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We carry out a systematic analysis of the Cabibbo-favored and singly-Cabibbo-suppressed decays of
D0 → VV, and demonstrate that the long-distance mechanism due to the final-state interactions can provide
a natural explanation for these mysterious polarization puzzles observed inD0 → VV in experiments. More
observables, which can be measured at BESIII, and possibly at LHCb, are also suggested.
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I. INTRODUCTION

In the past two decades, “polarization puzzles” arose
from the decays of heavy mesons into two vectors. In the
beauty sector, naive power counting predicts that B → VV
(V ¼ ϕ; K�; ρ, and ω) decays are dominated by the
longitudinal polarization since the transverse polarization
amplitudes suffer from the helicity-flipping suppression at
the order of ΛQCD=mb. This prediction is confirmed in
B0 → ρþρ−, Bþ → ρ0ρþ, and ρ0K�þ [1–3], which has
indicated the helicity conservation [4–6] in B → VV.
However, apparent deviations were found in B → ϕK�,
where the longitudinal polarization only accounts for about
50% of the decay rate [1,7].
In the charm sector, the situation is more complicated

since the heavy quark expansion method becomes
unreliable here. Although different phenomenological
approaches and techniques have been developed in the
literature, such as the flavor SU(3) symmetry model [8],
broken flavor SU(3) symmetry model [9], pole-dominance
model [10], factorization approach [8,11–14], and the
heavy quark effective Lagrangian and chiral perturbation
theory [15], and they describe well some of the D → VV
decay channels, a systematic and coherent study of all the
Cabibbo-favored (CF) and singly-Cabibbo-suppressed
(SCS) decays is still unavailable.
The naive factorization model [16] and the Lorentz

invariant-based symmetry model [17] indeed predict that
the longitudinal polarization fraction (defined as fL) may

not be dominant in D → VV. However, the predictions
seem to have quantitatively deviated from the experimental
measurements. Meanwhile, experimental measurements
reveal unexpected puzzling results that cannot be explained
by theory. For instance, the MARK-III measurement of
D0 → K̄�0ρ0 shows the dominance of the transverse polari-
zation [18], though it suffers from a large uncertainty. In
contrast, the precise measurement of D0 → ρ0ρ0 by the
FOCUS Collaboration shows large longitudinal polariza-
tion fractions of fL ¼ ð71� 4� 2Þ% [19]. Recently, the
angular distribution of D0 → ωϕ has been measured by the
BESIII Collaboration. It is stunning to find that the final
states ω and ϕ seem to be fully transversely polarized with
fL ¼ 0.00� 0.10� 0.08, which corresponds to fL < 0.24
at 95% confidence level [20]. In contrast, the partial-
wave measurement by CLEO-c [21] shows that the
decay of D0 → ϕρ0 is dominated by the S wave with
BRðD0 → ðϕρ0ÞS−waveÞ ¼ ð1.40� 0.12Þ × 10−3. The total
branching ratio BRðD0 → ðϕωÞ ≃ BRðD0 → ðϕωÞTÞ ¼
ð0.65� 0.10Þ × 10−3 from BESIII [20] turns out to be
much smaller than that of D0 → ϕρ0 from CLEO-c, i.e.,
BRðD0 → ϕρ0Þ ¼ ð1.56� 0.13Þ × 10−3 [21]. Such a sig-
nificant difference is also confirmed by LHCb [22]. These
puzzling observations show that, although the decay of
D0 → VV has been one of the broadly studied processes,
we still lack of knowledge about some crucial pieces of
dynamics in its decay mechanisms.
In this work, apart from the leading short-distance

mechanisms, i.e., the color-allowed direct emission (DE),
color-suppressed (CS) internal W emission, and the color-
suppressed flavor internal conversion (IC) by the W
exchange between the quark and antiquark inside D0,
we propose that the nonfactorizable final-state interactions
(FSIs) as a long-distance dynamics could be a key to
resolving the mysterious polarization puzzle in D0 → VV.
Notice that for D → VV the threshold of VV is not far
below the D meson mass. Namely, the charm quark is not
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heavy enough. The presence of the near-threshold vector-
meson rescatterings either in an S or P wave may introduce
significant long-distance dynamics. It indicates the neces-
sity for a proper treatment of the nonfactorizable FSIs in
D → VV. It thus motivates us to carry out a systematic and
coherent investigation of D0 → VV with the long-distance
FSIs taken into account.
As follows, we first analyze the leading short-distance

mechanisms where the DE and CS couplings will be
calculated in a nonrelativistic constituent quark model
(NRCQM). An effective Lagrangian approach will be
adopted for deriving the FSI transition amplitudes. We
introduce the FSIs to those CF and SCS exclusive VV
channels. Numerical results and discussions will be pre-
sented in the end with a brief summary.

II. FRAMEWORK

With the kinematic constraint, D0 can access 14 VV
decay channels, i.e., three CF channels: K�−ρþ, K̄�0ρ0,
K̄�0ω; eight SCS channels: K�þK�−, K�0K̄�0, ρþρ−, ρ0ρ0,
ωω, ρ0ω, ρ0ϕ, ωϕ; and three doubly-Cabibbo-suppressed
channels: K�þρ−, K�0ρ0, K�0ω. To quantify the transition
mechanisms, we distinguish between the short-distance
dynamics for the quark-level transitions in the quark model
and the long-distance dynamics arising from the hadronic-
level interactions.

A. Short-distance mechanisms in the quark model

The typical leading order transition mechanisms via the
DE, CS, and IC processes are illustrated in Figs. 1(a)–1(d),
respectively. Apart from the weak coupling strengths, these
three processes correspond to three topologically distin-
guishable amplitudes from the short-distance dynamics. In
the SU(3) flavor symmetry limit and given the dominance
of the short-distance dynamics, all the D0 → VV decays
can be described by linear combinations of these three
leading amplitudes.

1. 1 → 3 transitions in the quark model

The DE and CS transitions involve the process of
“1 → 3” decays of the initial charm quark. Their corre-

sponding coupling strengths gðPÞDE and g
ðPÞ
CS are defined by the

transition matrix element as follows:

iMðPÞ
DE=CS ¼ hV1ðP1; J1; J1zÞV2ðP2; J2; J2zÞjĤðPÞ

W;1→3j
×D0ðPD; Ji; JizÞi

≡ gðPÞ;Jiz;J1z;J2zDE=CS VcqVuq; ð1Þ

where P1 ¼ p1 þ p0
2 and P2 ¼ p3 þ p4 are the momentum

conservation relations for the DE transition, and P1 ¼
p1 þ p4 and P2 ¼ p0

2 þ p3 are for the CS one. ĤðPÞ
W;1→3 is

the operator that takes different forms for the parity-
violated (PV) or parity-conserved (PC) transitions and
has been derived in Refs. [23–25]. The above formula
contains spatial wave function integrals for which the
NRCQM wave functions [26–28] are adopted. In
Appendix A 1 we present the detailed expressions for
the transition amplitudes of 1 → 3.
It can be seen that the mass differences within those VV

channels will lead to different values for both gðPÞDE and gðPÞCS
after taking the wave function convolutions as an additional
source of the SU(3) flavor symmetry breaking.

2. 2 → 2 transitions in the quark model

The IC transitions involve the process of “2 → 2” scatter-
ings of the initial charm and ū into the CF K̄�V channel or
SCS channels. The corresponding coupling strength is

defined as gðPÞICðqq̄0Þ. As shown by Figs. 1(c) and 1(d), different
intermediate qq̄ poles may contribute. It implies that this
mechanism involves significant SU(3) flavor symmetry
breakings. From the three CF transitions of D0 → K̄�V
and the experimental data for these three channels, we see the

relation jgðPÞDEj > jgðPÞCS j > jgðPÞ
ICðsd̄Þj.

The nonlocal operators for the weak and strong transitions
will distinguish processes between Figs. 1(c) and 1(d). The
weak matrix element and the strong matrix element are
connected by the intermediate resonance state as propagators.
By separately calculating the weak internal conversion and
strong transition couplings, Figs. 1(c) and 1(d) together will
be evaluated explicitly in the quark model, provided that the
wave functions of the initial, final, and intermediate states can
be described stably. In the following, we will refer to both
Figs. 1(c) and 1(d) as IC processes. Intuitively, the amplitudes
of these two IC processes may cancel due to the opposite sign
of the real part of the propagators. Meanwhile, the IC
transition deserves some attention in the D meson decays

FIG. 1. Schematic diagrams for the D0 → VV decays via the short- and long-distance transition mechanisms. (a)–(d) The short-
distance transitions and stand for the DE, CS, and IC processes (c),(d), respectively; (e) illustration of the hadron-level FSIs.
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due to the relatively light mass of the D meson. The
transition process in Fig. 1(d) is often treated as dual with
Fig. 1(b). However, such a treatment should not be true,
since Fig. 1(d) involves a pole structure in the transition
amplitude while Fig. 1(b) does not. Moreover, we also
categorize Fig. 1(c) as an IC transition since it also

involves a pole structure in the amplitude. The difference
between Figs. 1(c) and Fig. 1(d) is that the weak
interaction occurs before or after the strong quark-pair
creation, and these two coupling vertices are connected by
intermediate propagators. A general expression for the
sum of Figs. 1(c) and 1(d) can be written as

iMðPÞ
IC ¼

X
Mnð0�Þ

hV1ðP1; J1zÞV2ðP2; J2zÞjĤSjMnðPD; JizÞi
i

m2
D −m2

Mn
þ imMn

ΓMn

hMnðPD; JizÞjĤðPÞ
W;2→2jD0ðPD; JizÞi

þ
X

D�
nð1�Þ

hV1ðP1; J1zÞjHðPÞ
W;2→2jD�

nðP1; J1zÞi
i

m2
V1

−m2
D�

n
þ imD�

n
ΓD�

n

hD�
nðP1; J1zÞV2ðP2; J2zÞjĤðPÞ

S jD0ðPD; JizÞi

≡ gðPÞ;Jiz;J1z;J2zIC VcqVuq; ð2Þ

where cancellation between Figs. 1(c) and 1(d) is apparent.

One also sees that, if the initial mass mD ≫ mðcÞ
i and

mðdÞ
i ≫ mV , the IC contributions will be suppressed by

the propagators. Then, as expected, Fig. 1(b) will be more
predominant than Figs. 1(c) and 1(d). For the case of
D0 → VV, the initial D meson mass is actually not heavy
enough. It means that the transition of Fig. 1(c) with the
intermediate excited states may even be enhanced instead of
suppressed by the propagator [29], while in Fig. 1(d) the
propagator suppression is rather clear since the mass of the
intermediate charmed masses is even heavier than the initial
D meson. Such a situation suggests that the cancellation
between Figs. 1(c) and 1(d) may not be as complete as in the
case of, e.g., B → VV, where the QCD factorization works
better.
In Table I, we collect the short-distance amplitudes of

all the CF and SCS channels. With ðPÞ ¼ ðPCÞ or (PV)
there are actually six quantities to account for the PC and
PV transitions in each channel. It should be pointed out
that, in the SU(3) flavor symmetry limit, these quantities
will take the same values in all the D0 → VV channels.
However, with the consequence of the SU(3) flavor
symmetry breaking, they can be different. In fact,
although the DE transition is dominant, contributions
from the CS and IC transitions cannot be neglected.
Therefore, a more realistic evaluation of these quantities
beyond the simple parametrization is necessary.

Considering the complexity of gðPÞICðqq̄0Þ and its relatively

small magnitudes, we leave it to be determined by the
combined analysis.
One notices that an additional phase angle θ is intro-

duced in Table I. By calculating the DE and CS in the
NRCQM, these two terms can be determined with a fixed
phase. θ describes the relative phase between the IC and
the DE/CS amplitudes and we mention in advance that
θ ¼ 180° is favored.

B. Long-distance mechanisms via the FSIs

In order to clarify the role played by the long-distance
transition mechanisms, we start with the analysis of the
SCS processes D0 → ϕρ0 and ϕω. Regarding the leading
short-distance transitions, one finds that only the CS
process [Fig. 1(b)] can contribute. In addition, note that
ρ0 and ω are produced by the uū component and they are
degenerate in mass. These two unique features imply that
given the dominance of the short-distance mechanism,
these two channels should have the same decay rates.
The isospin decomposition gives uū ¼ 1

2
ðuūþ dd̄Þþ

1
2
ðuū − dd̄Þ ¼ 1ffiffi

2
p ðjωi þ jρ0iÞ, where jωi and jρ0i corre-

spond to the flavor wave functions of ω and ρ0,

TABLE I. Amplitudes of all the CF and SCS decay channels for
D0 → VV via the short-distance dynamics. The upper and lower
parts are for the CF and SCS processes, respectively.

Decay channels Amplitudes

K�−ρþ ½gðPÞDE þ eiθgðPÞ
ICðsd̄Þ�VcsVud

K̄�0ρ0 1ffiffi
2

p ½gðPÞCS − eiθgðPÞ
ICðsd̄Þ�VcsVud

K̄�0ω 1ffiffi
2

p ½gðPÞCS þ eiθgðPÞ
ICðsd̄Þ�VcsVud

K�þK�− ½gðPÞDE þ eiθgðPÞICðss̄Þ�VcsVus

K�0K̄�0
eiθ½gðPÞICðss̄ÞVcsVus þ gðPÞ

ICðdd̄ÞVcdVud�
ρþρ− ½gðPÞDE þ eiθgðPÞ

ICðdd̄Þ�VcdVud

ρ0ρ0 1
2
½−gðPÞCS þ eiθgðPÞ

ICðdd̄Þ�VcdVud

ωω 1
2
½gðPÞCS þ eiθgðPÞ

ICðdd̄Þ�VcdVud

ρ0ω − 1
2
eiθgðPÞ

ICðdd̄ÞVcdVud

ϕρ0 1ffiffi
2

p gðPÞCSVcsVus

ϕω 1ffiffi
2

p gðPÞCSVcsVus
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respectively. Thus, the coupling strength of the CS tran-
sition for D0 → ϕρ0 and D0 → ϕω can be expressed as

iMðPÞðD0 → ϕρ0=ϕωÞ
¼ hϕρ0=ϕωjϕðuūÞihϕðuūÞjHðCSÞ

WðPÞjD0i

¼ 1ffiffiffi
2

p gðPÞCSVcsVus; ð3Þ

where (P) in the above equation can be either (PV) or (PC)
denoting the amplitudes for the PV or PC transitions. It
actually shows that, with the leading order approximation,
these two decays should have the same decay rate and the
same polarization behavior. However, the partial-wave
measurement by Ref. [21] shows that the decay of
D0 → ϕρ0 is dominated by the S wave with BRðD0 →
ðϕρ0ÞS−waveÞ ¼ ð1.40� 0.12Þ × 10−3 and its total BR is
BRðD0 → ϕρ0Þ ¼ ð1.56� 0.13Þ × 10−3. The S wave can
only come from the parity-violated transition. The rela-
tively small P-wave contribution indicates the relatively
small contributions from the parity-conserved mechanism.
In contrast, the recent measurement ofD0 → ϕω by BESIII
shows that this channel is dominated by the transverse
polarization, i.e., BRðD0→ðϕωÞTÞ¼ð0.65�0.10Þ×10−3.
Surprisingly, its BR of the longitudinally polarized decay is
negligibly small. Although these two measurements
involve two different observables, the suppression of the
longitudinal polarization contributions and the significant
difference of their total BR suggests that these two decay
channels involve mechanisms beyond the leading short-
distance transitions.
Recognizing that the mass of K�K̄� is almost degenerate

to those of ϕρ0=ϕω and the decays of D0 → K�þK�− and
D0 → K�0K̄�0 actually involve different processes in Fig. 1,
we anticipate that the decays of D0 → ϕρ0 and D0 → ϕω
should acquire different contributions from the intermedi-
ate K�þK�− and K�0K̄�0 rescatterings to the isovector
channel ϕρ0 and isoscalar channel ϕω, respectively.
Generally speaking, intermediate processes that have siz-
able BRs into ϕρ0 and ϕω may contribute as long-distance
mechanisms as illustrated in Fig. 1(e). However, taking into
account the mass thresholds and weak coupling strengths,
only some of those PP, VP, and VV channels can have
sizable effects.
In Table II we list the processes that contain the DE

transitions as the leading contributing channels to the FSIs
and we adopt their DE couplings extracted in the NRCQM
in the loop calculation. This is a reasonable approximation
since they are the dominant processes for D0 → VV. The
data will be fitted with all the mechanisms included.
Interestingly, one sees that the intermediate PP and VP
channels contribute to the VV channels differently due to
the parity constraint. This allows us to extract the weak
couplings from the available data for the PP and VP.

In contrast, the weak couplings for D0 → VV contain both
PC and PV components.
For the decays of D0 → ϕρ0 and D0 → ϕω we only

consider the rescatterings ofD0 → K�þK�− → ϕρ0 and ϕω
as the leading long-distance amplitudes, but neglect con-
tributions from the CS processes. Note that, althoughD0 →
K�þK�− and ρþρ− are the DE processes, their experimental
measurements are still unavailable. We will extract the DE
amplitudes in the NRCQM as the theoretical input. For the
decays of D0 → VV, the kinematics and local weak
coupling operators make it a reliable estimate of the DE
and CS transition amplitudes [25].
One also notices that the decays of D0 → ϕρ0 and ϕω

actually receive different interfering contributions from the
intermediate K�þK�− rescatterings. Namely, the DE tran-
sition can access both channels, while the IC transition only
contributes to the ϕω channel. It means that these two
channels will receive different interfering contributions
from the intermediate K�þK�−. To illustrate this explicitly,
we write down the leading K�þK�− rescattering amplitudes
through triangle loops by exchanging K (K or K�),
respectively, as follows:

iMloop
ðPÞϕρ0 ¼

1ffiffiffi
2

p gðPÞDEVcsVus

X
ðKÞ

Ĩ ½ðPÞ;K�þ; K�−; ðKÞ�; ð4Þ

iMloop
ðPÞϕω ¼

�
1ffiffiffi
2

p gðPÞDE þ eiθgðPÞICðss̄Þ

�
VcsVus

×
X
ðKÞ

Ĩ ½ðPÞ;K�þ; K�−; ðKÞ�; ð5Þ

TABLE II. The weak couplings of CF and SCS channels in
units of 10−6 which are estimated by calculating the DE process
in the NRCQM, and the uncertainty comes from the model
parameters for VV modes, extracted by matching the exper-
imental data for PP and VP modes.

VV modes BR of DE gðPCÞDE ðGeV−1Þ gðPVÞDE (GeV)

K�−ρþ 0.22� 0.06 2.61� 0.43 4.90� 0.63
K�þK�− ð0.89� 0.29Þ% 2.91� 0.60 5.45� 0.89
ρþρ− ð1.33� 0.49Þ% 2.96� 0.88 4.74� 0.80

PP=VP
modes BR of experiment gðPCÞ gðPVÞ (GeV)

K−πþ ð3.95� 0.03Þ% 0 2.64� 0.01
KþK− ð4.08� 0.06Þ × 10−3 0 3.84� 0.03
πþπ− ð1.45� 0.02Þ × 10−3 0 2.19� 0.02

K�−πþ ð6.93� 1.20Þ% 1.29� 0.11 0
ρþK− ð11.20� 0.70Þ% 1.54� 0.05 0
K�−Kþ ð1.86� 0.30Þ × 10−3 1.16� 0.09 0
K�þK− ð5.67� 0.90Þ × 10−3 2.02� 0.16 0
ρ−πþ ð5.15� 0.25Þ × 10−3 1.23� 0.03 0
ρþπ− ð1.01� 0.04Þ% 1.72� 0.03 0
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where the sum is over the contributing meson loops
Ĩ ½ðPÞ;K�þ; K�−; ðKÞ�; as defined before, (P) ½¼ ðPCÞ or
ðPVÞ� indicates the PC or PV property of the corresponding
amplitude. The triangle loop function Ĩ has different
integrand functions for different loops.
Taking the PC loop transition ½ðPCÞ;K�; K̄�; ðKÞ� as an

example, the loop integral is

Ĩ ½ðPCÞ;K�þ; K�−; ðKÞ�

¼
Z

d4p1

ð2πÞ4 V1μνDμμ0 ðK�ÞV2μ0DðKÞV3ν0Dνν0 ðK̄�ÞF ðp2
i Þ;

ð6Þ
where the vertex functions have compact forms as follows:

V1μν ¼ −iϵαβμνpα
1p

β
3;

V2μ0 ¼ igV1K�K̄ϵα1β1μ0δp
α1
1 pβ1

V1
εδ�V1

;

V3ν0 ¼ igV2K̄�Kϵα2β2ν0λp
α2
3 pβ2

V2
ελ�V2

; ð7Þ

with V1 and V2 denoting the final state ϕ and ρ0=ω,
respectively. In Eq. (6), functions Dμμ0 ðK�Þ ¼ −iðgμμ0 −
pμpμ0=p2Þ=ðp2 −m2

K� þ iϵÞ and DðKÞ ¼ i=ðp2 −m2
K þ

iϵÞ are the propagators for K� and K, respectively, with
four-vector momentum p. We note that all the vertex
couplings involving the light pseudoscalar (P) and vector
(V) meson couplings, i.e., gVPP, gVVP, and gVVV , have been
extracted by Refs. [30,31], such as gV1K�K̄ and gV2K̄�K in
Eq. (7). In Appendix A 2 the detailed integrals for the
relevant loop transitions have been given.
In order to cut off the ultraviolet divergence in the loop

integrals, a commonly adopted form factor is included to
regularize the integrand,

F ðp2
i Þ ¼

Y
i

�
Λ2
i −m2

i

Λ2
i − p2

i

�
; ð8Þ

where Λi ≡mi þ αΛQCD with mi the mass of the ith
internal particle, and ΛQCD ¼ 220 MeV with α ¼ 1–2 as
the cutoff parameter [32].

III. RESULTS AND DISCUSSIONS

A. Fitting scheme

In our approach there are limited numbers of parameters
to be fitted by the available data. Apart from the phase
angle θ and cutoff parameter α, the IC couplings, i.e.,

gðPÞ
ICðsd̄Þ, g

ðPÞ
ICðss̄Þ, g

ðPÞ
ICðdd̄Þ, are treated as free parameters and will

be determined by the overall fitting. Concerning the phase
angle θ, our numerical study shows that θ ¼ 180° is
favored. This indicates a natural phase between the short-
and long-distance amplitudes. Namely, a sign may arise
from between the quark- and hadronic-level amplitudes due
to the convention adopted. Also, the results seem not to be
sensitive to α within a reasonable range of values. Hence,
we first restrict α ¼ 1.4� 0.14 as an overall parameter and
then fit the IC couplings to the existing experimental data.

Note that the IC coupling gðPÞ
ICðsd̄Þ appears in the CF

modes, i.e., D0 → K�−ρþ, K̄�0ρ0, and K̄�0ω, while gðPÞICðss̄Þ
and gðPÞ

ICðdd̄Þ appear in the SCS modes, i.e., D0 → K�þK�−,

K�0K̄�0, ρþρ−, ρ0ρ0, ωω, and ρ0ω. Experimental measure-
ments of the CF decays of D0 → K�−ρþ, K̄�0ρ0, and K̄�0ω
can be found in the literature [18,21,33,34]. The SCS
decays of K�0K̄�0 [21] and ρ0ρ0 [19,21] were also mea-
sured by experiment. However, one notices that there are
quite significant differences between the results from
Refs. [21,19].
To proceed, we adopt the data for D0 → K�−ρþ, K̄�0ρ0,

K̄�0ω, and K�0K̄�0 as input for the determination of the
IC couplings. The fitting results for these input channels
are listed in Table III as a comparison. The numerical study

shows that in the SCS transitions gðPCÞICðss̄Þ ≃ gðPCÞ
ICðdd̄Þ ≃

ð1.0–1.2Þ × 10−6 GeV−1 and gðPVÞICðss̄Þ ≃ gðPVÞ
ICðdd̄Þ ≃ ð0.8–1.0Þ ×

10−6 GeV can be determined. We also find that the coupling

gðPÞ
ICðsd̄Þ in the CF transition is different from gðPÞICðss̄Þ in the SCS,

i.e., gðPCÞ
ICðsd̄Þ¼ð0.2–0.5Þ×10−6GeV−1 and gðPVÞ

ICðsd̄Þ¼ð2.5–3.0Þ×
10−6GeV. This is understandable since these quantities
describe different intermediate flavor configurations in the

TABLE III. The fitted branching ratios in comparison with the experimental data in our framework. The best fitting gives

gðPCÞ
ICðsd̄Þ ≃ ð0.2–0.5Þ × 10−6 GeV−1, gðPVÞ

ICðsd̄Þ ≃ ð2.5–3.0Þ × 10−6 GeV, gðPCÞICðss̄Þ ≃ gðPCÞ
ICðdd̄Þ ≃ ð1.0–1.2Þ × 10−6 GeV−1, and gðPVÞICðss̄Þ ≃ gðPVÞ

ICðdd̄Þ≃
ð0.8–1.0Þ × 10−6 GeV.

CF Experiments
Fitted values

(α ¼ 1.4� 0.14) SCS Experiments
Fitted values

(α ¼ 1.4� 0.14)

K�−ρþ ð6.5� 2.5Þ% [33] ð6.58þ0.14
−0.10 Þ% K�0K̄�0½S� ð5.04� 0.30Þ × 10−4 [21] ð5.31þ3.02

−2.04 Þ × 10−4

K̄�0ρ0
ð1.515� 0.075Þ% [34] ð1.53þ0.24

−0.26 Þ% K�0K̄�0½P� ð2.70� 0.18Þ × 10−4 [21] ð2.82þ0.08
−0.13 Þ × 10−4ð1.59� 0.35Þ% [18]

K̄�0ρ0½T� ð1.8� 0.6Þ% [18] ð1.10þ0.13
−0.16 Þ% K�0K̄�0½D� ð1.06� 0.09Þ × 10−4 [21] ð0.11þ0.04

−0.03 Þ × 10−4

K̄�0ω ð1.1� 0.5Þ% [33] ð0.95þ0.04
−0.06 Þ% K�0K̄�0 ðTotalÞ ð8.80� 0.36Þ × 10−4 [21] ð8.31þ3.18

−2.24 Þ × 10−4
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TABLE IV. The calculated polarization and partial-wave BRs of all the CF and SCS decays ofD0 → VV in units of 10−3. Columns 3–10
are the results of other theoretical models, including the factorization approach [8,11–14], flavor SU(3) symmetry model (asterisk) [8],
broken flavor SU(3) symmetrymodel [9], and pole-dominancemodel [10], and thevalues in parentheses are the results the FSIs considered.
The last column lists the experimental data, while the second- and third-to-last columns list our model calculations without and with the
FSIs, respectively.

Process [13] [12] [14] [11] [8] [8] � [9] [10]

Our results
without
FSIs

Our results
with FSIs Experiments

K�−ρþ T � � � � � � � � � � � � � � � � � � � � � � � � 47.59 57.92þ0.96
−0.59 � � �

L 34.7� 1.4 � � � � � � � � � � � � � � � � � � � � � 4.58 7.88þ0.43
−0.43 � � �

Total � � � 113 8.0(77.2) 236 65.5(55.9) � � � 59� 24 65 52.17 65.80þ1.39
−1.02 65.0� 25.0 [33]

K̄�0ρ0 T � � � � � � � � � � � � � � � � � � � � � � � � 12.36 10.95þ1.28
−1.55 18.0� 6.0 [18]

L 13.2� 1.3 � � � � � � � � � � � � � � � � � � � � � 5.31 4.34þ1.09
−1.09 � � �

Total � � � 18 8.2(26.0) 22.9 7.0(16.6) � � � 16� 4 8.5 17.68 15.29þ2.37
−2.64 15.9� 3.5 [18]

15.15� 0.75 [34]
K̄�0ω T � � � � � � � � � � � � � � � � � � � � � � � � 7.52 6.85þ0.36

−0.51 � � �
L 34.9� 2.7 � � � � � � � � � � � � � � � � � � � � � 2.76 2.62þ0.09

−0.08 � � �
Total � � � 16 10.0(12.6) 21.9 6.6(6.6) 28� 17 11� 5 7.9 10.28 9.48þ0.45

−0.59 11.0� 5.0 [33]

K�þK�− T � � � � � � � � � � � � � � � � � � � � � � � � 4.02 6.75þ0.26
−0.38 � � �

L 1.1� 0.05 � � � � � � � � � � � � � � � � � � � � � 1.83 3.17þ0.09
−0.17 � � �

Total � � � 7.3 10.0(3.3) 10.1 2.4(1.8) 1.5� 0.8 2.4þ4.1
−2.1 � � � 5.86 9.92þ0.34

−0.55 � � �
K�0K̄�0 S � � � � � � � � � � � � � � � � � � � � � � � � 0.92 0.53þ0.30

−0.20 0.50� 0.03 [21]
P � � � � � � � � � � � � � � � � � � � � � � � � 0.30 0.28þ0.008

−0.012 0.27� 0.02 [21]
D � � � � � � � � � � � � � � � � � � � � � � � � 0.006 0.01þ0.004

−0.003 0.11� 0.01 [21]
T � � � � � � � � � � � � � � � � � � � � � � � � 0.84 0.58þ0.19

−0.13 � � �
L 0.01� 0.002 � � � � � � � � � � � � � � � � � � � � � 0.39 0.25þ0.11

−0.08 � � �
Total � � � � � � 10.0(1.1) � � � 0(0.6) 0.65� 0.3 2.0� 1.5 0.026 1.23 0.83þ0.31

−0.22 0.88� 0.04 [21]

ρþρ− T � � � � � � � � � � � � � � � � � � � � � � � � 5.44 5.80þ0.36
−0.36 � � �

L 3.2� 0.1 � � � � � � � � � � � � � � � � � � � � � 1.36 3.22þ0.004
−0.03 � � �

Total � � � 6.6 7.3(6.2) 13.1 5.3(4.4) 5.4� 3.2 <15 � � � 6.81 9.03þ0.36
−0.34 � � �

ρ0ρ0 S � � � 0.85 � � � � � � � � � � � � � � � � � � 0.49 0.45þ0.40
−0.26 0.18� 0.13 [21]

P � � � 0.091 � � � � � � � � � � � � � � � � � � 0.23 0.56þ0.10
−0.10 0.53� 0.13 [21]

D � � � 0.034 � � � � � � � � � � � � � � � � � � 0.01 0.03þ0.01
−0.01 0.62� 0.30 [21]

T � � � � � � � � � � � � � � � � � � � � � � � � 0.48 0.87þ0.32
−0.25 0.56� 0.07 [19]

L 1.1� 0.1 � � � � � � � � � � � � � � � � � � � � � 0.25 0.18þ0.19
−0.13 1.27� 0.10 [19]

Total � � � 0.97 7.3(1.6) 1.18 0.5(1.3) 1.7� 1.0 <6.5 � � � 0.73 1.05þ0.50
−0.37 1.85� 0.13 [19]

1.33� 0.35 [21]
ωω T � � � � � � � � � � � � � � � � � � � � � � � � 0.019 0.12þ0.018

−0.017 � � �
L 0.47� 0.07 � � � � � � � � � � � � � � � � � � � � � 0.00065 0.03þ0.0005

−0.001 � � �
Total � � � 0.68 � � � 1.08 0.2(0.2) 2.3� 1.4 � � � � � � 0.020 0.15þ0.018

−0.018 � � �
ρ0ω T � � � � � � � � � � � � � � � � � � � � � � � � 0.84 0.15þ0.013

−0.002 � � �
L 0.95� 0.07 � � � � � � � � � � � � � � � � � � � � � 0.13 0.06þ0.004

−0.008 � � �
Total � � � � � � 0.03 � � � 0.02(0.02) 3.0� 1.8 <84 � � � 0.97 0.21þ0.009

−0.005 � � �
ϕρ0 S � � � 0.63 � � � � � � � � � � � � � � � � � � 0.48 1.35þ0.23

−0.20 1.40� 0.12 [21]
P � � � 0.025 � � � � � � � � � � � � � � � � � � 0.05 0.11þ0.04

−0.03 0.08� 0.04 [21]
D � � � 0.001 � � � � � � � � � � � � � � � � � � ∼0 0.002þ0.001

−0.001 0.08� 0.03 [21]
T � � � � � � � � � � � � � � � � � � � � � � � � 0.37 1.02þ0.21

−0.18 � � �
L 0.65� 0.04 � � � � � � � � � � � � � � � � � � � � � 0.16 0.45þ0.07

−0.06 � � �
Total � � � 0.66 7.6(0.4) 1.02 0.26(0.26) 0.038� 0.014 1.9� 0.5 0.22 0.53 1.47þ0.27

−0.24 1.56� 0.13 [21]

ϕω T � � � � � � � � � � � � � � � � � � � � � � � � 0.34 0.67þ0.12
−0.10 0.65� 0.10 [20]

L 1.41� 0.09 � � � � � � � � � � � � � � � � � � � � � 0.15 0.03þ0.001
−0.002 ∼0 [20]

Total � � � 0.66 � � � 0.92 0.23(0.23) 0.035� 0.13 � � � � � � 0.49 0.69þ0.12
−0.10 0.65� 0.10 [20]

YE CAO, YIN CHENG, and QIANG ZHAO PHYS. REV. D 109, 073002 (2024)

073002-6



IC transitions that can also be associated with SU(3) flavor
symmetry breaking. With these fitted quantities, we can then
calculate the polarization and partial-waveBRs of all the other
CF and SCS channels as the predictions of our model. In
particular, a comparison with the measured channels of
D0 → ρ0ρ0 [19,21], ϕρ0 [21], and ϕω [20] can serve as a
test of our model.

B. Polarization and partial-wave BRs

In Table IV we present our model calculations of all the
CF and SCS channels with and without the FSIs in
comparison with the experimental data and other theoreti-
cal calculations that can help to clarify the role played by
the long-distance mechanism.
Note that it is insufficient for disentangling the role

played by the long-distance mechanism given that only the
D0 → K̄�V (V ¼ ρþ; ρ0;ω) channels are considered. The
latter two channels can be connected by the isospin relation
and the interferences between the CS and IC can account
for their difference by adjusting the IC coupling parameter.
However, the combined analysis can give clear evidence for
the FSIs and we highlight some of the key observations
below:

(I) For D0 → ϕρ0 and ϕω, where the IC transition does
not contribute, the FSIs can naturally explain the
ordering of their total BRs and provide a cancella-
tion mechanism for the longitudinal polarization in
the ϕω channel.
We plot the cutoff parameter α dependence of the

partial-wave BRs of D0 → ϕρ0 in Fig. 2(a) and
polarization BRs of ϕω in Fig. 2(b), respectively, to
compare with the experimental data (horizontal
bands) [20,21]. The vertical lines indicate the range
of α with which the experimental data can be well
reproduced.
In Fig. 2(a) the dot-dashed (S wave), dashed

(P wave), and dotted lines (D wave) denote the
cutoff parameter α dependence of the calculated

partial-wave BRs of D0 → ϕρ0 in comparison with
the experimental data [21] (horizontal bands). The
dominance of the Swave is confirmed, which means
that the transition is dominantly via the PV proc-
esses. Note that the data have quite large errors and
the P-wave [ð0.08� 0.04Þ × 10−4] and D-wave
[ð0.08� 0.03Þ × 10−4] bands almost exactly overlap
with each other. Because of the large errors with the
P- andD-wave data, more precise measurements are
needed in the future, though it does not affect the
main conclusion of the S-wave dominance. We also
calculate the polarization BRs for D0 → ϕρ0 and the
results are presented in Table IV. It shows that the
transverse polarization BR is about 2 times larger
than the longitudinal one. This feature is different
from the observations of D0 → ϕω, where the
longitudinal BR turns out to be much smaller than
the transverse one [20].
In Fig. 2(b) the cutoff dependence of theD0 → ϕω

polarization BRs are shown by the dot-dashed (trans-
verse) and dashed lines (longitudinal) in comparison
with the data (horizontal band).Note that our result for
the longitudinal polarization BR ð0.03þ0.001

−0.002Þ × 10−3

is small enough to be accommodated by the data. In
terms of the longitudinal polarization fraction fL, we
have fL ≃ 0.045þ0.011

−0.009 , which is consistent with the
BESIII measurement, i.e., fL < 0.24 at 95% confi-
dence level [20]. We note that all the other existing
calculations have predicted comparable (or equal)
BRs for D0 → ϕρ0 and ϕω [8–14].

(II) A combined view of D0 → ρ0ρ0, ωω, and ρ0ω can
be gained. As shown by Table I, the CS and IC
amplitudes have a constructive phase in the ρ0ρ0

channel, but destructive in ωω. It thus predicts a
small BR for ωω. Significant enhancement comes
from the K�þK�− and ρþρ− rescatterings, and the
numerical results in Table IV for ωω provide a
quantitative estimate of the FSI effects in this

FIG. 2. Cutoff parameter α dependence of (a) the partial-wave BRs of D0 → ϕρ0 and (b) polarization BRs of ϕω, respectively. The
solid lines stand for the total BRs The partial-wave and polarization BRs are denoted by the line legends.
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channel. An interesting feature with the ρ0ω channel
is that its CS amplitudes actually cancel out and only
the IC amplitude can contribute as the leading short-
distance mechanism. However, due to the destruc-
tive interference from the FSIs, its total BR is
predicted to be ∼ð0.21þ0.009

−0.005Þ × 10−3 which is com-
parable with ρ0ρ0. In comparison with other model
calculations our results for ρþρ−, ρ0ρ0, andωω are in
agreement with Refs. [12], but quite different from
other calculations [8–11,13,14]. Note that Ref. [12]
does not calculate the ρ0ω channel, while our
prediction for ρ0ω is very different from other
existing models. Hence, a systematic measurement
of these nonstrange VV channels at BESIII can
provide a test of our model.

(III) Another interesting observation about D0 → VV is
that the SCS decays of K�þK�− and ρþρ− have not
been measured in experiment so far. Since they
involve the DE transitions, their decay BRs are
expected to be sizable and they should be among the
most important decay channels for D0. Also, the
polarization and/or partial-wave BRs of the CF
channelK�−ρþ are unavailable. Although theoretical
estimates can be found in the literature, experimental
data will provide a better constraint on the NRCQM
input in our model. These channels can be accessed
by the BESIII experiment and analyses of these
channels are strongly recommended.

IV. SUMMARY

In this work we carry out a systematic analysis of the CF
and SCS decays of D0 → VV by taking into account the
long-distance FSIs as a crucial mechanism for understand-
ing the mysterious polarization puzzles. We show that the
NRCQM provides a reasonably good description of the DE

and CS transitions with explicit phase constraints. The IC
transition contains more profound effects arising from the
complicated intermediate configurations. In our approach,
it can be well parametrized out with the FSIs considered
and can be determined by the experimental data. Our
analysis shows that the stunning discrepancies of the decay
rates between D0 → ϕρ0 and ϕω, and the unexpectedly
small longitudinal polarization BR of the ϕω channel, can
be naturally explained by the FSIs. It provides clear
evidence for such a long-distance mechanism in D meson
decays. We also strongly recommend future precise and
completed measurements of D0 → VV at BESIII, since it
will provide us a unique probe for resolving some of those
profound nonperturbative dynamics.
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APPENDIX: TRANSITION AMPLITUDES

There are three nonvanishing helicity amplitudes for
D0 → VV: Mþþ, M−−, and M00, where the superscripts
“�” and “0” denote the helicity of the final vector meson
along the momentum direction of one of the final vector
meson. The nonvanishing amplitudes Mþþ and M−− are
not independent, and symmetry connects them viaMþþ

PC ¼
−M−−

PC and Mþþ
PV ¼ M−−

PV . Other amplitudes M�∓ and
M00

PC vanish.

1. Short-distance transition amplitudes extracted
in the quark model

The transition amplitudes of the DE and CS processes
as the short-distance dynamics are calculated in the
NRCQM [26–28] and the operators have been extracted
in Refs. [23–25]. The transition amplitudes for the DE and
CS processes are listed below for different channels.

DE process:

Mþþ
PC ðD0 → K�−ρþÞ ¼ GFVcsVudR

3=2
D R3=2

K R3=2
ρ ððmc þmqÞmsR2

D þ ðms þmqÞmcR2
KÞp

2π9=4mcmsðms þmqÞðR2
D þ R2

KÞ5=2
ðA1Þ

× exp

�
−

m2
qp2

2ðms þmqÞ2ðR2
D þ R2

KÞ
�
; ðA2Þ

TABLE V. Input values of the constituent quark masses and
harmonic oscillator strengths adopted in our calculations, which
are from Refs. [26–28].

HO strength Values (GeV) Quark mass Values (GeV)

RD 0.66 mc 1.628
RK� 0.48 ms 0.419
Rρ=ω 0.45 mq 0.22
Rϕ 0.51 � � � � � �
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Mþþ
PV ðD0→K�−ρþÞ¼GFVcsVudR

3=2
D R3=2

K R3=2
ρ

π9=4ðR2
DþR2

KÞ3=2

×exp

�
−

m2
qp2

2ðmsþmqÞ2ðR2
DþR2

KÞ
�
;

ðA3Þ

M00
PVðD0→K�−ρþÞ¼−

GFVcsVudR
3=2
D R3=2

K R3=2
ρ

π9=4ðR2
DþR2

KÞ3=2

×exp

�
−

m2
qp2

2ðmsþmqÞ2ðR2
DþR2

KÞ
�
;

ðA4Þ

MðD0 → K�þK�−Þ ¼ MðD0 → K�−ρþÞ
× ½Rρ ⟶

replace
RK; Vud ⟶

replace
Vus�; ðA5Þ

MðD0→ ρþρ−Þ¼MðD0→K�−ρþÞ
× ½RK ⟶

replace
Rρ;ms ⟶

replace
mq;Vcs ⟶

replace
Vcd�:
ðA6Þ

CS process:

Mþþ
PC ðD0 → K̄�0ρ0Þ ¼ GFVcsVudðRDRKRρÞ3=2ððmc þmqÞR2

D þ 2mcR2
ρÞp

12
ffiffiffi
2

p
π9=4mcmqðR2

D þ R2
ρÞ5=2

exp

�
−

p2

8ðR2
D þ R2

ρÞ
�
; ðA7Þ

Mþþ
PV ðD0 → K̄�0ρ0Þ ¼ GFVcsVudðRDRKRρÞ3=2

3
ffiffiffi
2

p
π9=4ðR2

D þ R2
ρÞ3=2

× exp
�
−

p2

8ðR2
D þ R2

ω=ρÞ
�
; ðA8Þ

M00
PVðD0 → K̄�0ρ0Þ ¼ −

GFVcsVudðRDRKRρÞ3=2
3

ffiffiffi
2

p
π9=4ðR2

D þ R2
ρÞ3=2

× exp

�
−

p2

8ðR2
D þ R2

ω=ρÞ
�
; ðA9Þ

MðD0 → K̄�0ωÞ ¼ MðD0 → K̄�0ρ0Þ½Rρ ⟶
replace

Rω�; ðA10Þ

MðD0 → ϕρ0Þ ¼ MðD0 → K̄�0ρ0Þ
× ½RK ⟶

replace
Rϕ; Vud ⟶

replace
Vus�; ðA11Þ

MðD0 → ϕωÞ ¼ MðD0 → K̄�0ωÞ
× ½RK ⟶

replace
Rω; Vud ⟶

replace
Vus�; ðA12Þ

MðD0 → ρ0ρ0Þ ¼ −
1ffiffiffi
2

p MðD0 → K̄�0ρ0Þ

× ½RK ⟶
replace

Rρ; Vcs ⟶
replace

Vcd�; ðA13Þ

MðD0 → ωωÞ ¼ 1ffiffiffi
2

p MðD0 → K̄�0ωÞ

× ½RK ⟶
replace

Rω; Vcs ⟶
replace

Vcd�: ðA14Þ

In the above equations, p≡ jpj denotes the three-vector
momentum of the final vector mesons in the initial-state
rest frame;mq is the mass of the light quarks ðu; dÞ;ms and
mc represent the masses of the s and c quark, respectively;
RD, RK , Rω=ρ, and Rϕ are the harmonic oscillator (HO)
strengths determined by the ground-state mesons D0, K�,
ω=ρ0, and ϕ, respectively. The values adopted for these
quark model parameters are from Refs. [26–28] and they
are listed in Table V.

2. Long-distance transition amplitudes from FSIs

In this section, we present the loop amplitudes for the
convenience of tracking the calculation details. For sim-
plicity, we do not distinguish the coupling constants at the
hadronic vertices but just denote them as gi with i ¼ 1, 2, 3.
The amplitudes for different processes are listed explicitly
as follows, and we employ LOOPTOOLS

1 to accomplish the
following numerical calculations:

1https://www.feynarts.de/looptools/.
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Ĩ ½ðPCÞ; K�; K̄�; ðKÞ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3ðgμμ

0 − pμ
1
pμ0
1

p2
1

Þϵα1β1μ0δpα1
1 pβ1

V1
εδ�V1

ϵα2β2ν0λp
α2
3 pβ2

V2
ελ�V2

ðgνν0 − pν
3
pν0
3

p2
3

Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3 × ϵα1β1μδp

α1
1 pβ1

V1
εδ�V1

× ϵα2β2νλp
α2
3 pβ2

V2
ελ�V2

ðp2
1 −m2

K� þ iϵÞðp2
2 −m2

K þ iϵÞðp2
3 −m2

K� þ iϵÞ F ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
F ðp2

i Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ

× fϵαβδλpα
V1
pβ
V2
εδ�V1

ελ�V2
½ðp1 · pV1

Þ2 þ ðp1 · pV1
Þðp1 · pV2

Þ − p2
1ðp2

V1
þ pV1

· pV2
Þ�

þ ϵαβδλpα
1p

β
V2
εδ�V1

ελ�V2
½p2

1p
2
V1

− ðp1 · pV1
Þ2� þ ϵαβδλpα

V1
pβ
1ε

δ�
V1
ελ�V2

½−p2
1p

2
V2

þ ðp1 · pV2
Þ2�

þ ϵαβδλpα
V1
pβ
V2
pδ
1ε

λ�
V2
½ðp1 · ε�V1

ÞðpV1
· pV2

þ p2
V1
Þ − ðp1 · pV1

Þðp1 · ε�V1
þ pV2

· ε�V1
Þ�

þ ϵαβδλpα
V1
pβ
V2
εδ�V1

pλ
1ðp1 · pV2

Þðp1 · ε�V2
Þg: ðA15Þ

Ĩ ½ðPCÞ; K�; K̄�; ðK�Þ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3ðgμμ

0 − pμ
1
pμ0
1

p2
1

Þðgρσ − pρ
2
pσ
2

p2
2

Þðgνν0 − pν
3
pν0
3

p2
3

Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞ

× ½ðp1 þ pV1
Þρεδ�V1

gμ0δ þ ðp2 − pV1
Þμ0εδ�V1

gδρ − ðp1 þ p2Þδεδ�V1
gμ0ρ�

× ½ðp3 þ pV2
Þσελ�V2

gν0λ − ðp2 þ pV2
Þν0ελ�V2

gλσ þ ðp2 − p3Þλελ�V2
gν0σ�F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3ðgρσ − pρ

2
pσ
2

p2
2

Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞF ðp2

i Þ

× ½ðp1 þ pV1
Þρεδ�V1

gμδ þ ðp2 − pV1
Þμεδ�V1

gδρ − ðp1 þ p2Þδεδ�V1
gμρ�

× ½ðp3 þ pV2
Þσελ�V2

gνλ − ðp2 þ pV2
Þνελ�V2

gλσ þ ðp2 − p3Þλελ�V2
gνσ�

¼ g1g2g3

Z
d4p1

ð2πÞ4
4F ðp2

i Þ
p2
2ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞ

× fϵαβδλpα
1p

β
V2
εδ�V1

ελ�V2
½ðp2

1 − p1 · pV1
ÞðpV1

· pV2
Þ þ ðp2

V1
− p1 · pV1

Þðp1 · pV2
Þ�

þ ϵαβδλpα
V1
pβ
1ε

δ�
V1
ελ�V2

½ðp1 · pV1
− p2

1ÞðpV1
· pV2

Þ þ ðp1 · pV1
− p2

V1
Þðp1 · pV2

Þ�
þ ϵαβδλpα

V1
pβ
V2
pδ
1ε

λ�
V2
p2
2½−2ðp1 · ε�V1

Þ þ ðpV2
· ε�V1

Þ�
þ ϵαβδλpα

V1
pβ
V2
εδ�V1

pλ
1p

2
2½−2ðp1 · ε�V2

Þ þ ðpV1
· ε�V2

Þ�g: ðA16Þ

Ĩ ½ðPCÞ; K�; K̄�; ðκÞ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3ðgμρ − pμ

1
pρ
1

p2
1

�
ðgνσ − pν

3
pσ
3

p2
3

�
ε�V1

ε�V2σ

ðp2
1 −m2

K� þ iϵÞðp2
2 −m2

κ þ iϵÞðp2
3 −m2

K� þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3ε

μ�
V1
εν�V2

ðp2
1 −m2

K� þ iϵÞðp2
2 −m2

κ þ iϵÞðp2
3 −m2

K� þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
F ðp2

i Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
κ þ iϵÞðp2

3 −m2
K� þ iϵÞ

× fϵαβδλpα
1p

β
V2
εδ�V1

ελ�V2
− ϵαβδλpα

V1
pβ
1ε

δ�
V1
ελ�V2

g: ðA17Þ
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Ĩ ½ðPCÞ; K; K̄�; ðKÞ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ðpD þ p1Þμðp1 þ p2Þρϵαβνσpα

3p
β
V2
ερ�V1

εσ�V2
ðgμν − pμ

3
pν
3

p2
3

Þ
ðp2

1 −m2
K þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ðpD þ p1Þμðp1 þ p2Þρϵαβμσpα

3p
β
V2
ερ�V1

εσ�V2

ðp2
1 −m2

K þ iϵÞðp2
2 −m2

K þ iϵÞðp2
3 −m2

K� þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
4F ðp2

i Þ
ðp2

1 −m2
K þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ

× ϵαβδλpα
V1
pβ
V2
pδ
1ε

λ
V2
ðp1 · ε�V1

Þ: ðA18Þ

Ĩ ½ðPCÞ; K�; K̄; ðKÞ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ðpD þ p3Þμðp3 − p2Þρϵαβνσpα

1p
β
V1
εσ�V1

ερ�V2
ðgμν − pμ

1
pν
1

p2
1

Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K þ iϵÞ F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ðpD þ p3Þμðp3 − p2Þρϵαβμσpα

1p
β
V1
εσ�V1

ερ�V2

ðp2
1 −m2

K� þ iϵÞðp2
2 −m2

K þ iϵÞðp2
3 −m2

K þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
4F ðp2

i Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K þ iϵÞ

× ϵαβδλpα
V1
pβ
V2
εδ�V1

pλ
1ðp1 · ε�V2

− pV1
· ε�V2

Þ:
ðA19Þ

Ĩ ½ðPCÞ; K; K̄�; ðK�Þ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ðpD þ p1Þνεαβρδpα

2p
β
V1
εδ�V1

ðgμν − pμ
3
pν
3

p2
3

Þðgρσ − pρ
2
pσ
2

p2
2

Þ
ðp2

1 −m2
K þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞ

× ½ðp3 þ pV2
Þσε�V2μ

þ ðp2 − p3Þλελ�V2
gμσ − ðp2 þ pV2

Þμε�V2σ
�F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ðpD þ p1Þνεαβρδpα

2p
β
V1
εδ�V1

ðgμν − pμ
3
pν
3

p2
3

Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K þ iϵÞ

× ½ðp3 þ pV2
Þρε�V2μ

þ ðp2 − p3Þλελ�V2
gρμ − ðp2 þ pV2

Þμερ�V2
�F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
4F ðp2

i Þ
p2
3ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K þ iϵÞ

× fϵαβδλpα
V1
pβ
1ε

δ�
V1
ελ�V2

½ðp1 · pV2
Þðp2

V1
þ pV1

· pV2
− p1 · pV2

Þ þ p2
1ðp2

V2
þ pV1

· pV2
Þ

− ðp1 · pV1
Þðp2

V2
þ pV1

· pV2
þ p1 · pV2

Þ� þ ϵαβδλpα
V1
pβ
V2
εδ�V1

pλ
1½p2

3ðp1 · ε�V2
Þ�g: ðA20Þ
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Ĩ ½ðPCÞ; K�; K̄; ðK�Þ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ðpD þ p3Þμϵαβσλpα

2p
β
V2
ελ�V2

ðgμν − pμ
1
pν
1

p2
1

Þðgρσ − pρ
2
pσ
2

p2
2

Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K þ iϵÞ

× ½ðp1 þ pV1
Þρε�V1ν

þ ðp2 − pV1
Þνε�V1ρ

− ðp1 þ p2Þδεδ�V1
gνρ�F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ðpD þ p3Þμϵαβσλpα

2p
β
V2
ελ�V2

ðgμν − pμ
1
pν
1

p2
1

Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K þ iϵÞ

× ½ðp1 þ pV1
Þσε�V1ν

þ ðp2 − pV1
Þνεσ�V1

− ðp1 þ p2Þδεδ�V1
gσν �F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
4F ðp2

i Þ
p2
1ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K þ iϵÞ

× fϵαβδλpα
V1
pβ
V2
εδ�V1

ελ�V2
½ðp1 · pV1

Þ2 þ ðp1 · pV1
Þðp1 · pV2

Þ − p2
1ðp2

V1
þ pV1

· pV2
Þ�

þ ϵαβδλpα
1p

β
V2
εδ�V1

ελ�V2
½−ðp1 · pV1

Þ2 − ðp1 · pV1
Þðp1 · pV2

Þ þ p2
1ðp2

V1
þ pV1

· pV2
Þ�

þ ϵαβδλpα
V1
pβ
V2
pδ
1ε

λ�
V2
½ðpV2

· ε�V1
− p1 · ε�V1

Þp2
1�g: ðA21Þ

Ĩ ½ðPVÞ; K�; K̄�; ðKÞ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵα1β1μδp

α1
1 pβ1

V1
εδ�V1

ðgμρ − pμ
1
pρ
1

p2
1

Þϵα2β2νλp3α2pV2β2ε
�
ϕλðgνρ − p3νp3ρ

p2
3

Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵα1β1μδp

α1
1 pβ1

V1
εδ�V1

× ϵα2β2μλp3α2pV2β2ε
�
V2λ

ðp2
1 −m2

K� þ iϵÞðp2
2 −m2

K þ iϵÞðp2
3 −m2

K� þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
F ðp2

i Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ

× fðε�V1
· ε�V2

Þ½ðp2
1 − p1 · pV1

ÞðpV1
· pV2

Þ þ ðp2
V1

− p1 · pV1
Þðp1 · pV2

Þ�
− ðp1 · ε�V1

Þðp1 · ε�V2
ÞðpV1

· pV2
Þ þ ðp1 · ε�V1

ÞðpV1
· ε�V2

Þðp1 · pV2
Þ

þ ðpV2
· ε�V1

Þðp1 · ε�V2
Þ½ðp1 · pV1

Þ − p2
V1
�

þ ðpV2
· ε�V1

ÞðpV1
· ε�V2

Þ½ðp1 · pV1
Þ − p2

1�g: ðA22Þ

Ĩ ½ðPVÞ; K�; K̄�; ðK�Þ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ðgμλ − pμ

1
pλ
1

p2
1

Þðgρσ − pρ
2
pσ
2

p2
2

Þðgνλ − p3νp3λ

p2
3

Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞ

× ½ðp1 þ pV1
Þρεδ�V1

gμδ þ ðp2 − pV1
Þμεδ�V1

gδρ − ðp1 þ p2Þδεδ�V1
gμρ�

× ½ðp3 þ pV2
Þσε�V2β

gνβ − ðp2 þ pV2
Þνεβ�V2

gβσ þ ðp2 − p3Þβεβ�V2
gνσ�F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ðp2

1g
μλ − pμ

1p
λ
1Þðp2

2g
ρσ − pρ

2p
σ
2Þðp2

3gνλ − p3νp3λÞ
p2
1p

2
2p

2
3ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞ

× ½ðp1 þ pV1
Þρεδ�V1

gμδ þ ðp2 − pV1
Þμεδ�V1

gδρ − ðp1 þ p2Þδεδ�V1
gμρ�

× ½ðp3 þ pV2
Þσε�V2β

gνβ − ðp2 þ pV2
Þνεβ�V2

gβσ þ ðp2 − p3Þβεβ�V2
gνσ�F ðp2

i Þ: ðA23Þ
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Ĩ ½ðPVÞ; K�; K̄�; ðκÞ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ðgμρ − pμ

1
pρ
1

p2
1

Þðgμσ − p3μp3σ

p2
3

Þε�V1ρ
εσ�V2

ðp2
1 −m2

K� þ iϵÞðp2
2 −m2

κ þ iϵÞðp2
3 −m2

K� þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ðp2

1g
μρ − pμ

1p
ρ
1Þðp2

3gμσ − p3μp3σÞε�V1ρ
εσ�V2

p2
1p

2
3ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
κ þ iϵÞðp2

3 −m2
K� þ iϵÞF ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
F ðp2

i Þ
p2
1p

2
3ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
κ þ iϵÞðp2

3 −m2
K� þ iϵÞ

× fðε�V1
· ε�V2

Þp2
1p

2
3 þ ðp1 · ε�V1

Þðp1 · ε�V2
Þ½ðp1 · p3Þ − ðpV1

þ pV2
Þ2�

þ ðp1 · εV1
ÞðpV1

· εV2
Þ½p1 · ðpV1

þ pV2
Þ� þ ðpV2

· εV1
Þðp1 · εV2

Þp2
1

− ðpV2
· εV1

ÞðpV1
· εV2

Þp2
1g: ðA24Þ

Ĩ ½ðPVÞ; K; K̄; ðKÞ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ðp1 þ p2Þμðp2 − p3Þνεμ�V1

εν�V2

ðp2
1 −m2

K þ iϵÞðp2
2 −m2

K þ iϵÞðp2
3 −m2

K þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
4F ðp2

i Þ
ðp2

1 −m2
K þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K þ iϵÞ

× ðp1 · ε�V1
Þðp1 · ε�V2

− pV1
· ε�V2

Þ: ðA25Þ

Ĩ ½PV; K; K̄; ðK�Þ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμλpα

2p
β
V1
ελ�V1

ϵα1β1νδp
α1
2 pβ1

V2
εδ�V2

ðgμν − pμ
2
pν
2

p2
2

Þ
ðp2

1 −m2
K þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K þ iϵÞF ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμλpα

2p
β
V1
ελ�V1

ϵα1β1μδp
α1
2 pβ1

V2
εδ�V2

ðp2
1 −m2

K þ iϵÞðp2
2 −m2

K� þ iϵÞðp2
3 −m2

K þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
F ðp2

i Þ
ðp2

1 −m2
K þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K þ iϵÞ

× fðε�V1
· ε�V2

Þ½ðp1 · pV2
Þðp1 · pV1

− p2
V1
Þ þ ðpV1

· pV2
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In the above amplitudes, the product of the propagators and the form factor can be expanded as
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