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Built on the seminal works by Jackson-Treiman-Wyld and Ebel-Feldman, we derive the most general
free neutron differential decay rate where all massive particles (neutron, proton, and electron) are polarized.
This introduces 33 new correlations in addition to the 18 existing ones, which overconstrain the coupling
constants in the low-energy effective field theory of charged weak interactions, and thus provides stringent
tests of the validity of the theory framework itself. We classify the correlation coefficients in terms of their
Standard Model limit and discrete symmetries, and study their expansion with respect to the new physics
coupling strengths, supplemented by the experiment-independent OðαÞ virtual electromagnetic radiative
corrections.
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I. INTRODUCTION

The failure of the Standard Model (SM) to explain
observed phenomena such as dark matter and the matter-
antimatter asymmetry calls for the search of physics
beyond the Standard Model (BSM). However, the fact that
we have not yet observed any confirmed signal of new
physics suggests that they either reside at very high energy
scale, or may involve new light degrees of freedom (DOFs)
with very weak couplings to the SM particle sector. For the
former case, one may describe the remnant of new physics
at low scales using the effective field theory (EFT)
approach, where new heavy DOFs are integrated out in
replacement of higher-order operators with the SM DOFs.
At MeV scale, the effective theory for charged weak
interactions relevant to neutron and nuclear beta decays
is given by the Lee-Yang (LY) Hamiltonian [1], where the
effective DOFs are nucleons, electrons, neutrinos and
photons. By the renormalization group analysis, their
coupling strengths can be related to the Wilson coefficients
of the low-energy effective field theory (LEFT) [2] where
quarks replace the nucleons as the active DOFs, and the
StandardModel effective field theory (SMEFT) [3,4] where
heavy gauge bosons and quarks become active.
The EFT description of BSM physics at low energies can

break down if there are light new DOFs which cannot be
integrated out. A direct consequence of such is that one

may be unable (or find it unnatural) to consistently explain
all experimental results using a finite number of EFT
coupling constants at a given order. A recent example of
this kind is the measurement of the axial-to-vector coupling
constant λ from the free neutron beta decay. This ratio has
been extracted from the electron-neutrino correlation a and
the beta asymmetry parameter A; the best measurement of a
from aSPECT (with revised systematic errors and assuming
the absence of Fierz term) returned λ ¼ −1.2668ð27Þ [5,6],
while the best measurement of A from PERKEO-III [7]
returned λ ¼ −1.27641ð56Þ, the two showed a 3.5σ dis-
crepancy. It was known that in the EFT framework, apart
from the spectrum-modulation by the Fierz term b that
affects the experimentally-measured correlations:

CexpðEeÞ ¼
CðEeÞ

1þ bme=Ee þ…
; ð1Þ

the BSM corrections to both a and A occur at the second
order [8,9], which makes it difficult to explain the a − A
discrepancy while avoiding constraints from high-energy
experiments, e.g. from the Large Hadron Collider (LHC)
[9–11], as well as the respective upper limits on the Fierz
term set by the individual correlations [6,12–15]. It is
therefore desirable to search for more evidences of the
possible breakdown of EFT by checking its consistency in
the prediction of different correlations in the same decay
process.
In 1957, Jackson, Treiman and Wyld (JTW) [16] wrote

down a general formula for the free neutron differential
decay rate, including terms that contain up to two out of the
three following vector quantities: the neutron polarization
ŝn, the electron polarization σ⃗, and the neutrino momentum
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p⃗ν deduced from the proton recoil; Ebel and Feldman (EF)
[17] extended their result to include terms that involve all
three vectors. However, to the best of our knowledge, the
most general decay rate formula that includes the polar-
izations of all massive particles: neutron, electron and
proton, is not yet written down, the practical reason is
simply that the proton polarization ŝp is extremely difficult
to measure and was not being attempted in existing
experiments. However, at least in principle, the polarization
of the final nuclei could be detected. Given the importance
of having additional ways of verifying new physics, it
would be interesting to consider the possibility that such
measurements could be carried out. The polarization of the
proton after neutron decay may be detectable if feasible
ways of accelerating the proton without losing its polari-
zation existed, allowing for analyzing by scattering. The
polarization of nuclei after beta decays may lead to
detectable effects in the final nucleus. This paper does
not pretend to have a proposal for doing such experiments,
but aims to inspire considerations for practical experiments.
The inclusion of ŝp results in a much richer structure of

the neutron decay phenomenology, with a total of 51
correlation coefficients that over-constrain the coupling
constants of the beta decay EFT and offer a powerful
consistency test of the theory framework and probe new
light DOFs. In this work we attempt on such a generali-
zation where all massive particles are allowed to be
polarized. We also perform a classification of all the
resulting correlations according to their discrete sym-
metries and properties under the expansion of small
BSM parameters, and discuss their respective roles in
the search for new physics.

II. MOST GENERAL SET OF CORRELATIONS

Weinberg’s famous “theorem” of EFT [18] states that,
the most general Lagrangian L will give rise to the most
general S-matrix consistent with analyticity, perturbative
unitarity, cluster decomposition and the assumed symmetry
principles in L. Assuming that new DOFs are heavy, they
can be integrated out at low energies to obtain higher-
dimensional operators constructed from SM DOFs. At the
beta decay energy scale, the active DOFs are nucleons and
leptons, and the most general effective interactions at
lowest order are given by the LY Hamiltonian [1]:

HLY ¼ p̄n½CSēν − C0
Sēγ5ν� þ p̄γμn½CVēγμν − C0

Vēγμγ5ν�

þ 1

2
p̄σμνn½CTēσμνν − C0

Tēσμνγ5ν�
− p̄γμγ5n½CAēγμγ5ν − C0

Aēγμν�
þ p̄γ5n½CPēγ5ν − C0

Pēν� þ H:c:: ð2Þ

The most general correlations are then simply obtained by
computing the free neutron decay squared amplitude from
Eq. (2). Here we allow all neutron, proton, and electron to

be polarized; at this point we do not consider higher-order
effects such as radiative and recoil corrections.
The desired squared amplitude at is given by:

jMj2¼4mnmpEeEνξf1þgJTWþgEFþgsp þgspsng; ð3Þ

which contains four classes of correlations apart from the
overall spectrum factor ξ (which will also be called a
“correlation” throughout this paper). The first class consists
of 12 terms in the JTW paper [16]:

gJTW ¼ a
p⃗e · p⃗ν

EeEν
þb

me

Ee
þ ŝn ·

�
A
p⃗e

Ee
þB

p⃗ν

Eν
þD

p⃗e× p⃗ν

EeEν

�

þ σ⃗ ·

�
G
p⃗e

Ee
þH

p⃗ν

Eν
þK

p⃗e

Eeþme

p⃗e · p⃗ν

EeEν
þL

p⃗e× p⃗ν

EeEν

�

þ σ⃗ ·

�
NŝnþQ

p⃗e

Eeþme
ŝn ·

p⃗e

Ee
þRŝn×

p⃗e

Ee

�
: ð4Þ

The second class contains 5 correlations defined in the EF
paper [17]:

gEF ¼ Sŝn · σ⃗
p⃗e · p⃗ν

EeEν
þT

σ⃗ · p⃗e

Ee
ŝn ·

p⃗ν

Eν
þU

σ⃗ · p⃗ν

Eν
ŝn ·

p⃗e

Ee

þVŝn ·

�
σ⃗× p⃗ν

Eν

�
þW

σ⃗ · p⃗e

Eeþme
ŝn ·

�
p⃗e× p⃗ν

EeEν

�
: ð5Þ

In the derivation of Eq. (5), we have used the following
useful identity:

a⃗ · b⃗ c⃗ ·ðd⃗ × e⃗Þ − a⃗ · c⃗ b⃗ ·ðd⃗ × e⃗Þ þ a⃗ · d⃗ b⃗ ·ðc⃗ × e⃗Þ
− a⃗ · e⃗ b⃗ ·ðc⃗ × d⃗Þ ¼ 0 ð6Þ

to reduce the number of independent structures. Notice also
that there are four more terms in Refs. [16,17]: c, I, K0 and
M, that appear in a generic allowed beta decay but vanish in
the case of the neutron decay where Ji ¼ Jf ¼ 1=2.
In this paper we introduce two more classes of corre-

lations. The first class depends linearly on the proton unit
polarization ŝp but is independent of ŝn. Their structures
can be directly inferred from the terms in gJTW and gEF by
replacing ŝn → ŝp. We find 11 new correlations:

gsp ¼ ŝp ·

�
Ã
p⃗e

Ee
þ B̃

p⃗ν

Eν
þ D̃

p⃗e× p⃗ν

EeEν

�

þ σ⃗ ·

�
Ñŝpþ Q̃

p⃗e

Eeþme
ŝp ·

p⃗e

Ee
þ R̃ŝp×

p⃗e

Ee

�

þ S̃ŝp · σ⃗
p⃗e · p⃗ν

EeEν
þ T̃

σ⃗ · p⃗e

Ee
ŝp ·

p⃗ν

Eν
þ Ũ

σ⃗ · p⃗ν

Eν
ŝp ·

p⃗e

Ee

þ Ṽŝp ·

�
σ⃗× p⃗ν

Eν

�
þ W̃

σ⃗ · p⃗e

Eeþme
ŝp ·

�
p⃗e× p⃗ν

EeEν

�
: ð7Þ
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Finally, there are structures that are linear simultaneously to ŝn and ŝp, which have no analogy to the known structures and
have to be worked out from scratch. There are 22 such terms:

gspsn ¼ ŝp · ŝn

�
X þ ã

p⃗e · p⃗ν

EeEν
þ b̃

me

Ee

�
þ ŝp · ŝnσ⃗ ·

�
G̃
p⃗e

Ee
þ H̃

p⃗ν

Eν
þ K̃

p⃗e

Ee þme

p⃗e · p⃗ν

EeEν
þ L̃

p⃗e × p⃗ν

EeEν

�

þ Yσ⃗ · ðŝp × ŝnÞ þ Ąσ⃗ · ŝp
p⃗ν

Eν
· ŝn þ ąσ⃗ · ŝn

p⃗ν

Eν
· ŝp þ Ęσ⃗ · ŝp

p⃗e

Ee
· ŝn þ ęσ⃗ · ŝn

p⃗e

Ee
· ŝp þ Ł

p⃗ν

Eν
· ðŝp × ŝnÞ

þ ł
p⃗e

Ee
· ðŝp × ŝnÞ þ Ń

p⃗ν

Eν
· ŝp

p⃗e

Ee
· ŝn þ ń

p⃗ν

Eν
· ŝn

p⃗e

Ee
· ŝp þ Ó

p⃗ν

Eν
· ŝpσ⃗ ·

�
p⃗e

Ee
× ŝn

�
þ ó

p⃗ν

Eν
· ŝnσ⃗ ·

�
p⃗e

Ee
× ŝp

�

þ Ś
σ⃗ · p⃗e

Ee

p⃗ν

Eν
· ðŝp × ŝnÞ þ ś

σ⃗ · p⃗e

Ee þme

p⃗e

Ee
· ðŝp × ŝnÞ þ Ź

p⃗ν

Eν
· ŝp

p⃗e

Ee
· ŝn

σ⃗ · p⃗e

Ee þme
þ ź

p⃗ν

Eν
· ŝn

p⃗e

Ee
· ŝp

σ⃗ · p⃗e

Ee þme
: ð8Þ

We label some of these new correlations with alfabet polski
as we are running out of Latin alphabets.
In the Appendix we provide the analytic formula for all

51 correlations induced by the pure LY Hamiltonian (i.e.,
without considering higher-order SM corrections); notice

the absence of Cð0Þ
P in the expressions due to the fact that

ūpγ5un → 0 in the nonrecoil limit, despite possible
enhancement from the pion pole [19,20]. It is also useful
to study the discrete symmetries, i.e., parity (P) and time-
reversal (T), of each correlation, which we summarize in
Table I. Such information is important to relate precision
neutron beta decay measurements to other experiments,
both at high and low energies, that search for signals of new
physics. For instance, T-odd interactions (which are also
CP-odd given the CPT theorem) are important to explain
the existing baryon-antibaryon asymmetry according to the
Sakharov criteria [21]. Experimental measurement of the
T-odd correlations in the neutron beta decay may combine
with searches for permanent electric dipole moments [22]
and LHC experiments [10,23] to constrain the magnitude of
CP-odd Wilson coefficients in SMEFT.

III. BSM EXPANSION

The SM predicts a hierarchy of the different LY
parameters, and for the purpose of new physics searches
it is useful to perform an expansion of Eq. (3) from the SM
limit. This has been considered in many literature for the
few most commonly-studied correlation coefficients such
as ξ, a, b, A, B, and D [8–10,14,20], and here we shall
generalize it to all 51 coefficients.
To facilitate the discussion, we follow Ref. [20] and

recombine the LY parameters as:

CX¼
Cþ
X þC−

X

2
; C0

X¼
Cþ
X −C−

X

2
; X¼S;V;T;A;P: ð9Þ

With this, we can rewrite Eq. (2) as:

HLY ¼ p̄n½Cþ
S ēRνL þ C−

S ēLνR�
þ p̄γμn½Cþ

V ēLγμνL þ C−
VēRγμνR�

þ 1

2
p̄σμνn½Cþ

T ēRσμννL þ C−
T ēLσμννR�

þ p̄γμγ5n½Cþ
A ēLγμνL − C−

AēRγμνR�
− p̄γ5n½Cþ

P ēRνL − C−
PēLνR� þ H:c:; ð10Þ

i.e., the “þ”(“−”) coefficients are associated to left (right)-
handed neutrinos, respectively. This representation is par-
ticularly useful since there are only two real parameters,
namely ReCþ

V and ReCþ
A , that have a zeroth-order SM

contribution. We express them as:

ReCþ
V ≡ ffiffiffi

2
p

GV; ReCþ
A ≡ ffiffiffi

2
p

GVλ; ð11Þ

which defines the quantityGV and λ (notice that λ < 0 in this
convention). Both quantities contain SM and BSM contri-
butions: GV ¼ ðGVÞSM þ ðGVÞBSM, λ ¼ ðλÞSM þ ðλÞBSM,
with the former given by:

ðGVÞSM ¼ GFVudgV; ðλÞSM ¼ gA=gV; ð12Þ

where GF ¼ 1.1663788ð6Þ × 10−5 GeV−2 is the Fermi
constant measured from muon decay [24], and gV;A are
the vector and axial coupling constants in the neutron decay.

TABLE I. Discrete symmetries of the correlation coefficients.

P-even P-odd

T-even ξ; a; b; N;Q; S; T; U, Ñ; Q̃; S̃; T̃; Ũ, X; ã; b̃;Ń; ń A, B, G, H, K, Ã; B̃; G̃; H̃; K̃, Ą; ą;Ę; ę;Ź; ź
T-odd D, L, D̃; L̃, Y;Ó; ó;Ś; ś R, V, W, R̃; Ṽ; W̃, Ł; ł
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Following common practice, we define gV;A to include the
SM “inner” radiative corrections [25,26]:

g2V;A ¼ ̊g2V;Af1þ ΔV;A
R g; ð13Þ

where the “bare” vector and axial coupling constants ̊gV;A are
defined through the pure-QCD matrix element of the
charged weak current:

hpjūγμð1−γ5ÞdjniQCD¼ ūpγμðg̊Vþ g̊Aγ5Þunþrecoil: ð14Þ

In particular, ̊gV ¼ 1 due to the conserved vector current, up
to very small isospin-symmetry-breaking corrections that be
studied using lattice QCD [27]. The recent progress in
the theory prediction of the inner radiative corrections ΔV;A

R
[28–33] is one of the main driving forces behind the
resurgence of interest on the precision test of SM in charged
weak decays, but will not be further discussed in this paper.
When performing the BSM expansion, it is customary to

keep the quantities GV and λ intact without separating the
SM (zeroth- and higher-order) and BSM pieces, because it
is always the fully renormalized quantities that are exper-
imentally measured.1 Therefore, we assign the following
power counting for the expansion:

GV; λ ∼Oð1Þ; ImCþ
V;A;

C−
V;A; C�

S;T;P ∼OðϵÞ; ð15Þ

where ϵ counts the power of BSM coupling. With this, we
can expand the LY-induced correlation coefficients in the
Appendix with increasing powers of ϵ:

ðCξÞLY ¼ ðCξÞ0 þ ðCξÞ1 þ ðCξÞ2 þ… ð16Þ

It is easy to see that, up to OðϵÞ only the “þ” coefficients
survive, because the SM neutrinos are purely left-handed,
so the “−” coefficients that involve right-handed neutrinos
do not survive in the interference terms assuming that
neutrinos are massless. Furthermore, explicit calculation
shows that ImCþ

V and ImCþ
A always appear as the

combination ImCþ
AV ≡ImfCþ

A − λCþ
Vg at this order.

Therefore, up to OðϵÞ we have access to 7 real parameters
in the LY Hamiltonian: GV , λ, ImCþ

AV , ReCþ
S , ImCþ

S ,
ReCþ

T , and ImCþ
T .

For numerical precision, it is necessary to include higher-
order SM corrections on top of the LY interaction. Again,
this has been discussed extensively in literature for the few
most commonly-studied correlations, and here we take the
first step to generalize it to all 51 terms. To 10−4 precision,

the relevant higher-order effects are: (1) the recoil correc-
tions, and (2) the electroweak radiative corrections. The
recoil corrections can arise kinematically (e.g. from
the nucleon kinetic energy) or dynamically (e.g., from
the 1=mN-suppressed nucleon form factors) [35], and it
would be more convenient to treat all of them coherently
under a unified framework such as the heavy-baryon chiral
perturbation theory [36], which we defer to a future work.
Meanwhile, the electroweak radiative corrections are of
three types:

(i) The long-distance Coulomb interaction between the
outgoing proton and electron which gives rise to the
Fermi function [37]

FðEeÞ ¼ 1þ πα

β
þOðα2Þ ð17Þ

(where β ¼ pe=Ee) as a multiplicative factor to the
squared amplitude, and other “Coulomb correc-
tions” to some correlation coefficients that can
mimic T-odd effects [17,38]. Notice that the Fermi
function was traditionally obtained by solving the
Dirac equation of the electron under a Coulomb
potential, but recently there is a substantial effort to
reformulate it in terms of EFT [39–41].

(ii) The “inner” electroweak radiative corrections ΔV;A
R

that renormalize the neutron vector and axial cou-
pling constants.

(iii) The remaining “outer” radiative corrections that
modify the correlation coefficients.

The first two are purely virtual (i.e., loop-induced) correc-
tions, while the outer radiative corrections are a combina-
tion of virtual and real (i.e., bremsstrahlung, n → peνγ)
effects.
Unlike virtual corrections that do not alter the external

kinematics, the bremsstrahlung contributions rely heavily
on the actual experimental setup: For instance, the emitted
photon (or even neutrino) can either be detected or
undetected, and the various experimental cuts on the
momenta of detected particles will affect the integration
region of the four-body phase space. Early works by Sirlin
[25], Shann [42] and Garcia-Maya [43] expressed the
radiatively-corrected differential decay rate in terms of
the electron and the “true” neutrino momenta p⃗e and p⃗ν,
which implicitly assumed that the neutrino is detected. It
was later pointed out [44] that, the naïve application of such
a formula to most of the existing neutron decay experi-
ments that do not directly detect the outcoming neutrino
can lead to an Oðα=πÞ error in the extraction of the p⃗ν-
dependent correlation coefficients, due to the breakdown of
the tree-level momentum conservation p⃗ν ¼ p⃗n − p⃗p − p⃗e

in the presence of the extra photon. This could be remedied
by adopting a modified analysis of the bremsstrahlung
corrections that fully integrates out the neutrino and photon
momenta in the phase space integral, leaving instead p⃗p

1With that said, it is still possible to probe new physics with
these observables. For instance, comparing the experimentally-
measured λ to the theory prediction of ðλÞSM may set constraints
on BSM-induced right-handed quark currents [33,34].
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and p⃗e as free variables [45,46]. Such a prescription is,
however, inappropriate for experiments that explicitly
detect the emitted photon (above certain momentum).
For the sake of generality, we decide to include in this

work only the “experiment-independent” part of the radi-
ative corrections, i.e. the virtual corrections, to OðαÞ. The
resulting differential decay rate is thus incomplete (and in
fact infrared-divergent), and must be supplemented by the
corresponding bremsstrahlung correction calculation tail-
ored to meet the actual setup of the specific experiment to
be analyzed. The virtually corrected differential decay rate
takes the following form:

dΓ
dEedΩedΩν

≈
peEν

512π5mnmp
FðEeÞ

�
1þ α

2π
δUv

�
jMj2; ð18Þ

whereFðEeÞ is the Fermi function, and δUv is the “universal”
part of the virtual outer radiative corrections2:

δUv ¼ 1

2
ln
m2

p

m2
e
−
11

4
þ ln

m2
em2

p

m4
γ

þ2

β
tanh−1β

�
ln
m2

γ

m2
e
− tanh−1β

�

−
2

β
Li2

�
2β

1þβ

�
; ð19Þ

where mγ is a fictitious photon mass to regularize the
infrared divergence. The squared amplitude jMj2 takes the
form of Eq. (3), with the correlation coefficients expanded
in increasing powers of ϵ [see Eq. (16)] and supplemented
by correlation-dependent virtual outer radiative corrections:

Cξ¼
�
1þ α

2π
δCvI

�
ðCξÞ0þG2

V
α

2π
δCvIIþðCξÞ1þ��� ð20Þ

In particular, δCvII represents the “Coulomb correction” that
mimics T-odd correlations. We do not include the recoil-
suppressed radiative corrections [47,48] that can be relevant
to certain observables; for example, it was known that the
leading SM contribution to the D-coefficient scales as
OðαEe=mNÞ ∼ 10−5 [49].
In Table II–V, we summarize all the relevant quantities in

expansion of the 51 terms up toOðϵÞ: ðCξÞ0, δCvI, δCvII, ðCξÞ1.

TABLE II. Relevant quantities in the expansion of ξ and gJTW.

C ðCξÞ0 δCvI δCvII ðCξÞ1
1 G2

Vð1þ 3λ2Þ 2β tanh−1 β 0 0
a −G2

Vðλ2 − 1Þ 2
β tanh

−1 β 0 0

b 0 0 0
ffiffiffi
2

p
GVRefCþ

S þ 3λCþ
T g

A −2G2
Vλðλþ 1Þ 2

β tanh
−1 β 0 0

B 2G2
Vλðλ − 1Þ 2β tanh−1 β 0 −

ffiffiffi
2

p
GV

me
Ee
RefλCþ

S þ ð1 − 2λÞCþ
T g

D 0 0 0
ffiffiffi
2

p
GVImCþ

AV
G −G2

Vð1þ 3λ2Þ 2
β tanh

−1 β 0 0

H G2
V

me
Ee
ðλ2 − 1Þ 0 0 −

ffiffiffi
2

p
GVRefCþ

S − λCþ
T g

K G2
Vðλ2 − 1Þ 2

β
Eeþme
Ee

tanh−1 β 0
ffiffiffi
2

p
GVRefCþ

S − λCþ
T g

L 0 0 − 2πðλ2−1Þme
pe

ffiffiffi
2

p
GVImfCþ

S − λCþ
T g

N 2G2
V

me
Ee
λðλþ 1Þ 0 0

ffiffiffi
2

p
GVRefλCþ

S þ ð2λþ 1ÞCþ
T g

Q 2G2
Vλðλþ 1Þ 2

β
Eeþme
Ee

tanh−1 β 0 −
ffiffiffi
2

p
GVRefλCþ

S þ ð2λþ 1ÞCþ
T g

R 0 0 4πλðλþ1Þme
pe

ffiffiffi
2

p
GVImfλCþ

S þ ð2λþ 1ÞCþ
T g

TABLE III. Relevant quantities in the expansion of gEF.

C ðCξÞ0 δCvI δCvII ðCξÞ1
S 0 0 0

ffiffiffi
2

p
GVRefCþ

T − λCþ
S g

T −2G2
Vλðλ − 1Þ 2

β tanh
−1 β 0 0

U 0 0 0 −
ffiffiffi
2

p
GVRefCþ

T − λCþ
S g

V 0 0 0 −
ffiffiffi
2

p
GVImfCþ

T − λCþ
S þ me

Ee
Cþ
AVg

W 0 0 0 −
ffiffiffi
2

p
GVImfCþ

AV þ λCþ
S − Cþ

T g

2There is a freedom to shift δUv by an arbitrary additive
constant, which is compensated by a corresponding shift in
ΔV;A

R simultaneously. Our choice of δUv in Eq. (19) is consistent to
the “standard” definition of ΔV

R from which numerical values are
quoted, see, e.g., [26] and references therein.
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IV. SM, BSM, AND EFT

For a more intuitive understanding, it is useful to catego-
rize the correlations into two different classes (see Table VI):
Class-A elements which begin at Oð1Þ, and Class-B ele-
ments which begin at OðϵÞ; the former provide avenues for
the precision extraction of GV and λ (and new physics

parameters provided the SM background are well-under-
stood), whereas the latter have a reduced SM background
and are particularly useful to search for new physics. We
further divide the Class-A elements into group I that receives
OðϵÞ corrections from theBSM-induced LYparameters, and
group II that does not receiveOðϵÞ corrections. This is useful

TABLE IV. Relevant quantities in the expansion of gsp .

C ðCξÞ0 δCvI δCvII ðCξÞ1
Ã 2G2

Vλðλ − 1Þ 2
β tanh

−1 β 0 0

B̃ −2G2
Vλðλþ 1Þ 2β tanh−1 β 0 −

ffiffiffi
2

p
GV

me
Ee
RefλCþ

S þ ð2λþ 1ÞCþ
T g

D̃ 0 0 0
ffiffiffi
2

p
GVImCþ

AV

Ñ −2G2
V

me
Ee
λðλ − 1Þ 0 0

ffiffiffi
2

p
GVRefλCþ

S þ ð1 − 2λÞCþ
T g

Q̃ −2G2
Vλðλ − 1Þ 2

β
Eeþme
Ee

tanh−1 β 0 −
ffiffiffi
2

p
GVRefλCþ

S þ ð1 − 2λÞCþ
T g

R̃ 0 0 − 4πλðλ−1Þme
pe

ffiffiffi
2

p
GVImfλCþ

S þ ð1 − 2λÞCþ
T g

S̃ 0 0 0
ffiffiffi
2

p
GVRefCþ

T − λCþ
S g

T̃ 2G2
Vλðλþ 1Þ 2

β tanh
−1 β 0 0

Ũ 0 0 0 −
ffiffiffi
2

p
GVRefCþ

T − λCþ
S g

Ṽ 0 0 0 −
ffiffiffi
2

p
GVImfCþ

T − λCþ
S þ me

Ee
Cþ
AVg

W̃ 0 0 0 −
ffiffiffi
2

p
GVImfCþ

AV þ λCþ
S − Cþ

T g

TABLE V. Relevant quantities in the expansion of gspsn .

C ðCξÞ0 δCvI δCvII ðCξÞ1
X −G2

Vðλ2 − 1Þ 2β tanh−1 β 0 0
ã −G2

Vðλ2 − 1Þ 2
β tanh

−1 β 0 0

b̃ 0 0 0
ffiffiffi
2

p
GVRefCþ

S − λCþ
T g

G̃ G2
Vðλ2 − 1Þ 2

β tanh
−1 β 0 0

H̃ G2
V

me
Ee
ðλ2 − 1Þ 0 0 −

ffiffiffi
2

p
GVRefCþ

S − λCþ
T g

K̃ G2
Vðλ2 − 1Þ 2

β
Eeþme
Ee

tanh−1 β 0
ffiffiffi
2

p
GVRefCþ

S − λCþ
T g

L̃ 0 0 − 2πðλ2−1Þme
pe

ffiffiffi
2

p
GVImfCþ

S − λCþ
T g

Y 0 0 0
ffiffiffi
2

p
GVImfCþ

T − λCþ
S þ me

Ee
Cþ
AVg

Ą −2G2
V

me
Ee
λðλ − 1Þ 0 0

ffiffiffi
2

p
GVRefλCþ

S þ ð1 − 2λÞCþ
T g

ą −2G2
V

me
Ee
λðλþ 1Þ 0 0 −

ffiffiffi
2

p
GVRefλCþ

S þ ð2λþ 1ÞCþ
T g

Ę 0 0 0
ffiffiffi
2

p
GVRefCþ

T − λCþ
S g

ę 0 0 0 −
ffiffiffi
2

p
GVRefCþ

T − λCþ
S g

Ł 0 0 0 −
ffiffiffi
2

p
GVImfCþ

AV þ me
Ee
ðCþ

T − λCþ
S Þg

ł 0 0 0 −
ffiffiffi
2

p
GVImCþ

AV

Ń 2G2
Vλðλþ 1Þ 2

β tanh
−1 β 0 0

ń 2G2
Vλðλ − 1Þ 2

β tanh
−1 β 0 0

Ó 0 0 4πλðλþ1Þme
pe

ffiffiffi
2

p
GVImfλCþ

S þ ð2λþ 1ÞCþ
T g

ó 0 0 4πλðλ−1Þme
pe

−
ffiffiffi
2

p
GVImfλCþ

S þ ð1 − 2λÞCþ
T g

Ś 0 0 0
ffiffiffi
2

p
GVImCþ

AV
ś 0 0 0

ffiffiffi
2

p
GVImfCþ

AV þ λCþ
S − Cþ

T g
Ź −2G2

Vλðλþ 1Þ 2
β
Eeþme
Ee

tanh−1 β 0
ffiffiffi
2

p
GVRefλCþ

S þ ð2λþ 1ÞCþ
T g

ź −2G2
Vλðλ − 1Þ 2

β
Eeþme
Ee

tanh−1 β 0 −
ffiffiffi
2

p
GVRefλCþ

S þ ð1 − 2λÞCþ
T g
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for the precision test of the EFT framework: For instance, if
the extractions of λ from twodifferentClass-A.II correlations
show a discrepancy, then its explanation within the EFT
framework would involve BSM physics at the order Oðϵ2Þ
and could be challenging (e.g., in order to comply with
constraints from high-energy experiments); this could point
toward the existence of light DOFs. We similarly divide the
Class-B elements into group I that is T-even and group II that
is T-odd (up to small SM Coulomb corrections). This is
useful for tests of fundamental symmetries: For instance, the
Class-B.II correlations are sensitive to CP-violating inter-
actions needed for baryogenesis.
An interesting application of the analysis above is to find

possible sums of two correlation coefficients that have
vanishing Oð1Þ, OðϵÞ contributions and virtual radiative
corrections; this means in the EFT framework such sums
are extremely suppressed (both in SM and BSM), so a
significant non-zero experimental value would be a
strong evidence of the breakdown of EFT. When restricting
to the “old” correlations, namely those from gJTW and gEF,
we only find one such sum: SþU, but with the inclusion
of gsp and gspsn we find a lot more possibilities, see
Table VII. This again supports our assertion that the future
measurement of the proton polarization will open new
windows to test the EFT framework.
We conclude this section by briefly discussing theOðϵ2Þ

corrections. They can be obtained by expanding the full
expressions in the Appendix and are in general quite
lengthy; here we show the results for a few most fre-
quently-studied correlations:

ðξÞ2 ¼
1

2
fjCþ

S j2 þ jC−
S j2 þ jC−

V j2 þ 3ðjCþ
T j2 þ jC−

T j2

þ jC−
Aj2Þ þ ðImCþ

V Þ2 þ 3ðImCþ
A Þ2g

ðaξÞ2 ¼
1

2
f−jCþ

S j2 − jC−
S j2 þ jCþ

T j2 þ jC−
T j2 þ jC−

V j2

− jC−
Aj2 þ ðImCþ

V Þ2 − ðImCþ
A Þ2g

ðAξÞ2 ¼ jCþ
T j2 − jC−

T j2 þ jC−
Aj2 − ðImCþ

A Þ2 þReCþ
SReCþ

T

−ReC−
SReC−

T þReC−
VReC−

A þImCþ
SImCþ

T

−ImC−
SImC−

T −ImCþ
VImCþ

A

þImC−
VImC−

A: ð21Þ

As an application, we consider the a − A discrepancy
from aSPECT and PERKEO-III. The two experiments had
included an independent fit of the Fierz term, which
returned b ¼ −0.0098ð193Þ [6] and 0.017(21) [15] respec-
tively, both consistent with zero; so we may assume b ¼ 0
in what follows for simplicity. We may try to explain the
discrepancy between the λ measured from a and A (after
accounting for SM corrections), which we denote as λa and
λA respectively, in terms of Oðϵ2Þ effects. This amounts to
writing:

1 − λ2a
1þ 3λ2a

¼ G2
Vð1 − λ2Þ þ ðaξÞ2

G2
Vð1þ 3λ2Þ þ ðξÞ2

;

−2λAðλA þ 1Þ
1þ 3λ2A

¼ −2G2
Vλðλþ 1Þ þ ðAξÞ2

G2
Vð1þ 3λ2Þ þ ðξÞ2

; ð22Þ

TABLE VI. Classification of the correlation coefficients under the BSM expansion.

Class A: Starts at Oð1Þ Class B: Starts at OðϵÞ
I: Non-zero OðϵÞ II: Zero OðϵÞ I: T-even II: T-odd

B, H, K, N, Q,
B̃; Ñ; Q̃; H̃; K̃,
Ą; ą;Ź; ź

ξ, a, A, G, T,
Ã; T̃; X; ã; G̃,

Ń; ń

b, S, U,
S̃; Ũ; b̃,
Ę; ę

D, L, R, V, W,
D̃; R̃; Ṽ; W̃; L̃,
Y;Ł; ł;Ó; ó;Ś; ś

TABLE VII. A list of sum between two correlation coefficients that give vanishing Oð1Þ, OðϵÞ terms and the
OðαÞ virtual radiative corrections. We only display terms that involve up to one “new” correlation coming from
gsp or gspsn.

EFT-suppressed combinations

ðJTW;EFÞ ⊕ ðJTW;EFÞ Sþ U

JTW ⊕ new
a − ã, aþ G̃, Aþ T̃, Aþ Ń, D − D̃, Dþ ł, D − Ś

H − H̃, K-K̃, L − L̃, N þ ą, Qþ Ź, R − Ó

EF ⊕ new
S − S̃, Sþ Ũ, S − Ę, Sþ ę, T þ Ã, T þ ń, U þ S̃

U − Ũ, U þ Ę, U − ę, V − Ṽ, V þ Y, W − W̃, W þ ś
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and expanding both expressions to Oðϵ2Þ. That gives:

λa − λA ≈
1þ 3λ2

8G2
Vλð1 − λÞð1þ 3λÞ ½ð1þ λÞ2ðξÞ2 þ 4λðAξÞ2

− ð1 − λÞð1þ 3λÞðaξÞ2�: ð23Þ

One can then analyze if such explanation is compatible
with constraints on BSM Wilson coefficients from high-
energy experiments. Plugging the experimental results
from aSPECTand PERKEO-III to the left hand side returns
λa − λA ¼ 9.6ð2.8Þ × 10−3. Meanwhile, by dimensional
analysis we assume that the BSM couplings scale as
1=Λ2

BSM where ΛBSM is a new physics energy scale. So,
up to order-one factors, the a − A discrepancy would imply
a relatively low new physics scale:

1

G2
VΛ4

BSM
∼ λa − λA ⇒ ΛBSM ∼ 1 TeV ð24Þ

which is difficult to avoid LHC bounds. Similar analysis
can be performed if more Class-A.II correlations are
experimentally studied in the future.

V. MODEL EXAMPLE

In Table VII we display a list of correlation coefficient
pairs that sum up to zero in the EFT description; here we
provide a simple example to show how the inclusion of a
light DOF can break this “zero-sum game” which provides
experimental signatures of its existence. Notice that this is
just for illustrative purpose and we do not intend to perform
a more comprehensive analysis that may have to account
for SM corrections and real constraints from other low-
energy experiments.
We consider an axion field a with mass ma that couples

to the nucleons as:

LaN ¼ −iaðgpp̄γ5pþ gnn̄γ5nÞ; ð25Þ

where gp, gn are dimensionless coupling constants.
Assuming ma > mn −mp, it cannot be emitted as a real
particle in the neutron beta decay and can only appear in
loops. The axion-induced nucleon wave function renorm-
alization provides only a constant multiplicative correction
to ξ which is irrelevant to our discussion of correlation
coefficients (since ξ is always divided out), so wemay focus
on the one-particle-irreducible diagram depicted in Fig. 1. It
gives the following correction to the decay amplitude:

δMðpp; pnÞ ¼ −i
GVffiffiffi
2

p gpgnLλμ
4−d

Z
ddk
ð2πÞd

ūpkγλð1þ λγ5Þkun
ððpp − kÞ2 −m2

pÞððpn − kÞ2 −m2
nÞðk2 −m2

aÞ
; ð26Þ

where Lλ is the matrix element of the leptonic weak current,
and we have regulated the ultraviolet (UV) divergence using
dimensional regularization, and simplified the numerator of
the integrand using the equation of motion. It is easy to see
that, the UV-divergent part of the integral serves only to
renormalize the SM couplingsGV and λ. In fact, since these
couplings are usually defined in terms of the forward

nucleon matrix element, one may in stead work on the
following UV-finite renormalized amplitude:

δMrðpp; pnÞ≡ δMðpp; pnÞ − δMðp; pÞ; ð27Þ

by reabsorbing the forward piece δMðp; pÞ into the
definition of GV and λ.

FIG. 1. The axion-induced one-particle-irreducible diagram.

FIG. 2. The axion-induced breaking of the a ¼ ã equality as functions of ma, Ee, and c.
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We recall that, in a pure LY-induced beta decay (after
subtracting the known higher-order SM corrections) the
correlation coefficient a is exactly equal to ã; the former is
a well-studied correlation and the latter is a new correlation
introduced in this paper. However, the inclusion of the
correction δMr results in a finite breaking of such an
equality. In Fig. 2 we plot the results of the difference a − ã
with the axion coupling constants gpgn scaled out. Notice
that now the correlation coefficients are no longer constants
but functions of Ee and c≡ p̂e · p̂ν, as well as the axion
mass ma, so we show three plots to illustrate their func-
tional dependence on all the three variables.

VI. SUMMARY

To summarize, we studied the SM prediction and the
leading BSM correction, within the EFT framework, of the
free neutron differential decay rate assuming that the proton
polarization is measurable. We showed that it gives rise to a
very rich phenomenology that can be used for the precision
test of the SM, the search for new physics and the test of the
EFT framework. This may provide new motivations for

future experimental designs to measure the proton polari-
zation. A generalization to allowed nuclear beta decays is
also possible but will not be attempted in this work.
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APPENDIX: PURE LEE-YANG
CORRELATION COEFFICIENTS

In this Appendix we provide the analytic formula for the
purely LY-induced correlation coefficients. Those from ξ
and gJTW read:

ðξÞLY ¼ jCSj2 þ jCV j2 þ jC0
Sj2 þ jC0

V j2 þ 3ðjCT j2 þ jCAj2 þ jC0
T j2 þ jC0

Aj2Þ
ðaξÞLY ¼ −jCSj2 þ jCV j2 − jC0

Sj2 þ jC0
V j2 þ jCT j2 − jCAj2 þ jC0

T j2 − jC0
Aj2

ðbξÞLY ¼ 2RefCSC�
V þ C0

SC
0�
V þ 3ðCTC�

A þ C0
TC

0�
A Þg

ðAξÞLY ¼ 2Ref2ðCTC0�
T − CAC0�

A Þ þ CSC0�
T þ C0

SC
�
T − CVC0�

A − C0
VC

�
Ag

ðBξÞLY ¼ 2Re

�
2

�
me

Ee
ðCTC0�

A þ C0
TC

�
AÞ þ ðCTC0�

T þ CAC0�
A Þ
�
− CSC0�

T − C0
SC

�
T

− CVC0�
A − C0

VC
�
A −

me

Ee
ðCSC0�

A þ C0
SC

�
A þ CVC0�

T þ C0
VC

�
TÞ
�

ðDξÞLY ¼ 2ImfCSC�
T − CVC�

A þ C0
SC

0�
T − C0

VC
0�
Ag

ðGξÞLY ¼ 2RefCSC0�
S − CVC0�

V þ 3ðCTC0�
T − CAC0�

A Þg

ðHξÞLY ¼ 2Re

�
−CSC0�

V − C0
SC

�
V þ CTC0�

A þ C0
TC

�
A þme

Ee
ðCTC0�

T þ CAC0�
A − CSC0�

S − CVC0�
V Þ
�

ðKξÞLY ¼ 2Ref−CSC0�
S − CVC0�

V þ CSC0�
V þ C0

SC
�
V þ CTC0�

T þ CAC0�
A − CTC0�

A − C0
TC

�
Ag

ðLξÞLY ¼ 2ImfCSC�
V þ C0

SC
0�
V − CTC�

A − C0
TC

0�
Ag

ðNξÞLY ¼ 2Re

�
me

Ee
ðjCT j2 þ jC0

T j2 þ jCAj2 þ jC0
Aj2Þ þ 2ðCTC�

A þ C0
TC

0�
A Þ

þ CSC�
A þ CVC�

T þ C0
SC

0�
A þ C0

VC
0�
T þme

Ee
ðCSC�

T þ CVC�
A þ C0

SC
0�
T þ C0

VC
0�
A Þ
�

ðQξÞLY ¼ 2RefjCT j2 þ jCAj2 þ jC0
T j2 þ jC0

Aj2 − 2ðCTC�
A þ C0

TC
0�
A Þ

− CSC�
A − CVC�

T − C0
SC

0�
A − C0

VC
0�
T þ CSC�

T þ CVC�
A þ C0

SC
0�
T þ C0

VC
0�
Ag

ðRξÞLY ¼ 2Imf2ðCTC0�
A þ C0

TC
�
AÞ þ CSC0�

A þ C0
SC

�
A − CVC0�

T − C0
VC

�
Tg ðA1Þ
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Those from gEF read:

ðSξÞLY ¼ 2Ref−CSC�
A − C0

SC
0�
A þ CVC�

T þ C0
VC

0�
T g

ðTξÞLY ¼ 2Ref−CSC�
T − C0

SC
0�
T þ CVC�

A þ C0
VC

0�
A þ jCT j2 þ jC0

T j2 − jCAj2 − jC0
Aj2g

ðUξÞLY ¼ 2RefCSC�
A þ C0

SC
0�
A − CVC�

T − C0
VC

0�
T g

ðVξÞLY ¼ 2Im

�
me

Ee
ðCSC0�

T þ C0
SC

0�
T þ CVC0�

A þ C0
VC

�
AÞ þ CSC0�

A þ C0
SC

�
A þ CVC0�

T þ C0
VC

�
T

�

ðWξÞLY ¼ 2ImfCSC0�
T þ C0

SC
�
T þ CVC0�

A þ C0
VC

�
A − CSC0�

A − C0
SC

�
A − CVC0�

T − C0
VC

�
Tg ðA2Þ

Those from gsp read:

ðÃξÞLY ¼ 2Ref−2ðCTC0�
T − CAC0�

A Þ þ CSC0�
T þ C0

SC
�
T − CVC0�

A − C0
VC

�
Ag

ðB̃ξÞLY ¼ −2Re

�
2

�
me

Ee
ðCTC0�

A þ C0
TC

�
AÞ þ ðCTC0�

T þ CAC0�
A Þ
�
þ CSC0�

T þ C0
SC

�
T

þCVC0�
A þ C0

VC
�
A þme

Ee
ðCSC0�

A þ C0
SC

�
A þ CVC0�

T þ C0
VC

�
TÞ
�

ðD̃ξÞLY ¼ ðDξÞLY
ðÑξÞLY ¼ 2Re

�
−
me

Ee
ðjCT j2 þ jC0

T j2 þ jCAj2 þ jC0
Aj2Þ − 2ðCTC�

A þ C0
TC

0�
A Þ

þCSC�
A þ CVC�

T þ C0
SC

0�
A þ C0

VC
0�
T þme

Ee
ðCSC�

T þ CVC�
A þ C0

SC
0�
T þ C0

VC
0�
A Þ
�

ðQ̃ξÞLY ¼ 2Ref−jCT j2 − jCAj2 − jC0
T j2 − jC0

Aj2 þ 2ðCTC�
A þ C0

TC
0�
A Þ

−CSC�
A − CVC�

T − C0
SC

0�
A − C0

VC
0�
T þ CSC�

T þ CVC�
A þ C0

SC
0�
T þ C0

VC
0�
Ag

ðR̃ξÞLY ¼ 2Imf−2ðCTC0�
A þ C0

TC
�
AÞ þ CSC0�

A þ C0
SC

�
A − CVC0�

T − C0
VC

�
Tg

ðS̃ξÞLY ¼ ðSξÞLY
ðT̃ξÞLY ¼ 2Ref−CSC�

T − C0
SC

0�
T þ CVC�

A þ C0
VC

0�
A − jCT j2 − jC0

T j2 þ jCAj2 þ jC0
Aj2g

ðŨξÞLY ¼ ðUξÞLY
ðṼξÞLY ¼ ðVξÞLY
ðW̃ξÞLY ¼ ðWξÞLY ðA3Þ

And finally, those from gspsn read:

ðXξÞLY ¼ jCSj2 þ jC0
Sj2 þ jCV j2 þ jC0

V j2 − jCT j2 − jC0
T j2 − jCAj2 − jC0

Aj2
ðãξÞLY ¼ −jCSj2 − jC0

Sj2 þ jCV j2 þ jC0
V j2 þ jCT j2 þ jC0

T j2 − jCAj2 − jC0
Aj2

ðb̃ξÞLY ¼ 2RefCSC�
V þ C0

SC
0�
V − CTC�

A − C0
TC

0�
Ag

ðG̃ξÞLY ¼ 2RefCSC0�
S − CTC0�

T − CVC0�
V þ CAC0�

Ag

ðH̃ξÞLY ¼ 2Re

�
−CSC0�

V − C0
SC

�
V þ CTC0�

A þ C0
TC

�
A þme

Ee
½−CSC0�

S þ CTC0�
T − CVC0�

V þ CAC0
A�
�

ðK̃ξÞLY ¼ 2Ref−CSC0�
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