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Université de Genève, Section de Physique, DPNC, 1205 Genève, Switzerland
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We introduce the novel approach of using the superscaling variable as an observable and an analysis tool
in the context of charged current neutrino-nucleus interactions. We study the relation between the
superscaling variable and the removal energy, in addition to other fundamental parameters of the neutrino-
nucleus interaction models. In the second half of the paper, we discuss the experimental viability of this
measurement following a study of neutrino energy and missing momentum reconstruction. We show that
the superscaling variable is measurable in neutrino interaction experiments provided that the proton is
detected in the final state. We discuss the resolution of this measurement, and the limitation imposed by the
proton’s detection threshold.
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I. INTRODUCTION

The studies of neutrino-nucleus interactions are entering
a new stage, motivated by long-baseline experimental
programs, in which the statistical uncertainties will dimin-
ish and thus nuclear effects—contributing to the systematic
error—have to be kept well under control [1]. The
incomplete theoretical knowledge of neutrino-nucleus
interactions influences various stages of experimental
analyses. For instance, for the future Hyper-Kamiokande
water Cherenkov detector [2], the method for reconstruct-
ing the neutrino energy will be mainly based on the
kinematics of the outgoing muon, which is the only particle
observed, assuming that the reaction-mechanism is two-
body quasielastic (QE) scattering on a bound nucleon.
In the context of CCQE interactions, the superscaling

approach has been advocated to enhance some of the most
advanced models of neutrino-nucleus interactions [3].
Superscaling was introduced initially to describe elec-
tron-nucleon scattering where it is a very well established
feature observed in the data [4,5]. The experimental
determination of the superscaling behavior of neutrino
interactions will be fundamental to the development of
the aforementioned models.

There are many uncertainties in the modelling of
neutrino-nucleus interactions [1], among them the descrip-
tion of the initial state nucleus, dynamical phenomena such
as random phase approximations (RPA) or 2p2h inter-
actions, Pauli blocking, and nuclear rescattering. The
removal energy—energy absorbed by the unobserved
nuclear system during the interaction—has emerged among
them as one of the largest systematic errors on T2K
neutrino oscillations [6]. A direct measurement of the
average removal energy will be very beneficial to reduce
systematic errors and to add credibility to neutrino-nucleus
interaction models. However, in flux-averaged data, the
removal energy is not directly observable as the neutrino
energy is unknown on an event-to-event basis. We present
the reconstructed superscaling variable as a potential
observable to address this uncertainty experimentally.
We introduce theoretical predictions and discuss the

relation between the superscaling variable and the removal
energy, employing a range of neutrino-nucleus interaction
models. These models span from the conventional relativ-
istic Fermi gas (RFG), for which the superscaling variable
was originally formulated, to more sophisticated mean field
approaches. We perform a study under the conditions of the
T2K experiment [7], using the so-called topological event
selection. Topologies are based on the counting of particles
emerging from the nucleus after nuclear rescattering (NrS).
In this study we concentrate on the CC0π1p topology, with
a muon, a proton and no mesons in the final state. We show
that a measurement of the reconstructed superscaling
variable provides sensitivity to the removal energy in a
1-nucleon knockout event (CC1p1h).
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II. EVENT KINEMATICS AND NEUTRINO
ENERGY RECONSTRUCTION

In this section we discuss the kinematics of the CC1p1h
reaction, and the neutrino energy reconstruction in a 1μ1p
event. We use several nuclear models for this study, and
expose the differences between their treatments.
We consider the semi-inclusive reaction, in which a

proton and a muon are detected in coincidence

νμðkνÞ þ AðkAÞ → μðkμÞ þ pðkpÞ þ BðkBÞ ð1Þ

where A is the initial nucleus, and B is the residual
hadronic system, which remains undetected. Particle
four-vectors are labeled between parentheses, where

ki ¼ ðEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i þ jk⃗ij2
q

; k⃗iÞ.
The energy and momentum transfer to the nucleus are

ω ¼ Eν − Eμ, and q⃗ ¼ k⃗ν − k⃗μ, respectively.
Momentum and energy conservations are expressed as

q⃗ ¼ k⃗p þ k⃗B ð2Þ

ω − Ep ¼ MB −MA þ ξ� þ TB ð3Þ

where ξ� is the excitation energy of the final nucleus,MB is
its ground state mass and TB is its kinetic energy. A further
simplification can be performed using the definition of the
experimental nucleon separation energy SN ¼ MB −MA þ
MN , giving

ω − Ep þMN ¼ SN þ ξ� þ TB: ð4Þ

The missing momentum is defined as p⃗m ≡ −k⃗B, while
the missing energy is defined as

Em ¼ ω − Tp − TB ¼ SN þ ξ� þ ðMp −MNÞ: ð5Þ

For what follows, it is useful to define

Ẽm ¼ Em − ðMp −MNÞ ð6Þ

¼ ω − Ep þMN ð7Þ

≡SN þ ξ� ð8Þ

where we neglect the kinetic energy of the recoiling nucleus
as it becomes small when the mass of the residual system is
large with respect to its momentum. The missing energy
can be associated with the removal energy S, the energy
needed to remove a nucleon from the nucleus, and we will
treat them as equivalent (S≡ Ẽm).

A. Monte Carlo models

NEUT [8] provides a very good environment to predict
experimental observables. It includes a complete simula-
tion of resonance production, shallow and deep inelastic
scattering, meson exchange currents and charged and
neutral currents both for neutrinos and anti-neutrinos,
and for several nuclei. In addition, it includes an intranu-
clear cascade model, developed in [9] and recently tuned to
available scattering data [10].
In order to study the model-dependence of our pro-

cedure, we use the following interaction models imple-
mented in NEUT for QE scattering.
(1) The relativistic Fermi gas (RFG) model, which uses

the Smith-Moniz parametrization [11].
(2) The local Fermi gas (LFG) model of Refs. [12,13]. It

includes corrections for short and long range corre-
lations via the random phase approximation (RPA),
final-state interactions, and the Coulomb potential
experienced by the charged lepton. The final-state
nucleon kinematics are generated from the LFG
momentum distribution assuming quasifree scatter-
ing, as described and applied to neutrino scattering
data in Ref. [14].

(3) The spectral function (SF) model. This is a calcu-
lation in the plane wave impulse approximation
(PWIA) that uses the realistic Rome spectral func-
tion [15,16]. The implementation is detailed in
Ref. [17].

In addition to the NEUT native models, we include the
energy-dependent relativistic mean field (EDRMF) [18]
and relativistic plane wave impulse approximation
(RPWIA) [19] models where NEUT’s intra-nuclear cascade
was used to simulate nuclear re-scattering and final state
interactions (FSI) following the same approach presented
in [20].
Within the Fermi gas models, interaction with an initial

on-shell nucleon with momentum k⃗N is considered. In this
case p⃗m ¼ k⃗N and

ω − Ep þMN ¼ TF − TN þ SN ð9Þ

where TF is the kinetic energy of a nucleon at the Fermi
level. One thus has

Ẽm ¼ TF − TN þ SN ð10Þ

where for the RFG model, TF is a constant.
On the other hand, in the LFG model, TF depends on the

local nuclear density, and an average over the density is
performed. The value of TF is hence smeared out, losing
the direct relation between missing energy and missing
momentum of the RFG.
The RPWIA and EDRMF approaches [19–21] use a

RMFmodel to describe the initial state [22,23]. In this case,
a nucleon is knocked out from a nuclear shell, which has a
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fixed missing energy. For carbon, considered in this work,
these are the s1=2 and p3=2 shells, with occupancies of two
and four nucleons respectively.
The SF calculation uses a more realistic energy and

momentum density, by implementing the experimental
observation that the energy of the nuclear shells is smeared
out, and that the shell-model states are depopulated [24–26].
The strength missing from the mean-field appears at high
missing energy and momentum and is modeled in the local-
density approximation [15,16].
These approaches represent an increasingly realistic

description of the nuclear spectral function. And the
EDRMF results, that use the same RMF initial state as
the RPWIA, are used to gauge the effect of nucleon final
state interactions. Consistent comparisons in the PWIA
using these different spectral functions, and detailed dis-
cussion on the kinematics, are presented in Ref. [27].

B. Reconstruction of full kinematics

The full kinematics of the CC1p1h event, where the
target nucleon is a neutron (νμ þ n → μþ p), can be
reconstructed using two different approaches. When the
missing energy and momentum are fully correlated, as in
the RFG model, we can perform reconstruction by energy-
momentum conservation (REP). In this case, Eq. (9) can be
solved for the longitudinal missing momentum, giving

ðpL
mÞREP ¼

ðpT
mÞ2 þM2

N − ðEμ þ Ep − kLμ − kLp þ SREPÞ2
2ðEμ þ Ep − kLμ − kLp þ SREPÞ

;

ð11Þ

where the superscript L denotes the components in the
direction of the neutrino beam, and

pT
m ¼ ðk⃗p þ k⃗μÞT; ð12Þ

is the missing momentum transverse to the beam. The
neutrino energy can then be obtained, using the fact that
Eν ¼ jk⃗νj, from

EREP
ν ¼ kLμ þ kLp − ðpL

mÞREP ð13Þ

Here, SREP is a constant representing the average
ω − Ep þ EN (or TF þ SN), which in the RFG model
can be identified as the fixed removal energy.
The distribution of SREP, normalized to show the

probability density function (pdf), is in the top panel of
Fig. 1. It is clear that while for the RFG model this leads to
an exact reconstruction, this is not the case for the other
more realistic models that we consider.
A more realistic approach, is to consider Ẽm ≈ constant,

hence performing reconstruction solely by energy conser-
vation (RE)

ERE
ν ¼ Eμ þ Ep þ SRE −MN ð14Þ

with SRE being a constant, which corresponds to the
average missing (removal) energy ω − Ep þMN (or
SN þ ξ�). The longitudinal components of the missing
momentum can then be obtained from

ðpL
mÞRE ¼ kLμ þ kLp − ERE

ν ð15Þ

This assumption considers Ẽm to be independent from
the missing momentum, which is natural for the RPWIA,
EDRMF and SF approaches in the low missing (removal)
energy region, where the bound-states do not satisfy a
dispersion relation based on free nucleon kinematics. The
missing energy distribution reflects the well-defined bind-
ing energy of the two carbon shells with the only depend-
ence of Ẽm on the missing momentum coming from the
recoil energy of the residual nucleus. This is seen clearly in
the bottom panel of Fig. 1, where the tails of the peaks in
the EDRMF and RPWIA calculations are due to the recoil
energy. The mean-field contribution in the SF model, also
described as independent contributions from these two
states but with some smearing in the binding energy, leads
the observed peaked p-shell contribution followed by the
much broader s-shell contribution. This structure is absent

FIG. 1. The true distributions of ω − Ep þ EN (REP) and
ω − Ep þMN (RE) for the five models for true CC1p1h events.
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from the Fermi gas models as they consider infinite nuclear
matter. In the LFG model, the average Ẽm corresponds to
TF − TN þ SN from Eq. (10). Since the value of TN in the
LFG model peaks around the local value of TF, there is a
smaller dispersion of the average TF − TN þ SN compared
to TF þ SN , which can be observed in Fig. 1.
This implies that the RE method would perform better

in the reconstruction of the neutrino energy for the SF,
LFG, EDRMF and RPWIA models compared to the REP
method, the latter being only suitable for the RFG. A direct
comparison of the RE and REP removal energy distribu-
tions can be found in the Supplemental Material [28].
The average removal energy is computed from the

averages of the distributions in Fig. 1. Taking into con-
sideration the optimal reconstruction method for each
model, the SF, LFG, EDRMF, and RPWIA models have
SRE values of 26.45, 28.39, 29.02, and 29.20 MeV,
respectively. On the other hand, the RFG model has an
SREP value of 24.73 MeV.
To perform the neutrino energy reconstruction, we need

to make an assumption for a constant average removal
energy. Based on the distributions in Fig. 1, we set SRE ¼
SREP ¼ 28 MeV for all models. We will depart from this
assumption later in the paper to explore the impact of

changing the average removal energy on the superscaling
variable distribution.
The results for the reconstructed neutrino energy, using

the RE and REP methods are shown in Fig. 2. For the RE
method (bottom panel), the distributions are mainly con-
tained between −4% and 2% for the LFG and SF models,
while the EDRMF and RPWIA have a distinct concen-
tration of strength at −3% due to the s-shell contribution.
The REP method, shown in the top panel, exhibits a much
broader but very similar distribution for all these models.
However, the RFG is the outlier, with a significantly better
resolution in REP, as expected.
The reconstructed missing momentum is shown in

Fig. 3, again the RFG is the outlier, while for the other
models we obtain fairly symmetric distributions for RE,
with a full width at half maximum of around 5%.
It is clear that the RE method is more robust and provides

better results for most models. Therefore, we will be using
the RE method for all models, keeping in mind that the
RFG model is a special case due to its simplicity.
Lastly, we note that these assumption will become less

reliable when the signal has a large contribution from
processes other than one-nucleon knockout. However, as
we will show in Sec. V, the bulk of these contributions can

FIG. 2. The reconstructed neutrino energy resolution via REP
(top) and RE (bottom) for true CC1p1h events.

FIG. 3. The reconstructed missing momentum resolution via
REP (top) and RE (bottom).
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be removed by a kinematic cut on the reconstructed missing
momentum.

III. THE SUPERSCALING VARIABLE

When an interaction between a particle and a many-body
system involves energy and momentum transfers only to
individual constituents of the complex system, the inclusive
cross section can be approximated as a single-nucleon cross
section times a specific function of the energy and momen-
tum transfers fðω; jq⃗jÞ. Scaling, of the first kind, occurs
when that function becomes independent of both ω and q⃗
explicitly. The scaling function depends on the kinematics
only through a single quantity ψðω; jq⃗jÞ [29,30].
The superscaling variable ψ 0 was first introduced by

Donnelly and Sick [4] as an evolution of the scaling
variable ψ used by Alberico et al. [31] and within the
framework of the RFG model. It is defined as:

ψ 0ðω; q⃗Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þη2F

p
−1

q λ− τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þλÞτþ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1þ τÞpq ð16Þ

with

ηF ¼ kF
MN

ð17Þ

κ ¼ jq⃗j
2MN

ð18Þ

λ ¼ ω − Eshift

2MN
ð19Þ

τ ¼ κ2 − λ2 ð20Þ

where,MN is the neutron mass, kF is the Fermi momentum
(fixed to 228 MeV for Carbon [32]) and Eshift is a shift
energy used to make the quasielastic peak coincide with
ψ 0 ¼ 0. Presumably, Eshift includes information on the
separation energy, the average removal energy of nucleons
in the nucleus as well as aspects of final-state interactions
like RPA, which can influence the removal energy dis-
tribution by altering the cross-section strength as a function
of the momentum transfer in the reaction. In the following,
we use the reported value for Carbon of 20 MeV [32].
The discussion in the following sections relies on the

analysis of the special case when ψ 0 ¼ 0. This condition is
achieved when:

λ − τ ¼ λ − ðκ2 − λ2Þ ¼ 0 ð21Þ

The λ parameter has a direct dependency with Eshift and
the removal energy S—assumed to be equivalent to the
missing energy Ẽm in Sec. II—through the energy transfer
ω. From Eq. (6):

ω ¼ Eν − Eμ ¼ Ep þ S −MN ð22Þ

By solving Eq. (21) and considering the positive solution
as the physically meaningful one, we arrive at the following
relationship

S − Eshift ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ jq⃗j2
q

− Ep ð23Þ

For vanishing missing momentum, Eq. (23) becomes

S − Eshift ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ jk⃗pj2
q

− Ep

≈
1

2

M2
N −M2

p

Ep
ð24Þ

where it is clear that Eshift approaches the average value of S
(previously denoted as SRE) for jp⃗mj ¼ 0, with a maximum
difference of 1.29 MeV, attained when the proton is at rest.
On the other hand, for jp⃗mj > 0, one obtains

S − Eshift ≈
p2
m − 2k⃗p · p⃗m

2Ep
ð25Þ

where the equation remains more complex with depend-
encies on the missing and final nucleon momenta through
the residual dependency on jq⃗j.
As such, Eshift should be a good estimator, within a few

MeV, of the average removal energy, at low missing
momenta.
Note that in the analysis of inclusive electron scattering

data [32], the value of Eshift is determined by requiring that
ψ 0 ¼ 0 at the experimentally observed quasi-elastic peak.
In the RFG, the peak of the cross section is indeed obtained
for ψ 0 ¼ 0when Eshift is equal to the separation energy used
in the model. The presence of final-state interactions, RPA
effects, and Pauli blocking among others, can break this
simple relation. In any case, the peak position of ψ 0 is still
strongly correlated with the average removal energy. In the
following section, we study in detail the distribution of the
superscaling variable, and its dependence on kinematic
variables.

IV. TRUE MONTE CARLO PREDICTIONS

In this section, we perform a ψ 0 calculation and char-
acterization using samples of true CC1p1h events, without
including nuclear re-scattering (NrS).
Figure 4 shows the distribution of the superscaling

variable from the event kinematics of the five models,
where ψ 0 is calculated using the true ω and q⃗ and with a
fixed Eshift of 20 MeV. The estimated peak position
of ψ 0 for each model is obtained by taking the mean of
a Gaussian fit to the core of the ψ 0 distribution (maximum-
1σ, maximumþ 1σ).
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Since the definition of ψ 0 [Eq. (16)] is derived from the
RFG model, the distribution of ψ 0 in the RFG follows the
expected behavior with a peak at zero contained between
�1. The deviation from the assumptions of RFG, particu-
larly when it comes to the momentum of the target nucleon
and removal energy distribution, creates the positive tails
observed in the other models.
Further details can be inferred from the relation between

ψ 0 and the true missing momentum, equivalent to the
momentum of the target neutron in the case of LFG, as
shown in Fig. 5. According to Eq. (24), in the absence of
Fermi momentum (pm ¼ 0 MeV=c) the condition for
ψ 0 ¼ 0 entails that the difference S − Eshift can be up to
1.29 MeV. When using the true ψ 0, we do not make any
assumptions on the average removal energy, but we fix
Eshift to 20 MeV. This gives a narrow ψ 0 distribution around
zero, as seen in Fig. 6, with a width that is correlated to the
width of the removal energy distribution (Fig. 1, bottom
plot). The small displacement of the peak position from
zero for low pm can be attributed to the difference S − Eshift

being larger than 1.29 MeV when using Eshift ¼ 20 MeV
while the average removal energy for LFG is 28.39 MeV.
When taking slices of higher pm, as shown in Fig. 6, the

distribution of ψ 0 flattens and does not exhibit a clear peak
anymore. This occurs because in the LFG the separation
energy is not a single fixed number for each pm, and its
dependence on pm is different than what is found in
the RFG.
Figure 7 shows the event distribution of the LFG model

in terms of the true ψ 0 and the removal energy defined in
Eq. (6) and calculated using true event kinematics. The plot
shows that ψ 0 goes to zero when the removal energy is
around 20 MeV (equal to Eshift). For large values of
ω − Ep þMN , there is a bias toward high values of ψ 0

which produces an asymmetric distribution, as seen in
Fig. 4, and shifts the peak position toward larger values
with a maximum shift of 0.25. The shift in peak position, as
well as the increasing asymmetry of ψ 0 for increasing slices
of removal energies can seen in Fig. 8. For events in these
regions, a larger Eshift than the one used would be required
to shift the QE peak to ψ 0 ¼ 0.

FIG. 5. Distribution of events as a function of the superscaling
variable and the missing momentum. The width of ψ 0 increases
for larger values of pm.

FIG. 6. Distribution of the superscaling variable in different
slices of missing momentum.

FIG. 7. The true superscaling variable as a function of the
removal energy defined as ω − Ep þMN for the LFG model.
The points represent the peak position of ψ 0 for each bin of the
removal energy.

FIG. 4. The true superscaling variable for true CC1p1h events,
for the five models. The legend shows the peak positions for
each model.
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The widening of the ψ 0 distribution with increasing
removal energy is correlated to the missing momentum
through the model-dependent relation between S and pm. In
the SF model, all values of pm are accessible in each slice of
S, and therefore this widening effect is not present.
Another source of difference between the models is the

relation between the distribution of ψ 0 and the momentum
transfer, q⃗. In Fig. 9 we take 100 MeV=c slices of the true
jq⃗j and plot the ψ 0 peak position as a function of the mid
point for each slice. In the SF, LFG, RFG and RPWIA
models, the peak position of the distribution of ψ 0 is seen to
have a similar dependence on jq⃗j, namely a positive shift in
the peak position at low-jq⃗j. The EDRMF model is the
outlier here, the peak position shows little dependence on
the momentum transfer. This is to be attributed to the final-
state potential included in this calculation. Indeed, a similar
difference in the peak position of the scaling function in the
RPWIA and EDRMF approaches as function of jq⃗j can be
seen for electron-scattering cross sections in Ref. [33].
Finally, we performed a search for the Eshift value that

gives a ψ 0 distribution peaking at zero for Eshift between 20

and 50 MeV. Figure 10 shows that the relation between
the peak position and Eshift is approximately linear, with
a nearly universal slope for the models, but differing
intercepts.
The Eshift values that give a ψ 0 distribution peaking at

zero for each model are listed in Table I. As expected, the
RFG model arrives at ψ 0 ¼ 0 at an Eshift value closest to the
20MeVused in the calculation [32], while the other models
have different results based on their individual removal
energy distributions. Comparing these values with the
average removal energy (the means in Fig. 1), we observe
that they are within a few MeVs, except for the RFG model
where ω − Ep þ EN is more consistent with the model’s
assumptions, and the EDRMF model where the final-state
potential is known to shift the position of the quasi-elastic
peak to smaller energy transfer, in line with electron
scattering data [18]. This means that the distribution peaks
at lower ψ 0, as seen in Fig. 4.
This measurement of Eshift relies on using true

Monte Carlo (MC) information to obtain the true ψ 0
distribution. This is not achievable experimentally since
energy and momentum transfer are not observable in a
neutrino experiment. However, by taking a fixed average
value of the removal energy (S), we can reconstruct the full
kinematics of a 1μ1p event, and obtain an approximate
superscaling variable. We will later perform another

FIG. 8. The true ψ 0 distribution for different slices of the
removal energy for the LFG model.

FIG. 9. The peak positions of the true ψ 0 distribution as a
function of 100 MeV=c slices of the true momentum transfer jq⃗j
for the five models.

FIG. 10. The peak positions of each ψ 0 distribution as a
function of the Eshift value used in its calculation for the five
models.

TABLE I. The values of Eshift that give a ψ 0
true distribution

peaking at zero for each model, compared to the average removal
energy defined as ω − Ep þMN .

Model Eshiftjψ 0¼0 ½MeV� ω − Ep þMN ½MeV�
SF 26.19 26.45
LFG 24.07 28.39
RFG 20.62 9.91
EDRMF 16.16 29.02
RPWIA 23.95 29.20
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measurement of Eshift using the reconstructed ψ 0 and under
more experimental-like conditions.

V. EXPERIMENTAL-LIKE
EVENT SELECTION

For a more realistic sample of events from an exper-
imental point of view, we use the selection criteria for the
CC0π1p topology as done for the T2K experiment [34].
This selection requires the detection of a muon, and a single

proton in the final state, with j kp�!j > 0.45 GeV and
cos θp > 0.4 to reflect the proton detection threshold and
detector acceptance. Events with multiple protons, or pions,
exiting the nucleus are rejected.
This selection is applied to events following nuclear

rescattering, where we use the intranuclear cascade model
implemented in NEUT for all five models.
For the NEUT models (SF, LFG, and RFG), we

distinguish five different samples that pass our selection
according to their production mechanism:
(1) CC1p1h, charged current one particle one hole,

when the proton emerges from the nucleus with
no NrS.

(2) CC1p1hþ NrS, charged current one particle one
hole, when the proton undergoes NrS.

(3) CC2p2h, charged current two particles two holes
where the second proton is undetectable.

(4) CCRes, charged current resonance, where the pion is
absorbed by the nucleus.

(5) CCDis, charged current deep inelastic scattering,
where all pions are absorbed by the nucleus.

where NEUT’s 2p2h uses the Nieves model [35] based on
an LFG approximation. CCRes is based on the Rein-Sehgal
model [36] and CCDis on the parton distribution function
GRV98 [37]. In the case of EDRMF and RPWIA, only
CC1p1h and CC1p1hþ NrS are included as they are not
native NEUT models.

The modeling of the selection and the prediction from
the LFG model in NEUT are in very good agreement with
T2K and MINERvA experimental results as shown in [14].
Additionally, we also introduce a cut on the recon-

structed missing momentum as proposed in [17] and the
first experimental applications described in [38,39]. When
including background events that pass the CC0π1p selec-
tion, the reconstructed missing momentum shows a very
distinctive shape with CC1p1h events concentrated below
the Fermi level (at around 300 MeV=c), see Fig. 11. This
variable, thus, provides a very efficient cut to reduce the
contamination of NrS, CC2p2h and CCRes and increase
the purity of CC1p1h events in the selected sample.
Table II shows the detailed sample composition for the

five models before and after introducing the cut
at pRE

m ¼ 300 MeV=c.

VI. EXPERIMENTAL OBSERVABLES
AND THE RECONSTRUCTED
SUPERSCALING VARIABLE

In this section we take a practical point of view, and
discuss a measurement of the reconstructed superscaling
variable, based on the energy reconstruction in 1μ1p events
presented in Sec. II B. We make use only of observables
accessible in neutrino detectors, and include rescattering in
the intranuclear cascade model as discussed in the previous
section.

A. The superscaling variable

The reconstructed superscaling variable (ψ 0
RE) can be

calculated from Eq. (16) following the RE energy
reconstruction to obtain the energy and momentum transfer.
Figure 12 shows the ψ 0

RE distribution for the LFG model as
a function of the true value for all events passing the
CC0π1p selection. We observe strong correlation between
the true and reconstructed values corresponding to CC1p1h

FIG. 11. A stacked histogram of the reconstructed missing
momentum via RE for the LFG model.

TABLE II. The fraction of each interaction type in the original
sample of events (top row) compared to the sample after applying
the cut on the missing momentum (bottom row) for each model.

Model CC1p1h CC1p1hþ NrS CC2p2h CCRes CCDis

SF 0.575 0.143 0.148 0.127 0.007
0.833 0.076 0.032 0.057 0.001

LFG 0.560 0.171 0.097 0.125 0.007
0.839 0.085 0.023 0.052 0.001

RFG 0.636 0.164 0.085 0.109 0.006
0.860 0.075 0.019 0.044 0.001

EDRMF 0.764 0.236 � � � � � � � � �
0.897 0.103 � � � � � � � � �

RPWIA 0.770 0.230 � � � � � � � � �
0.901 0.099 � � � � � � � � �
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events (distinguished in red). Under the CC1p1h line, the
correlation disappears for background events (in blue) as
the reconstruction does not account for their energy losses
resulting in the wrong energy-momentum transfer estima-
tion and leading to an underestimated ψ 0

RE calculation. This
can shift the peak position of ψ 0

RE and produce negative
tails. However, imposing the cut on the reconstructed
missing momentum can be used to limit these events.
The distribution of ψ 0

RE before and after the cut for the LFG
model is shown in Fig. 13, where the purity of CC1p1h (no
NrS) events has increased from 0.56 to 0.84. We will apply
this cut to the selected sample of events in what follows.
The values of the reconstructed energy and momentum

transfers used in the calculation of ψ 0
RE are shown in

Fig. 14. The cutoff at low ω is a consequence of the
requirement of a 450 MeV=c proton in the final state,
which corresponds to a kinetic energy of about 140 MeV.
The nonlinearity of the iso-ψ 0

RE lines means that negative

values of the superscaling variable are more affected by this
limitation on the proton momentum than positive ones,
which introduces another source of asymmetry in the
distribution of ψ 0

RE. Another consequence of the acceptance
cut on the proton momentum is that it eliminates a region of
phase space that particularly highlights differences between
the models in their q⃗ dependence (low jq⃗j in Fig. 9) as well
as in their treatment of Pauli blocking. This is a delicate
experimental issue that will be partially circumvented by
the new generation of near detectors [40] that reduce the
proton detectability threshold.
Using the RE method, and the aforementioned selection

and pRE
m cut on all models, Fig. 15 shows the ψ 0

RE
distributions for the five considered models. Compared
to the true distributions and peak positions (Fig. 4), all
reconstructed distributions exhibit the positive shifts dis-
cussed above. The average shift in the peak position for all
five models is 0.068, with maximum shifts observed in the
EDRMF and RFG models.

FIG. 12. Reconstructed vs true ψ 0 for the LFG model, where
event kinematics were reconstructed via RE and no cuts were
applied to minimize the background. True CC1p1h events (red)
fall on the diagonal, while all other events (blue) have lower
reconstructed ψ 0 compared to the true value.

FIG. 13. The reconstructed superscaling variable for the LFG
model. Applying the cut pRE

m < 300 MeV=c eliminates a good
fraction of the background reducing the positive tails.

FIG. 15. The reconstructed superscaling variable for the five
models. The cut on pRE

m was applied to minimize the background.

FIG. 14. The reconstructed energy transfer ω versus the
reconstructed momentum transfer jq⃗j. Overlaid are the contour
lines representing iso-ψ 0

RE values.
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In the case of the RFG, the large difference between true
and reconstructed ψ 0 is mainly due to the energy
reconstruction. On the other hand, the final state potential
of the EDRMF model—previously shown to cause ψ 0 to
peak at lower values in Sec. IV—has a diminishing effect
when the proton detection threshold is applied and the low
jq⃗j region is eliminated. This causes the peak position of the
EDRMF model to align with that of the RPWIA.
In the true Monte Carlo predictions we observed that the

distribution of ψ 0 loses its distinguished peak and becomes
more flat when taking slices of increasing missing
momenta. This effect can also be observed in the recon-
structed case, see Fig. 16, and would affect the shape of the
ψ 0
RE distribution for experimental conditions where only a

certain part of the kinematical phase space is accessible. A
good reconstruction of the missing momentum allows for
identifying the regions with low pm where the ψ 0 distri-
bution is more narrow and the peak position can be
determined with less bias.

B. The removal and shift energies

Using ψ 0
RE, we can perform another search for the Eshift

values required to shift the peak position to zero for each
model. Figure 17 shows the peak positions of ψ 0

RE for each
value of Eshift. Compared to Fig. 10, the slopes for all five
models are now closer in value. This is a consequence of
the detectability threshold of the proton momentum, which
eliminates the low jq⃗j region, minimizing the differences
between models and leading to more similar slope values.
To distinguish between the effect of the energy

reconstruction and that of the sample selection and detector
acceptance cuts, we perform the same exercise using the
reconstructed energy and momentum transfer but on true
CC1p1h events. Table III shows the Eshift values required to
shift the ψ 0

RE peak to coincide with zero for the exper-
imental-like event sample (left) compared to the true
CC1p1h event sample (center). On the right, we also
include the results obtained in Table I for the true ψ 0.
We observe that larger Eshift values are required for ψ 0

RE
in the experimental-like event sample. This is to compen-
sate for the effect observed in Fig. 14 where the proton
acceptance cut eliminates more events on the negative side
of ψ 0 compared to the positive, as well as the inclusion of
NrS and CC0π1p background events that occupy the
positive side of ψ 0.
On the other hand, for true CC1p1h events without any

cuts, we obtain similar values of Eshift for the true and
reconstructed ψ 0. This means that the energy reconstruction
and our assumption on the average removal energy has a
small effect on the ψ 0

RE peak position and the required Eshift,
and the error is dominated by the proton’s momentum
detection threshold and background contamination.

VII. CONCLUSIONS

We presented the superscaling variable as an observable
in charged current neutrino-nucleus interactions, compar-
ing the shape and characteristics of the ψ 0 distribution
for five neutrino-nucleus interaction models. Using true

FIG. 16. The reconstructed superscaling variable for different
slices of the reconstructed missing momentum. ψ 0

RE becomes
more flat for increasing pRE

m .

FIG. 17. The peak position of the reconstructed ψ 0 as a function
of Eshift. The average removal energy is fixed to 28 MeV in the
energy reconstruction for all models.

TABLE III. The values of Eshift that give a ψ 0
RE peaking at zero

for a realistic sample of CC0π1p events (with the pRE
m and proton

acceptance cuts) and true CC1p1h events. Compared to the Eshift
that give a ψ 0

true peaking at zero.

Eshiftjψ 0
RE¼0 ½MeV� Eshiftjψ 0

true¼0 ½MeV�
Model CC0π1pa CC1p1h CC1p1h

SF 36.64 25.28 26.19
LFG 31.94 25.59 24.07
RFG 38.34 25.37 20.62
EDRMF 34.93 16.24 16.16
RPWIA 34.23 21.88 23.95

aCC0π1p with proton acceptance cuts and pRE
m < 300 MeV=c.
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Monte Carlo information, we studied the superscaling
variable dependencies with fundamental parameters of
the models such as the removal energy, the target nucleon
momentum and the momentum transfer of the interaction.
We have shown that ψ 0, and particularly the peak

position of the distribution, provides information on the
removal energy of nucleons. In the peak region, where
ψ 0 ¼ 0, the average removal energy is related to the shift
energy, Eshift, required to shift the quasi-elastic peak to
zero, at low missing momentum.
To comment on the determination of ψ 0 in neutrino

interaction experiments where the neutrino energy is not
directly measurable, we introduced two neutrino energy
reconstruction methods built on different assumptions for
the average removal energy. We concluded that
reconstruction by energy-momentum conservation (REP),
where the missing energy and momentum are fully corre-
lated, performs better for the RFG model due to its
simplicity, while reconstruction by energy conservation
(RE), where the missing (removal) energy is assumed to be
constant, has the advantage in all other models.
Applying the RE method on a more realistic event

sample that passes the CC0π1p selection, and utilizing a
cut on the missing momentum to increase the purity of

CC1p1h events, we were able to obtain the reconstructed
superscaling variable with an average displacement of
0.068 for the peak position with respect to the true
distributions among the five models.
Finally, we have shown that while the energy

reconstruction is sufficient to measure ψ 0 experimentally,
the limitations of current detector technologies in measur-
ing low momentum protons impose a bias on the ψ 0
distribution requiring a larger Eshift to make the peak occur
at ψ 0 ¼ 0. Even though it is difficult to estimate the true
average removal energy, the procedure outlined here—due
to the simplicity of the energy reconstruction method and
robustness of the results—allows to make a novel model-
independent measurement which may be used to constrain
or distinguish interaction models. Additionally, future and
upgraded detectors are expected to have lower detection
thresholds that allow for more accurate measurements [40].
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