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We present a mathematical framework for constructing the most general neutrino mass matrices that
yield the observed spectrum of light active neutrino masses in conjunction with arbitrarily many heavy
sterile neutrinos, without the need to assume a hierarchy between Dirac and Majorana mass terms. The
seesaw mechanism is a byproduct of the formalism, along with many other possibilities for generating tiny
neutrino masses. We comment on phenomenological applications of this approach, in particular deriving a
mechanism to address the long-standing ðg − 2Þμ anomaly in the context of the left-right symmetric model.
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I. INTRODUCTION

Understanding the origin of the tiny neutrino masses
required to explain the observed oscillation data [1] is a
fundamental problem in particle physics. The simplest
extension of the Standard Model (SM) that can accom-
modate such masses is arguably the seesaw mechanism
[2–9], wherein light neutrino masses are generated through
a higher-dimension operator [10] suppressed by the scale of
new physics Λ. To obtain the observed neutrino masses
(Mν ∼ 0.1 eV), Λ is typically taken to be around 1014 GeV.
However, the masses of the new degrees of freedom
may depend parametrically on a combination of Yukawa
couplings y and Λ. For instance, in the type I seesaw
mechanism, the Majorana neutrino mass reads as y2v2=Λ,
where v is the electroweak symmetry breaking vacuum
expectation value (VEV). Hence, the masses of heavy right-
handed sterile neutrinos can lie near the TeV scale if the
Dirac mass of order yv is near the keV scale.
In this paper, we propose a systematic method to

construct neutrino mass matrices that reproduce the
observed spectrum of light neutrino masses while incor-
porating any number of comparatively heavy sterile neu-
trinos, without assuming a seesaw hierarchy between Dirac
and Majorana masses. This approach opens new avenues

for the physics involved in neutrino mass generation
to be probed directly in experiments. Notably, the resulting
nonseesaw configurations offer alternative scenarios in
which the masses of sterile neutrinos lie at relatively low
scales, making them potentially detectable even with Oð1Þ
Dirac-Yukawa couplings.
The key observation is simple; in the limit of a large

hierarchy between active and sterile neutrino masses, any
viable mass matrix can be obtained by perturbing a texture
that gives rise to a number of exactly massless neutrinos
equal to the number of active neutrinos. We derive con-
ditions that characterize all such “seed” textures. These
conditions encompass and generalize all seesaw mecha-
nisms that extend the SM by sterile neutrinos.
Within the seesaw paradigm, there exist many specific

models for the entries of the Dirac and Majorana mass
matrices. For instance, there may exist hierarchies among
the heavy Majorana masses for right-handed neutrinos, in
the form of “sequential dominance” [11]. Our method,
which encapsulates all possible scenarios with three light
active neutrinos, both reproduces and generalizes these
previously studied matrix textures. We take a bottom-up
approach and do not discuss particular embeddings of these
models into grand unified theories. Likewise, we remain
agnostic as to whether the entries of the mass matrix are
generated at tree level or loop level.
While prior investigations have used perturbation theory

to understand or engineer neutrino mass hierarchies, they
have so far been limited to the seesaw framework. These
include analyses of seesaw-type textures in which the right-
handed Majorana mass matrix does not have full rank [12],
as well as studies of such textures using matrix analysis
[13,14]. Importantly, Kersten and Smirnov [15] have
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observed in the setting of the type I seesaw that if a
neutrino mass matrix is perturbatively close to a texture
that results in massless light neutrinos, then the seesaw
mechanism itself plays a negligible role in explaining the
smallness of neutrino masses. The premise of our work,
which forgoes seesaw assumptions altogether, is that
perturbation theory provides a far more general approach
to the problem of generating tiny neutrino masses than
previously considered.

II. FRAMEWORK

The neutrino mass matrix M appears in the Lagrangian
through a term νTfMνf, where νf is a vector of flavor
eigenstates. As such, M defines a bilinear rather than a
sesquilinear form on flavor space. A change of basis
corresponds to a congruence transformation M ↦ UTMU
rather than a similarity transformation M ↦ U−1MU,
where U is a unitary matrix. This distinction clarifies
how physical neutrino masses are obtained by “diagonal-
izing” M, with the physical masses corresponding to the
singular values rather than the eigenvalues of M [16].
Let m and n denote the number of active and sterile

neutrinos, respectively. For phenomenological applica-
tions, we set m ¼ 3 while leaving n arbitrary. The singular
values and eigenvalues of a matrix vary continuously with
its entries, so as the m smallest singular values of the
neutrino mass matrixM become arbitrarily small relative to
the n largest singular values (corresponding to m active
neutrinos), the entries ofM must approach a texture that has
m vanishing singular values. Inverting this logic, we find
the most general conditions under which a neutrino mass
matrix M in the flavor basis has m vanishing singular
values. Any viable model of small neutrino masses can then
be constructed as a perturbation of a solution to these
general vanishing conditions.
Consider a complex symmetric mass matrix of the form,

M ¼
�
0m×m B

BT D

�
; ð1Þ

in the flavor basis, where B is an m × n complex matrix, D
is an n × n complex symmetric matrix, and N ¼ mþ n.
We focus on perturbations of M that keep the upper-left
block of left-handed Majorana masses exactly zero, which
amount to perturbations of B and D. We assume the
perturbations are small relative to the nonzero entries of
B and D, thus preserving the hierarchical nature of the
problem.
Since the rank of a matrix is the number of nonvanishing

singular values, we can easily formulate a general method
to obtain textures that lead tom light neutrinos and n heavy
neutrinos. Start with a matrix M that adheres to certain
physical constraints [e.g., symmetric and with a vanishing
upper-left block as in Eq. (1)] and whose rank equals the

number of sterile neutrinos n (or equivalently, whose
nullity equals the number of active neutrinos m). Next,
we perturb this matrix in a way that respects the physical
constraints. Strictly speaking, this prescription results in n
light neutrino masses if n < m and m light neutrino masses
if n ≥ m. Prior to the perturbation, M has m vanishing
singular values. After the perturbation, there remains a
vanishing m ×m block, so M generically has m − n
vanishing singular values, leading to n small but nonzero
singular values.1

The key question is then; how can we systematically
construct inputs to this method, i.e., textures with m
vanishing singular values? First consider the a priori unre-
lated problem of constructing textures with m vanishing
eigenvalues. Without loss of generality, we choose a basis
whereD is diagonalwith real entriesdi ≥ 0, according to the
Autonne-Takagi factorization of D [17,18]. Then M has m
vanishing eigenvalues if and only if

Xn−d
r¼⌈n−d

2
⌉

ð−1Þr
X
jαj¼r

e2r−nþdðdαð1Þ;…; dαðrÞÞ detðGðαjαÞÞ ¼ 0;

ð2Þ

for all d ¼ 1;…; n, where α is a strictly increasing integer
sequence of length r chosen from 1;…; n; ep is the
elementary symmetric polynomial of degree p; G ¼ BTB
is the Gram matrix of B with respect to the real (not the
Hermitian) inner product; andGðαjαÞ is the ðn− rÞ× ðn− rÞ
submatrix of G corresponding to rows and columns com-
plementary to α. These n conditions, in fact, reduce to
minðm; nÞ conditions.
In the case of a real symmetric (CP-invariant) neutrino

mass matrixM, the vanishing conditions on the eigenvalues
are equivalent to vanishing conditions on the singular
values. Therefore, solving Eq. (2) for all d is tantamount
to solving our original problem. While these conditions are
complicated to solve in full generality, they simplify in
many special cases of interest.
In principle, one could apply the same strategy to find

seed textures for complex mass matrices; to determine
when M has m vanishing singular values, solve the
characteristic equation for M†M. While x∈C is an eigen-
value of M if and only if detðxI −MÞ ¼ 0, x ≥ 0 is a
singular value of M if and only if detðx2I −M†MÞ ¼ 0.
However, there exists a simpler strategy. Solving the
eigenvalue conditions (2) yields the most general para-
metrized textures for real symmetric mass matrices with m

1First-order perturbation theory tells us that the resulting light
neutrino masses are generically linear in the perturbations. In the
special case of the seesaw, where B ≪ D and B itself (more
precisely, ½ 0BT

B
0
�) is the additive perturbation to ½0

0
0
D�, the light

masses are instead quadratic in the perturbations because the first-
order correction vanishes.
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vanishing eigenvalues, or rank n. Promoting these param-
eters to complex numbers results in textures that have rank
n as complex matrices, or m vanishing singular values.
Hence the real solutions to Eq. (2) contain all the informa-
tion necessary to derive seed textures for complex sym-
metric mass matrices.

III. MASS MATRICES

To illustrate our formalism, we survey several infinite
families of textures that generalize the ordinary and inverse
seesaw mechanisms. These examples represent only a few
possible generalizations among many. Any such texture,
after perturbation, gives rise to an explicit pattern of masses
and mixings for neutrino oscillations.
We first present some textures that manifestly satisfy the

rank requirements, allowing us to bypass solving the
algebraic conditions (2). Any N × N matrix of the form
½0
0
0
D�, where the block D is n × n, clearly has rank at most n

and therefore at least m vanishing singular values. In our
language, the ordinary seesaw mechanism can be under-
stood as a perturbation of the off-diagonal blocks,�

0 0

0 D

�
→

�
0 ×

× D

�
; ð3Þ

which results in m small singular values.
On the other hand, any N × N matrix of the form ½0� ���,

where the upper ðN − lÞ × ðN − lÞ block vanishes, has
nullity at least N − 2l. If we choose n even and l ¼ n=2,
then such a matrix has at least m vanishing singular values.
Therefore, perturbing such a matrix in a way that preserves
the vanishing of the upper m ×m block will result in m
small singular values,

ð4Þ

where the matrix on the left has a vanishing ðmþ n=2Þ ×
ðmþ n=2Þ block and its perturbation on the right has a
vanishing m ×m block. The entries × are assumed small
relative to �. Up to a change of basis within the space of
sterile neutrinos, the mechanism (4) subsumes the inverse
seesaw mechanism and its variations [9,19–22].
To construct more explicit textures that fulfill the rank

conditions and thus yield realistic neutrino mass matrices
upon perturbation, it is convenient to fix the value of n. We
require rank B < n to ensure that rank M ¼ n. Hence, the
case of a single sterile neutrino (n ¼ 1) requires B ¼ 0,
reproducing the ordinary seesaw of Eq. (3). The simplest
case beyond the seesaw is that of two sterile neutrinos
(n ¼ 2) with rankB ¼ 1 and rankM ¼ 2. The most general
such texture, up to a change of basis that swaps the last two
rows and columns, is

M ¼

2
664
0m×m b⃗ αb⃗

b⃗T λ μ

αb⃗T μ 2αμ − α2λ

3
775; ð5Þ

where all parameters are complex and the m-component
vector b⃗ is not identically zero.
For arbitrary n, rather than classifying all solutions, we

focus on the simplest solutions to rank M ¼ n beyond the
seesaw scenario (B ¼ 0); those for which rank B ¼ 1. The
most general complex symmetric M of the form (1) with
rank M ¼ n and rank B ¼ 1 can be written as

M ¼
�

0 uvT

vuT D

�
; ð6Þ

where u and v are nonzero column vectors of length m and
n, respectively, and

Xn
i¼1

v2i detðDðijiÞÞþ2
X
i<j

ð−1Þiþjvivj detðDðijjÞÞ¼ 0: ð7Þ

All parameters are complex. For example, suppose that
only column i of B is nonvanishing,

B ¼ ½0⃗j � � � j0⃗jb⃗j0⃗j � � � j0⃗�; b⃗ ≠ 0: ð8Þ

Then the only requirement that needs to be imposed for M
to have rank n is the vanishing of the determinant of the
ðn − 1Þ × ðn − 1Þ submatrix of D obtained by deleting the
ith row and ith column. [The scheme of Eq. (8) includes
the “cancellation structure” of Ref. [15] as a special case.]
To aid parameter scans, the solution (6)–(7) can be para-
metrized more simply as

M ¼
�

0 uðUvÞT
ðUvÞuT UDUT

�
;

Xn
i¼1

v2i
Y
j≠i

dj ¼ 0; ð9Þ

where U is a unitary matrix and D ¼ diagðd1;…; dnÞ.

IV. MIXING PARAMETERS

Experimental data place stringent constraints on the
oscillations between light and heavy neutrino states
[23,24]. Consequently, constructing realistic models entails
generating not only small active neutrino masses, but also
small mixing parameters between active and sterile neu-
trinos. While our approach guarantees small masses, the
demand for small mixing parameters imposes additional
constraints on the resulting mass matrices that can be
determined on a case-by-case basis.
To illustrate, we consider the specific example of the

texture in Eq. (5) with α ¼ λ ¼ 0 and all other parameters
real. We assume that the desired perturbation to M will not
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change the mixing matrix drastically, which allows us to
derive an approximation to the mixing matrix analytically.
(This is a nontrivial assumption because the eigenvectors of
a matrix are generally not continuous functions of its
entries, so the mixing matrix of the perturbed mass matrix
is not necessarily a small perturbation of that of the
unperturbed mass matrix [25].) The orthogonal matrix O
for which OTMO is diagonal takes the block form,

O ¼
�
Oνν OνN

ONν ONN

�
; OνN ¼ ½b⃗j − b⃗�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðb⃗2 þ μ2Þ
q : ð10Þ

For μ ≫ jb⃗j, the entries of OνN and ONν are of order b⃗=μ.
Up to phases, these are the off-diagonal mixing parameters.
Therefore, by taking μ sufficiently large relative to b⃗, we
can make all of these components parametrically small.
Note that the hierarchy required by this mechanism is

distinct from that of the seesaw. In the seesaw mechanism,
the smallness of masses and mixings is correlated. Here, by
contrast, the smallness of the masses is guaranteed by the
structure of the texture itself, and bears no direct relation to
the size of the mixing parameters.

V. PHENOMENOLOGICAL APPLICATIONS

The aforementioned textures have numerous implica-
tions for phenomenology. For instance, they enable
significant mixing between active and sterile neutrinos
beyond that allowed by the seesaw mechanism as a result
of effectively decoupling the smallness of the masses
and the mixing parameters. Correspondingly, they offer
potential solutions to the anomalies observed in the
LSND [26,27] and MiniBooNE [28] experiments. [For
an application of a special case of the texture in Eq. (5),
see Ref. [29].]
Another intriguing prospect is that such textures may

address the ðg − 2Þμ discrepancy, substantially impacting
lepton-flavor violation [30,31] and collider phenomenol-
ogy [15,32]. In the following discussion, we focus on the
left-right symmetric model (LRSM) [6,33–39], based on
the gauge group SUð2ÞL × SUð2ÞR × Uð1ÞB−L, as a poten-
tial solution to this ðg − 2Þμ anomaly. A crucial difference
between our analysis and that of previous work [40–42] is
that the explicit realization of our textures allows us to
move beyond standard seesaw assumptions.
The mismatch between experimental and theoretical

determinations of the anomalous magnetic moment of
leptons al ¼ ðg − 2Þl=2, which in the SM is calculated
perturbatively in the fine-structure constant αem, hints
at physics beyond the SM. The Muon g − 2 Collabora-
tion at Fermilab [43,44] has confirmed the long-standing
[45] discrepancy Δaμ ¼ aμðexperimentÞ − aμðtheoryÞ ¼
ð2.49� 0.48Þ × 10−9 at a combined 5.1σ deviation from
the SM prediction (see Ref. [46] and references therein).

Lattice QCD results [47] are in tension with the SM theory
prediction. With no consensus yet in the community, we
take the deviation at face value and examine its potential
resolution within the LRSM.

A. Model

The minimal left-right symmetric model naturally incor-
porates the right-handed neutrino νR within a right-handed
lepton doublet, enabling neutrino mass generation through
the seesaw mechanism [6,38]. It explains parity violation
through the phenomenon of spontaneous gauge symmetry
breaking, with the promotion of hypercharge Y to B − L
offering insights into its origin from higher unification
[e.g., SOð10Þ]. Moreover, if realized around the TeV scale,
this model can be tested in ongoing and future low-energy
and high-energy collider experiments. The Higgs sector
comprises the fields ΔLð3; 1; 2Þ þ ΔRð1; 3; 2Þ þΦð2; 2; 0Þ,

Φ ¼
�
ϕ0
1 ϕþ

1

ϕ−
2 ϕ0

2

�
; ΔL;R ¼

 δþffiffi
2

p δþþ

δ0 − δþffiffi
2

p

!
L;R

: ð11Þ

After the neutral component of ΔR develops a VEV
hδ0Ri ¼ vR=

ffiffiffi
2

p
, the SUð2ÞR symmetry is broken, giving

masses to theW�
R andZR gauge bosons. TheVEVs hϕ0

1;2i ¼
κ1;2=

ffiffiffi
2

p
break the remaining SUð2ÞL ×Uð1ÞB−L down to

the usualUð1Þem, thereby setting the mass scale for SUð2ÞL
gauge bosons, with κ21 þ κ22 ≃ 2462 GeV2. Note that the
VEVs should obey vR ≫ κ1; κ2 to satisfy constraints from
low-energy weak interactions. The most general Yukawa
Lagrangian of the model is given by

LY ¼ Q̄LðYΦþ Ỹ Φ̃ÞQR þ ψ̄LðyΦþ ỹ Φ̃ÞψR

þ fðψT
LCiσ2ΔLψL þ ψT

RCiσ2ΔRψRÞ þ H:c:; ð12Þ

where ψL;R (QL;R) are the lepton (quark) doublets,
Φ̃ ¼ σ2Φ�σ2, and σ2 is the second Pauli matrix. Under
left-right parity symmetry, the fermion and scalar fields
transform asΦ ↔ Φ†, Φ̃ ↔ Φ̃†,ΔL ↔ ΔR,ΨL ↔ ΨR, and
QL ↔ QR. The VEVs for the Higgs fields generate fermion
masses. The mass matrices for charged leptons (Ml) and
Dirac neutrinos (MνD) are given by

Ml ¼ yκ2 þ ỹκ1ffiffiffi
2

p ; MνD ¼ yκ1 þ ỹκ2ffiffiffi
2

p ; ð13Þ

while those for up and down quarks are given by Mu;d ¼
ðYκ1;2 þ Ỹκ2;1Þ=

ffiffiffi
2

p
. The 6 × 6 mass matrix for the ν − N

sector (with ν≡ νL and N ≡ Cðν̄RÞT) is

Mν ¼
�

0 MνD

MT
νD MνR

�
; ð14Þ
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where MνR ¼ ffiffiffi
2

p
fvR and the upper-left block of Eq. (14)

follows from hδ0Li ¼ 0. The relations in Eq. (13) can be
inverted, in the limit κ1 ≠ κ2, to express the Yukawa
coupling matrices in terms of the mass matrices,

y¼
ffiffiffi
2

p ðκ1MνD −κ2MlÞ
κ21−κ22

; ỹ¼
ffiffiffi
2

p ðκ1Ml−κ2MνDÞ
κ21−κ22

: ð15Þ

A similar inversion can be done for the Yukawa couplings
Y and Ỹ. Without loss of generality, we take jκ2=κ1j ≤ 1,
where the ratio is constrained by perturbativity. For
instance, if one requires the top quark Yukawa coupling
to be ≤ 1.5, then the upper limits (0.578, 0.616, 0.645)
on jκ2=κ1j correspond to the left-right breaking scale vR
being (1, 10, 100) TeV [48]. These values are derived
by evolving the top quark Yukawa coupling to the
scale vR.
Among the Higgs bosons, ϕþ

1;2 are of primary interest
here because they provide chirally enhanced contributions
to ðg − 2Þμ. The transformation of the charged scalars
fϕþ

1;2; δ
þ
L;Rg from the flavor basis to the mass basis

fGþ
L;R; h

þ
1;2g can be written as

ϕþ
1;2≃

κ1;2h
þ
2 ∓ κ2;1G

þ
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ21þ κ22
p ; δþR ≃Gþ

R ; δþL ≃hþ1 ; ð16Þ

where G�
L;R are the massless Goldstone modes associated

with the massive gauge bosonsW�
L;R. A detailed analysis of

the scalar sector can be found in Ref. [49].

B. Anomalous magnetic moment

Quantum corrections due to charged scalars and the
neutrino chirality flip can modify the electromagnetic
interactions of charged leptons, as depicted in Fig. 1.
Diagrams without the chirality flip as well as those from
the gauge sector are subdominant and not considered here
[41,42]. We choose the following neutrino mass matrix
texture for Eq. (14) to reproduce the light neutrino masses
and mixings and to get a chirally enhanced contribution to
ðg − 2Þμ:

Mν ¼

2
66666666664

0 0 0 × × ×

0 0 0 × M22
νD ×

0 0 0 × × ×

× × × m11 m12 m13

× M22
νD × m12 m22 m23

× × × m13 m23 m33

3
77777777775
; ð17Þ

where the entries marked by × are much smaller thanM22
νD .

ChoosingM22
νD of order 100 GeV has a negligible impact on

the light neutrino masses, provided that m11m33 −m2
13 ¼ 0

[as per the discussion below Eq. (8)]. Note that this differs
from the usual seesaw setup. Denoting the heavy neutrino
masses by MNi

and the mixing parameters between the
light νμ and the sterile states Ni by U2i where i∈ f4; 5; 6g,
to one-loop order, the contribution of species i to ðg − 2Þμ
takes the form [50],

Δaμ≃
2mμ

16π2
MNi

U2i

M2
hþ
2

ðyκ1− ỹκ2Þðyκ2− ỹκ1Þ
κ21þ κ22

F

�
M2

Ni

M2
hþ
2

�

whereF½x�≡ 1

1−x2
ð1−x2þ2x logxÞ: ð18Þ

Here, y and ỹ can be substituted in favor of M22
νD using

Eq. (15). The sign of the contribution (18) can be arbitrary
due to the different Yukawa couplings appearing in the loop
diagram, unlike for the charged scalar contribution without
the chirality flip. Rewriting the above equation in terms of
fMhþ

2
; U2i;M22

νD; κ2=κ1g, the allowed parameter space of
the model is shown in Fig. 2. Note that in Fig. 2, we choose
the specific value i ¼ 5, and we also assume that the chosen
texture respects the relation U25 ≈M22

νD=MN5
, which is

similar to (but more specific than) what would arise in the
seesaw approximation. Notably, unlike in the seesaw
framework where U2i must be small to achieve tiny
neutrino masses, it can take arbitrarily large values here.
We choose the mixing to be 0.045 to satisfy the active-
sterile mixing bound [23,24].

VI. DISCUSSION

We have demonstrated a systematic method to construct
neutrino mass matrices through the perturbation of certain
“seed” textures, which encompasses all neutrino mass
mechanisms involving sterile neutrinos. The proposed
approach does not require a hierarchy between Dirac and
Majorana masses, thus offering new avenues toward
models of neutrino mass generation that could be probed
in experiments.
One challenge for future work is to understand or

categorize the symmetries of the textures that arise in
our framework from a top-down perspective. By motivating
the smallness of the perturbations to such textures via
symmetry breaking, one may lessen or obviate the need for

FIG. 1. One-loop Feynman diagram contributing to anomalous
magnetic moment (α ¼ β) and lepton-flavor-violating decays
(α ≠ β) through the heavy charged scalar ϕi.
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fine-tuning [15]. Another challenge for future work is to
implement this method in a way that efficiently accounts
for constraints on active-sterile neutrino mixing. Some
additional technical issues that deserve further study
include placing precise bounds on the mass eigenvalues
obtained by perturbation theory [25] and exploring redun-
dancies in parametrizations of the mass matrix (along the
lines of Ref. [53], which works solely within the framework
of the type I seesaw).
Finally, we note that the philosophy of our work extends

far beyond the specific ansatz (1) or even the assumption of
an active-sterile neutrinomass hierarchy. For example, given
a texture of the form (1), small bareMajoranamasses for left-
handed neutrinos can be incorporated by applying first-order
perturbation theory to a perturbation of the form ½A

0
0
0
�. Bare

masses of any size can be accommodated by applying our
rank conditions to a completely general ansatz for M.
Furthermore, it is often useful to consider pseudo-Dirac
scenarios with B ≫ D in which active and sterile neutrinos
are nearly degenerate in mass [54–56]. Our approach
suggests a broad generalization of such scenarios in which
nearly degeneratemasses arise fromperturbing a seed texture
with an exactly degenerate spectrum of singular values
(rather than with a certain rank, as considered here). All
of these scenarios open new possibilities for investigation.
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APPENDIX A: BACKGROUND

1. Seesaw mechanisms

The accidental lepton number symmetry (or the exact
B − L symmetry) of the Standard Model forbids Majorana
masses for left-handed neutrinos. However, such masses
can emerge through various mechanisms in extensions of
the SM. In effective field theory, Weinberg’s dimension-
five operator [10] generates Majorana masses for left-
handed neutrinos after electroweak symmetry breaking;
the seesaw mechanism is a particular realization of this
operator at tree level. Alternatively, left-handed Majorana
masses can be generated at the renormalizable level by
Higgs triplets rather than doublets.
The standard realization of the seesaw mechanism

introduces sterile (gauge-neutral) neutrinos2 to the SM
with Yukawa couplings to the left-handed lepton doublets
and the SM Higgs doublet, giving Dirac masses to the
neutrinos in the same way as the SM fermions. Since these
sterile neutrinos are gauge singlets, a Majorana mass term
that violates lepton number is also allowed. Note that such
mass terms can be forbidden by assuming additional gauge
or global symmetries, making the neutrino a Dirac fermion.
Introducing three right-handed neutrinos without any addi-
tional symmetry gives rise to Weinberg’s dimension-five
operator, LLHH=Λ, where Λ is the scale of the right-
handed neutrino. The Yukawa coupling becomes a Dirac

FIG. 2. The parameter space of κ2=κ1 versus scalar mass Mhþ
2
.

The green and yellow bands indicate the regions allowed by the
ðg − 2Þμ constraints to 1σ and 2σ, respectively. The region in gray
is excluded by flavor-changing neutral current constraints [51,52],
whereas the region in purple is excluded by perturbativity.

2In this paper, we use the terms “active” and “sterile” to refer to
light and heavy mass eigenstates, respectively, rather than the
flavor eigenstates that are charged or neutral under the SM gauge
group. In the seesaw approximation, where the mass eigenstates
involve very little mixing between left- and right-handed flavor
eigenstates, these two notions are nearly synonymous, but this is
not necessarily so in our more general setting.
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mass term after electroweak symmetry breaking. Denoting
the Dirac mass by mLR and the Majorana mass by MRR, in
the limit that mLR ≪ MRR, the masses of the light and
heavy states go like −m2

LR=MRR (observed) and MRR
(unobserved). This is popularly known as the type I seesaw
mechanism.
We catalog below some specific realizations of the

seesaw mechanism. We denote by ψL;R the left- and
right-handed components of the Dirac spinor ψ, and by
ψc
L;R ≡ ðψL;RÞc their CP-conjugates. In all of the following

scenarios, the light neutrino masses can be estimated by
integrating out the heavy mass eigenstates:

(i) The ordinary seesaw mechanism stems from the
observation that for a 2 × 2 matrix ½a11a12

a12
a22
� with

a11 ≪ a12 ≪ a22, the eigenvalues are approximately
a22 and a11 − a212=a22. In the type I seesaw mecha-
nism, Majorana masses for the left-handed neutrinos
are assumed to be absent in the fundamental theory,
but are induced by masses for right-handed neutri-
nos [2–7]. In this case, the 6 × 6 mass matrix takes
the form, �

0 mLR

mT
LR MRR

�
; ðA1Þ

in the flavor basis ðνcL; νRÞ, which arises from the
Lagrangian

L ¼ −νLmLRνR −
1

2
νTRMRRνR þ H:c: ðA2Þ

In the limit that MRR ≫ mLR, integrating out νR
gives

L¼−
1

2
νLmLLν

c
LþH:c:; mLL ¼−mLRM−1

RRm
T
LR:

ðA3Þ

In the type II seesaw mechanism, the bare left-
handed Majorana masses are allowed to be nonzero
[6,7,58]. (This is sometimes called a “mixed seesaw”
when the bare mLL ≠ 0, and type II specifically
when the contribution of mLL to the light neutrino
masses dominates [59].) The type III seesaw mecha-
nism, on the other hand, utilizes SUð2ÞL triplet
fermions instead of a singlet [9].

(ii) The inverse (or double) seesaw mechanism (ISS)
[19–21] involves the 9 × 9 mass matrix,2

64 0 mLR 0

mT
LR 0 MRS

0 MT
RS MSS

3
75; ðA4Þ

in the basis ðνcL; νR; SÞ with S being an additional
singlet, which arises from the Lagrangian

L ¼ −νLmLRνR − νTRMRSS −
1

2
STMSSSþ H:c:

ðA5Þ

Integrating out νR and S gives

L ¼ −
1

2
νLmLLν

c
L þ H:c:;

mLL ¼ mLRM−T
RSMSSM−1

RSm
T
LR: ðA6Þ

This procedure is valid as long as MRS ≫ mLR, in
which case there exist one light mass eigenstate and
two heavy mass eigenstates, with the former being
close to νL and the latter being combinations of νR
and S. The resulting mLL is then approximately the
matrix of light neutrino masses. This model achieves
a double suppression of the mass scale, hence the
alternative name double seesaw. The linear seesaw
(LSS), by contrast, includes only the off-diagonal
block perturbations MLS in (A4), setting MSS ¼ 0
[22]. [Note that the type III seesaw allows for
nonzero MLS in (A4) [9].]

(iii) Finally, all of the aforementioned seesaw mecha-
nisms occur as special cases of the texture [60–63],2

64 0 mLR MLS

mT
LR MRR MRS

MT
LS MT

RS MSS

3
75; ðA7Þ

which arises from the Lagrangian

L ¼ −νLmLRνR − νLMLSS − νTRMRSS −
1

2
νTRMRRνR

−
1

2
STMSSSþ H:c: ðA8Þ

Assuming the existence of a single light mass
eigenstate that is close to νL, we can integrate out
νR and S (or more precisely, the heavy modes) to
obtain L ¼ − 1

2
νLmLLν

c
L þ H:c:, where

mLL ¼ −ðmLR −MLSM−1
SSM

T
RSÞ

× ðMRR −MRSM−1
SSM

T
RSÞ−1

× ðmT
LR −MRSM−1

SSM
T
LSÞ −MLSM−1

SSM
T
LS:

ðA9Þ

This is an approximation to the matrix of light
neutrino masses.

2. Physical neutrino masses

Given a complex symmetric neutrino mass matrixM, the
physical neutrino masses correspond to the singular values
of M, which generally differ from the eigenvalues of M.
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Indeed, the mass term in the Lagrangian takes the form
νTfMνf, where νf is a vector of flavor eigenstates, and basis
changes are effected by unitary transformations of νf. The
Autonne-Takagi factorization [17,18] states that there exists
a unitary matrix U such that UTMU is diagonal with
nonnegative real entries,

UTMU ¼ MD: ðA10Þ

The diagonal entries ofMD are the singular values ofM, or
the nonnegative square roots of the eigenvalues of M†M.
Indeed, U†M†MU ¼ M2

D. This “diagonalization” in the
Autonne-Takagi sense should be contrasted with diagonal-
ization in the traditional sense, i.e.,

P−1MP ¼ D; ðA11Þ

where the nontrivial entries of the diagonal matrixD are the
eigenvalues ofM. Any complex symmetric matrix admits a
factorization of the form (A10) (which guarantees the
existence of a basis of “mass eigenstates” with nonnegative
real masses), but is not necessarily diagonalizable in the
sense of (A11). However, ifM is real and symmetric (hence
Hermitian), then it is diagonalizable by a real orthogonal
matrix,

OTMO ¼ D: ðA12Þ

In this case, the singular values ofM are the absolute values
of the (real) eigenvalues ofM. A suitableU in (A10) can be
found by multiplying O in (A11) on the right by a diagonal
matrix of phases if necessary. If M is additionally positive-
semidefinite, then the factorization (A10) and the diago-
nalization (A11) coincide.
A congruence transformation · ↦ UT · U (or more gen-

erally, multiplication by any invertible matrix) preserves
rank and nullity. However, it need not preserve the number
of zero eigenvalues. This is because the geometric multi-
plicity of an eigenvalue is bounded above by its algebraic
multiplicity, and in particular, the nullity is only bounded
above by the number of zero eigenvalues. So if M is not
diagonalizable, then the number of vanishing singular
values may be smaller than the number of vanishing
eigenvalues of M. However, the rank of M†M (which is
Hermitian and hence diagonalizable) is the rank ofM, so if
M has rank at most N −m ¼ n, then it will have at least m
vanishing eigenvalues and singular values. The nullity ofM
is the number of vanishing singular values.
If a matrix is normal (or equivalently, unitarily diago-

nalizable), then the singular values are simply the absolute
values of the eigenvalues. Avanishing singular value is also
an eigenvalue, but the converse does not hold. In general,
there is no direct relation between the singular values and
the eigenvalues of a matrix. However, the singular values
do yield bounds on the eigenvalues. Let theN × N complex

matrix M have singular values σi ordered as σ1 ≥ � � � ≥
σN ≥ 0 and eigenvalues λi ordered as jλ1j ≥ � � � ≥ jλN j. The
Weyl-Horn inequalities [64,65] state that

Yk
i¼1

jλij ≤
Yk
i¼1

σi ðA13Þ

for k ¼ 1;…; N, with equality for k ¼ N. In particular, the
absolute values of the eigenvalues lie between the largest
and smallest singular values. These inequalities generate
the complete set of relations between singular values and
eigenvalues. For example, it follows that:

Xk
i¼1

jλijp ≤
Xk
i¼1

σpi ; ðA14Þ

for k ¼ 1;…; N and any p ≥ 0, i.e., the (pth powers of the)
singular values weakly majorize the (pth powers of the)
absolute values of the eigenvalues. This is a special case of
a stronger result, Weyl’s majorant theorem [64]. See [66]
for a more comprehensive overview of the theory.

3. Mixing parameters

With n sterile neutrinos, the flavor basis and the mass
basis are related by a ð3þ nÞ × ð3þ nÞ unitary matrix U.
The upper 3 × 3 block of this full mixing matrix is the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix,
which is tightly constrained by experiment. The off-
diagonal blocks, and in particular the mixing parameters
U1N;U2N;U3N , where N is any species of sterile neutrino,
are likewise constrained by experiment. In the seesaw
mechanism, the magnitude of the blockUνN goes like B=D,
which can be tuned to satisfy these constraints. More
precisely, given a mass matrix of the form (1), the mixing
matrix takes the following block form [8,14,31]:

U ¼
"
1 − 1

2
B†ðDD†Þ−1B ðD−1BÞ†
−D−1B 1 − 1

2
D−1BB†ðD†Þ−1

#

þOððD−1BÞ3Þ: ðA15Þ

In this way, the seesaw mechanism correlates the sizes of
the masses and the mixing parameters.
Restricting our attention to the light neutrinos, and

assuming unitarity of the PMNS matrix UPMNS, the flavor
basis νf (να¼e;μ;τ) and the mass basis ν (νi¼1;2;3) are related
by νf ¼ UPMNSν. Hence, the mass matrix mν of the light
neutrinos is diagonalized as follows:

mdiag ¼ UT
PMNSmνUPMNS: ðA16Þ

Taking into account the symmetries of the lepton sector,
UPMNS can be parametrized by three mixing angles and one
CP-violating phase δCP. Moreover, assuming that the ν are
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Majorana fermions, there exist relative phases among the
Majorana masses m1, m2, m3. Choosing m3 to be real and
positive, we may absorb these phases intom1;2≡ jm1;2jeϕ1;2 .
Thus the inclusion of nonzero neutrino masses adds nine
parameters to the Standard Model; three physical masses,
three mixing angles, and three CP-violating phases [67].
The Majorana CP-violating phases are not experimentally
accessible, which is why one typically focuses on the Dirac
CP-violating phase δCP.
Letting Δm2

ij ≡m2
i −m2

j (and replacing mi with jmij as
necessary for Majorana masses), neutrino oscillation data
are compatible with a normal hierarchy m3 ≫ m2 > m1

(with Δm2
32 > 0), an inverted hierarchy m2>m1≫m3

(with Δm2
32 < 0), or an approximate degeneracy

(m1 ≈m2 ≈m3) [11,59,67].

APPENDIX B: EXAMPLES

In this appendix, we elaborate on some explicit examples
presented in the main text.

1. Beyond the seesaw

We first describe how our rank conditions for m
vanishing singular values yield neutrino mass matrix
textures that generalize those of the ordinary and inverse
seesaw mechanisms.
The ordinary seesaw mechanism relies on perturbing the

off-diagonal blocks of the texture,�
0 0

0 D

�
; ðB1Þ

where D is n × n, while keeping the upper-left m ×m
block zero. This texture clearly has rank at most n and
therefore at least m vanishing singular values.
The inverse seesaw mechanism involves a perturbation

of a 9 × 9 mass matrix with 3 × 3 blocks,2
64 0 μ 0

μT M00 M0

0 M0T 0

3
75; ðB2Þ

where M00 is symmetric (in fact, the block M00 is typically
set to zero). Any such texture has a nullspace of dimension
at least three and therefore at least three vanishing singular
values. To obtain three small masses, we can perturb the
lower-right 0 block (as in the inverse seesaw) as well as the
off-diagonal 0 blocks (as in the type III seesaw).
More generally, let m, n be arbitrary and choose l ≤ n.

Then consider the “cross” texture (B2) where now,

μ is an m × l block; M0 is an l × ðn − lÞ block;
M00 is an l × l block:

Such a texture has nullity at least mþ n − 2l. So choosing
n even and l ¼ n=2 yields a texture with at least m
vanishing singular values. Perturbing such a texture will
give rise to m light neutrinos. The inverse seesaw mecha-
nism corresponds to the special case ðm; nÞ ¼ ð3; 6Þ,
l ¼ 3, and M00 ¼ 0.
To state the above in a more illuminating way, by a

change of basis (conjugation by elementary matrices), the
cross texture (B2) is equivalent to a texture of the form,�

0 μ

μT M0

�
; ðB3Þ

where μ is ðmþ n − lÞ × l and M0 is l × l [the μ and M0
in (B2) and (B3) are different]. It is easy to see that such a
matrix has a nullspace of dimension at least mþ n − 2l.3

Choose n even and l ¼ n=2. Then the inverse seesaw
mechanism relies on perturbing the above texture so that
μ becomes m × 2l and M0 becomes 2l × 2l. In fact, the
inverse seesawmechanism would have the originalM0 ¼ 0;
our generalization allows for arbitrary M0. Moreover, one
can make a change of basis in the space of sterile neutrinos
after the perturbation so that the structure or even the
presence of perturbations is not manifest.
Our prescription for deriving neutrino mass matrices by

perturbing matrices that satisfy certain rank conditions
therefore generalizes both the ordinary and inverse seesaw
mechanisms. In fact, on general grounds, it generalizes any
seesaw mechanism because it provides necessary and
sufficient conditions for the generation of small active
neutrino masses regardless of whether there exists a hier-
archy between Dirac and Majorana masses for sterile
neutrinos.

2. Rank conditions

We now demonstrate how to solve the rank conditions to
derive explicit textures (either real or complex) that give
rise to realistic neutrino mass matrices upon perturbation.
Note that for a single sterile neutrino (n ¼ 1), this

prescription yields nothing beyond the ordinary seesaw
mechanism. Indeed, consider a mass matrix M of the form
(1) with n ¼ 1. If B is nonzero, then M has rank two
regardless of the value of D ¼ ½d�. Hence the only way to
arrange for M to have rank one is to set B ¼ 0 and d ≠ 0,
corresponding (upon perturbation) to the ordinary seesaw

3For instance, any ðmþ nÞ × ðmþ nÞ block matrix A ¼ ½0C B
D�

satisfies

A

�
v⃗

w⃗

�
¼
�

Bw⃗

Cv⃗þDw⃗

�
;

so the first m entries of any vector in the image of A are
constrained to lie in the span of the n columns of B. Hence the
nullspace of A is at least (m − n)-dimensional.
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mechanism. Of course, the case n ¼ 1 is not phenomeno-
logically viable because it can only produce one light
neutrino mass. (However, it becomes viable if we allow for
nonvanishing bare Majorana masses for the left-handed
neutrinos.)
To obtain examples beyond the seesaw, consider two

sterile neutrinos (n ¼ 2). We wish to solve for complex M
with rank M ¼ 2. We consider the physical setup with
m ¼ 3—the extension to arbitrary m is obvious:

(i) If rank B ¼ 0, then B ¼ 0 and rank M ¼ 2 if and
only if rank D ¼ 2.

(ii) If rank B ¼ 1, then up to conjugation by
diagðI3; ½01 10�Þ, we can write

M ¼

2
666666664

0 0 0 a αa

0 0 0 b αb

0 0 0 c αc

a b c d11 d12
αa αb αc d12 2αd12 − α2d11

3
777777775
;

ðB4Þ
where not all of a, b, c are zero and d11; d12; α are
unconstrained. All entries are generically complex.
If d12 ≠ αd11, then the last two columns are linearly
independent and the first three columns lie in the
span of the last two. Otherwise, the last two columns
are linearly dependent and the one-dimensional span
of the first three columns lies outside the span of the
last two.

(iii) If rank B ¼ 2, then the last two columns are linearly
independent regardless of D, so the first three
columns must lie in the span of the last two. But
the only linear combination of the last two columns
with vanishing first three entries is the zero vector,
so this is impossible. Hence, we cannot have
rank B ¼ 2.

It is clear that, in general, we must have rank B < n to
ensure that rankM ¼ n. To proceed to higher values of n, it
is convenient to instead solve the eigenvalue conditions (2)
and then to promote the resulting real parametrized textures
to complex ones.

3. Eigenvalue conditions

We now specialize to real mass matrices M, which
allows us to interpret the eigenvalues directly as physi-
cal neutrino masses (up to signs) and to write their
vanishing conditions as simple algebraic conditions on
the entries. We leave m arbitrary unless otherwise
specified.

a. n= 1

As already mentioned, the case n ¼ 1 yields no new
textures beyond those corresponding to the ordinary seesaw

mechanism, which entails perturbing around the trivial
solution B ¼ 0 to the conditions (2). Indeed, in this case,
the only constraint is G ¼ BTB ¼ 0, but if B is real, then
G ¼ 0 if and only if B ¼ 0.

b. n= 2

It is straightforward to classify all solutions for n ¼ 2.
Without assuming that D is diagonal, we write

D ¼
�
d11 d12
d12 d22

�
; G ¼ BTB ¼

�
g11 g12
g12 g22

�
: ðB5Þ

The characteristic polynomial of M is xm−2P4ðxÞ, where

P4ðxÞ ¼ x4 − ðTrDÞx3 þ ðdetD − TrGÞx2
þ ðd11g22 − 2d12g12 þ d22g11Þxþ detG; ðB6Þ

so we must satisfy two constraints,

detG ¼ 0; d11g22 − 2d12g12 þ d22g11 ¼ 0: ðB7Þ

There are two classes of solutions: either rank G ¼ 0 or
rank G ¼ 1.
If rankG ¼ 0, thenG and B are identically zero and both

constraints are manifestly satisfied;D can be arbitrary. This
is again the case of the ordinary seesaw mechanism.
If rank G ¼ 1, then not all entries of G are zero. The

possible solutions are as follows:

ðD;GÞ¼
��

d11 d12
d12 0

�
;

�
g11 0

0 0

��
; g11 ≠ 0; ðB8Þ

ðD;GÞ¼
��

0 d12
d12 d22

�
;

�
0 0

0 g22

��
; g22 ≠ 0; ðB9Þ

ðD;GÞ ¼
��

d11 d12
d12 2d12g12=g11 − d11g212=g

2
11

�
;�

g11 g12
g12 g212=g11

��
; g11; g12 ≠ 0; ðB10Þ

with the dij arbitrary in all cases. The first two classes of
solutions are related by conjugation by ½0

1
1
0
�. The columns of

B are constrained by the entries of G. Namely, since rank
B ¼ 1, the three respective cases correspond to

B ¼ ½ b⃗ 0 �; g11 ¼ jb⃗j2; ðB11Þ

B ¼ ½ 0 b⃗ �; g22 ¼ jb⃗j2; ðB12Þ

B ¼ ½ b⃗ αb⃗ �; g11 ¼ jb⃗j2; g12 ¼ αjb⃗j2; ðB13Þ

with b⃗ ≠ 0 and α ≠ 0.
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One can perturb the above solutions to generate two
small but nonzero eigenvalues for M. All nontrivial
eigenvalues arise as the roots of the quartic polynomial
(B6). One way to obtain an analytically tractable model is
to consider perturbations that turn this quartic polynomial
into a quadratic polynomial in x2. For example, one can set
D ¼ 0 and then perturb only G (i.e., B). In this case, the
characteristic polynomial of M is

xm−2ðx4 − ðTrGÞx2 þ detGÞ; ðB14Þ

whose roots are

x ¼ 0;…; 0|fflfflffl{zfflfflffl}
m−2

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrG�0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTrGÞ2 − 4 detG
p

2

s
ðB15Þ

for all four choices of signs �;�0. However, this
model is not phenomenologically viable, as it does
not produce the experimentally required mass splitting
(the smallest two eigenvalues are always � of each
other).
We now present some explicit textures for the

physically relevant case of m ¼ 3, i.e., ðm; nÞ ¼ ð3; 2Þ
(the extension to arbitrary m is obvious). The only
potential novelty arises when rank G ¼ 1. The textures

2
666666664

0 0 0 a 0

0 0 0 b 0

0 0 0 c 0

a b c λ μ

0 0 0 μ 0

3
777777775
;

2
666666664

0 0 0 0 a

0 0 0 0 b

0 0 0 0 c

0 0 0 0 μ

a b c μ λ

3
777777775
;

2
666666664

0 0 0 a αa

0 0 0 b αb

0 0 0 c αc

a b c λ μ

αa αb αc μ 2αμ − α2λ

3
777777775
; ðB16Þ

parametrize the solutions (B8), (B9), and (B10), respec-
tively. The only conditions on the parameters are that
a2 þ b2 þ c2 ≠ 0 and α ≠ 0. The first two textures,
which are equivalent by a change of basis, are also
examples of the cross texture (B2). As expected, the last
texture coincides with (B4). (See [29] for an application
of the case λ ¼ 0 and α ¼ 0.) Perturbing these textures,
such as by taking

2
666666664

0 0 0 a 0

0 0 0 b 0

0 0 0 c 0

a b c λ μ

0 0 0 μ 0

3
777777775
→

2
666666664

0 0 0 a ϵ1

0 0 0 b ϵ2

0 0 0 c ϵ3

a b c λ μ

ϵ1 ϵ2 ϵ3 μ ϵ

3
777777775
;

2
666666664

0 0 0 0 a

0 0 0 0 b

0 0 0 0 c

0 0 0 0 μ

a b c μ λ

3
777777775
→

2
666666664

0 0 0 ϵ1 a

0 0 0 ϵ2 b

0 0 0 ϵ3 c

ϵ1 ϵ2 ϵ3 ϵ μ

a b c μ λ

3
777777775
;

ðB17Þ
gives one vanishing mass, two small masses, and two
large masses. These are all of the ðm; nÞ ¼ ð3; 2Þ
textures beyond the seesaw.
Let us make some brief comments about mixing param-

eters. To obtain realistic models, we must generate not only
small neutrino masses, but also small mixing angles. To
respect constraints from experiment, oscillations between
light and heavy states cannot be too large. While our
approach guarantees small masses, the smallness of the
resulting mixing angles imposes constraints on the para-
metrized textures that must be determined by further
analysis. One complication is that, in general, the eigen-
vectors of amatrix are not continuous functions of its entries,
so the mixing matrix cannot always be reliably computed
before adding the perturbation to the mass matrix M [25].
Again, we consider a simple example with n ¼ 2. For

simplicity, we assume that M is real, so that it suffices to
compute eigenvectors rather than singular vectors. We also
assume that the desired perturbation will not change the
mixing matrix drastically, which allows us to derive the
approximate mixing matrix analytically before adding
the perturbation to M. We show that the off-diagonal block
(the νN mixing matrix) can be made parametrically small.
Specifically, consider (B16). The smallness of the mix-

ing parameters is controlled by the relative size of a, b, c,
and μ, so for simplicity, we set λ ¼ 0 and α ¼ 0. The
corresponding texture and its eigenvalues are

M ¼

2
666666664

0 0 0 0 a

0 0 0 0 b

0 0 0 0 c

0 0 0 0 μ

a b c μ 0

3
777777775
;

specðMÞ ¼
�
0; 0; 0; λ� ≡�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b⃗2 þ μ2

q 	
; b⃗≡

2
4 a

b

c

3
5:

ðB18Þ
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The singular values are obtained from the eigenvalues by
taking jλ−j ¼ −λ−. The normalized eigenvectors corre-
sponding to λ− and λþ are, respectively,

v⃗− ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb⃗2 þ μ2Þ

q
2
64 −b⃗

−μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b⃗2 þ μ2

q
3
75;

v⃗þ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb⃗2 þ μ2Þ

q
2
64 b⃗

μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b⃗2 þ μ2

q
3
75: ðB19Þ

The orthogonal matrix that diagonalizes M is given by

O ¼ ½�j � j � jv⃗−jv⃗þ�; ðB20Þ

where the � columns comprise an orthonormal basis for the
degenerate 0 subspace. Up to phases, the observable off-
diagonal mixing parameters are the first three components
of v⃗�. By taking μ sufficiently large relative to a, b, c, we
can make all of these components arbitrarily small. In this
limit, the lower-left block of O also becomes arbitrarily
small, so that the PMNSmatrix becomes arbitrarily close to
unitary. Note that even though this mechanism requires a
hierarchy, this is not a seesaw mechanism; in the seesaw,
the smallness of masses and mixings is correlated as in
(A15). Here, small masses are already guaranteed by the
structure of the texture itself.

c. n ≥ 3

Now consider arbitrary n. The simplest class of solutions
beyond the seesaw is that for which rank G ¼ 1; we focus
on these solutions. If rank G ¼ 1, then rank B ¼ 1 and we
can write

B ¼ uvT; G ¼ ðuTuÞðvvTÞ; ðB21Þ

where u and v are nonzero column vectors of length m and
n, respectively. (One can carry out a similar analysis for
higher rank using the singular value decomposition of B.)
First suppose (for simplicity, and without loss of general-

ity) that D is diagonal. The conditions (2) for M to have m
vanishing eigenvalues reduce to

Xn
i¼1

Gii

Y
j≠i

dj ¼ 0 ðB22Þ

because all minors ofG aside from the 1 × 1minors vanish,
so the only nontrivial condition in (2) comes from d ¼ 1
and r ¼ n − 1. This is equivalent to

Xn
i¼1

v2i
Y
j≠i

dj ¼ 0: ðB23Þ

If two or more of the di vanish, then this condition is
automatically satisfied. If exactly one of the di vanishes,
say di0, then this condition reduces to vi0 ¼ 0. The
remaining case is that all of the di are nonzero. To simplify
the problem, suppose that we have

Xn
i¼1

aiv2i ¼ 0 ðB24Þ

with all ai nonzero (clearly, the ai cannot all be posi-
tive). Then:

(i) For n even, nonzero solutions di to (B23) are in one-
to-one correspondence with nonzero solutions ai
to (B24).

(ii) For n odd, nonzero solutions di to (B23) are in two-
to-one correspondence with nonzero solutions ai to
(B24) satisfying a1 � � � an > 0.

Indeed, to solve ai ¼
Q

j≠i dj for the di, write a1 � � � an ¼
ðd1 � � � dnÞn−1. If n is even, then there exists a unique
solution with all di real,

sgnða1 � � � anÞja1 � � � anj 1
n−1 ¼ d1 � � �dn; ðB25Þ

and hence,

di¼
sgnða1 � � �anÞja1 � � �anj 1

n−1

ai
¼ sgnðQj≠iajÞj

Q
j≠iajj 1

n−1

jaijn−2n−1
:

ðB26Þ

If n is odd, then there exists no solution with all di real
when a1 � � � an < 0, but there exist two solutions when
a1 � � � an > 0,

�ða1 � � � anÞ 1
n−1 ¼ d1 � � � dn; ðB27Þ

and hence,

di ¼ �ða1 � � � anÞ 1
n−1

ai
¼ � sgnðaiÞj

Q
j≠iajj 1

n−1

jaijn−2n−1

¼ � sgnðQj≠iajÞj
Q

j≠iajj 1
n−1

jaijn−2n−1
: ðB28Þ

To summarize, we have found solutions to (2) of the form,

M ¼
�

0 uvT

vuT D

�
; ðB29Þ

where u, v are nonzero, D ¼ diagðd1;…; dnÞ, and one of
the following holds:

(i) rank D ≤ n − 2;
(ii) rank D ¼ n − 1 with di ¼ vi ¼ 0 for some i;
(iii) rank D ¼ n with

P
n
i¼1 v

2
i

Q
j≠i dj ¼ 0.
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The most general solution with rank G ¼ rank B ¼ 1 is
obtained by a change of basis,

M ¼
�

0 uðOvÞT
ðOvÞuT ODOT

�
; ðB30Þ

where O is an orthogonal matrix and D0 ¼ ODOT is a real
symmetric matrix.
As a special but useful situation in which rank G ¼ 1,

consider the case where B has a single nonvanishing
column,

B ¼ ½0⃗j � � � j0⃗jb⃗j0⃗j � � � j0⃗�: ðB31Þ

Then G has a single nonzero entry and, without assuming
that D is diagonal, the only requirement that needs to be
imposed for M to have m vanishing eigenvalues is the
vanishing of a single ðn − 1Þ × ðn − 1Þ minor of D (we
provide a proof of this statement in Appendix C 3). For
example, with ðm; nÞ ¼ ð3; 3Þ, we can take

M ¼

2
66666666664

0 0 0 a 0 0

0 0 0 b 0 0

0 0 0 c 0 0

a b c d11 d12 d13
0 0 0 d12 d22 d23
0 0 0 d13 d23 d33

3
77777777775
; ðB32Þ

where a2 þ b2 þ c2 ≠ 0. Then the only requirement
for obtaining three zero eigenvalues is that the lower-right
2 × 2 minor of D should vanish; d223 − d22d33 ¼ 0. So we
obtain a 6 × 6 example without a hierarchy between Dirac
and Majorana masses.
Let us again comment on mixing parameters, this time in

the context of an example with ðm; nÞ ¼ ð3; 3Þ. The seed
texture corresponding to (17) in the main text takes the
form,

M ¼

2
66666666664

0 0 0 0 0 0

0 0 0 0 x 0

0 0 0 0 0 0

0 0 0

0 x 0 D

0 0 0

3
77777777775
: ðB33Þ

To obtain three vanishing eigenvalues irrespective of the
value of x, we choose the entries dij of D to satisfy
d11d33 − d213 ¼ 0. To obtain small mixing parameters
(subject to the same caveats and assumptions as in our

discussion of the n ¼ 2 case), it is convenient to suppose
that the matrix D is characterized by a scale d such that
taking x ≪ d allows one to compute the mixing parameters
in the seesaw approximation (independently of the masses,
which are generated by perturbations to the seed texture).
For this purpose, one must avoid making pathological
choices such as

D ¼

2
664
d d d

d d d

d d d

3
775; ðB34Þ

for which the mixing parameters remain Oð1Þ regardless of
how small x is taken relative to d. The problem with (B34)
is that the matrix D is singular, which has the consequence
that the ostensibly “heavy” Majorana degrees of freedom
contain a massless mode and are therefore impossible to
decouple from the “light” degrees of freedom by making
the Dirac mass x arbitrarily small. [One sees directly that
the nonexistence of D−1 invalidates the seesaw approxi-
mation (A15).] On the other hand, it is possible to choose
invertible D, all of whose entries have absolute values of
order d, satisfying the vanishing condition on the appro-
priate 2 × 2 minor. Examples include,

D ¼

2
664

d �d d

�d d ∓ d

d ∓ d d

3
775

⇔ D−1 ¼

2
664

0 �1=2d 1=2d

�1=2d 0 ∓ 1=2d

1=2d ∓ 1=2d 0

3
775: ðB35Þ

The corresponding inverses have entries with absolute
values of order 1=d, allowing one to use the seesaw
approximation for the mixing parameters.
Finally, although we have so far considered real sym-

metric M, note that the general solution to rank M ¼ n for
complex symmetric M can easily be bootstrapped from the
real solution to the eigenvalue conditions (2). In particular,
the most general complex symmetric M with rank B ¼ 1
and D diagonal that satisfies rank M ¼ n takes the form,

M ¼
�

0 uvT

vuT D

�
;

Xn
i¼1

v2i
Y
j≠i

dj ¼ 0; ðB36Þ

where u and v are nonzero column vectors of length m and
n, respectively, and D ¼ diagðd1;…; dnÞ. All parameters
are now complex. Lifting the assumption that D is
diagonal, the most general solution with rank B ¼ 1 is
obtained by a change of basis,
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M ¼
�

0 uðUvÞT
ðUvÞuT UDUT

�
; ðB37Þ

where U is a unitary matrix.

APPENDIX C: DERIVATIONS

1. Mass matrix with no structure

LetM be an N × N matrix. When doesM have (at least)
m vanishing eigenvalues? To answer this question, we use
that for n × n matrices A and B [68],

detðAþBÞ¼
Xn
r¼0

X
α;β

ð−1ÞsðαÞþsðβÞdetðA½αjβ�ÞdetðBðαjβÞÞ;

ðC1Þ

where α, β are strictly increasing integer sequences of
length r chosen from 1;…; n; A½αjβ� is the r × r submatrix
of A corresponding to rows α and columns β; BðαjβÞ is the
ðn − rÞ × ðn − rÞ submatrix of B corresponding to rows
complementary to α and columns complementary to β; and
sðαÞ is the sum of the integers in α. When A is diagonal,
(C1) simplifies to

detðAþ BÞ ¼
Xn
r¼0

X
jαj¼r

detðA½αjα�Þ detðBðαjαÞÞ: ðC2Þ

The formula (C2) implies the following standard formula
for the coefficients of the characteristic polynomial
of M: detðxI −MÞ ¼ xN þ cN−1xN−1 þ � � � þ c1xþ c0,
where

cr ¼ ð−1ÞN−r
X
jαj¼r

detðMðαjαÞÞ: ðC3Þ

For M to have m vanishing eigenvalues, we must have
c0 ¼ � � � ¼ cm−1 ¼ 0, so the sum of all principal ðN − rÞ ×
ðN − rÞ minors of M must vanish for each r ¼ 0;…;
m − 1. If M has rank at most N −m, then this is clearly
the case.

2. Mass matrix with block structure

The above general conditions for the vanishing of m
eigenvalues do not assume any structure on M. We are
interested in the case (1), whereM is a complex symmetric
matrix whose upper-left m ×m block vanishes,

M ¼
�
0m×m B

BT D

�
: ðC4Þ

Here, B is anm × n complex matrix,D is an n × n complex
symmetric matrix, and N ¼ mþ n.

To determine the most general conditions under which
such an M has m vanishing eigenvalues, we first write the
characteristic polynomial of M as4



 x1m×m −B

−BT x1n×n −D





 ¼ xm−nP2nðxÞ;

P2nðxÞ≡ detðx21n×n − xD −GÞ; ðC5Þ

where G is the Gram matrix of column vectors of B with
respect to the real inner product,

G ¼ BTB: ðC6Þ

For M to have m zero eigenvalues, P2nðxÞ must contain no
terms of degree 0;…; n − 1 in x. Since the rank of G is no
greater than m,5 we need only demand the vanishing of the
coefficients of xn−1;…; xn−minðm;nÞ in P2nðxÞ. These
minðm; nÞ conditions are equivalent to M having at least
m vanishing eigenvalues.
To write these conditions explicitly, we make the

following simplification. Since there exists a unitary matrix
U such that UTDU is diagonal with nonnegative real
entries, without loss of generality, we may work in a basis
where the lower-right block ofM is diagonal—if necessary,
by changing basis purely within the space of sterile
neutrinos as follows:

M→

�
1 0

0 UT

��
0 B

BT D

��
1 0

0 U

�
¼
�

0 BU

UTBT UTDU

�
:

ðC7Þ

So let D be diagonal with entries di ≥ 0. Using (C2), we
can write,

P2nðxÞ ¼
Xn
r¼0

ð−1Þn−rxr
X
jαj¼r

ðx − dαð1ÞÞ � � �

× ðx − dαðrÞÞ detðGðαjαÞÞ ðC8Þ

¼ ð−1Þn
Xn
r¼0

Xr
p¼0

ð−1Þr−p
X
jαj¼r

epðdαð1Þ;…; dαðrÞÞ

× detðGðαjαÞÞx2r−p; ðC9Þ

where the ep are elementary symmetric polynomials in r
variables. By using

4We have used that the determinant of a blockmatrixM ¼ ½AC B
D�,

where A and D are square matrices with A invertible, is
detðMÞ ¼ detðAÞ detðD − CA−1BÞ.

5The rank ofG does not follow straightforwardly from the rank
of B. For real matrices B, we have rank BTB¼ rank BBT ¼
rank B; for complex B, an analogous statement holds with B† in
the place of BT .
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Xn
r¼0

Xr
p¼0

Cðr; pÞx2r−p ¼
X2n
k¼0

x2n−k
Xbk=2c
l¼0

Cðn − l; k − 2lÞ

ðC10Þ

to rearrange the sum, we can further write,

P2nðxÞ ¼
X2n
k¼0

x2n−k
Xbk=2c
l¼0

ð−1Þk−l

×
X

jαj¼n−l

ek−2lðdαð1Þ;…; dαðn−lÞÞ detðGðαjαÞÞ:

ðC11Þ
So for each k ¼ nþ 1;…; 2n, we demand that

Xbk=2c
l¼k−n

ð−1Þk−l
X

jαj¼n−l

ek−2lðdαð1Þ;…; dαðn−lÞÞ

× detðGðαjαÞÞ ¼ 0; ðC12Þ

where we have changed the lower limit of summation on l
from 0 to k − n because below this range, the elementary
symmetric polynomial ek−2l in n − l variables vanishes.
Setting d ¼ k − n and r ¼ n − l, and ignoring an overall
sign, we can equivalently write these conditions as follows:
for each d ¼ 1;…; n,

Xn−d
r¼⌈n−d

2
⌉

ð−1Þr
X
jαj¼r

e2r−nþdðdαð1Þ;…; dαðrÞÞ detðGðαjαÞÞ ¼ 0:

ðC13Þ

This is precisely (2). Note that since GðαjαÞ is at least a
d × d matrix and the rank of G is at most m, we have
detðGðαjαÞÞ ¼ 0 when d > m. So these conditions are
automatically satisfied when d > m, meaning that these n
conditions really reduce to minðm; nÞ conditions. Similarly,
we could restrict the range of summation on r to start
at r ¼ maxðn −m; ⌈ n−d

2
⌉Þ.

3. Diagonal Gram matrix

Let us now assume thatG, rather thanD, is diagonal with
entries gi. Using (C2), we can write,

P2nðxÞ ¼
Xn
r¼0

ð−xÞn−r
X
jαj¼r

ðx2 − gαð1ÞÞ � � � ðx2 − gαðrÞÞ

× detðDðαjαÞÞ ðC14Þ

¼ ð−1Þn
Xn
r¼0

Xr
p¼0

ð−1Þr−p
X
jαj¼r

epðgαð1Þ;…; gαðrÞÞ

× detðDðαjαÞÞxnþr−2p: ðC15Þ

Further using,

Xn
r¼0

Xr
p¼0

Cðr; pÞxnþr−2p

¼
Xn
k¼−n

xnþk
Xbn−jkj2

c

l¼0

C

�
jkj þ 2l;

jkj − k
2

þ l
�
; ðC16Þ

gives

P2nðxÞ ¼ ð−1Þn
Xn
k¼−n

xnþk
Xbn−jkj2

c

l¼0

ð−1ÞðjkjþkÞ=2þl

×
X

jαj¼jkjþ2l

eðjkj−kÞ=2þlðgαð1Þ;…; gαðjkjþ2lÞÞ

× detðDðαjαÞÞ: ðC17Þ

Wewant P2n to have no terms of degree 0;…; n − 1. So we
demand that

Xbn−k2 c

l¼0

ð−1Þl
X

jαj¼kþ2l

ekþlðgαð1Þ;…; gαðkþ2lÞÞ detðDðαjαÞÞ ¼ 0

ðC18Þ

for k ¼ 1;…; n. If only a single diagonal entry gi0 is
nonzero, then ep ¼ 0 for p > 1, so the only nontrivial
condition corresponds to k ¼ 1 and l ¼ 0,Xn

i¼1

gi detðDðijiÞÞ ¼ 0 ⇔ detðDði0ji0ÞÞ ¼ 0: ðC19Þ

4. Rank-one Gram matrix

Now suppose that rank G ¼ 1. First note that if A and B
are n × n matrices with rank A ¼ 1, then

detðAþBÞ¼ detBþ
Xn
α;β¼1

ð−1ÞαþβAαβ detðBðαjβÞÞ; ðC20Þ

which follows from keeping only the r ¼ 0, 1 terms in
(C1). Letting E≡ x1n×n −D, we have from (C20) that

P2nðxÞ¼ detðxE−GÞ

¼ xn detE−xn−1
Xn
α;β¼1

ð−1ÞαþβGαβ detðEðαjβÞÞ:

ðC21Þ

Since P2n has no terms of degree lower than n − 1 in x, it
suffices to demand the vanishing of the xn−1 term. The
coefficient of this term is
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½xn−1�P2nðxÞ¼−
Xn
α;β¼1

ð−1ÞαþβGαβdetðEjx¼0ðαjβÞÞ

¼ð−1Þn
Xn
α;β¼1

ð−1ÞαþβGαβdetðDðαjβÞÞ: ðC22Þ

Writing G ¼ ðuTuÞðvvTÞ, the vanishing of this coefficient
is equivalent to

Xn
i¼1

v2i detðDðijiÞÞ þ 2
X
i<j

ð−1Þiþjvivj detðDðijjÞÞ ¼ 0:

ðC23Þ

IfD is diagonal, then the condition (C23) reduces to (B23).
If G is diagonal (which, since rank G ¼ 1, implies that G
has a single nonzero entry), then this condition reduces
to (C19).

5. Comments on vanishing Gram matrix

Here, we comment on a mathematical generalization of
the seesaw mechanism that yields small nonzero eigenval-
ues for perturbations of complex symmetric mass matrices
M. However, since these comments concern the eigenval-
ues rather than the singular values of complex M, they are
not relevant for physical neutrino masses.
The observation is simple; if G ¼ 0, then the vanishing

conditions (2) are manifestly satisfied. Therefore, we can
generalize the seesaw texture (B1) by perturbing matrices B
that satisfy BTB ¼ 0 rather than merely B ¼ 0. Any such B
that is nonzero must be complex (otherwise, we would have
0 ¼ rank BTB ¼ rank B and hence B ¼ 0). The columns
of B then have zero length and are mutually orthogonal
with respect to the real inner product.
This is a generalization of the seesaw mechanism in that

the lower-right block D is completely arbitrary; no con-
ditions involving D need to be imposed to satisfy (2).

a. n= 1

If n ¼ 1, then this class of examples is the most general
solution because the only constraint is BTB ¼ 0; D can be
arbitrary. To satisfy this constraint nontrivially (i.e., with B
not identically zero), B must have at least two nonzero
components, and not all components of B can be real.
Writing D ¼ ½d� and B ¼ ðb1;…; bmÞT , the character-

istic polynomial of M is

xm−1
�
x2 − dx −

Xm
i¼1

b2i

�
; ðC24Þ

whose roots are

x ¼ 0;…; 0|fflfflffl{zfflfflffl}
m−1

;
d� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ 4
P

m
i¼1 b

2
i

p
2

: ðC25Þ

If B ¼ ðβ1;…; βmÞT where β21 þ � � � þ β2m ¼ 0, then the
roots are

x ¼ 0;…; 0|fflfflffl{zfflfflffl}
m

; d: ðC26Þ

If B ¼ ðβ1 þ ϵ1;…; βm þ ϵmÞT where β21 þ � � � þ β2m ¼ 0,
then the roots are

x ¼ 0;…; 0|fflfflffl{zfflfflffl}
m−1

;
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4

P
m
i¼1ð2βiϵi þ ϵ2i Þ

p
2

: ðC27Þ

We assume no hierarchy between β and d, but rather that
they are of the same order of magnitude. If ϵ ≪ β, d, then
the roots become

x ¼ 0;…; 0|fflfflffl{zfflfflffl}
m−1

;−
2

d

Xm
i¼1

βiϵi þOðϵ2Þ; dþOðϵÞ: ðC28Þ

Unlike in the ordinary seesaw mechanism (with β ¼ 0), the
lightest nonzero eigenvalue is only suppressed by a single
power of ϵ rather than two powers. This feature of the light
eigenvalues persists at higher n (see Footnote 1).
Note that the eigenvector of

M ¼
�
0 β⃗

β⃗T d

�
; β⃗2 ¼ 0; ðC29Þ

with eigenvalue d is ½β⃗d�, while the eigenvectors with
eigenvalue 0 take the form,�

v⃗

0

�
; β⃗ · v⃗ ¼ 0; ðC30Þ

since β⃗ is not identically 0. We see that there exist only
m − 1 linearly independent eigenvectors with eigenvalue 0.
Hence M is not diagonalizable.

b. n= 2

In a basis where D is diagonal, the characteristic
polynomial of M is xm−2P4ðxÞ, where

P4ðxÞ ¼ x4 − ðd11 þ d22Þx3 þ ðd11d22 − TrGÞx2
þ ðd11g22 þ d22g11Þxþ detG: ðC31Þ

We consider perturbations of solutions to G ¼ 0. Suppose
we have four complex roots with jA1j; jA2j ≫ ja1j; ja2j and
consider the polynomial
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ðx − A1Þðx − A2Þðx − a1Þðx − a2Þ
¼ x4 − ðA1 þ A2 þOðaÞÞx3
þ ðA1A2 þOðAaÞÞx2 − ðA1A2ða1 þ a2Þ
þOðAa2ÞÞxþ A1A2a1a2: ðC32Þ

Comparing to (C31), we wish to solve

A1 þ A2 þOðaÞ ¼ d11 þ d22; ðC33Þ

A1A2 þOðAaÞ ¼ d11d22 − TrG; ðC34Þ

A1A2ða1 þ a2Þ þOðAa2Þ ¼ −d11g22 − d22g11; ðC35Þ

A1A2a1a2 ¼ detG: ðC36Þ

It is consistent to assume that the entries ofD are of order A
(with errors of order a) and the entries of G are of order Aa
(with errors of order a2). Equations (C33) and (C34)
require that

ðA1; A2Þ ¼ some permutation of ðd11 þOðG=DÞ;
d22 þOðG=DÞÞ: ðC37Þ

Then A1A2 ¼ d11d22 þOðGÞ, and Eqs. (C35) and (C36)
become

a1 þ a2 ¼ −
g11
d11

−
g22
d22

þOðG2=D3Þ;

a1a2 ¼
detG
d11d22

þOðG3=D4Þ; ðC38Þ

(in other words, the errors are suppressed by an additional
factor of G=D2). So a1 and a2 are the solutions to

x2 þ
�
g11
d11

þ g22
d22

þOðG2=D3Þ
�
x

þ
�
detG
d11d22

þOðG3=D4Þ
�

¼ 0; ðC39Þ

which are

x ¼ 1

2

�
−
�
g11
d11

þ g22
d22

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g11
d11

−
g22
d22

�
2

þ 4g212
d11d22

s �
þOðG2=D3Þ: ðC40Þ

We can rewrite this in terms of perturbations of B. The
general lesson is that the small eigenvalues a are of order
G=D, but this does not necessarily mean that they are of
order B2=D, as in the ordinary seesaw.
For illustration, let the columns of B be

ðβ1þ ϵ1;…;βmþ ϵmÞT; ðβ01þ ϵ01;…;β0mþ ϵ0mÞT; ðC41Þ

where

β21þ���þβ2m¼ β021 þ�� �þβ02m ¼ β1β
0
1þ���þβmβ

0
m¼ 0;

ðC42Þ

and the perturbations ϵ are assumed small relative to β.
Then we have

G ¼
"

2ðβ1ϵ1 þ � � � βmϵmÞ β1ϵ
0
1 þ β01ϵ1 þ � � � þ βmϵ

0
m þ β0mϵm

β1ϵ
0
1 þ β01ϵ1 þ � � � þ βmϵ

0
m þ β0mϵm 2ðβ01ϵ01 þ � � � β0mϵ0mÞ

#
þOðϵ2Þ: ðC43Þ

So G is of order βϵ rather than B2 ∼ β2.

c. n ≥ 3

Now consider arbitrary n. We assume that D is diagonal with entries di ≥ 0. The characteristic polynomial of M can be
written as xm−nP2nðxÞ, where

P2nðxÞ ¼
X2n
k¼0

x2n−k
Xbk=2c
l¼0

ð−1Þk−l
X

jαj¼n−l

ek−2lðdαð1Þ;…; dαðn−lÞÞ detðGðαjαÞÞ: ðC44Þ

Instead of considering the most general D and G for which
P2n has n vanishing roots, we again focus on the class of
examples where the Gram matrix G is identically zero and
D is completely unconstrained.
We want to produce minðm; nÞ small eigenvalues

by perturbing around G ¼ 0. Suppose for simplicity

that m ≥ n. If m < n, then the reasoning below still
carries through: in that case, P2nðxÞ only has terms
x2n; x2n−1;…; xn−m and so automatically has n −m
vanishing roots, so demanding that it have n large
and n small roots will automatically produce m
small roots.
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RegardingG as a perturbation (G=D2 ≪ 1), for each k in (C44), the term in the coefficient of lowest l dominates, and for
ek−2l in n − l variables to be nonzero, we must have l ≥ k − n. So if k ≤ n, then we choose l ¼ 0; otherwise, we choose
l ¼ k − n. So we have

P2nðxÞ ¼
Xn
k¼0

½ð−1Þkekðd1;…; dnÞ þOðDk−2GÞ�x2n−k

þ
X2n

k¼nþ1

�
ð−1Þn

X
jαj¼2n−k

dαð1Þ � � � dαð2n−kÞ detðGðαjαÞÞ þOðD2n−k−2Gk−nþ1Þ
�
x2n−k: ðC45Þ

Now consider

ðx − A1Þ � � � ðx − AnÞðx − a1Þ � � � ðx − anÞ ¼
Xn
k¼0

ðð−1ÞkekðA1;…; AnÞ þOðAk−1aÞÞx2n−k

þ
X2n

k¼nþ1

ðð−1ÞkA1 � � �Anek−nða1;…; anÞ þOðAn−1ak−nþ1ÞÞx2n−k ðC46Þ

with jA1j;…; jAnj ≫ ja1j;…; janj. To match the coefficients, it is consistent to assume that D is of order A (with errors of
order a) and G is of order Aa (with errors of order a2). Matching the coefficients with 0 ≤ k ≤ n shows that

ðA1;…; AnÞ ¼ some permutation of ðd1 þOðG=DÞ;…; dn þOðG=DÞÞ: ðC47Þ
Then A1 � � �An ¼ d1 � � � dn þOðDn−2GÞ, and further matching the coefficients with nþ 1 ≤ k ≤ 2n shows that

ð−1Þk−nek−nða1;…; anÞ ¼
1

d1 � � � dn
X

jαj¼2n−k

dαð1Þ � � � dαð2n−kÞ detðGðαjαÞÞ þOðDn−k−2Gk−nþ1Þ ðC48Þ

for nþ 1 ≤ k ≤ 2n, or more simply,

ð−1Þkekða1;…; anÞ ¼
1

d1 � � � dn
X

jαj¼n−k

dαð1Þ � � � dαðn−kÞ detðGðαjαÞÞ þO

�
Gkþ1

Dkþ2

�
ðC49Þ

for 1 ≤ k ≤ n. We conclude that the ai are the roots of the polynomial

xn þ
Xn
k¼1

�
1

d1 � � � dn
X

jαj¼n−k

dαð1Þ � � �dαðn−kÞ detðGðαjαÞÞ þO

�
Gkþ1

Dkþ2

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

OðGk=DkÞ

xn−k: ðC50Þ

This is consistent with all the ai being of order G=D.

APPENDIX D: NUMERICAL NEUTRINO OSCILLATION FIT FOR n= 3

In this section, we provide explicit numerical fits to the observed neutrino oscillation data and show that significant
mixing between active and sterile neutrinos can be achieved for the case with three sterile neutrinos. We write

TABLE I. 3σ allowed ranges for the neutrino oscillation parameters from a recent global fit [69], along with the benchmark fits.

Oscillation parameters
3σ Allowed range Model fits

NuFit5.2 [69] Fit1 Fit2

Δm2
21 (10−5 eV2) 6.82–8.03 7.41 7.55

Δm2
31 (10−3 eV2) 2.428–2.597 2.54 2.54

sin2 θ12 0.270–0.341 0.3112 0.320
sin2 θ23 0.406–0.62 0.454 0.518
sin2 θ13 0.02029–0.02391 0.0223 0.0213
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M ¼

2
66666666664

0 0 0 b11 b12 b13
0 0 0 b21 b22 b23
0 0 0 b31 b32 b33
b11 b21 b31 d11 d12 d13
b12 b22 b32 d12 d22 d23
b13 b23 b33 d13 d23 d33

3
77777777775
: ðD1Þ

Our numerical method is based on a constrained minimi-
zation where five neutrino observables (Δm2

21, Δm2
31,

sin2 θ12, sin2 θ13, sin2 θ23) are forced to lie within their
experimentally measured ranges. The values of the input
parameters in Eq. (D1) that yield fits to the oscillation
parameters of Table I are shown in Tables II and III for
Fit1 and Fit2, respectively.
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