH−j2 > jHþj2 and fL ¼
1 −Oðm2

V=m
2
BÞ. However, for the D0 → K̄�0ρ0 decay, it

was found byMark III [59] that thismode proceeded through
the transverse polarization, with only a tiny room for the
longitudinal polarization. More precisely, the transverse
branching fraction BðD0→ K̄�0ρ0ÞT ¼ð1.6�0.6Þ%, while
the total branching fraction is BðD0 → K̄�0ρ0Þtot ¼
ð1.59� 0.35Þ%. Mark III also measured the partial-wave
branching fractions: ð3.1� 0.6Þ%, < 3 × 10−3, and ð2.1�
0.6Þ% for the S, P, and D waves, respectively [59].
Experimental results for the branching fractions ofD0 →

VV in partial waves are summarized in Table XVI. We
notice that all the available measurements of Dþ

s and Dþ

TABLE XV. Topological-amplitude decompositions of CF, SCS, and DCS D → VV decays. The subscript h
denotes the helicity state, the spin state in the transversity basis, or the partial-wave amplitude. Here λsd ≡ V�

csVud,
λds ≡ V�

cdVus, λd ≡ V�
cdVud, and λs ≡ V�

csVus.

Mode Representation Mode Representation

D0 → K�−ρþ λsdðTh þ EhÞ D0 → K̄�0ρ0 1ffiffi
2

p λsdðCh − EhÞ
D0 → K̄�0ω 1ffiffi

2
p λsdðCh þ EhÞ D0 → K̄�0ϕ λsdEh

D0 → ρþρ− λdðTh þ Ed
hÞ D0 → ρ0ρ0 1ffiffi

2
p λdðCh − Ed

hÞ
D0 → K�þK�− λsðTh þ Es

hÞ D0 → K�0K̄�0 λdEd
h þ λsEs

h
D0 → ρ0ω −λdEd

h D0 → ρ0ϕ 1ffiffi
2

p λsCh

D0 → ωω 1ffiffi
2

p λdðCh þ Ed
hÞ D0 → ωϕ 1ffiffi

2
p λsCh

D0 → ϕϕ
ffiffiffi
2

p
λsEh

D0 → K�þρ− λdsðTh þ EhÞ D0 → K�0ρ0 1ffiffi
2

p λdsðCh − EhÞ
D0 → K�0ω 1ffiffi

2
p λdsðCh þ EhÞ D0 → K�0ϕ λdsEh

Dþ → K̄�0ρþ λsdðTh þ ChÞ
Dþ → ρþρ0 1ffiffi

2
p λdðTh þ ChÞ Dþ → K�þK̄�0 λsTh þ λdAh

Dþ → ρþω 1ffiffi
2

p λdðTh þ Ch þ 2AhÞ Dþ → ρþϕ λsCh

Dþ → K�0ρþ λdsðCh þ AhÞ Dþ → K�þϕ λdsAh

Dþ → K�þρ0 1ffiffi
2

p λdsðTh − AhÞ Dþ → K�þω 1ffiffi
2

p λdsðTh þ AhÞ
Dþ

s → K̄�0K�þ λsdðCh þ AhÞ Dþ
s → ρþρ0 0

Dþ
s → ρþω 1ffiffi

2
p λsdAh Dþ

s → ρþϕ λsdTh

Dþ
s → ρþK�0 λdTh þ λsAh Dþ

s → ρ0K�þ 1ffiffi
2

p ðλdCh − λsAhÞ
Dþ

s → K�þω 1ffiffi
2

p ðλdCh þ λsAhÞ Dþ
s → K�þϕ λsðTh þ Ch þ AhÞ

Dþ
s → K�þK�0 λdsðTh þ ChÞ
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decays to VV are performed by BESIII. From the viewpoint
of the factorization approach, there exist several puzzles
with regard to the data: (i) While one expects jSj2 > jPj2 >
jDj2 from naive factorization, D0 → K�−ρþ; K̄�0ρ0;
ρþρ−; ρ0ρ0 seem to be dominated by theDwave andDþ

s →
K�0ρþ; K�−ρ0 are dominated by the P wave. In particular,
the D-wave dominance is entirely unexpected. (ii) The
decay D0 → ωϕ is observed by BESIII to be transversely
polarized with fL < 0.24 [7]. (iii) If D0 → ωϕ and D0 →
ρ0ϕ proceed only through the internal W emission, their
branching fractions and polarizations are expected to be the
same. Experimentally, they differ not only in rates but also
in the polarization. How do we understand the puzzles with
the rates and polarizations for D0 → ωϕ and ρ0ϕ? One
possibility is to consider the final-state rescattering of
D0 → K�þK�−, which proceeds through external W emis-
sion and W exchange (see Table XV). It is easily seen that
final-state interactions of D0 → K�þK�− will contribute to
both ωϕ and ρ0ϕ through external W emission, but only to
the former through W exchange as advocated in Ref. [60].

Another approach is to include flavor-singlet contributions
Sh unique to both ω and ϕ,

AðD0 → ρ0ϕÞ ¼ 1ffiffiffi
2

p λsðCh þ SϕhÞ;

AðD0 → ωϕÞ ¼ 1ffiffiffi
2

p λsðCh þ Sωh − SϕhÞ: ð4:8Þ

It is conceivable that D0 → ρ0ϕ receives flavor-singlet
contribution Sϕ, while the contributions Sϕ and Sω are
essentially canceled out in D0 → ωϕ. We note in passing
that the predicted BðDþ

s → ρþη0Þ is substantially smaller
than the experiment and this calls for the flavor-singlet
contribution from the η0.
Branching fractions of D0 → VV in partial waves

calculated in the factorization approach are presented in
Table XVII. Since the W-exchange contributions are
neglected in naive factorization, no estimate is made for
the branching fractions of K�0K̄�0, K̄�0ϕ, K�0ϕ, and ρ0ω.
For the effective Wilson coefficients, we have used

TABLE XVI. Experimental results for the branching fractions of D0 → VV in partial waves. Data are taken from Ref. [30] unless
specified otherwise.

Meson Mode S wave P wave D wave Bexpt

D0 K�−ρþ ð1.4� 0.4Þ%a ð0.9� 0.2Þ% ð2.9� 0.8Þ% � � �
K̄�0ρ0 ð8.0� 1.2Þ × 10−3

b ð2.8� 0.3Þ × 10−3 ð9.8� 1.0Þ × 10−3 ð1.52� 0.08Þ%
� � � ð6.0� 0.4Þ × 10−3c ð5.0� 0.2Þ × 10−3 ð7.0� 0.6Þ × 10−3 � � �

K̄�0ω � � � � � � � � � ð1.1� 0.5Þ%
K̄�0ϕ � � � � � � � � � ð3.30� 0.64Þ × 10−4

ρþρ− ð1.2� 0.4Þ × 10−3d ð1.8� 0.3Þ × 10−3 ð3.3� 0.5Þ × 10−3 ð7.81� 1.14Þ × 10−3

ρ0ρ0 ð0.8� 0.4Þ × 10−4e ð4.6� 0.7Þ × 10−4 ð1.1� 0.2Þ × 10−3 ð1.33� 0.21Þ × 10−3

ρ0ρ0 ð1.8� 1.3Þ × 10−4f ð5.3� 1.3Þ × 10−4 ð6.2� 3.0Þ × 10−4 ð1.33� 0.35Þ × 10−3

ρ0ϕ ð1.4� 0.1Þ × 10−3 ð8.1� 3.9Þ × 10−5 ð8.5� 2.8Þ × 10−5 ð1.56� 0.13Þ × 10−3

ωϕ � � � � � � � � � ð6.48� 1.04Þ × 10−4

K�0K̄�0 ð5.04� 0.29Þ × 10−4 ð2.70� 0.18Þ × 10−4 ð1.06� 0.09Þ × 10−4 ð0.88� 0.04Þ × 10−3

Dþ
s K�þK̄�0 ð5.01� 0.92Þ%g ð1.10� 0.19Þ% ð0.65� 0.16Þ% ð5.93� 0.88Þ%

ð3.96� 0.26Þ%h ð1.67� 0.16Þ% ð0.81� 0.14Þ% ð5.64� 0.35Þ%
ρþϕ ð4.27� 0.32Þ%h ð1.06� 0.11Þ% ð0.37� 0.09Þ% ð5.59� 0.34Þ%
K�0ρþ ð1.41� 0.24Þ × 10−3i ð2.53� 0.31Þ × 10−3 � � � ð3.95� 0.39Þ × 10−3

K�þρ0 � � � ð0.42� 0.17Þ × 10−3
i � � � � � �

Dþ K̄�0ρþ ð5.52� 0.55Þ%j ð2.94� 1.02Þ × 10−3 � � � ð5.82� 0.56Þ%
aPartial waves are taken from the measured fit fractions in the decayD0 → K−πþπ0π0 [61]. However, measurement of the fit fraction

of D0 → K�−ρþ was not reported by BESIII. Mark III results of BðD0 → K�−ρþÞ ¼ ð6.5� 2.6Þ% and ð3.1� 1.2Þ%, ð3.4� 2.0Þ% for
the longitudinal and transverse branching fractions, respectively, were listed in the 2009 version of PDG [62].

bTaken from the BESIII measurement of D0 → K−πþπþπ− [63].
cTaken from the LHCb measurement of D0 → K−πþπþπ− [64].
dTaken from the BESIII measurement of D0 → πþπ−π0π0 [65].
eTaken from the BESIII measurement of D0 → πþπ−πþπ− [65].
fPartial waves are taken from Ref. [66]. Branching fractions of D0 → ρ0ρ0 in the transversity basis also have been measured by

FOCUS [67]. The results read ð1.85� 0.13Þ × 10−3 for the total branching fraction and ð1.27� 0.10Þ × 10−3, ð4.8� 0.6Þ × 10−4, and
ð8.3� 3.2Þ × 10−5 for the longitudinal, perpendicular, and parallel components, respectively. The longitudinal polarization fL ¼
0.71� 0.04� 0.02 was obtained.

gTaken from the BESIII measurement of Dþ
s → K0

SK
−πþπþ [68].

hTaken from the BESIII measurement of Dþ
s → K−Kþπþπ0 [69].

iTaken from the BESIII measurement of Dþ
s → Kþπþπ−π0 [70].

jTaken from the BESIII measurement of Dþ → K0
Sπ

þπ0π0 [71].
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a1 ¼ 0.90 and a2 ¼ −0.64. Comparing Table XVII with
the measured partial-wave rates given in Table XVI shows
that the predictions based on factorization deviate from the
experimental measurements. This indicates the necessity of
taking into account the nonfactorizable W-exchange con-
tributions that might account for the D-wave dominance
observed inD0 → K�−ρþ, K̄�0ρ0, ρþρ−, and ρ0ρ0 channels,
an issue to be investigated in the near future. The predicted
longitudinal polarization fL ranges from 0.31 to 0.49.

V. D0 − D̄0 MIXING

The two-body decays D0 → PP and quasi-two-body
decays D0 → VP; VV; SP; SV; AP; AV; TP; TV account
for about 3=4 of the total hadronic rates. Many of the
three-body final states arise from SP, VP, and TP decays,
the four-body states from VV and AP decays, and the five-
body states from AV decays. The nonresonant three- and
four-body decays are at most 10% of the multibody decay
rates. Hence, it is arguable that these two-body and quasi-
two-body channels dominate and can provide a good
estimate of the mixing parameters. As mentioned in the
Introduction, use of the TDA is made to reduce the
uncertainties with the measured channels and estimate
those modes yet to be observed. In particular, we focus
on D → PP and VP decays and present updated topologi-
cal amplitudes.

The general expression for the D mixing parameter y is
given by [21]

y ¼
X
n

ηCKMðnÞηCPðnÞ cos δn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 → nÞBðD0 → n̄Þ

q
;

ð5:1Þ

where δn is the strong phase difference between theD0 → n
and D̄0 → n amplitudes and ηCKM ¼ ð−1Þns with ns being
the number of s and s̄ quarks in the final state. The factor
ηCP ¼ �1 is well defined since jni and jn̄i are in the same
SU(3) multiplet. Hence, this factor is the same for the entire
multiplet.

A. PP

Since CPjπ0i ¼ −jπ0i and likewise for η; η0, we will
choose the convention that CPjKþi ¼ −jK−i and
CPjK0i ¼ −jK̄0i. Because

CPjM1M2i ¼ ηCPðM1ÞηCPðM2Þð−1ÞLjM1M2i; ð5:2Þ

it is clear that ηCPðPPÞ ¼ 1 for decays into two pseudo-
scalar mesons. The parameter y arising from the PP states
is then

yPP ¼ Bðπþπ−Þ þ Bðπ0π0Þ þ Bðπ0ηÞ þ Bðπ0η0Þ þ BðηηÞ þ Bðηη0Þ þ BðKþK−Þ þ BðK0K̄0Þ
− 2 cos δK−πþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK−πþÞBðKþπ−Þ

p
− 2 cos δK̄0π0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄0π0ÞBðK0π0Þ

q

− 2 cos δK̄0η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄0ηÞBðK0ηÞ

q
− 2 cos δK̄0η0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄0η0ÞBðK0η0Þ

q
: ð5:3Þ

TABLE XVII. Branching fractions of CF, SCS, and DCS D0 → VV decays in partial waves calculated in the factorization approach.
Data are taken from Table XVI. Since the W-exchange contributions are neglected in naive factorization, no estimate is made for the
branching fractions of K�0K̄�0, K̄�0ϕ, K�0ϕ, and ρ0ω.

Mode S wave P wave D wave fL Btheo Bexpt

D0 → K�−ρþ 7.1% 3.9 × 10−3 1.2 × 10−3 0.43 7.6% ð6.5� 2.5Þ%
D0 → K̄�0ρ0 1.74% 1.5 × 10−3 2.7 × 10−4 0.42 1.9% ð1.52� 0.08Þ%
D0 → K̄�0ω 1.6% 1.3 × 10−3 2.0 × 10−4 0.41 1.8% ð1.1� 0.5Þ%
D0 → K�þK�− 3.3 × 10−3 9.4 × 10−5 8.0 × 10−6 0.37 3.4 × 10−3 � � �
D0 → ρþρ− 3.4 × 10−3 3.6 × 10−4 1.5 × 10−4 0.49 3.9 × 10−3 ð7.81� 1.14Þ × 10−3

D0 → ρ0ρ0 0.87 × 10−3 0.93 × 10−4 3.7 × 10−5 0.49 1.00 × 10−3 ð1.33� 0.21Þ × 10−3

D0 → ωω 5.9 × 10−4 6.1 × 10−5 2.0 × 10−5 0.47 6.7 × 10−4 � � �
D0 → ρ0ϕ 6.2 × 10−4 2.5 × 10−5 1.1 × 10−6 0.36 6.5 × 10−4 ð1.56� 0.13Þ × 10−3

D0 → ωϕ 5.9 × 10−4 2.2 × 10−5 1.2 × 10−6 0.36 6.2 × 10−4 ð6.48� 1.04Þ × 10−4

D0 → K�þρ− 1.9 × 10−4 1.7 × 10−5 3.0 × 10−6 0.42 2.1 × 10−4 � � �
D0 → K�0ρ0 5.0 × 10−5 4.3 × 10−6 7.6 × 10−7 0.42 5.5 × 10−5 � � �
D0 → K�0ω 4.6 × 10−5 3.8 × 10−6 5.7 × 10−7 0.41 5.0 × 10−5 � � �
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Minus signs appear in the interference terms between the
CF and DCS decay modes owing to the negative ηCKM
factor.
To see that y vanishes in the SU(3) limit, as noted in the

Introduction, the contributions to y from the charged pions
and kaons

yπ�;K∓ ¼ Bðπþπ−Þ þ BðKþK−Þ − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK−πþÞBðKþπ−Þ

p
ð5:4Þ

vanish in theU-spin limit, where the strong phase δK−πþ → 0
in the same limit. To see the cancellation among the neutral
states, we work on the SU(3)-singlet η0 and octet states
π; K; η8. When the SU(3) symmetry is exact, the octet states
have the same masses and D0 → K0K̄0 is prohibited. As

shown explicitly in Ref. [1], perfect cancellation occurs
among the SU(3) neutral octet final states and among the
decaymodes π0η0, η8η0, K̄0η0, andK0η0 involving the SU(3)
singlet η0. Therefore, yPP indeed vanishes in the SU(3) limit.
To compute the mixing parameter y, we need to know the

phase δn. There are four CF D0 → PP decays, namely,
K−πþ, K̄0ðπ0; η; η0Þ and four DCS modes Kþπ−,
K0ðπ0; η; η0Þ. From Table IV, we see that D0 →
K0ðπ0; η; η0Þ and D0 → K̄0ðπ0; η; η0Þ (see, e.g., Table I of
Ref. [1]) have the same strong phases and hence cos δ ¼ 1.
For D0 → K−πþ and Kþπ−, δKþπ− ¼ arg½ð1.23T þ EÞ=
ðT þ EÞ� ¼ 5.83° and hence cos δKþπ− ¼ 0.995, which is
consistent with the current experiment measurement of
0.990� 0.025 [30].
From the branching fractions of D0 → PP modes

exhibited in Table III, we obtain

yPP ¼
� ð1.113� 0.007Þ% − ð1.058� 0.006Þ% ¼ ð0.055� 0.009Þ% solution I;

ð1.227� 0.010Þ% − ð1.061� 0.006Þ% ¼ ð0.166� 0.012Þ% solution II;
ð5:5Þ

for ϕ ¼ 40.4°, and

yPP ¼
� ð1.154� 0.007Þ% − ð1.050� 0.007Þ% ¼ ð0.102� 0.010Þ% solution I;

ð1.283� 0.009Þ% − ð1.053� 0.007Þ% ¼ ð0.231� 0.012Þ% solution II;
ð5:6Þ

for ϕ ¼ 43.5°. The difference between solutions I and II
arises from the two SCSmodes,D0 → ηη andD0 → ηη0 (see
Table III). SU(3) symmetry breaking occurs in both the decay
amplitudes and in the final-state phase space. In the previous
analysis of Ref. [21], the authors considered only SU(3)
violation in the phase space and obtained a negative y,

yPP;8 ¼ −1.8 × 10−4; yPP;27 ¼ −3.4 × 10−5; ð5:7Þ

withPP being an 8 or 27 SU(3) representation. Indeed, if we
neglect SU(3) violation in the decay amplitudes, we will
obtain a negative mixing parameter y. The channel D0 →
KþK− poses the largest SU(3) symmetry breaking in the
decay amplitude.
If we use the experimental measurements as the input

and employ the predictions based on the TDA for the yet-
to-be-measured DCS modes, namely, D0 → K0π0, K0η,
and K0η0 (cf. Table III), we find

yPP ¼ ð1.131� 0.030Þ% − ð1.026� 0.012Þ%
¼ ð0.110� 0.033Þ%; ð5:8Þ

where use of cosKþπ− ¼ 0.990� 0.025 [30] has been made.
This is between the two predictions for ϕ ¼ 40.4° and close

to solution I for ϕ ¼ 43.5°. Nevertheless, theoretical
predictions have smaller uncertainties. Hence, we conclude
that

yPP ∼ ð0.110� 0.011Þ%: ð5:9Þ

Recall that yPP ¼ ð0.086� 0.041Þ% was obtained in
Ref. [24] and ð0.100� 0.019Þ% in Ref. [26].

B. VP

The neutral vector mesons ρ0;ω;ϕ are CP-even eigen-
states. It is thus convenient to define CPjVi ¼ jV̄i for the
vector meson in the same SU(3) multiplet. It follows from
Eq. (5.2) that ηCPðVPÞ ¼ þ1 for decays into one vector
meson and one pseudoscalar meson. There are more decay
modes available for the VP final states, namely, V1P2 and
P1V2. There are a total of 30 channels for VP (8 for CF, 14
for SCS, and 8 for DCS), to be contrasted with the 16PP
channels. The parameter y arising from the VP states is
given by

yVP ¼ yVP;1 þ yVP;2; ð5:10Þ

with
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yVP;1 ¼ Bðπ0ρ0Þ þ Bðπ0ωÞ þ Bðπ0ϕÞ þ Bðηρ0Þ þ BðηωÞ þ Bðη0ρ0Þ þ Bðη0ϕÞ þ Bðη0ωÞ
þ 2 cos δπþρ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðπþρ−ÞBðπ−ρþÞ

p
þ 2 cos δKþK�−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK�−KþÞBðK−K�þÞ

p

þ 2 cos δK0K̄�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK0K̄�0ÞBðK̄0K�0Þ

q
; ð5:11Þ

and

yVP;2 ¼ −2 cos δπþK�−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK�−πþÞBðK�þπ−Þ

p
− 2 cos δK−ρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK−ρþÞBðKþρ−Þ

p

− 2 cos δπ0K̄�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄�0π0ÞBðK�0π0Þ

q
− 2 cos δK̄0ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄0ρ0ÞBðK0ρ0Þ

q

− 2 cos δηK̄�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄�0ηÞBðK�0ηÞ

q
− 2 cos δη0K̄�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄�0η0ÞBðK�0η0Þ

q

− 2 cos δK̄0ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄0ωÞBðK0ωÞ

q
− 2 cos δK̄0ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄0ϕÞBðK0ϕÞ

q
: ð5:12Þ

In the SU(3) limit, the cancellation of the ninth and tenth
terms of yVP;1 with the first and second terms of yVP;2 is
obvious, as the relevant strong phases are the same and all
the ffiffiffiffiffi

…
p . terms are proportional to jðTV þ EPÞðTP þ EVÞj.

To see the cancellation among the neutral states, we work
on the SU(3) singlets η0, ϕ and the octet states π, K, η8, ω.
For octet neutral states, yVP ∝ ðEP − EVÞ2, which vanishes
in the limit of SU(3) symmetry. Because the decay constant

of the vector meson fV typically of order 210 MeV is much
larger than fP, many VP modes have rates greater than
the PP ones. Moreover, the number of VP channels is
almost double that of PP ones. It is thus naively anticipated
that the VP mode contributions to y ought to be larger
than yPP.
Taking Tables VI, IX, and XI as the input for the

branching fractions of D → VP, we obtain

yVP ¼
� ð2.739� 0.043Þ% − ð2.576� 0.058Þ% ¼ ð0.163� 0.072Þ% ðF4Þ;
ð2.752� 0.053Þ% − ð2.381� 0.045Þ% ¼ ð0.371� 0.069Þ% ðF10Þ; ð5:13Þ

where cos δn ¼ 1 is assumed for all the modes. If we employ the calculated cos δn’s given in Table XII based on the TDA,
we get

yVP ¼
� ð2.735� 0.043Þ% − ð2.514� 0.057Þ% ¼ ð0.220� 0.071Þ% ðF4Þ;
ð2.664� 0.052Þ% − ð2.229� 0.043Þ% ¼ ð0.435� 0.068Þ% ðF10Þ: ð5:14Þ

The predicted value of y is much larger for solution (F1’) for two reasons: (i) the predicted DCS branching fractions using
(F1’) are smaller compared to that using solution (F4) (see Table XI) due to smaller E00

V and E00
P [cf. Eqs. (3.13) and (3.14)],

and (ii) the phase terms cos δn’s in (F1’) are smaller in magnitude than that in (F4). Hence, these two features render the
second term yVP;2 smaller in (F1’).
It is interesting to notice that if we use the experimental data as the input and employ the predictions based on the TDA

for those modes yet to be measured, we get

yVP ¼
� ð2.813� 0.059Þ% − ð2.547� 0.184Þ% ¼ ð0.266� 0.193Þ% ðF4Þ;
ð2.811� 0.059Þ% − ð2.365� 0.183Þ% ¼ ð0.446� 0.192Þ% ðF10Þ; ð5:15Þ

for cos δn ¼ 1 and

yVP ¼
� ð2.808� 0.059Þ% − ð2.462� 0.183Þ% ¼ ð0.322� 0.193Þ% ðF4Þ
ð2.721� 0.058Þ% − ð2.214� 0.182Þ% ¼ ð0.547� 0.191Þ% ðF10Þ; ð5:16Þ

for the calculated cos δn in (F4) and (F1’). Evidently, the uncertainties are substantially reduced in the diagrammatic
approach. We thus have the lower bound on yVP
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yVP ≳ ð0.220� 0.071Þ%; ð5:17Þ

see Eq. (5.14). We recall that yVP ¼ ð0.112� 0.072Þ% in
Ref. [26], and yVP ¼ ð0.269� 0.253Þ%, ð0.152�
0.220Þ% in schemes (A,A1) and (S,S1), respectively, [24].
In Ref. [21] where the phase space is the only source of

SU(3) violation, the values of y for 8S, 8A, 10, 10, and 27
representations are estimated to be 0.15%, 0.15%, 0.10%,
0.08%, and 0.19%, respectively. Unlike the previous PP
case, the sign of yVP is positive. Recall that the large rate
disparity between D0 → KþK− and D0 → πþπ− implies
large SU(3)-breaking effects in the amplitude of T þ E,
more precisely, jT þ EjKK=jT þ Ejππ ≈ 1.80 [5]. In the VP
sector, instead we have ΓðKþK�−Þ < Γðπþρ−Þ and
ΓðK−K�þÞ < Γðπ−ρþÞ. This is understandable as the
available phase space is proportional to p3

c=m2
V [see

Eq. (3.2)], which explains why ΓðD0 → KK�Þ < ΓðD0 →
πρÞ owing to the fact that pcðπρÞ ¼ 764 MeV and

pcðKK�Þ ¼ 608 MeV. As shown in Ref. [5], we find from
the measured branching fractions that

jTV þ EPjπþρ−
jTV þ EPjKþK�−

¼ 1.08;
jTP þ EV jπ−ρþ
jTV þ EPjK−K�þ

¼ 0.91:

ð5:18Þ
This implies that SU(3) breaking in the amplitudes of TV þ
EP and TP þ EV is small, contrary to the PP case. This
means that SU(3) violation in the decay amplitudes plays a
less significant role in D → VP decays. Therefore, an
estimate of yVP solely based on SU(3) symmetry breaking
in the phase space leads to a correct sign of y.

C. VV

The VV states with different partial waves contribute
with different CP parties. We have ηCPðVVÞ ¼ 1 for VV in
the S or D wave and −1 in the P wave [21]. The parameter
y for VV modes has the expression

yVV;l ¼ Bðρþρ−Þl þ Bðρ0ρ0Þl þ Bðρ0ωÞl þ Bðρ0ϕÞl þ BðωωÞl þ BðωϕÞl þ BðϕϕÞl
þ BðK�þK�−Þl þ BðK�0K̄�0Þl − 2 cos δK�−ρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK�−ρþÞlBðK�þρ−Þl

q

− 2 cos δK̄�0ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄�0ρ0ÞlBðK�0ρ0Þl

q
− 2 cos δK̄�0ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄�0ωÞlBðK�0ωÞl

q

− 2 cos δK̄�0ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK̄�0ϕÞlBðK�0ϕÞl

q
ð5:19Þ

for l ¼ S, D, and an overall minus sign is needed for
l ¼ P. From Table XV, it is easily seen that the contribu-
tion

yK�;ρ ¼ Bðρþρ−Þl þ BðK�þK�−Þl
− 2 cos δK�−ρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK�−ρþÞlBðK�þρ−Þl

q
ð5:20Þ

vanishes in the SU(3) limit. This U-spin relation cannot be
tested by the current data as only the D0 → K�−ρþ and
D0 → ρþρ− decays have been measured. Notice that,
although D0 → ϕϕ is prohibited by phase space, it is
needed in order to show a vanishing yVV;l in the SU(3)
limit.
An estimate using the naive factorization results from

Table XVII yields

yVV;S ¼ −0.167%; yVV;P ¼ 1.61 × 10−4;

yVV;D ¼ 4.71 × 10−5: ð5:21Þ

Since the predicted rates of D0 → VV in partial waves
based on naive factorization do not resemble the data given
in Table XVI, particularly for theD-wave dominance in the
D0 → K�−ρþ, K̄�0ρ0, ρþρ−, and ρ0ρ0 decays as suggested

by the current data, it is premature to have a reliable
estimate of yVV;l. Indeed, if we use the data in Table XVI as
the input and employ the predictions based on naive
factorization for those modes yet to be measured, we get

yVV;S¼0.0271%; yVV;P¼−0.0958%; yVV;D¼0.361%:

ð5:22Þ

The results obtained in Ref. [21] in which only SU(3)
violation in the phase space is considered are given by

S wave∶ yVV;8 ¼ −0.39%; yVV;27 ¼ −0.30%;

P wave∶ yVV;8 ¼ −0.48%; yVV;27 ¼ −0.70%;

D wave∶ yVV;8 ¼ 2.5%; yVV;27 ¼ 2.8%: ð5:23Þ

Because the momentum dependence of the D wave is
proportional to p3

c, the D-wave phase space is most
sensitive to the SU(3) breaking in pc.

D. D → ðS;A;TÞðP;VÞ decays
There are hadronic D decays into an even-parity meson

M and a pseudoscalar meson or a vector meson, where M
represents a scalar meson S, an axial-vector meson A, or a
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tensor meson T. They have been studied in the literature
[72–74], but the data are not adequate to allow for the
extraction of topological amplitudes, especially for the W-
exchange amplitudes. These will have to be left to a future
investigation.

VI. CONCLUSIONS

In this work, we have presented an updated analysis of
the two-body decays D → PP, VP, and VV decays within
the framework of the topological diagram approach. For the
CF decay modes involving a neutral kaon, K0

S or K0
L, the

relation ΓðK̄0Þ ¼ 2ΓðK0
SÞ can be invalidated by the inter-

ference between the CF and DCS amplitudes. Since the
topological amplitudes in DCS modes are not necessarily
the same as those in CF ones beyond flavor SU(3)
symmetry, we prefer to use the good approximate relation
BðD→ K̄0MÞ≅BðD→K0

SMÞþBðD→K0
LMÞ for M ¼ P

and V.
In the PP sector, the tree topological amplitudes T, C, E,

and A are extracted from CF D → PP decays for the η − η0
mixing angle ϕ ¼ 40.4° and 43.5°, respectively. The fitted
χ2 values almost vanish with the quality close to unity
for ϕ ¼ 40.4°.
Assuming that the double-primed amplitudes in the DCS

sector are the same as the unprimed ones, the calculated
K0

S − K0
L asymmetries RðD0; PÞ for D0 → K0

S;LP decays
with P ¼ π0, η and η0 agree with the experiment, meaning
that D0 → K0

SP has a rate larger than that of D0 → K0
LP.

However, our predicted RðDþ; πþÞ is the opposite of the
experiment in sign and the calculated RðDþ

s ; KþÞ is too
small compared to the data. This is ascribed to the fact that
the relative phase between (Cþ A) and (T þ C) is slightly
larger than 90°, rendering the interference between Dþ →
K̄0πþ and Dþ → K0πþ destructive in Dþ → K0

Sπ
þ and

constructive in Dþ → K0
Lπ

þ. This is the opposite of the
pattern observed experimentally. We find that, if the phase
difference is decreased slightly by 10°, we are able to
accommodate both RðDþ; πþÞ and RðDþ

s ; KþÞ.
In the VP sector, if the double-primed topological

amplitudes in DCS decays are taken to be the same as
the unprimed ones, we will be led to some predictions not
in accordance with the experiment. That is why we prefer
to apply the relation BðD → K̄0VÞ ≅ BðD → K0

SVÞþ
BðD → K0

LVÞ. Unfortunately, we have the data of BðD →
K0

LVÞ for V ¼ ω and ϕ, but not for V ¼ ρ0, ρþ, and K�þ.
Since it is most likely that E00

V;P ≠ EV;P, we fit the
topological amplitudes to D0 → K̄0ðω;ϕÞ, Dþ → K0

Sρ
þ,

and Dþ
s → K0

SK
�þ, but not D0 → K0

Sρ
0.

A global fit to the CF modes in the VP sector gives many
solutions with similarly small local minima in χ2: (F1)–(F5)
for ϕ ¼ 40.4° and (F1’)–(F5’) for ϕ ¼ 43.5°, when we

restrict ourselves to χ2min < 10. The solution degeneracy is
lifted once we use them to predict for the SCS modes. In the
end, we find that only solutions (F4) and (F1’) can
accommodate all SCS modes, except that the predicted
BðDþ → πþωÞ in (F1’) is slightly larger than the data.
These two solutions have a common feature in that CV and
CP are close in phase in order to simultaneously explain the
small BðD0 → π0ωÞ and large BðD0 → π0ρ0Þ. The anni-
hilation amplitudes AV and AP are more precisely deter-
mined than before because of a significantly improved new
measurement of Dþ

s → πþρ0; they are comparable in size
and similar in phase.
For DCS D → VP decays, the assumption of E00

V;P ¼
EV;P leads to some inconsistencies with the experiment; for
example, the predicted strong phases δK�þπ− and δK�0π0 are
too large compared to their experimental values. The
relations of E00

V;P with EV;P are given in Eqs. (3.13) and
(3.14), respectively.
The K0

S − K0
L asymmetries in the D → K0

S;LV decays are
shown in Table XIII. The calculated RðD0;ωÞ and RðD0;ϕÞ
do not agree with the experiment. We conjecture that addi-
tional singlet contributions due to the SU(3)-singlet nature of
ω and ϕ should account for the discrepancy.
Thanks to BESIII, many new data on Dþ

s and Dþ to VV
decays became available in recent years. In the meantime,
several new puzzles have also emerged. For example,
D0 → K�−ρþ, K̄�0ρ0, ρþρ−, and ρ0ρ0 seem to be dominated
by the D wave, while Dþ

s → K�0ρþ and K�−ρ0 are
dominated by the Pwave, contrary to the naive expectation
of S-wave dominance. In spite of the progresses in the field,
the data are still not adequate to allow for a meaningful
extraction of helicity or partial-wave amplitudes, especially
for the W-exchange and W-annihilation ones.
Yet another goal of this analysis is to evaluate the D0 −

D̄0 mixing parameter y using the exclusive approach
through the two-body decays of the D0 meson. The mixing
parameter is usually small owing to large cancellation
between the SCS terms and the interference of CF and DCS
terms. As the topological-amplitude analysis is available
for D → PP and VP decays, we are able to estimate yPP
and yVP more reliably. We conclude that yPP ∼ ð0.110�
0.011Þ% and the lower bound on yVP is ð0.220� 0.071Þ%.
It is thus conceivable that at least half of the D0 − D̄0

mixing parameter y is accounted for by the PP and VP
modes. The main uncertainties arise from the DCS chan-
nels yet to be measured and the phase factors cos δn’s.
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