PHYSICAL REVIEW D 109, 072003 (2024)

Search for D" — K}K-e*v,, D* — KoK%e*v,, and D* — K*K-e*v,

M. Ablikim et al.”
(BESIII Collaboration)

® (Received 14 December 2023; accepted 28 February 2024; published 5 April 2024)

A search has been performed for the semileptonic decays D° — K%K~ e*v,, D* - K%K%¢*v,, and
Dt — KK~ e*v,, using 7.9 fb~! of e* e~ annihilation data collected at the center-of-mass energy /s =
3.773 GeV by the BESIII detector operating at the BEPCII collider. No significant signals are observed,
and upper limits are set at the 90% confidence level of 2.13 x 1073, 1.54 x 107>, and 2.10 x 107> for the
branching fractions of D° - KYK~e*v,, D* — K3K%etv,, and DT — K*K~e*v,, respectively.

DOI: 10.1103/PhysRevD.109.072003

I. INTRODUCTION

The semileptonic decays of charmed mesons offer a clean
environment to explore the strong and weak interactions in
the charm sector. Over the years, the semileptonic decays of
D mesons into pseudoscalar and vector mesons have been
investigated extensively by various experiments, such as
MARKIII, BESI, CLEO-c, BABAR, Belle, LHCb, and
BESIII, and their findings are comprehensively summarized
in Ref. [1]. In contrast, experimental studies of semileptonic
decays involving scalar mesons are relatively limited. The
investigations of semileptonic D meson decays involving
the light scalar meson ay(980), which was proposed to be a
hadronic molecule composed of 7 or KK [2-5], can help to
test the theoretical calculations and provide an opportunity
to explore the nature and decay properties of ay(980). Tests
on different theoretical calculations are important to explore
the realization of chiral symmetry in the low-energy region,
and are therefore highly desirable for nonperturbative QCD
research [6].

In 2018, the BESIII collaboration reported the obser-
vation of the semileptonic decays D — a,(980)e*v, with
ay(980) — zn [7], with branching fractions (BFs) com-
parable to theoretical expectations [8]. Knowing the
product BFs of D — a((980)e* v, with ay(980) — zn, it
is possible to predict the product BFs of D — a((980)e v,
with @((980) - KK according to B(a(980) —» KK)/
B(ag(980) — nz) = 0.172+£0.019 [1], and outlined in
Table I. Figure 1 shows the tree-level Feynman dia-
grams of D° - K%K~e*v,, D* - KK%etv,, and DT —
KtK~e'v,. These decay processes can be reconstructed
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using charged tracks alone, providing a cleaner environ-
ment for studying the a((980) meson [7,9].

In this paper, we present the first searches for the
semileptonic decays D° — K3K=etv,, Dt — K3Kle'tw,,
and D™ — KT"K~e*v,. This analysis is based on data
samples collected by the BESIII detector at a center-of-
mass energy of \/s = 3.773 GeV in 2010, 2011, and 2021,
corresponding to a total integrated luminosity of 7.9 fb~!
[10]. Throughout this paper, charge-conjugate channels are
always implied.

II. BESIII DETECTOR AND MONTE
CARLO SIMULATION

The BESIII detector [11] records symmetric eTe”
collisions provided by the BEPCII storage ring [12] in
the center-of-mass energy range from 2.00 to 4.95 GeV,
with a peak luminosity of 1 x 10%* cm™2s~! achieved at
/s = 3.77 GeV. BESIII has collected large data samples
in this energy region [13—15]. The cylindrical core of the
BESIII detector [16] covers 93% of the full solid angle
and consists of a helium-based multilayer drift chamber
(MDC), a plastic scintillator time-of-flight system (TOF),
and a CsI(TI) electromagnetic calorimeter (EMC), which
are all enclosed in a superconducting solenoidal magnet
providing a 1.0 T magnetic field.

The solenoid is supported by an octagonal flux-return
yoke with resistive plate counter muon identification mod-
ules interleaved with steel. The charged-particle momentum
resolution at 1 GeV/c is 0.5%, and the dE/dx resolution is
6% for electrons from Bhabha scattering. The EMC mea-
sures photon energies with a resolution of 2.5% (5%) at
1 GeV in the barrel (end cap) region. The time resolution in
the TOF barrel region is 68 ps, while that in the end cap
region was 110 ps. The end cap TOF system was upgraded
in 2015 using multigap resistive plate chamber technology,
providing a time resolution of 60 ps, which benefits 83% of
the data used in this analysis [17].
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TABLE L
ay(980)e* v, with ay(980) - KK.

The measured product BFs of D — a,(980)e* v, with a,(980) — 5z and the expected BFs of D —

ay(980)[— mnletv, [7]

ay(980)[— KK~ Je" v,

ay(980)[— K9KOletv,  ap(980)[— K"K~ ]etv,

BFs (x107%) (x1079) (x1079) (x1075)
Do 1.337933 £0.09 1.14793% £0.07
D+ 1.66708 £0.11 0.71593¢ £0.05 2.86117% £0.19

Simulated event samples produced with the Geant4-based
[18] Monte Carlo (MC) package which includes the geo-
metric description of the BESIII detector and the detector
response, are used to determine the detection efficiency and
estimate the backgrounds. The simulation includes the
beam-energy spread and initial-state radiation in the
ete™ annihilations modeled with the generator KKMC
[19]. The inclusive MC sample includes the production
of DD pairs (including quantum coherence for the neutral D
channels), the non-DD decays of the y/(3770), the initial-
state radiation production of the J/y and w(3686) states,
and the continuum processes incorporated in KKMC [19]. All
particle decays are modelled with EvtGen [20] using the BFs
either taken from the Particle Data Group [1], when
available, or otherwise estimated with LUNDCHARM [21].
Final-state radiation from charged particles is incorporated
with the PHOTOS package [22]. In this paper, the inclusive
MC sample is used to determine the selection efficiencies
and estimate the backgrounds.

The semileptonic decays D° — K$K~e*v,, D™ —
K%K%etv,, and D™ - K"K~ ey, are simulated with a
generator developed by BESIII specifically for this analy-
sis, where the Flatté formula is used to describe the
ay(980) resonance. This specialized generator is adopted
to model the contribution of an intermediate ay(980), as a
general generator may not be suitable. The Flatté formula
takes into account the mass, width, and coupling constants
of the resonance to calculate its contribution to the decay
rates. The mass of the ay(980) resonance is fixed at
0.990 GeV/c?, while the two coupling constants coupled
to nz (gl) and KK (g2) are fixed at 0.341 (GeV/c?)?
and 0.304 (GeV/c?)?, respectively, as determined in
Refs. [23-25].

W W

(a) (b)

FIG. 1. Tree-level Feynman diagrams of (a) D°—

ay(980)"e"v, and (b) DT — ay(980)e"v,.

II1I. METHOD

At /s = 3.773 GeV, the D°D° or D*D~ meson pairs
are produced from y(3770) decays without accompanying
hadrons, which provides an ideal opportunity to study
semileptonic decays of D mesons using the double-tag
(DT) method [26]. In the first step of the analysis, the
single-tag (ST) D° mesons are reconstructed via the
hadronic-decay modes of D° — K*z~, Ktz z°, and
Kt n~n~z"; while the ST D~ mesons are reconstructed
viathe decays D~ —» K™z~ 7™, Kgﬂ'_, Ktn a7, K(S)ﬂ_ﬂo,
K%zt 7=z, and K* K=z~ Then the semileptonic decays of
D meson candidates are reconstructed with the remaining
tracks which have not been used in the ST selection. The
event, in which the semileptonic decays D — K3K~e*v,,
D' - KK%etv,, or DT — K*K~e"v, are reconstructed
in the systems recoiling against the ST D mesons, is called
a DT event. The product BFs of D° —» KYK~e*v,, DT —
K%K%e*v,, and D* — K*K~e'v, are determined by

NDT

BSL = Tol= T &’
NtSO’lt"esig(BKg)k

(1)

where N and Npp are the yields of the ST D°(D™)
mesons and the DT signal events in data, respectively; B K
is the BF of Kg — a2~ quoted from the Particle Data
Group [1]; k is the number of Kg mesons in the final state of
DT side, and €, is the average signal efficiency weighted
by the measured yields of tag modes i in the data, i.e.,

g — >_i(Ngr - epr/€sr) 2)
sig — Ntso'lt“ ’

where N& are the yields of the ST candidates observed in
data, €L is the efficiency of reconstructing the ST mode i
(referred to as the ST efficiency), and €k is the efficiency
of finding the ST mode i and the D° — K}K~e'u,,
D' - K%K%*v,, and D™ - K"K~ ey, decay simulta-
neously (referred to as the DT efficiency).

IV. SINGLE TAG SELECTION

Charged tracks detected in the MDC (except for those
used for K reconstruction) are required to be within a polar
angle (0) range of |cos@| < 0.93, where @ is defined with
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respect to the z axis, which is the symmetry axis of the
MDC. The distance of closest approach to the interaction
point (IP) along the z axis, |V_|, must be less than 10 cm,
and in the transverse plane, V|, less than 1 cm. Particle
identification (PID) for charged tracks combines measure-
ments of the specific ionization energy loss in the MDC
(dE/dx) and the flight time in the TOF to form likelihoods
L(h)(h = p,K,z) for each hadron & hypothesis. Charged
kaons and pions are identified by comparing the likelihoods
for the kaon and pion hypotheses, L£(K) > L(x) and
L(r) > L(K), respectively.

Each K g candidate is reconstructed from two oppositely
charged tracks satisfying |V,| < 20 cm. The two charged
tracks are assigned as z" 7~ without imposing PID criteria.
They are constrained to originate from a common vertex,
requiring an invariant mass within (0.487,0.511) GeV/c?.
The decay length of the Kg candidate is required to be
separated from the IP by more than twice the vertex
resolution, which encompasses both the primary and
secondary vertices. The quality of the vertex fits (pri-
mary-vertex fit and secondary-vertex fit) is ensured by a
requirement on the y* (y> < 100).

Photon candidates are identified using showers in the
EMC. The 7° candidates with both photons from the end
cap are rejected because of poor resolution. The deposited
energy of each shower must be more than 25 MeV in the
barrel region (|cos 8] < 0.80) and more than 50 MeV in the
end cap region (0.86 < |cos6| < 0.92). Showers are
required to be separated from other charged tracks by an
angle greater than 10° in order to eliminate activity induced
by tracks. To suppress electronic noise and showers
unrelated to the event, the difference between the EMC
time and the event start time is required to be within
[0, 700] ns. For z° candidates, the invariant mass of the
photon pair is required to be within (0.115,0.150) GeV/c?.
To improve the resolution, a kinematic fit is performed,
where the diphoton invariant mass is constrained to the
known 7° mass [1], and the y* of the fit is required to be less
than 50. The momenta obtained from the kinematic fit are
used in the subsequent analysis.

In the selection of D° - K*+z~ candidates, the back-
grounds from cosmic rays and Bhabha events are rejected
by using the same requirements described in Ref. [27]. The
two charged tracks must have a TOF time difference of less
than 5 ns. They must not be consistent with being a muon or
electron-positron pair. Additionally, there must be at least
one EMC shower with energy deposited larger than
50 MeV, or at least one additional charged track detected
in the MDC.

To separate the ST D mesons from combinatorial
backgrounds, we define the energy difference AE=
Ep — Epeam and the beam-constrained mass Mpce=
VE} /¢t — |Pp|?/c?, where Epe, is the beam energy,
and Ep, and p, are the total energy and momentum of the D

TABLE II. The AE requirements, the measured ST D yields in
the data (N;), and the ST efficiencies (ek;) for nine tag modes.
The uncertainties are statistical only.

Nip (x10%)  elp (%)

1449.5 £ 1.2 64.95+0.01
2913.1 £2.0 35.52 +£0.00
D’ - Ktan~nt (—0.026,0.024) 1944.1 £ 1.5 40.42 4+ 0.01

(= )
(= )
(= )
D™ — Ktz a~  (=0.025,0.024) 2164.0 £ 1.5 51.17 £ 0.01
D~ — K97~ (~0.025,0.026) 250.4£0.5 50.63 £ 0.02
(= )
(= )
(= )
(= )

Tag mode AE (GeV)

0.027,0.027
0.062,0.049

DY > Ktz
DY > Kta=a°

D™ - Ktz a~z° (—0.057,0.046) 689.0+ 1.1 25.50+0.01
D™ - K4z~ 2° 0.062,0.049) 558.4+0.9 26.28 +0.01
D™ — K4z 7~z (—0.028,0.027) 300.5+0.6 28.97 +0.01
D™ > K'K~n~ 0.024,0.023) 187.3+0.5 41.06 +0.02

+

candidate in the e* e~ center-of-mass frame, respectively. If
there is more than one D candidate in a given ST mode,
then that candidate with the smallest value of |AE| is kept
for the subsequent analysis. The AE requirements and ST
efficiencies are listed in Table II.

The ST yields are extracted by performing unbinned
maximum likelihood fits to the corresponding Mpc distri-
bution. In the fit, the signal shape is derived from the MC-
simulated signal shape convolved with a double-Gaussian
function to compensate for the resolution difference
between the data and MC simulation. The background
shape is described by the ARGUS function [28], with the
end point parameter fixed at 1.8865 GeV/c? corresponding
to Epe,m- Figure 2 shows the fits to the My distributions of
the accepted ST candidates in data for different ST modes.
The candidates with My within (1.859,1.873) GeV/c?
for D° tags and (1.863, 1.877) GeV/c? for D~ tags are kept
for further analyses. Summing over the tag modes gives the
total yields of ST D° and D~ mesons to be (6306.8 +
2.84u) % 10 and (4149.9 £ 2.3,,) x 10°, respectively.

V. DOUBLE TAG SELECTION

The candidates for D° - KK~e*v,, Dt — K3Kle'v,,
and DT - KtK~e"v, are selected from the remaining
tracks in the presence of the tagged D candidates. We
require that there are four, five, and three charged tracks
(NE) reconstructed in the D° — K9K~etw,, Dt —
K9K%etv,, and DT — K"K~ ev, modes, respectively.

Candidates for K* and K9 are selected with the same
criteria as those used in the ST selection. A positron is
identified using the measured information in the MDC,
TOF, and EMC. The combined likelihoods (£') under the
positron, pion, and kaon hypotheses are obtained. Positron
candidates are required to satisfy L£'(e) > 0.001 and
L'(e)/(L(e)+ L' (x) + L'(K)) > 0.8. To reduce back-
ground from hadrons and muons, the positron candidate
is further required to have a deposited energy in the EMC
greater than 0.8 times its momentum obtained in the MDC.
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FIG. 2. Fits to the My distributions of the ST D candidates. In
each plot, the points with error bars correspond to the data, the
blue curves are the best fits, and the red dashed curves describe
the fitted combinatorial background shapes. The yellow normali-
zation histograms show the scaled background contributions
from the inclusive MC sample. The pair of red arrows indicate
the Mpc signal window.

To suppress the backgrounds containing extra 7° mesons,
we require that there are no additional combinations of two
photons (N y..0) that satisfy the requirements for a z°
meson in the event selection. To reject contamination from
the hadronic decays involving a z°, e.g., D — KYK~n"x°,
Dt - KYK%x*2° Dt - K*K=z"2% the maximum
energy of any extra photon (Eg,,) which have not been
used in the event selection are required to be less than
0.20, 0.17, and 0.25 GeV for D° - KYK~e*v,, D™ —
K%K%e*v,, and D" - K"K~ e'w,, respectively. To sup-
press the backgrounds from the hadronic decays D°—
K ntntz~, D" - 2(z*z7 )", and D" > K"Kz, the
invariant masses of the KKe combinations are required to
be less than 1.74, 1.77, and 1.75 GeV/c? for D° —
KSK=etv,, D" - K%K%etv,, and D' - K*K~e'u,,
respectively. An additional requirement is deployed in the
selection of Dt — K"K~ e'v, events, to suppress the
background from D — KTK~ 7"z’ decays due to mis-
identifying a pion as an electron: the opening angle between
the missing momentum and the most energetic shower,
05...,» 1s required to satisfy cos@; ., < 0.86. These
requirements have been optimized according to the Punzi
criterion [29].

Events containing neutrinos cannot be fully reconstructed.
To select semileptonic signal candidates, we define U ;=
Eiss — | Pmiss|c, where Ei and P, are the missing

energy and momentum of the DT event in the ete”
center-of-mass frame, respectively. These quantities are
calculated by Emiss = Ebeam - EK?(K?)(K*) - EK'(KQ,)(K") -
E, and  puis = pp — PKY(KY)(KY) — Pr-(KQ)(K™) ~ Pet»
where Egog+)x-)(+) and ﬁK%(K*)(K’)(e*) are the measured

energy and momentum of the K%(K*)(K~)(e") candidates,

respectively, and pp, = —pp, \/ Ep o/ ¢* — m3c?, where pp

is the unit vector in the momentum direction of the ST D
meson and mp, is the known D mass [1]. For the decays
D' - KYK~e"v, and D* — K"K~ e"v,, the backgrounds
from D° — K%z~ etv, or DT - z"K~etv, due to the
misidentification of the kaon are suppressed with the
requirement of 0.16 < U%Z. < 0.31 GeV and 0.17 <

miss
Ur... <0.32 GeV, where E7. and UZ.  are calculated

miss
by replacing the K mass with the 7 mass in the previously
defined quantities. Here, the beam energy and the nominal D
mass are used to improve the U, resolution.

The average signal efficiencies in the presence of
the ST D mesons are (11.06 4-0.07)%, (8.51 £ 0.06)%,
and (13.06 £0.07)% for D°— K{K~ev,, D™ —
K%K%etv,, and DT — K"K~ e*v,, respectively. These
efficiencies do not include the BF of K — 7 z~.

VI. RESULTS

Figure 3 shows the U, distributions of the candidate
events for D° - KYK=e*v,, DT — K$K%eTv,, and DT —
KtK ey, selected from data. The signal yields are
obtained by counting the events in the U, signal regions.
Based on the MC study, the signal regions are defined as
[—0.041,0.043], [-0.042, 0.043], and [—-0.043, 0.046] GeV
for D°— K$K~e*v,, Dt - K3K%etv,, and Dt —
K"K~ e'v,, respectively, which correspond to intervals
that are three times the resolution of the signal peaks. The
yields in the signal regions (N%¢) of the candidates
for D° - K$K~e*v,, Dt - K9K%etv,, and Dt —
KtK~e'v, are determined to be 9, 1, and 9, respectively.
Based on the inclusive MC sample, the background yields
(NY%¢) are estimated to be 4.5+ 2.1, 1.1 £ 1.0, and 3.5 +
1.9 for D° - KYK=e*v,, D* - K%K%*v,, and D" —
K*K~e*v,, respectively.

Since no significant excesses are observed above
background, we set the upper limits on the BFs
of D°— K%K~ e*v,, D" — K3K%eTv,, and DT —
K"K~ e'v,. Upper limits on the numbers of signal events
at the 90% confidence level (CL) are calculated by using a
frequentist method [30] with an unbound profile like-
lihood treatment of systematic uncertainties (see below),
as implemented by the TRolke package in the ROOT
software [31] with the quantities of N, N°*¢, &; . and
the total systematic uncertainty (S,ys) as input. Here, the
numbers of the signal and background events are assumed
to follow a Poisson distribution, while the detection
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FIG.3. The U,y distributions of the accepted candidate events for D° - KSK~e*v,, D™ - K%K%ev,, and DT - KTK~e*v,. The
dots with error bars are data, the blue histograms are the signal MC samples normalized with a product BF of 2 x 107 and the red
dashed lines are the inclusive MC sample. The regions inside the pair of magenta arrows denote the signal regions.

efficiency is assumed to follow a Gaussian distribution.
Finally, the upper limits on the BFs of D° - KYK~e"v,,
Dt - K%KYetv,, and DT - K*K~etv, at the 90% CL
are set to be 2.13 x 1072, 1.54 x 1072, and 2.10 x 1073,
respectively.

VIL. SYSTEMATIC UNCERTAINTY

With the DT method, many systematic uncertainties
associated with the ST selection cancel and do not affect the
BF measurement.

The uncertainty associated with the ST yield N}, is
assigned as 0.1% after varying the signal, background
shapes and floating the parameters of one Gaussian in the
fit. The tracking and PID efficiencies of e* are studied with
a control sample of radiative Bhabha events, and those of
the K* are studied by analyzing DT D°D°(D*D~) events,
where the control samples comprise hadronic decays of
DY > K-zt, D° 5 K-ntz% D° — K-ztatz~ versus
DY 5 Ktn~, DY - Kta 2% D° - Ktz—z—zt as well
as D — K=zt zt versus DT — K"z~ z~. The systematic
uncertainty due to tracking is assigned as 1.0% for both K*
and e™; the systematic uncertainty due to PID is assigned as
1.0% for K* and e*. The uncertainty from the K%
reconstruction is 1.5%, which is obtained by studying
control samples of J/y — K*(892)*KT and J/y —
HKOK*xF [32] decays.

The uncertainty in the BF of K% — 2z~ is 0.1% [1].
The uncertainties due to the limited size of MC samples are
0.6%, 0.7%, and 0.5% for D° — KgK_e+ye, DT >
K%K%etv,, and DT — K"K~ e*v,, respectively.

The signal MC samples in this study are generated using
the generator, in which the Mgz propagator is parameter-
ized with a Flatt¢ formula [25]. To assess the uncertainty
arising from this generator, we use alternative signal MC
samples by varying the coupling constants (g; and g,) by
410 around their central values as reported in [25]. These

alternative samples allow us to estimate the impact of the
variation in the coupling constants on the simulation results.
The maximum changes in the DT efficiency between the
DIY MC samples and the alternative signal MC samples are
assigned to be 2.7%, 1.1%, and 0.9% for D° — KK~ e"v,,
Dt - K%K%etv,, and DT — K*K~etv,, respectively.

The combined systematic uncertainties from the Eg,,,

N, 0> and N2 requirements are estimated to be 1.6%,
2.0%, and 0.9% for D° - KYK~e"v,, D* — K3K%e v,
and D™ — K™K~ e™v,, respectively, which are assigned
from studies of DT samples of D° - K~e*v, and D" —
K%e"v, reconstructed versus the same ST modes used in
the baseline analysis.

The uncertainties from the M yg,, UzX, and cos6;
requirements are obtained by varying their values by
+10 MeV/c?, +£1 MeV, £0.01, respectively, following
the method defined in Refs. [33-35]. The maximum
changes of the BF upper limits are taken as the associated
systematic uncertainties.

Due to the limited sample size, only the resonant KK
contributions in D° — KYK~e"v,, D* — K3K%etv,, and
D" - KtK~e'v, are considered. The associated system-
atic uncertainty is assigned by using the alternative signal
MC samples, mixed with 20% of nonresonant D —
KOK(K3KY)(KK)etv, and 80% of D — an(980)(—
KOK(KKY)(KK))etv, decays. This is a conservative
estimation as the largest known nonresonant contribution
in the charm sector is only about 6.0% in the D" —
K- ntetv, decay [36]. The differences between the nomi-
nal and alternative signal efficiencies, 5.1%, 5.0%, and
4.6%, are taken as the systematic uncertainties for the BFs
of the decays D° —» KYK~e*v,, DT — K3K%eTv,, and
D" - K"K~ e"v,, respectively. The uncertainties due to
the BFs of the D® and D™ decays and the cross sections of
D°D® and DD~ are negligible.

The total systematic uncertainty is obtained by adding
the individual components in quadrature, assuming that all
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TABLE III.  Relative systematic uncertainties (s, in %) in the BF measurements.

Source D° — KYK=etv, D* - K3K%ety, Dt - KtK-ety,
Ng; 0.1 0.1 0.1
K /e tracking 2.0 1.0 3.0
K/e PID 2.0 1.0 3.0
K reconstruction L5 3.0 aE
Quoted B 0.1 0.2 e
MC sample size 0.6 0.7 0.5
MC generator 2.7 1.1 0.9
E8t Nexgrano» and N poquirements 1.6 2.0 0.9
M g+ requirement 0.4 1.2 2.4
U7 s Tequirement 1.0 e 0.5
cos 05 . requirement e e 2.0
Nonresonant KKev, component 5.1 5.0 4.6
Total 6.9 6.6 7.1

sources are uncorrelated. Table III summarizes the sources
of the systematic uncertainties in the BF measurements.

VIII. SUMMARY

By analyzing 7.9 fb~! of e*e™ annihilation data taken
at /s =3.773 GeV, we search for the semileptonic
decays D — K9K~e*v,, D* - KYK%e*v,, and DT —
K*K~etv,. No significant signals are observed. The upper
limits on the BFs of D° - K%K~e*v,, Dt — K%K%e*v,,
and Dt — KK ety, are set to be 2.13x 107,
1.54 x 1075, and 2.10 x 107> at the 90% CL, respectively.
These upper limits are comparable to the expected product
BFs of the individual decays. An increased dataset corre-
sponding to an integrated luminosity of 20 fb~! taken at
/s =3.773 GeV at BESIII will be available in the near
future [13,37,38]. This larger sample will offer an oppor-
tunity to further improve the sensitivity of the search for
these semileptonic decays.
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