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Tensor hierarchy of exceptional field theories contains gauge fields satisfying certain Bianchi identities.
We define the full set of fluxes of the SL(5) exceptional field theory containing known gauge field
strengths, generalized anholonomy coefficients and two new fluxes. It is shown that the full SL(5) ExFT
Lagrangian can be written in terms of the listed fluxes. We derive the complete set of Bianchi identities and
identify magnetic potentials of the theory and the corresponding (wrapped) membranes of M-theory.

DOI: 10.1103/PhysRevD.109.066024

I. INTRODUCTION

Theories of fundamental extended objects pretending
on a quantum description of gravity, be it string theory or
M-theory, are essentially higher dimensional. Hence one is
naturally interested in dimensional reductions in order to
reproduce effectively four dimensional physics. To have
phenomenologically feasible dynamics it is typically neces-
sary to go beyond simple toroidal compactifications and to
consider models that include branes wrapping topological
cycles of a compact manifold, generating nontrivial fluxes
along them, as well as orientifold planes to satisfy tadpole
cancellation conditions (see, e.g., [1] for a review). Fluxes
being a natural component of any string compactification
scheme in addition to supersymmetry breaking generate
nonzero masses for scalar fields determining the low energy
effective potential. For example in the case of type IIB
compactifications on Calabi-Yau three-folds with O3 planes
the so-called Gukov-Vafa-Witten superpotential [2]

W ¼
Z
CY3

Ω ∧ ðF3 þ iτH3Þ; ð1Þ

whereF3 andH3 are 3-form fluxes from the R-R andNS-NS
sectors respectively and τ ¼ C0 þ ie−φ is the axio-dilaton.
Ω is the Calabi-Yau (3, 0)-form defining its topology.

The tadpole cancellation conditions for branes interact-
ing with the fluxes magnetically from the point of view of
the low energy effective theory (supergravity) can be
formulated in terms of Bianchi identities. Schematically
these read

dF þ F ∧ F ¼
X

Q; ð2Þ

where on the right-hand side (rhs) we have a sum of the
corresponding charges from all the sources. Tadpole
cancellation condition requires that for the compact mani-
fold the overall sum of all charges must be zero, that
in particular requires adding Op-planes in addition to
Dp-branes to compensate their RR charges. Using internal
symmetries of string theory, T- and S-dualities, one figures
out additional terms to be added to tadpoles coming from
duality partners of Dp-branes, that are NS branes and exotic
branes. For example, the GVW superpotential is explicitly
symmetric under the S-duality symmetry of Type IIB
theory and can be generated from the first term solely.
The first term includes the 3-form field strength generated
by a D5-brane wrapping the internal 3-cycle, while the
second term comes from its S-dual NS5-brane. Putting this
logic forward one includes T-duality and more generally
U-duality into the chain, generating more terms in the
superpotential [3]. Such fluxes generated by duality trans-
formations are sourced by exotic branes, in addition each of
the fluxes included into a compactification scheme must
fulfill tadpole cancellation conditions in the form of
Bianchi identities.
When speaking purely about compactifications of

10=11-dimensional supergravity when fluxes are under-
stood as integrals along topological cycles, the picture is
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significantly simplified when the formalism of embedding
tensor is used [4–8]. In this approach fluxes related by
(U-)duality transformations are various components of a
spurious object called embedding tensor, that encodes
the most general deformation of a D-dimensional
(half-)maximal supergravity by a set of constant parame-
ters, preserving supersymmetry. The embedding tensor
transforms in a linear representation of the corresponding
U-duality group EdðdÞ, where d ¼ 11 −D, and satisfies a
set of constraints, required by the maximal supersymmetry
and invariance of the theory under local transformations.
The linear constraint simply projects the embedding tensor
to certain irreps of EdðdÞ, while the quadratic constraint can
be schematically written as

PΘΘ ¼ 0: ð3Þ
Here P is a projector to certain irreps of the U-duality
group, that depends on the group chosen and whose explicit
form will be given later for the case d ¼ 4. The embedding
tensor is denoted by Θ suppressing all indices. Written in
terms of the geometric GLðdÞ subgroup the above is
nothing but the full collection of tadpole cancellation
conditions for all fluxes along the compact d-dimensional
space. Including those, sources by exotic branes.
In democratic formulation of type II supergravity

Bianchi identities are simply another way of writing field
equations of the theory, that appears to be more convenient
when dynamics of magnetically charged objects is taken
into account. As the simplest example consider the funda-
mental type II string interacting with the Kalb-Ramond
2-form B2 whose field strength we denote byH3 ¼ dB2. Its
field equation reads

�dðe−2φ �H3 þ…Þ ¼ jF12 ; ð4Þ
where � denotes Hodge star in 10d and ellipses denote
contributions from RR fields. Current of the fundamental
string is denoted by jF12 and is proportional to a two-form
supported on the string world sheet. Bianchi identities for
the 3-form flux are simply dH3 ¼ 0. Now, one notices that
in the absence of the string current, jF12 ¼ 0, the field
equations above at least locally can be solve by

e−2φ �H3 þ… ¼ dB6: ð5Þ

Introducing the magnetically dual 7-form field H7 ¼
e−2ϕ �H3, we write field equations as its Bianchi identities

dH7 þ… ¼ 0: ð6Þ

On the other hand, Bianchi identities dH3 ¼ 0 are now
written in the form of field equations, that with a source in
the rhs take the form

�dð�H7 þ…Þ ¼ jNS56 : ð7Þ

The source is nothing but the current for the NS5-brane, the
magnetic dual of the fundamental string. Hence, we see,
that Bianchi identities hold information about branes
magnetically charged with the corresponding flux.
Apparently, the same is true when fluxes are combined

in duality multiplets, inducing the same for currents of
the corresponding branes. In this case, say, the embedding
tensor must be understood as a generalized field strength
rather than a constant tensor, and the quadratic constraints
become

∂Θþ PΘΘ ¼ J : ð8Þ

To make more precise sense of the derivative in the first
term and the current on the rhs one should turn to a
U-duality symmetric formulation of 11D supergravity,
that is provided by exceptional field theory. Field content
of exceptional field theory is given by a metric, that is a
weighted scalar under the U-duality group, a set of tensor
gauge fields transforming linearly and a set of scalars
parametrizing a coset space G=K, where G is the U-duality
group and K is its maximal compact subgroup. Covari-
ance under G is achieved by extending the underlying
space-time, whose points are now labeled by coordinates
ðxμ;XMÞ. Here xμ are the usual coordinates on the so-
called external space-time of dimensionD, and XM are the
so-called extended coordinates. The index M ¼ 1;…; nv
labels components of the irrep RV , that is precisely the one
in which vector fields Aμ

M transform. We will return to a
more detailed definition of exceptional field theory in
Sec. III. For the original papers on the subject the reader
is referred to [9–15], and for a review see [16–18].
Our goal in this work is to derive all Bianchi identities of

the SL(5) exceptional field theory. For that we define a set
of quantities that can be referred to as fluxes in addition to
Θ, that is the nonconstant embedding tensor, field strength
of the vector fields Aμ

M and the anholonomy coefficients
for the metric in the external space-time. Bianchi identities
for the latter have the same form as in the standard general
relativity, while identities for Θ and the field strengths have
been known in the literature. Since Bianchi identities
explicitly define potentials interacting with magnetically
charged branes (at least at the linear level), we use our result
to compare to the existing classification of supersymmetric
branes in various dimensions [19–23]. In addition to states
presented in [23] we find exotic branes with special
directions along the external space-time.
Bianchi identities, being identically satisfied by defini-

tion, can be understood as a set of condition for a field
strength to be defined in terms of a potential. In the simplest
examples of Maxwell theory the identity dF ¼ 0 allows to
introduce a gauge potential by F ¼ dA. More involved is
the example of general relativity, where the Einstein-Hilbert
action can be written in terms of anholonomy coefficients,
that must satisfy
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∂½μfνρ�σ − f½μνκfρ�κσ ¼ 0: ð9Þ

This can be solved in terms of the vielbein eμa as

fμνρ ¼ 2eaρ∂½μeν�a: ð10Þ

The metric is then gμν ¼ eμaeνbηab. Now, if one considers a
transformation of the coefficients fμνρ → fμνρ þ Δfμνρ, in
order for the new coefficients to be written in terms of (new)
vielbeins, they must satisfy Bianchi identities. Precisely
this logic applied to generalized anholonomy coefficients
(the nonconstant embedding tensor Θ) has been used in
[24,25] to arrive at a generalization of 11-dimensional
supergravity equations. Supposedly, the Green-Schwarz
supermembrane on their solutions is kappa-symmetric.
The formalism of [24] is hugely restricted by the condition
that all tensor fields of the underlying SL(5) exceptional
field theory vanish. Full Bianchi identities derived in this
paper serve to extend this formalism to the full SL(5) theory
and hence to the full 11D supergravity.
The paper is structured as follows. In Sec. II we briefly

recall Bianchi identities of the full O(10, 10) double field
theory, where all fields can be packed into two fluxes (and
the dilaton). In Sec. III we provide all necessary details of
exceptional field theory, list weights of all relevant fields,
rederive gauge transformations of field strengths and tensor
hierarchy fixing typos found in the literature. This section
serves as a self-contained description of the SL(5) excep-
tional field theory. In Sec. IV we define fluxes of the theory,
derive all Bianchi identities for them and provide the full
flux Lagrangian. In Sec. V we discuss magnetic potential
that couple to the listed Bianchi identities. Appendices
contain necessary calculational details and the rest can be
found in Cadabra files on the GitHub repository [26].

II. FLUXES AND BIANCHI IDENTITIES
IN DOUBLE FIELD THEORY

In this section we briefly review flux formulation of
double field theory and Bianchi identities that are necessary
for its consistency. Since double field theory can be
formulated in a fully O(10, 10)-covariant form, it serves
as a convenient setup for illustrating the narrative without
going into many technical details. The structure of excep-
tional field theory with its necessary split into external and
internal sets of directions is repeated when the O(10, 10)
group is broken into GLð10 − dÞ ×Oðd; dÞ. This corre-
sponds to D ¼ 10 − d external directions and dþ d
doubled internal directions. Here we will be as brief as
possible referring for the details to the original papers on
double field theory [27–30] and its flux formulation [31],
and to review papers [32,33].
In this section we will use the following index con-

ventions:

μ; ν; ρ; σ;… ¼ 1;…; 10 − d external space curved

μ̄; ν̄; ρ̄; σ̄;… ¼ 1;…; 10 − d external space flat

μ̂; ν̂; ρ̂; σ̂;… ¼ 1;…; 10 10Dspacetime curved

M;N ;K;… ¼ 1;…20 curvedOð10; 10Þ
A;B; C;… ¼ 1;…20 flat Oð10; 10Þ

M;N;K; L;… ¼ 1;…; 2d curvedOðd; dÞ
A;B;C;D;… ¼ 1;…; 2d flat OðdÞ × OðdÞ ð11Þ

The full O(10, 10)-covariant generalized metric of
double field theory which reads

ĤMK ¼
�
Gμ̂ ν̂ − Bμ̂ ρ̂Gρ̂ σ̂Bσ̂ ν̂ Bμ̂ ρ̂Gρ̂ ν̂

Bν̂ ρ̂Gρ̂ μ̂ Gμ̂ ν̂:

�
ð12Þ

In addition one defines the invariant dilaton d related to the
standard dilaton φ by

d ¼ φ −
1

4
log det Gμ̂ ν̂: ð13Þ

Start with generalized Lie derivative in O(10, 10) theory
which on the generalized vielbein defined by ĤMN ¼
EA

MEB
N ĤAB takes the following form

LVEA
M¼VN

∂NEA
MþEA

N ∂MVN −EA
N ∂

NVM: ð14Þ

Indices are raised and lowered by the O(10, 10) invariant
tensor

ηMN ¼
�
0 1

1 0

�
: ð15Þ

Generalized Lie derivative acting on the generalized viel-
bein induces the so-called generalized flux, that is simply
anholonomy coefficients for the underlying geometry [34].
In flat indices the flux can be written as follows

FABC ¼ 3E½CjN ∂jAEB�N ;

FA ¼ 2EA
M
∂Md − ∂MEA

M: ð16Þ

These fluxes identically satisfy the following Bianchi
identities:

E½AjM∂MF jBCD� −
3

4
F ½AB

EFCD�E ≡ ZABCD ¼ 0;

ECM
∂MFCAB þ 2E½AjM∂MF jB� − FCFCAB ≡ ZAB ¼ 0:

ð17Þ
Components of the generalized flux FABC can be identified
with a set of space-time tensors: the three-form Hμ̄ ν̄ ρ̄, the
“geometric flux” τμ̄ ν̄ρ̄, the nongeometric Q-flux, Qμ̄

ν̄ ρ̄ and
the nongeometric R-flux, Rμ̄ ν̄ ρ̄.
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To recover the structure of exceptional field theory one
should decompose twenty coordinates XM into the set of
external space-time coordinates xμ and internal doubled
coordinates XM (one cannot have both doubled due to the
section constraint). The Bianchi identities will decompose
correspondingly resulting in a set of identities with various
indices (see [35,36] for more details)

ZABCD; Zμ̄ABC; Zμ̄ ν̄AB; Zμ̄ ν̄ ρ̄A; Zμ̄ ν̄ ρ̄ σ̄;

ZAB; Zμ̄A; Zμ̄ ν̄: ð18Þ

In this case the nonderivative part of ZABCD is nothing
but the quadratic constraints of half-maximal SOðd; dÞ
gauged supergravity [37]. The same observation for
fluxes of exceptional field theory will be used to construct
similar Bianchi identities without actual calculation of
gauge invariance and explicit construction of flux formu-
lation of the theory.

III. SL(5) THEORY

In this Section we turn to the SL(5) exceptional field
theory that is a U-duality covariant formulation of super-
gravity in the split 7þ 4. In this case one has 7 external
coordinates xμ and 10 coordinates on the extended space.
The field content (to be specified below) now contains
external metric, scalars and various tensor fields satisfying
the so-called tensor hierarchy. For consistency of further
narration we provide a detailed description of symmetries
of (the bosonic) SL(5) exceptional field theory mentioning
relations between the notations we choose here and those
chosen in the literature. In what follows we assume the
following index conventions for fields and parameters of
the SL(5) theory

μ̂; ν̂;… ¼ 1…11 eleven directions; curved;

α̂; β̂;… ¼ 1…11 eleven directions; flat;

μ; ν; ρ;… ¼ 1;…; 7 external curved;

μ̄; ν̄; ρ̄;…1;…; 7 external flat;

k; l; m; n;… ¼ 1;…; 4 internal curved;

a; b; c; d;… ¼ 1;…; 4 internal flat;

M;N ;K;L;… ¼ 1;…; 10 curved SLð5Þ in 10;
A;B; C;D;… ¼ 1;…; 10 flat SLð5Þ in 10;
M;N;K; L;… ¼ 1;…; 5 curved SLð5Þ in 5;
A;B;C;D;… ¼ 1;…; 5 flat SLð5Þ in 5: ð19Þ

Generalized space of SL(5) ExFT is parametrized by
coordinates XM. In terms of fundamental 5 indices of
SL(5) they take form XMN ¼ −XNM. The transition from
10 to antisymmetric pair of 5 is performed as

TM → TMN; any tensor;

UMVM →
1

2
UMNVMN;

δMN → 2δMN
KL ; only for the Kronecker: ð20Þ

The additional 2 multiplier above stands for δMM ¼
1
2
ð2δMN

MNÞ ¼ δMN
MN ¼ 10.

Epsilon tensors ϵMNPQR and ϵABCDE are absolutely
antisymmetric tensors taking values �1 and are related as

ϵMNPQREA
MEB

NEC
PED

QEE
R ¼ EϵABCDE

¼ e
− 5
14

ð7Þϵ
ABCDE: ð21Þ

A. Generalized geometry and Lie derivative

Let us start with properties of field transformations under
coordinate transformations, i.e., the generalized Lie deriva-
tive. For our conventions for generators of the slð5Þ algebra
see Appendix A. Generalized Lie derivative of a vector VM

of weight λ½V� is given by the following expression

LΛVM ≡ ½Λ; V�MDorfman

¼ ΛN
∂NVM − 3PM

L
N

K∂NΛKVL

þ λ½VM�∂KΛKVM

¼ ΛN
∂NVM − VN

∂NΛM þ ϵMMN ϵMKL∂NΛKVL

þ
�
λ½VM� − 1

5

�
∂KΛKVM; ð22Þ

which in terms of fundamental 5 indices (M ¼ ½M;N�)
takes the following form for vectors

LΛVMN ¼ 1

2
ΛKL

∂KLVMN − VLN
∂LKΛMK

− VML
∂LKΛNK þ

�
2

5
þ λ½VM�

2

�
VMN

∂KLΛKL

¼ 1

2
ΛKL

∂KLVMN − VLN
∂LKΛMK − VML

∂LKΛNK

þ λ̃½VM�
2

VMN
∂KLΛKL: ð23Þ

For convenience of calculations we define a reduced weight
λ̃ as twice of the overall coefficient in from of the term
∂KLΛKL. For transformations of the generalized vector VMN

above we have

λ̃½VM� ¼ λ½VM� þ 4

5
: ð24Þ

It is the weight λ̃ that is additive. Note that the numerical
shift is not always 4=5 and depends on index structure of
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the corresponding tensor. For a field VM transforming in the
fundamental of the global SL(5) group we have

LΛVM ¼ 1

2
ΛKL

∂KLVM − VL
∂LKΛMK

þ
�
1

5
þ λ½VM�

4

�
VM

∂KLΛKL; ð25Þ

and similarly for generalized covectors

LΛVM ¼ 1

2
ΛKL

∂KLVM þ VL∂MKΛLK

þ
�
−
1

5
þ λ½VM�

4

�
VM∂KLΛKL: ð26Þ

For tensors of arbitrary rank the expressions are modified
accordingly. Finally for a weighted scalar one has

LΛϕ ¼ 1

2
ΛKL

∂KLϕþ λ½ϕ�
2

ϕ∂KLΛKL: ð27Þ

Closure of the generalized Lie derivatives’ algebra requires
section condition

YMN
KL∂M • ∂N • ¼ 0; YMN

KL∂M∂N • ¼ 0; ð28Þ

where • denotes insertion of any field of the theory.
Since in general derivative ∂μVM is no longer a gener-

alized tensor, one introduces external covariant derivative

Dμ ¼ ∂μ − LAμ
; ð29Þ

which is defined with the help of a generalized connection
Aμ

MN , that is simply the gauge field of the corresponding
D ¼ 7 maximal supergravity. As we will discuss further, to
define a stress tensor for Aμ

MN covariant under generalized

diffeomorphisms more fields has to be added to the
theory, that appear to be a set of five 2-forms BμνM and
five 3-forms Cμνρ

M.
The final ingredients are the standard metric gμν on the

D ¼ 7 space-time (the external space) and the generalized
metric MMN on the extended space (internal). The latter
can be represented as

MMN;KL ¼ mMKmNL −mMLmNK;

MM;K ≡MMN;K
N ¼ 4mMK; ð30Þ

where mMN ¼ mNM denote the generalized metric in the
fundamental representation. For further convenience we
will need a generalized metric MMN related to mMN by the
following rescaling

mMN ¼ e
1
7

ð7ÞMMN ¼ M−1
5MMN: ð31Þ

As before metrics defined here can be written in terms of
the corresponding vielbeins

mMN ¼ mABEA
MEB

N;

MMN ¼ mABEA
MEB

N;

gμν ¼ gμ̄ ν̄eμ̄μeν̄ν; ð32Þ

where the EA
M ∈ SLð5Þ and EA

M ∈ SLð5Þ ×Rþ, EA
M ¼

e
− 1
14

ð7ÞE
A
M, eð7Þ ¼ det eμ̄μ.

As a result, the SL(5) ExFT bosonic field content reads

feμ̄μ; EA
M; Aμ

MN; BμνM;Cμνρ
Mg: ð33Þ

For further reference we list transformations of the above
fields under generalized Lie derivative:

LΛeμ̄μ ¼
1

2
ΛKL

∂KLeμ̄μ þ
1

10
eμ̄μ∂KLΛKL;

LΛEC
M ¼ 1

2
ΛKL

∂KLEC
M − EC

L
∂LKΛMK þ 1

4
EC

M
∂KLΛKL;

LΛEC
M ¼ 1

2
ΛKL

∂KLEC
M − EC

L
∂LKΛMK þ 1

5
EC

M
∂KLΛKL;

LΛAμ
MN ¼ 1

2
ΛKL

∂KLAμ
MN − 2Aμ

L½N
∂LKΛM�K þ 1

2
Aμ

MN
∂KLΛKL;

LΛBμνM ¼ 1

2
ΛKL

∂KLBμνM þ BμνL∂MKΛLK;

LΛCμνρ
M ¼ 1

2
ΛKL

∂KLCμνρ
M − Cμνρ

L
∂LKΛMK þ 1

2
Cμνρ

M
∂KLΛKL;

LΛBμν
MN ¼ ΛK

∂KBμν
MN − 2Bμν

KðN
∂KΛMÞ þ 2YQðM

KLBμν
N ÞL

∂QΛK;

LΛCμνρ
P;MN ¼ ΛK

∂KCμνρ
P;MN − 2Cμνρ

P;KðN
∂KΛMÞ þ 2YQðMj

KLCμνρ
P;jN ÞL

∂QΛK

þ YQP
KLCμνρ

L;MN
∂QΛK − Cμνρ

K;MN
∂KΛP; ð34Þ
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To make contact with the literature (in particular with [15]
and earlier works on maximal D ¼ 7 supergravities [38])
we also write transformations for the fields Bμν

KL and
Cμνρ

M;KL, that are related to BμνM and Cμνρ
M as follows

Bμν
MN ¼ Bμν

NKLP ¼ 1

48
BμνMϵ

MNKLP;

BμνM ¼ 2ϵMNKLPBμν
NKLP;

Cμνρ
M;KL ¼ Cμνρ

MN;KLRS ¼ −1
288

Cμνρ
½MϵN�KLRS;

Cμνρ
M ¼ −6ϵNKLRSCμνρ

MN;KLRS: ð35Þ
It is important to note, that the generalized Lie deriv-

atives above are taken along generalized vectors Λ, Λ0,
which themselves transform as

LΛ0ΛMN ¼ 1

2
Λ0KL

∂KLΛMN − 2ΛL½N
∂LKΛ0M�K

þ 1

2
ΛMN

∂KLΛ0KL: ð36Þ

In what follows generalized vectors with such transforma-
tion properties will be used to define generalized diffeo-
morphisms and eventually generalized fluxes. In addition,

to define external diffeomorphisms we will need scalars ξμ,
for which LΛξ

μ ¼ 1
2
ΛKL

∂KLξ
μ.

Finally, we list weights of all fields and parameters of the
theory with respect to generalized Lie derivatives in Table I.

B. Generalized diffeomorphisms and tensor hierarchy

Similarly to what happens in gauged supergravities
commuting external covariant derivatives Dμ does not lead
to a covariant field strength

½Dμ;Dν� ¼ −LFμν
: ð37Þ

To covariantize the derived expression Fμν one uses the
2-form gauge potential entangling its transformations
with those of the 1-form. The idea is to add to Fμν a term
proportional to the so-called trivial generalized Lie para-
meter, i.e. such that does not change the right-hand side
(rhs) above. Next, to construct a field strength 2-form that is
a tensor under generalized Lie derivatives one uses 3-form
and so on. The corresponding hierarchy of tensor fields has
been observed to be inevitable in [7,39] for gauged
supergravities and in [11] for exceptional field theories.
Let us list the resulting expressions for the covariant field
strengths [40]

F μν
MN ¼ 2∂½μAν�MN − ½Aμ; Aν�MN

E −
1

16
ϵMNKLP

∂KLBμνP;

F μνρM ¼ 3D½μBνρ�M þ 6ϵMPQRS

�
A½μPQ∂νAρ�RS −

1

3
½A½μ; Aν�PQE Aρ�RS

�
− ∂MNCμνρ

N;

F μνρ
KL ¼ 3D½μBνρ�KL þ 1

2
YKL

PQ

�
A½μP∂νAρ�Q −

1

3
½A½μ; Aν�EPAρ�Q

�
− 3ð∂NCμνρ

N ;KL − YKL
PQ∂NCμνρ

Q;PN Þ;

F μνρσ
M ¼ 4D½μCνρσ�M − 6F ½μνMNBρσ�N −

3

16
ϵMNKLPB½μνjN∂KLBjρσ�P

− 32ϵNPQ

�
A½μMNAν

P
∂ρAσ�Q −

1

4
A½μMN ½Aν; Aρ�EPAσ�Q

�
þ 1

2
ϵMKLPQ

∂KLGμνρσPQ;

F μνρσ
MN;KL ¼ 4D½μCνρσ�MN;KL þ ð2B½μνKLF ρσ�MN þ YMNN

PQB½μνKL
∂NBρσ�PQÞ

þ 2

9
YKL

PQ

�
A½μMNAν

P
∂ρAσ�Q −

1

4
A½μMN ½Aν; Aρ�EPAσ�Q

�
−

1

144
ϵKL½NϵM�PQ

∂PGμνρσQ;

F μνρστMN ¼ 5D½μGνρστ�MN þ 15

16
B½μνjMDρBστ�N −

15

16
B½μνjMDρBστ�N −

5

2
ϵMNKLPF ½μνKLCρστ�P þ � � � ð38Þ

TABLE I. Weights under generalized Lie derivative. Here generalized vielbeins are EAB
MN ¼

EA
½MEB

N� ∈ SLð5Þ ×Rþ and EAB
MN ¼ EA

½MEB
N� ∈ SLð5Þ, ΛMN is generalized vector used to build generalized

Lie derivatives and diffeomorphisms, and ξμ is scalar used to build external diffeomorphisms. λ is the weight used in
formulas (22)–(27), and λ̃ is the reduced weight—the number standing in front of the term ∂KΛK in generalized lie
derivative, after all simplifications [as in (34)]. It is the weight λ̃ that is additive.

eμ̄μ EAB
MN EAB

MN Aμ
MN BμνM Bμν

KL Cμνρ
M Cμνρ

M;KL ΛMN ξμ

λ 1
5

1
5

0 1
5

4
5

2
5

6
5

3
5

1
5

0

λ̃ 1
5

1 4
5

1 0 2 1 3 1 0
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where the E-bracket is given by

½Λ1;Λ2�E ¼ 1

2
½Λ1;Λ2�Dorfman −

1

2
½Λ2;Λ1�Dorfman: ð39Þ

The fields F μνρ
KL, F μνρλ

M;KL and F μνρM, F μνρλ
M are in

the same relations as (35). The 4-form GμνρσPQ is an
auxiliary field introduced to make the field strength for
Cμνρ

M covariant under generalized diffeomorphisms. Its
stress tensor F μνρστMN does not contribute to the SL(5)

ExFT action and is needed only for Bianchi identities for
F μνρσ

M

5D½μF νρστ�M ¼ 1

2
ϵMNPKL

∂NPF μνρστKL − 10F ½μνMNF ρστ�N:

ð40Þ
The complete expression forF μνρστMN can be found in [41].
Under arbitrary variations δAμ

MN , δBμνM, δBμν
KL,

δCμνρ
M, δCμνρ

N ;KL, δGμνρσMN of the p-form potentials
the covariant field strengths transform as follows

δF μν
MN ¼ 2D½μΔAν�MN −

1

16
ϵMNKLP

∂KLΔBμνP;

δF μνρM ¼ 3D½μΔBνρ�M þ 6ϵMPQRSF ½μνPQδAρ�RS − ∂MNΔCμνρ
N;

δF μνρ
KL ¼ 3D½μΔBνρ�KL þ 1

2
YKL

PQF ½μνPΔAρ�Q − 3ð∂NΔCμνρ
N ;KL − YKL

PQ∂NΔCμνρ
Q;PN Þ;

δF μνρσ
M ¼ 4D½μΔCνρσ�M − 6F ½μνMNΔBρσ�N þ 4F ½μνρjNδAjσ�MN þ 1

2
ϵMKLPQ

∂KLΔGμνρσPQ;

δF μνρσ
M;KL ¼ 4D½μΔCνρσ�M;KL þ 2F ½μνMΔBρσ�KL −

4

3
F ½μνρKLδAσ�M −

1

144
ϵKL½NϵM�PQ

∂PΔGμνρσQ: ð41Þ

where it proves useful to introduce the following “covariant” transformations [42,43]

ΔAμ
MN ¼ δAμ

MN;

ΔBμνM ¼ δBμνM − 2ϵMNKLPA½μNKδAν�LP;

ΔBμν
KL ¼ δBμν

KL −
1

6
YKL

MNA½μMδAν�N ;

ΔCμνρ
M ¼ δCμνρ

M − 3δA½μMNBνρ�N − 2ϵNKLRSA½μMNAν
KLδAρ�RS;

ΔCμνρ
N ;KL ¼ δCμνρ

N ;KL þ δA½μNBνρ�KL þ 1

18
YKL

RSA½μNAν
RδAρ�S;

ΔGμνρσMN ¼ δGμνρσMN − ϵMNQPKδAμ
QPCνρσ

K þ 3

16
B½μνjMδBjρσ�N −

3

16
B½μνjNδBjρσ�M

−
3

2
ϵNKLPRB½μνjMAjρKLδAσ�PR −

1

2
ϵMNUVRϵQKLSTA½μUVAν

RQAρ�KLδAσ
ST: ð42Þ

The field strengths defined above are covariant under generalized diffeomorphisms (generalized Lie derivative)

δΛEC
M ¼ LΛEC

M ¼ 1

2
ΛKL

∂KLEC
M − EC

L
∂LKΛMK þ 1

4
EC

M
∂KLΛKL;

δΛeμ̄μ ¼ LΛeμ̄μ ¼
1

2
ΛKL

∂KLeμ̄μ þ
1

10
eμ̄μ∂KLΛKL;

δΛAμ
MN ¼ DμΛMN ¼ ∂μΛMN − LAμ

ΛMN;

δΛBμνM ¼ −2ϵMNKLPΛNKF μν
LP;

δΛBμν
KL ¼ −

1

6
YKL

MNΛMF μν
N ;

δΛCμνρ
M ¼ ΛMNF μνρN;

δΛCμνρ
M;KL ¼ 1

9
YKL

PQΛPF μνρ
QM;

δΛGμνρσMN ¼ 1

4
ϵKLMNPΛMNF μνρσ

P; ð43Þ
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and transform as tensors [44]

δΛF μν
MN ¼ LΛF μν

MN ¼ 1

2
ΛKL

∂KLF μν
MN − 2F μν

L½N
∂LKΛM�K þ 1

2
F μν

MN
∂KLΛKL;

δΛF μνρM ¼ LΛF μνρM ¼ 1

2
ΛKL

∂KLF μνρM þ F μνρL∂MKΛLK;

δΛF μνρ
MN ¼ LΛF μνρ

MN ¼ ΛK
∂KF μνρ

MN − 2F μνρ
KðN

∂KΛMÞ þ 2YQðM
KLF μνρ

N ÞL
∂QΛK;

δΛF μνρλ
M ¼ LΛF μνρλ

M ¼ 1

2
ΛKL

∂KLF μνρλ
M − F μνρλ

L
∂LKΛMK þ 1

2
F μνρλ

M
∂KLΛKL;

δΛF μνρλ
P;MN ¼ LΛF μνρλ

P;MN ¼ ΛK
∂KF μνρλ

P;MN − 2F μνρλ
P;KðN

∂KΛMÞ − F μνρλ
K;MN

∂KΛP

þ 2YQðMj
KLF μνρλ

P;jN ÞL
∂QΛK þ YQP

KLF μνρλ
L;MN

∂QΛK; ð44Þ

that can be summarized as in the Table II.

C. Gauge transformations

Gauge transformations parametrized by ΞμM and Ψμν
N

are constructed such that the defined above 2-, 3-, and
4-form field strengths transform covariantly. Explicitly
we have

ΔΞμ;Ψμν
Aμ

MN ¼ 1

16
ϵMNKLP

∂KLΞμP;

ΔΞμ;Ψμν
BμνM ¼ 2D½μΞν�M − ∂NMΨμν

N;

ΔΞμ;Ψμν
Bμν

KL ¼ 2D½μΞν�KL

þ 3ð∂NΨμν
N ;KL − YKL

PQ∂NΨμν
P;NQÞ;

ΔΞμ;Ψμν
Cμνρ

M ¼ 3D½μΨνρ�M þ 3F ½μνMNΞρ�N;

ΔΞμ;Ψμν
Cμνρ

M;KL ¼ 3D½μΨνρ�M;KL − F ½μνMΞρ�KL: ð45Þ

Relations between different representations of gauge
parameters read

Ξμ
MN ¼ Ξμ

NKLP ¼ 1

48
ΞμMϵ

MNKLP;

ΞμM ¼ 2ϵMNKLPΞμ
NKLP;

Ψμν
M;KL ¼ Ψμν

MN;KLRS ¼ −1
288

Ψμν
½MϵN�KLRS;

Ψμν
M ¼ −6ϵNKLRSΨμν

MN;KLRS: ð46Þ

D. External diffeomorphisms

Finally, local transformations of the bosonic SL(5)
exceptional field theory include external diffeomorphisms
xμ → xμ þ ξμðxμ;XMNÞ

δξeμ̄μ ¼ ξνDνeμ̄μ þ eμ̄νDμξ
ν;

δξEA
M ¼ ξμDμEA

M;

δξEA
M ¼ ξμDμEA

M −
1

14
EA

MDμξ
μ;

δξAμ
MN ¼ ξνF νμ

MN þ 1

2
MMN;KLgμν∂KLξν;

ΔξBμνM ¼ ξρF ρμνM;

ΔξCμνρ
M ¼ −

1

3!
εμνρσκλτξ

σmMNF κλτ
N ¼ ξσF σμνρ

M; ð47Þ

where εμνρσκλτ ¼ eð7Þϵμνρσκλτ is the Levi-Civita tensor in 7
dimensions. Note that the last equality here follows from
the duality (66) assuming that the external metric gμν has
negative signature sign½gμν� ¼ −1. Apparently, for the
internal space this implies sign½gmn� ¼ þ1.

IV. FLUX FORMULATION OF SL(5) ExFT

As field equations of general relativity can be written in
terms of anholonomy coefficients, equations of double field
theory can be written in terms of generalized fluxes [31].
This is what is known under the name of flux formulation
and appears to a convenient representation of 10d super-
gravity equations for solution generation techniques based
on T-dualities [45], or for constructing equations of the
10d type II generalized supergravity.
Flux formulation of double field theory of [31] cannot be

immediately rewritten for exceptional field theories due to
the necessary split between the external (ordinary space-
time) and internal (extended) directions. Certain similarity
can be achieved in the truncation when all tensor fields
vanish and dependence of the external metric on the
extended coordinates factorizes [46]. This has been used

TABLE II. Weights under generalized Lie derivative. λ is the
weight used in formulas (22)–(27), and λ̃ is the reduced weight.

F μν
MN F μνρM F μνρ

KL F μνρλ
M F μνρλ

M;KL

λ 1
5

4
5

2
5

6
5

3
5

λ̃ 1 0 2 1 3
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in [47] to construct polyvector deformations and in [25] to
construct a generalization of supergravity in 11 dimensions.
We now proceed with a construction of flux formulation

of the SL(5) exceptional field theory, where by fluxes we
will mean (i) anholonomy coefficients for the external
metric, (ii) field strengths of gauge fields, (iii) scalar
generalized fluxes without external indices, (iv) few other

necessary objects encoding fluxes sourced by nongeomet-
ric branes spanning partially the ordinary space-time.

A. Fluxes of SL(5) ExFT

We define the full set of SL(5) ExFT fluxes enough to
encode its field equations as follows [48]

F μν
MN ¼ 2∂½μAν�MN − ½Aμ; Aν�MN

E −
1

16
ϵMNKLP

∂KLBμνP;

F μνρM ¼ 3D½μBνρ�M þ 6ϵMPQRS

�
A½μPQ∂νAρ�RS −

1

3
½A½μ; Aν�PQE Aρ�RS

�
− ∂MNCμνρ

N;

F μνρσ
M ¼ 4D½μCνρσ�M − 6F ½μνMNBρσ�N −

3

16
ϵMNKLPB½μνjN∂KLBjρσ�P

− 32ϵNPQ

�
A½μMNAν

P
∂ρAσ�Q −

1

4
A½μMN ½Aν; Aρ�EPAσ�Q

�
þ 1

2
ϵMKLPQ

∂KLGμνρσPQ;

F μ̄ ν̄
λ̄ ¼ 2e½μ̄μeν̄�νDμeλ̄ν;

F ðEÞ
μA

B ¼ EA
MDμEB

M ¼ F μA
B −

1

14
δA

Be−1ð7ÞDμeð7Þ ¼ F μA
B −

1

14
δA

BGμ;

FMNμ̄
ν̄ ¼ eμ̄μ∂MNeν̄μ −

1

7
δμ̄

ν̄e−1ð7Þ∂MNeð7Þ ¼ eμ̄μe
1
7

ð7Þ∂MNðe−
1
7

ð7Þe
ν̄
μÞ;

FABC
D ¼ 3

2
ED

N∂½ABEC�N − EC
M
∂MNE½BNδDA� −

1

2
E½BjM∂MNEjA�NδDC: ð48Þ

here we use EA
M ∈ SLð5Þ × Rþ, EA

M ¼ e
− 1
14

ð7ÞE
A
M,

eð7Þ ¼ det eμ̄μ.
For example, some of the above fluxes enter the

definition of the generalized (improved) Riemann tensor

R̂μν
μ̄ ν̄ ¼ Rμν

μ̄ ν̄ þ F μν
MNeμ̄ρ∂MNeν̄ρ

¼ Rμν
μ̄ ν̄ þ F μν

MNFMN
½μ̄ ν̄�

Rμν
μ̄ ν̄ ¼ 2D½μων�μ̄ ν̄ þ 2ω½μμ̄ ρ̄ων�ρ̄ν̄;

ωμ
μ̄ ν̄ ¼ 1

2
eρ̄μðF μ̄ ν̄ ρ̄ − F ν̄ ρ̄ μ̄ − F ρ̄ μ̄ ν̄Þ; ð49Þ

and Ricci scalar

R̂ ¼ R̂μν
μν ¼ Rþ F μν

MNFMN
μν; ð50Þ

where the flat indices are lowered and raised with flat
external metric gμ̄ ν̄, gμ̄ ν̄. Note that FMN

μν is not related to

the field strengthF μν
MN by raising and lowering of indices.

It proves convenient for calculations to introduce additional
combinations of fluxes

F μ̄ ¼ Dμeμ̄μ ¼ F μ̄ν
ν þ 14

5
F ðEÞ

μ̄A
A;

Gμ ¼ e−1ð7ÞDμeð7Þ ¼ F μν
ν − F μ;

F μA
B ¼ EA

MDμEB
M ¼ F ðEÞ

μA
B þ 1

14
δA

BGμ: ð51Þ

Explicit check as in [49] shows that FAB;C
D contains only

components in the 10, 15 and 40, which are conventionally
called θAB, YAB and ZABC respectively, i.e. one can write

FABC
D ¼ 3

2
ZABC

D þ 5θ½ABδC�D þ δ½ADYB�C: ð52Þ

The irreducible flux components are then written as follows

θAB ¼ 1

5
FAB;C

C ¼ 1

10
E½AM∂MNEB�N −

1

10
E−1EAB

MN
∂MNE;

YAB ¼ 1

2
FCðA;BÞC ¼ −EðAM∂MNEBÞN;
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ZABC
D ¼ 2

3
F ½ABC�D − 5θ½ABδC�D

¼ E½AMEBjNED
K∂MNEjC�K þ 1

3
ð2E½AjM∂MNEjBjN þ E½AMEBjNE−1

∂MNEÞδjC�D;

ZFGE ¼ −
1

16
ϵFGABCZABC

E

¼ −
1

24
ϵFGABCEE

M∂ABEC
M −

1

48
ϵGABCEEF

M∂ABEC
M þ 1

48
ϵFABCEEG

M∂ABEC
M; ð53Þ

where E ¼ detEA
M.

Finally let us write the transformation of new introduced fluxes under generalized diffeomorphisms that complement (44)

δΛF μ̄ ν̄
λ̄ ¼ LΛF μ̄ ν̄

λ̄ ¼ 1

2
ΛKL

∂KLF μ̄ ν̄
λ̄ −

1

10
F μ̄ ν̄

λ̄
∂KLΛKL;

δΛF ðEÞ
μA

B ¼ LΛF ðEÞ
μA

B ¼ 1

2
ΛKL

∂KLF ðEÞ
μA

B;

δΛFMNμ̄
ν̄ ¼ LΛFMNμ̄

ν̄ ¼ 1

2
ΛKL

∂KLFMNμ̄
ν̄ þ 1

2
FKLμ̄

ν̄
∂MNΛKL

¼ 1

2
ΛKL

∂KLFMNμ̄
ν̄ þ 2FL½Njμ̄ν̄∂jM�KΛLK −

1

2
FMNμ̄

ν̄
∂KLΛKL

δΛFABC
D ¼ LΛFABC

D ¼ 1

2
ΛKL

∂KLFABC
D: ð54Þ

For the transformation in the third line we have used the
result of Appendix B, where for the zero weight scalar ϕwe

take e
−1
7

ð7Þe
ν̄
μ. Together with Table II the above can be

summarized in Table III listing weights of all fluxes of the
theory.

B. Flux Lagrangian

Recall our notations for the generalized vielbeins of the
SL(5) ExFT depending on whether the determinant is unity
or not:

EA
M ∈ SLð5Þ; EA

M ¼ e
− 1
14

ð7ÞE
A
M ∈ SLð5Þ ×Rþ; ð55Þ

where eð7Þ ¼ det eμ̄μ and E ¼ detEA
M ¼ e

− 5
14

ð7Þ . The corre-

sponding generalized metrics read

mMN ¼ mABEA
MEB

N; MMN ¼ mABEA
MEB

N; ð56Þ

and mMN ¼ e
1
7

ð7ÞMMN ¼ M−1
5MMN . We will also use

MMN;KL ¼ mMKmNL −mMLmNK;

MM;K ≡MMN;K
N ¼ 4mMK: ð57Þ

It is important to stress out, that although the definition
of the vielbein EA

M reminds that of [47] we do not
impose any kind of truncation and consider the full SL(5)
exceptional field theory. In particular this means that in
(55) the vielbein eμ̄μ depends on the full set of coor-
dinates ðxμ;X½MN�Þ.
In the standard formulation the full SL(5) ExFT

Lagrangian takes the following form (see [15])

e−1ð7ÞL ¼ R̂½gð7Þ� ∓ 1

8
mMNmKLF μν

MKF μνNL

þ 1

4
gμνDμmMNDνmMN � e−1ð7ÞV

þ 1

3 × ð16Þ2m
MNF μνρMF μνρ

N þ e−1ð7ÞLtop; ð58Þ

where the term V usually referred to as the potential
contains only derivatives with respect to the extended
coordinates

TABLE III. Weights under generalized Lie derivative. λ is the
weight used in formulas (22)–(27), and λ̃ is an reduced weight—
the number standing in front of the term ∂KΛK in generalized lie
derivative, after all simplifications [as in (34)]. It is the weight λ̃
that is additive.

F μν
MN F μνρM F μνρλ

M F μ̄ ν̄
λ̄ F ðEÞ

μA
B FMNμ̄

ν̄ FABC
D

λ 1
5

4
5

6
5

− 1
5

0 − 1
5

0

λ̃ 1 0 1 − 1
5

0 −1 0
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e−1ð7ÞV¼ 1

8
∂MNmPQ∂KLmPQmMKmNL

þ1

2
∂MNmPQ∂KLmMPmNKmLQþ1

2
∂MNmLN

∂KLmMK

þ1

2
mMK

∂MNmNLðg−1ð7Þ∂KLgð7ÞÞ

þ1

8
mMKmNLðg−1ð7Þ∂MNgð7ÞÞðg−1ð7Þ∂KLgð7ÞÞ

þ1

8
mMKmNL

∂MNgμν∂KLgμν: ð59Þ

Here and in what follows the upper sign corresponds to the
case when the external d ¼ 7 space is of the Lorentzian
signature, and the lower sign stand for the Euclidean
signature (certainly we assume that the general signature
of the 11-dimensional space is Lorentzian). The case when
the time-like direction lies in the internal space of ExFT
(the lower sign) is convenient for studies of time-like
U-dualities.
To show that the Lagrangian (58) can be written

completely in terms of generalized fluxes defined in (48)
and 53 we first focus at the potential term (59) and notice
that the last term is not of the desired form. However, one
finds the relation

∂MNgμν ¼ 2FMNðμνÞ þ
1

7
gμνg−1ð7Þ∂MNgð7Þ; ð60Þ

and similarly for ∂MNgμν, that follows from contraction of
the fluxFMNμ̄

ν̄ with external vielbein. Using that we obtain

1

8
mMKmNL

∂MNgμν∂KLgμν

¼ −
1

2
mMKmNLFMNðμνÞFKL

ðμνÞ

−
1

56
mMKmNLg−2ð7Þ∂KLgð7Þ∂MNgð7Þ; ð61Þ

where we have used tracelessness of the flux FKL
μ
μ ¼ 0.

Then the potential (59) can be written in terms of the
rescaled generalized vielbeins EM

A and the corresponding
fluxes FABC

D (52) as

e
−5
7

ð7ÞV ¼ −
700

3
θABθCDmACmBD þ YABYCDmACmBD

−
1

2
YABYCDmABmCD þ 9

4
ZABC

DZDEF
AmBEmCF

þ 3

4
ZAA1B

CZDEF
GmCGmADmA1EmBF

−
e
2
7

ð7Þ
2

mMKmNLFMNðμνÞFKL
ðμνÞ: ð62Þ

The first three lines are of the same form as the scalar
potential of the D ¼ 7 maximal gauge supergravity [37],

however fluxes are not required to be constants. The last
term in (62) distinguishes this result from the flux potential
used in [47] and is due to the allowed dependence of the
external space-time metric on the coordinates XMN on the
extended space.
We proceed now with the kinetic term for scalar fields

encoded in the generalized metric mMN , that can be
straightforwardly written as

e−1ð7ÞLkin ¼
1

4
gμνDμmMNDνmMN

¼ −
1

2
ðδLMδNK þmMKmNLÞF μM

NF νK
Lgμν

−
1

3
F μM

MF νN
Ngμν

¼ −
1

2
ðδLMδNK þmMKmNLÞF μM

NF νK
Lgμν; ð63Þ

where we have used F μN
N ¼ 0. Note that here flat

SL(5) indices can be turned into curved ones by either
rescaled or the original generalized vielbein, i.e., F νK

L ¼
EA

KEB
LF νA

B ¼ EA
KEB

LF νA
B.

Finally, we turn to the discussion of the topological
Lagrangian Ltop. As in the case of maximal gauged
supergravity it cannot be expressed in terms of covariant
quantities, but its variation can. Hence, in terms of
covariantized variations (42) the latter takes the following
form [50]

δLtop ¼
1

16 · ð4!Þ2 ϵ
μνρλστκ½F μνρλ

M
∂MNΔCN

στκ

þ 6F μν
MNF ρλσMΔBτκN − 2F μνρMF λστNδAMN

κ �:
ð64Þ

Field equations for the (nondynamical) field Cμνρ
M take the

form of a (derivative of a) duality relation between fluxes

∂MK

�
eð7ÞmMNF μνρ

N −
1

4!
ϵμνρλστκF λστκ

M

�
¼ 0: ð65Þ

These relations can be identically solved by requiring the
first-order duality

eð7ÞmMNF μνρ
N ¼ 1

4!
ϵμνρλστκF λστκ

M: ð66Þ

As a result the Lagrangian of SL(5) ExFT (except topo-
logical term) and its EOMs can be rewritten completely in
term of fluxes as defined above.

C. Bianchi identities

The Lagrangian of the SL(5) exceptional field theory is
now written completely in terms of generalized fluxes (and
the external metric), that is a collective term for both the
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scalar fluxes FABC
D and field strengths for gauge fields. It

is suggestive to recall the standard Maxwell theory with the
Lagrangian L ¼ F2 ∧ �F2, where F2 is a 2-form and is an
example of what we call flux here, rather than the canonical
field. Hence, to derive equations of motion one has to
introduce gauge potential, that is done using Bianchi
identities. When starting without premises one is free to
impose either dF ¼ 0 or d � F ¼ 0, with the former leading
to electric gauge potential, and the latter—to magnetic. We
are here more in the situation when the canonical degrees of

freedom are known from the beginning and hence our
Bianchi identities will be actual identities, i.e., hold
trivially, and in this sense similar to dF ¼ ddA≡ 0.
However, adding a source to their rhs one arrives at field
equations in the presence of magnetically charged sources
(various branes to be discussed in Sec. V), or tadpole
cancellation conditions when understood as equations on
the background field of the Type II superstring. The full list
of Bianchi identities of the SL(5) exceptional field theory is
the following

Zμνρστ
M ¼ −5D½μF νρστ�M þ 1

2
ϵMNPKL

∂NPF μνρστKL − 10F ½μνMNF ρστ�N ¼ 0; ð67aÞ

Zμνρ
MN ¼ −3D½μF νρ�MN −

1

16
ϵMNPQR

∂PQF μνρR ¼ 0; ð67bÞ

ZμνρσM ¼ −4D½μF νρσ�M þ 6ϵMPQRSF ½μνPQF ρσ�RS − ∂MNF μνρσ
N ¼ 0; ð67cÞ

Zμ̄ ν̄ λ̄
ρ̄ ¼ −3D½μ̄F ν̄ λ̄�ρ̄ −

3

2
F ½μ̄ ν̄ jMNFMNjλ̄�ρ̄ þ

3

5
F σ̄½μ̄jMNFMNjν̄ σ̄δλ̄�ρ̄

−
3

10
e−1ð7Þ∂MNðeð7ÞF ½μ̄ ν̄MNδλ̄�ρ̄Þ þ

3

2
F ½μ̄ ν̄σ̄F λ̄�σ̄ ρ̄ ¼ 0; ð67dÞ

Zμ̄ ν̄ ¼ −2D½μ̄Gν̄� −
7

10
e−1ð7Þ∂MNðeð7ÞF μ̄ ν̄

MNÞ − F μ̄ ν̄
ρ̄Gρ̄ þ

7

5
FMN½μ̄ρ̄F ν̄�ρ̄MN ¼ 0; ð67eÞ

Zμ̄ ν̄MN
λ̄ ¼ −2D½μ̄jFMNjν̄� λ̄ −

2

7
FMN½μ̄ρ̄δν̄� λ̄Gρ̄ þ 2F ½μ̄jρ̄λ̄FMNjν̄�ρ̄ − F μ̄ ν̄

ρ̄FMNρ̄
λ̄

þ e
−1
7

ð7Þ∂MNðe
1
7

ð7ÞF μ̄ ν̄
λ̄Þ − 2

7
e
−1
7

ð7Þ∂MNðe
1
7

ð7ÞG½μ̄Þδν̄�λ̄ ¼ 0; ð67fÞ

ZμνA
B ¼ −2D½μF ν�AB þ FCDA

BF μν
CD − F μν

CDδA
BθCD − ∂ACF μν

BC

þ 1

5
δA

B
∂CDF μν

CD − 2F ½μjACF jν�CB ¼ 0; ð67gÞ

ZμABC
D ¼ −DμFABC

E −
1

2
∂ABF μC

E þ 1

14
δC

E
∂ABGμ −

1

2
∂BCF μA

E þ 1

14
δA

E
∂BCGμ

þ 1

2
δA

E
∂CDF μB

D þ 1

4
δC

E
∂BDF μA

D −
1

4
δC

E
∂ADF μB

D

−
1

2
δB

E
∂CDF μA

D −
1

14
δB

E
∂ACGμ þ

1

2
∂ACF μB

E þ F μA
DFBDC

E

− F μB
DFADC

E − F μC
DFABD

E þ F μD
EFABC

D þ 1

7
FABC

EGμ ¼ 0; ð67hÞ

ZMN;KLμ̄
ν̄ ¼ ∂MNFKLμ̄

ν̄ − ∂KLFMNμ̄
ν̄ − FKLμ̄

λ̄FMNλ̄
ν̄ þ FMNμ̄

λ̄FKLλ̄
ν̄ ¼ 0; ð67iÞ

ZDF;ABC
E ¼ 3

2
∂½ABjFDFjC�E −

1

2
∂DFFABC

E þ ∂CGFDF½AGδB�E −
1

4
δC

E
∂G½AjFDFjB�G

þ 2F ½AjGCEFDFjB�G þ FABG
EFDFC

G − FABC
GFDFG

E ¼ 0; ð67jÞ

where we have used the notation ∂AB ¼ EAB
MN

∂MN . The
first three Bianchi identitites (enumerated by 0, 1 and 2)
follow from tensor hierarchy fields (38) and are already
known in the literature (see for example [15,18]). The
identities 3, 4 and 5 are straightforward to derive by

considering the most general expression of the form
DF þ coefficients · FF ¼ 0, and then tuning coefficients
on the rhs. These are novel to our knowledge. The
nonderivative part of the last identity is known under the
name of quadratic constraints of the D ¼ 7 maximal
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gauged supergravity [38]. A detailed derivation of the
above Bianchi identities together with their explicit check
can be found in Cadabra files of [26].
For the general case of nonconstant fluxes to derive the

identities 6–9 one has to use transformation properties
under external and internal diffeomorphisms. In the context
of double field theory this approach was advocated in [31].
Before turning to exceptional field theory let us demon-
strate the trick on the simple case of a U(1) field Aμ and its
field strength Fμν ¼ 2∂½μAν� (in this calculation small Greek
indices a some space-time indices with no relation to the
rest of the text). First, one writes transformation of the
gauge potential Aμ under a diffeomorphism parametrized
by ξμ back in terms of the flux Fμν:

δξAμ ¼ ξν∂νAμ þ Aν∂μξ
ν ¼ ξνFνμ þ ∂μðξνAνÞ: ð68Þ

The last term above is a gauge transformation and can be
dropped in what follows. Now, substitute this into a
transformation of the field strength itself to get

δξFμν ¼ 2∂½μδξAν� ¼ LξFμν þ 3ξρ∂½μFνρ�: ð69Þ

Here Lξ is the standard Lie derivative and is the desired
transformation of a tensor, and the second term is nothing
but the Bianchi identities for the field strength Fμν. Hence,
one requires it to vanish, which is trivially the case given
the definition of Fμν.
Returning back to exceptional field theory one considers

generalized diffeomorphisms acting on the generalized
vielbein and rewrites the variation back in terms of fluxes

δΛEC
M ¼ 1

2
ΛAB

∂ABEC
M −EC

L
∂LKΛMK þ 1

4
EC

M
∂KLΛKL

¼ FABC
EEE

MΛAB −EA
M
∂CBΛAB þ 1

4
EC

M
∂ABΛAB;

ð70Þ

and similarly for its inverse. This implies the following
transformations for the internal fluxes

δΛFABC
E ¼ 1

2
ΛDF

∂ABFDFC
E þ 1

2
ΛDF

∂BCFDFA
E −

1

2
ΛFGδEA∂CDFFGB

D −
1

4
ΛFGδEC∂BDFFGA

D

þ 1

4
ΛFGδEC∂ADFFGB

D þ 1

2
ΛFGδEB∂CDFFGA

D −
1

2
ΛDF

∂ACFDFB
E − FBGC

EFDFA
GΛDF þ FAGC

EFDFB
GΛDF

þ FABG
EFDFC

GΛDF − FABC
DFFGD

EΛFG þ F…∂…Λ… ¼ 1

2
ΛDF

∂DFFABC
E þ ZDF;ABC

EΛDF

¼! 1

2
ΛDF

∂DFFABC
E; ð71Þ

where terms with dots are proportional to the section
constraint and hence can be dropped. The last equation
requires that the flux must transform as a generalized scalar
with the appropriate weight, that results in the Bianchi
identities ZDF;ABC

E ¼ 0 that is (67j). The same flux FABC
D

must also be a scalar under external diffeomorphisms, that
gives additional Bianchi identities. For that we write

δξEA
M ¼ ξμDμEA

M−
1

14
EA

MDμξ
μ

¼ ξμEB
MF ðEÞ

μB
A−

1

14
EA

MDμξ
μ

¼ ξμEB
MF μB

A−
1

14
ξμEA

MGμ−
1

14
EA

MDμξ
μ: ð72Þ

Similarly δξEB
K ¼ −ξμEA

KF νB
A þ 1

14
ξμEB

KGμ þ
1
14

EB
KDμξ

μ. Requiring δξFABC
D ¼ ξμDμFABC

D we
derive the Bianchi identities (67h). Apparently, a direct
substitution of the flux written in terms of generalized
vielbeins fulfills the derived Bianchi identities (see the
Cadabra files in [26]).
The same procedure is then applied to the fluxes FMNμ̄

ν̄

and F μA
B ¼ F ðEÞ

μA
B þ 1

14
δA

BGμ. To require covariance of
the former under generalized Lie derivative we first write

δΛeμ̄μ ¼LΛeμ̄μ ¼
1

2
ΛKL

∂KLeμ̄μþ
1

10
eμ̄μ∂KLΛKL

¼ 1

2
ΛKL

�
eν̄μF

ðeÞ
MNν̄

μ̄þ1

7
eμ̄μFMN

�
þ 1

10
eμ̄μ∂KLΛKL;

ð73Þ
that implies

δΛFMNμ̄
ν̄ ¼ LΛFMNμ̄

ν̄ þ 1

2
ΛKLZKL;MNμ̄

ν̄: ð74Þ

Requiring covariance under external diffeomorphisms we
will get the fifth Bianchi identity (67f), that is an additional
consistency check.
Covariance of F μA

B under generalized Lie derivative
gives the (already derived) seventh Bianchi identity (67h).
For external diffeomorphisms we write

δξeμ̄μ ¼ ξνDνeμ̄μ þ eμ̄νDμξ
ν;

δξAμ
MN ¼ ξνF νμ

MN þ 1

2
MMN;KLgμν∂KLξν: ð75Þ

Substituting these together with δξEA
M, δξEB

K written
above in variation of the flux we arrive at
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δξF νA
B ¼ ξμDμF νA

B þ F μA
BDνξ

μ þ ξμZμνA
B; ð76Þ

that gives the sixth Bianchi identity (67g).

D. From curved to flat indices and back again

Bianchi identities presented in the previous section
naturally come with mixed indices: some are written in
flat indices, some are written in curved indices. For
examples, the first Bianchi identity comes from the
standard formulation of exceptional field theory and is
understood as a relation between field strengths. In con-
trast, the seventh identity, that is for generalized anholon-
omy coefficients, is more naturally written in flat indices
since in this case the flux is identified with components of
the embedding tensor upon a Scherk-Schwarz reduction.
Let us now think of all F 0s as fluxes and components of
some larger (infinitely component) embedding tensor and
write all Bianchi identities in flat indices. In this case the
NS-NS sector of the reduction SLð5Þ → GLð4Þ will repro-
duce the split form of the Bianchi identities of DFT (see,
e.g., [35]).
We collect all calculational details in Appendix C and

here we only stress few subtle points. First, the transition to
flat indices is performed by contraction with vielbeins as
follows

T μ̄ ¼ eμ̄μTμ;

TA ¼ EA
MTM; ð77Þ

where for flat flat SL(5) indices we use the generalized
vielbein EA

B ∈SLð5Þ × Rþ. This should not cause confu-
sion since all the fluxes in (48) and (51) have curved SL(5)
indices except FAB;C

D, that is already written in flat indices
using EA

B, and F ðEÞ
μA

B and F μA
B for which we have

F ðEÞ
μK

L ¼ EA
KEB

LF ðEÞ
νA

B ¼ EA
KEB

LF ðEÞ
νA

B;

F νK
L ¼ EA

KEB
LF νA

B ¼ EA
KEB

LF νA
B: ð78Þ

Second, the fourth and the sixth Bianchi identities (67g)
can be rewritten as a single for the flux F ðEÞ

νA
B as follows

Z̃μνA
B ¼ −2D½μF ðEÞ

ν�AB þ FCDA
BF μν

CD

− ∂ACF μν
BC − 2F ðEÞ½μjACF ðEÞjν�CB ¼ 0; ð79Þ

whose traceless part gives (67g) and the trace part repro-
duces (67e) (see the files Check of BI 4 and Check of
BI 6 of [26]). Hence, using the flux F ðEÞ

νA
B two Bianchi

identities can be written in a combined form.
We finally present the full set of Bianchi identities in flat

indices

Zμ̄ ν̄ ρ̄
AB ¼ −3D½μ̄F ν̄ ρ̄�AB − 3F ½μ̄ ν̄ j λ̄F λ̄jρ̄�AB − 6F ðEÞ½μ̄jC½AF jν̄ ρ̄�B�C −

1

16
e
− 6
14

ð7Þϵ
ABCDE

∂CDðe
1
14

ð7ÞF μ̄ ν̄ ρ̄EÞ

−
3

16
e
− 5
14

ð7Þϵ
ABCDEFCD½μ̄j λ̄F λ̄jν̄ ρ̄�E −

1

16
e
− 5
14

ð7Þϵ
ABCDEF μ̄ ν̄ ρ̄F

�
20

3
θCDδE

F − ZCDE
F

�
¼ 0; ð80aÞ

Zμ̄ ν̄ ρ̄ σ̄ A ¼ −4D½μ̄F ν̄ ρ̄ σ̄�A − 6F ½μ̄ ν̄ j λ̄F λ̄jρ̄ σ̄�A − 4F ðEÞ½μ̄jACF jν̄ ρ̄ σ̄�C þ 6e
5
14

ð7ÞϵACDEFF ½μ̄ ν̄CDF ρ̄ σ̄�EF

− 4FAB½μ̄jλ̄F λ̄jν̄ ρ̄ σ̄�B − e
− 3
14

ð7Þ∂ABðe
3
14

ð7ÞF μ̄ ν̄ ρ̄ σ̄
BÞ − F μ̄ ν̄ ρ̄ σ̄

B

�
2FABD

D −
1

2
FDðABÞD

�
; ð80bÞ

Zμ̄ ν̄ λ̄
ρ̄ ¼ −3D½μ̄F ν̄ λ̄�ρ̄ −

3

2
F ½μ̄ ν̄ jABFABjλ̄�ρ̄ þ

3

5
F σ̄½μ̄jABFABjν̄σ̄δλ̄�ρ̄ −

6

5
FABC

CF ½μ̄ ν̄ABδλ̄�ρ̄ −
3

10
e
−2
7

ð7Þ∂ABðe
2
7

ð7ÞF ½μ̄ ν̄ABÞδλ̄�ρ̄

þ 3

2
F ½μ̄ ν̄σ̄F λ̄�σ̄ ρ̄; ð80cÞ

ZABμ̄ ν̄
λ̄ ¼ −2D½μ̄jFABjν̄� λ̄ þ

4

5
FAB½μ̄ρ̄δν̄� λ̄F ðEÞ

ρ̄C
C þ 2F ½μ̄jρ̄λ̄FABjν̄�ρ̄ − F μ̄ ν̄

ρ̄FABρ̄
λ̄ − 2F ½AjCν̄λ̄F ðEÞ

μ̄jB�C þ 2F ½AjCμ̄λ̄F ðEÞ
ν̄jB�C;

þ 4

5
e
−1
7

ð7Þ∂ABðe
1
7

ð7ÞF
ðEÞ½μ̄jCCÞδjν̄�λ̄ þ e

−1
7

ð7Þ∂ABðe
1
7

ð7ÞF μ̄ ν̄
λ̄Þ ð80dÞ

Zμ̄ ν̄A
B ¼ −2D½μ̄F ðEÞ

ν̄�AB −F μ̄ ν̄
ρ̄F ðEÞ

ρ̄A
B þFCDA

BF μ̄ ν̄
CD − e

−2
7

ð7Þ∂ACðe
2
7

ð7ÞF μ̄ ν̄
BCÞ− 2F ½μ̄jρ̄BCFACjν̄�ρ̄ − 2F ðEÞ½μ̄jACF ðEÞjν̄�CB

ð80eÞ

Zμ̄ABC
E ¼ −Dμ̄FABC

E −
1

2
e
−1
7

ð7Þ∂½ABjðe
1
7

ð7ÞF
ðEÞ

μ̄jC�EÞ þ e
−1
7

ð7Þδ½Aj
E
∂CDðe

1
7

ð7ÞF
ðEÞ

μ̄jB�DÞ

−
1

2
e
−1
7

ð7ÞδC
E
∂½AjDðe

1
7

ð7ÞF
ðEÞ

μ̄jB�DÞ −
1

2
F ½ABjμ̄ν̄F ðEÞ

ν̄jC�E þ δ½AjEFCDμ̄
ν̄F ðEÞ

ν̄jB�D

−
1

2
δC

EF ½AjDμ̄
ν̄F ðEÞ

μjB�D − 2F ½AjDC
EF ðEÞ

μ̄jB�D − FABD
EF ðEÞ

μ̄C
D þ FABC

DF ðEÞ
μ̄D

E; ð80fÞ
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ZCD;ABμ̄
ν̄ ¼ ∂CDFABμ̄

ν̄ − ∂ABFCDμ̄
ν̄ − 2F ½AjEμ̄ν̄FCD;jB�E þ 2F ½CjEμ̄ν̄FAB;jD�E − FABμ̄

λ̄FCDλ̄
ν̄ þ FCDμ̄

λ̄FABλ̄
ν̄; ð80gÞ

ZDF;ABC
E ¼ 3

2
∂½ABjFDFjC�E −

1

2
∂DFFABC

E þ ∂CGFDF½AGδB�E −
1

4
δC

E
∂G½AjFDFjB�G þ 2F ½AjGCEFDFjB�G

þ FABG
EFDFC

G − FABC
GFDFG

E: ð80hÞ

V. EXOTIC POTENTIALS

Before turning to exotic potentials of 11-dimensional
supergravity collected into irreps of the SL(5) duality
group, recall the simple case of Maxwell theory. Its
Bianchi identities dF ¼ 0 can be implemented on the level
of the action as

SEM ¼
Z

d4x

�
−
1

4
FμνFμν þ 1

2
ϵμνρσÃμ∂νFρσ

�
; ð81Þ

where ϵμνρσ is totally antisymmetric. As before small Greek
indices run μ, ν ¼ 0, 1, 2, 3 only in reference to calculations
in the Maxwell theory. Varying w.r.t. the Lagrange multi-
plier Ãμ one obtains the Bianchi identities ∂½μFνρ� ¼ 0 and
is able to introduce the standard gauge potential
Fμν ¼ 2∂½μAν�. Alternatively, variation with respect to
Fμν relates the field Ãμ to the dual field strength

1

2
ϵμνρσFρσ ¼ F̃μν ¼ 2∂½μÃν�: ð82Þ

Hence, the Lagrange multiplier imposing Bianchi identities
is interpreted as the potential magnetic dual to the canonical
gauge field. Apparently, Bianchi identities for the field Fμν

are field equations for the field Ãμ.
At the level linear in a metric fluctuation about the flat

space-time the same procedure can be repeated for the
graviton field, whose field strength will be the anholonomy
coefficients. While Maxwell theory in the absence of
external sources can be equivalently rewritten in terms
of the magnetic dual gauge potential, the same is not true
for the gravitational theory, that is known as the dual
graviton problem (see though [51] for comments on
whether to call this a problem).

A. Dual formulation of double field theory

As in the case of YM theory Bianchi identities can be
implemented into the full DFTaction in flux formulation as
Lagrange multipliers [36]

S ¼
Z

d20Xe−2dðFF Þ þ SABCDDABCD þ SABDAB: ð83Þ

Equations of motion for DABCD and DAB, that are the
Bianchi identities, render generalized fluxes FABC and FA

to be of the form (16). Even though there is no proper
formulation of DFT in terms of a functional integral, we
will refer to this process as “integrating out fields” for short.
Hence, integrating out the fields DABCD and DAB one
arrives at the standard formulation of double field theory in
terms of supergravity degrees of freedom. Alternatively,
one might try to integrate out fluxes FABC and ΦA to
formulate the theory in terms of DABCD. However, as it has
been shown in [36] this does not seem to work out as
straightforward as in say Maxwell theory. Note, that on
principle that has little to do with nonlinearity of the DFT
action itself as for example in type II supergravity one can
do so for the 2-form Kalb-Ramond field. It is better to refer
this to metric degrees of freedom, as the same behavior is
observed in general relativity, where one cannot turn to full
nonlinear theory of the dual graviton.
Nonetheless, the magnetic potentials DABCD and DAB

can be understood as fields electrically interacting with
certain branes, both standard and exotic, at least at the
linear level. Let us illustrate this by comparing to NS-NS
potentials interacting with standard and exotic branes
taking into account the wrapping rules of [20,22]. Since
these rules are formulated for a D-dimensional maximal
supergravity, we should turn to split form of double field
theory, where O(10, 10) is broken to GLðDÞ × Oðd; dÞ,
where Dþ d ¼ 10. Without going into too many technical
details of the decomposition itself, that can be found, e.g.,
in [35], let us list the only nontrivial components of the full
O(10, 10) Bianchi identities upon the decomposition
VA ¼ ðVα; Vα; VAÞ:

SABCD; SαABC; SαβAB; SαβγA; Sαβγδ;

SABαβ; SαβAγ; Sαβγδ; Sαβγδ: ð84Þ

Let us for concreteness assumeD ¼ 6, that allows us to use
Hodge star in external six-dimensional space-time to write
the following list of magnetic potentials:

Dð6Þ;ABCD; Dð5Þ;ABC; Dð4Þ;AB; Dð3Þ;A; Dð2Þ;

Dð5;1Þ;AB; Dð4;2Þ;A; Dð3;1Þ; Dð4;2Þ: ð85Þ

Here numbers in parentheses denote: p-forms, in case of a
single number; potentials of mixed symmetry, in case of
two numbers, i.e., a potential Aðp;qÞ has the following
components
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Aα1…αp;β1…βq : ð86Þ

The above is antisymmetric in the first p and in the latter q
entries separately. According to the brane counting rules
of [23] only those components for which the indices
½β1…βq� equal to q indices of ½α1…αp� interact with
supersymmetric branes.
We see, that the first five potentials of (85) correspond to

p-forms interacting with supersymmetric NS-NS 5-branes,
that follow from the analysis of wrapping rules of [20,22].
The remaining are not covered by their analysis, however
follow the same pattern. For example, while Dð2Þ interacts
with the NS5-brane wrapping all cycles of the 4-torus, the
potentialsDð3;1Þ andDð4;2Þ interact with the KK5-monopole
and 522-brane, whose special cycles are in the external
space. Note, that we cannot see 532 and 542-branes with
special cycles along the external space since these generate
fluxes via either the DFT bivector βmn or dependence on
dual coordinates. Either of these do not present in the
external space, however, can be organized in the internal
space. The corresponding potentials will be Dð5;1Þ;A and
D4;2; A, that interact with branes with at one or two special
cycles in the external space respectively, and the rest in the
internal space. An example of such state can be the 542
brane, whose two cycles wrap the internal directions and
two wrap the external directions.
NS 5-branes alignments corresponding to the recovered

potentials are listed in Table IV. Let us illustrate reading of
the table by the potentials Dð3Þ;A and Dð4;2Þ. For the first we
have the following components

Dð3Þ;A∶
Dμ1μ2μ3;m → Dμ1μ2μ3m1m2m3m4;m;

Dμ1μ2μ3
m → Dμ1μ2μ3m1m2m3

;
ð87Þ

where → denote Hodge dualization in four internal direc-
tions. Apparently, the potential Dμ1μ2μ3m1m2m3

in the second

line is a component of the 6-form field interacting with
NS5-brane in 10d, while the potential Dμ1μ2μ3m1m2m3m4;m is
that for the KK5-monopole. Hence, we conclude that the
former interacts with the NS5-brane whose three world
volume directions are along the internal space, while the
latter interact with the KK5-monopole, whose three world-
volume directions and the special Taub-NUT cycle are in
the internal space. Note, that Hodge dualization automati-
cally assures that the index m after the comma must be
equal to one of the four internal indices before the comma.
Next, upon Hodge dualization of the Dð4;2Þ we have in

component notations

Dμ1μ2μ3μ4m1m2m3m4;ν1ν2 ; ð88Þ

that is part of the (8, 2) mixed symmetry potential in 10d
interacting with 522-brane. According to the brane wrapping
rules, the indices ν1ν2 must be equal to two of ½μ1…μ4�. The
remaining two label form components interacting with two
world-volume directions of the 522-brane in the external
space-time. We illustrate this on Table V.

B. Exotic potentials in D= 7 supergravity

Let us list the magnetic potentials associated with
Bianchi identities of the SL(5) theory derived above:

Að3Þ;5; Að4Þ;10; Að5Þ;24þ1; Að6Þ;10þ15þ40;

Að7Þ;5þ45þ70; Að4;1Þ;1; Að5;1Þ;10; Að6;1Þ;45; ð89Þ

where as before numbers in parentheses denote rank or
mixed symmetry of a potential, irreps of SL(5) are given in
bold. To compare this with the supersymmetric brane
counting following from the E11 decomposition let us
copy the D ¼ 7 row of Table 1 of [23].
We see that the set of forms following from tensor

hierarchy as presented in Table VI and the set of forms (89)
following from Bianchi identities have intersection, but do
not fully coincide. Let us give comments on how one
should understand this. Start with the second line of (89),
that lists potentials of mixed symmetry. These are not
covered by the brane counting approach of [23], as it
focuses on p-forms, equivalently speaking on BPS-states
corresponding to branes with all special cycles placed along
internal directions.

TABLE IV. Magnetic potentials of DFT according to the
Bianchi identities and the corresponding brane alignments. Here
× denotes the world volume directions, empty space denotes
transverse directions, dotted circle denotes special cycle. The
directions f6; 7; 8; 9g are doubled, i.e., empty space can be either
simply transverse or special.

0 1 2 3 4 5 6 7 8 9

✗ ✗ ✗ ✗ ✗ ✗ Dð2Þ
✗ ✗ ✗ ⊙ ✗ ✗ ✗ ✗ Dð3;1Þ
✗ ✗ ✗ ✗ ⊙ ⊙ ✗ ✗ ✗ ✗ Dð4;2Þ
✗ ✗ ✗ ✗ ✗ ✗ Dð3Þ;A
✗ ✗ ✗ ✗ ✗ ✗ Dð4Þ;AB
✗ ✗ ✗ ✗ ✗ ✗ Dð5Þ;ABC,
✗ ✗ ✗ ✗ ✗ ✗ Dð6Þ;ABCD
✗ ✗ ✗ ✗ ✗ ⊙ ✗ ✗ Dð5;1Þ;AB
✗ ✗ ✗ ✗ ⊙ ⊙ ✗ ✗ ✗ Dð4;2ÞA

TABLE V. Part of Table IV with representations of O(4, 4)
expanded with respect to its GL(4) subgroup.

0 1 2 3 4 5 6 7 8 9 Branes

✗ ✗ ⊙ ⊙ ✗ ✗ ✗ ✗ 522 Dð4;2Þ
✗ ✗ ✗ ✗ ✗ ✗ NS5 Dð3Þ;A
✗ ✗ ✗ ⊙ ✗ ✗ ✗ KK5
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The 2-form potential in the 5 seen from tensor hierarchy
is nothing but the 2-form BμνM and is magnetically dual to
Aμνρ

M, that is denoted as Cμνρ
M in the exceptional field

construction of [15]. At the ExFT level the corresponding
duality relation follows from equations of motion for the
3-form potential. Given that Bianchi identities for the
4-form field strength F μνρσ

M are simply equations of
motion for the field BμνM. The same is true for the 4-form
potential in the 10, that is magnetically dual to the vector
field Aμ

MN . The former however does not appear in
exceptional field theory in contrast to Cμνρ

M, that is needed
to write Chern-Simons terms in the action and gauge
transformations of the physical fields.
Finally, the potentials given by the singlet 5-form and by

the 6-form in the 10 correspond to imaginary roots in the
E11 decomposition and are not usually included to the brane
counting analysis. The reason is that these are conjectured
to not interact with supersymmetric branes. Hence, modd-
ing out by the magnetic duality and counting of imaginary
root and mixed symmetry potentials the field content of
Table VI is the same as the one recovered from Bianchi
identities, as it should be.
Let us now give more details on supersymmetric branes

these potentials interact with, which in particular will give
additional confirmation of the electric-magnetic equiva-
lence between 1-, 2- and 3-,4-form potentials. All possible
embeddings of M-theory branes both standard and exotic
with all special cycles along the internal space are collected
in Table VII. Given the four-dimensional internal space is a
torus, their windings give counting of BPS states as found
in [23]. Note, that in general this counting does not equal to
dimension of an SL(5) irrep the potential belongs to. Say,
the 4-form potential belongs to the 24 of SL(5) and interacts
with only 20 brane states. The simplest case where one
encounters such a behavior is the doublet of ðp; qÞ 7-branes
of Type IIB theory, interacting with a potential transforming
as a triplet of the S-duality group (see, e.g., [19] for more
detailed discussion).
The first four rows of Table VII describing brane

embeddings for p ¼ 0, 1, 2, 3 show the electric-magnetic
symmetry discussed above. Indeed, upon the EM duality
one interchanges M2 with M5, and KK6 with the pp-wave
states. That effectively switches p ¼ 1 with p ¼ 2, and
p ¼ 0 with p ¼ 3, as we have already observed at the level
of potentials.
Embeddings of (exotic) branes producing states that

interact with mixed symmetry potentials listed in (89) are

given in Table VIII. Again we observe that the (6, 1)-
potential transforming in the 45 of SL(5) interacts with only
26 states. As in the NS-NS case described by magnetic
potentials of DFT we do not see a certain set of exotic
potentials, e.g. Að7;1;1Þ;1 corresponding to the embedding of

the 8ð1;0Þ-brane when the cubic cycle is in the external

TABLE VI. The tensor hierarchy of p-forms for D ¼ 7 super-
gravity as predicted by E11.

p 1 2 3 4 5 6 7

D ¼ 7 10 5 5̄ 10 24 40þ 15 5þ 45þ 70

TABLE VII. Brane embeddings corresponding to p-form
potentials, total winding number counting w# for each p
corresponding to the number of BPS states as count in [23].
Here × denotes world volume directions, ⊙ denotes quadratic
special cycle, ⊗ denotes cubic special cycle, star � denotes
direction of the momentum.

p 0 1 2 3 4 5 6 7 8 9 10 w# brane

0 ✗ ✗ ✗ 6 M2
✗ * 4 PP

1
✗ ✗ ✗ ✗ ✗ ✗ 1 M5
✗ ✗ ✗ 4 M2

2
✗ ✗ ✗ 1 M2
✗ ✗ ✗ ✗ ✗ ✗ 4 M5

3
✗ ✗ ✗ ✗ ✗ ✗ 6 M5
✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊙ 4 KK6

4
✗ ✗ ✗ ✗ ✗ ✗ 4 M5
✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊙ 12 KK6
✗ ✗ ✗ ✗ ✗ ✗ ⊙ ⊙ ⊙ 4 53

5

✗ ✗ ✗ ✗ ✗ ✗ 1 M5
✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊙ 12 KK6
✗ ✗ ✗ ✗ ✗ ✗ ⊙ ⊙ ⊙ 4 53

✗ ✗ ✗ ✗ ✗ ✗ ⊙ ⊙ ⊙ ⊗ 4 5ð1;3Þ
✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊗ 4 8ð1;0Þ

6
✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊙ 4 KK6
✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊗ 12 8ð1;0Þ
✗ ✗ ✗ ✗ ✗ ✗ ✗ ⊗ ⊗ ⊗ ⊙ 4 6ð3;1Þ

TABLE VIII. Exotic brane embeddings corresponding to
mixed symmetry potentials found from Bianchi identities. Here
× denotes world volume directions, ⊙ denotes quadratic special
cycle, ⊗ denotes cubic special cycle.

potential 0 1 2 3 4 5 6 7 8 9 10 w# brane

(4,1) ✗ ✗ ✗ ⊙ ✗ ✗ ✗ ✗ 1 KK6

(5, 1)
✗ ✗ ✗ ✗ ⊙ ✗ ✗ ✗ 4 KK6
✗ ✗ ✗ ✗ ⊙ ✗ ✗ ⊙ ⊙ 6 53

(6, 1)
✗ ✗ ✗ ✗ ✗ ⊙ ✗ ✗ 6 KK6
✗ ✗ ✗ ✗ ✗ ⊙ ✗ ⊙ ⊙ 12 53

✗ ✗ ✗ ✗ ✗ ⊙ ✗ ⊙ ⊙ ⊗ 12 5ð1;3Þ

(7, 1)

✗ ✗ ✗ ✗ ✗ ✗ ⊙ ✗ 4 KK6
✗ ✗ ✗ ✗ ✗ ✗ ⊙ ⊙ ⊙ 6 53

✗ ✗ ✗ ✗ ✗ ✗ ⊙ ⊙ ⊙ ⊗ 12 5ð1;3Þ
✗ ✗ ✗ ✗ ✗ ✗ ⊙ ✗ ⊗ ⊗ ⊗ 4 6ð3;1Þ
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space. This must correspond to the R-flux of the theory that
is generated by either dependence on winding coordinates
or by turning on polyvector potentials, of which we have
neither.

VI. DISCUSSION

In this paper we have applied the paradigm of the
complete flux formulation of double field theory to the
SL(5) exceptional field theory. In the O(10,10) formulation
of the former one has all fields collected into generalized
vielbein and the generalized dilaton. Acting by generalized
Lie derivative along the generalized vielbein on these fields
one introduces the notion of generalized fluxes and the
action and all field equations of DFT can bewritten in terms
of these. In contrast in exceptional field theories (in general
and in the SL(5) theory in particular) one finds the external
vielbein and various tensor fields in addition to the
generalized vielbein and the notion of a flux becomes less
evident and is no longer a simple consequence of gener-
alized Lie derivative along the generalized vielbein.
The list of all fluxes of the theory is given in (48). This

begins with field strengths for the 1-, 2- and 3-form
constructed in the usual way: start with commutator of
covariant derivatives Dμ and proceed with adding gauge
potentials to keep the expressions covariant. The scalar flux
FABC

D (the embedding tensor) and the anholonomy coef-
ficients F μν

ρ are derived in the same way as in double field
theory using generalized Lie derivative and ordinary Lie

derivative respectively. The remaining two F ðEÞ
μ A

B and
FMN μ̄

ν̄ are derived using the simple idea the fluxes must
be composed of derivatives Dμ or ∂MN of the fundamental
fields and the previous expressions do not include the
external derivative of thegeneralizedvielbein and the internal
derivative of the external vielbein. One may notice thatF μν

ρ

already contains ∂MN acting on the external vielbein hidden
inside Dμ, however we find that FMNμ̄

ν̄ actually enters the
Lagrangian and is an independent flux.
For the derived fluxes we find Bianchi identities both in

curved (mixed) and all flat indices and construct full flux
Lagrangian of the theory. The identities allow to define
magnetic potentials for those of the SL(5) ExFT and to
identify the corresponding (wrapped) branes,whichwe list in
Sec. V. Among the found states we find those listed in [23]
and additional branes corresponding to wrappings of exotic
membranes with at least one special direction left in the
external space.
The presented results can be used and extended in

several ways. The most obvious would be to derive flux
formulation for other exceptional field theories. More
fascinating directions of further research are related to
the formalism of polyvector deformations [47]. In the case
in question these are defined as such SL(5) transformation
generated by a tri-Killing that map a solution of 11D
supergravity equations to a solution. Since field equations

can be written in terms of generalized fluxes it is natural to
formulate this condition as invariance of fluxes that allows
to deal with first order equations rather than second order
equations of motion. In [47,52] a special truncation has
been imposed such that ExFT looks pretty much like DFT
and only the scalar flux FABC

D and a trace part of FMNμ̄
ν̄

are nonvanishing. This sensibly restricts the set of solutions
that fit the truncation ansatz and does not allow, e.g., the
majority of the solutions found in [53]. Full flux formu-
lation and the full list of fluxes presented here on allows to
apply the above logic to any background. For that one has
to derive conditions on the tri-Killing deformation ansatz
sufficient for all fluxes to stay invariant.
Another direction is related to employment of the

derived Bianchi identities to extended the construction of
[25] generalizing the same truncation of the 11D super-
gravity to the full theory. In this approach we first notice
that nonunimodular generalized Yang-Baxter deformations
transform generalized fluxes in a certain controllable way.
To write ExFT equations for such transformed fluxes back
in terms of space-time fields one has to impose Bianchi
identities. These give certain conditions on the nonunimo-
dularity parameter. We hope to report progress in these
directions in the nearest future.
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APPENDIX A: SL(5) ALGEBRA

Here we give a brief review of the SL(5) algebra [15].
SL(5) generators in the fundamental 5 and the representa-
tion 10 read

ðtIJÞMN ¼ δMJ δ
I
N −

1

5
δMN δ

I
J;

ðtIJÞMN
KL ¼ 4ðtIJÞ½M ½Kδ

N�
L� : ðA1Þ

They satisfy the standard commutation relations

½tMN; tKL� ¼ δML t
K
N − δKNt

M
L; ðA2Þ

and the matrix product is defined as

ðtIJtKL ÞMN ¼ ðtIJÞMKðtKL ÞKN ¼ 1

2
ðtIJÞMPQðtKLÞPQN : ðA3Þ

Projector to the adjoint representation of SL(5) in the
10 irrep is given by
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PM
N

K
L ¼ 1

3
κI1I2

J1J2ðtI1J1ÞMN ðtI2J2ÞKL; ðA4Þ

where the Killing form reads

κI1I2
J1J2 ¼ 1

12
ðtI1J1ÞMN

KLðtI2J2ÞKLMN

¼ δJ2I1 δ
J1
I2
−
1

5
δJ1I1 δ

J1
I1
: ðA5Þ

The projector satisfies the standard relation

PM
N

K
LP

L
K
P
Q ¼ 1

4
PM

N
KL

IJP
IJ

KL
P
Q

¼ PM
N

P
Q; ðA6Þ

and we also have PM
N

N
M ¼ 1

4
PMN

KL
KL

MN ¼ 24 ¼
dimðadjÞ. The Y-tensor of SL(5) ExFT and the projector
are related as follows [54]

YMK
NL ¼ ϵMMKϵMNL

¼ −3PM
N

K
L þ 1

5
δMN δKL þ δML δKN ; ðA7Þ

where ϵMMK is the totally antisymmetric tensor of SL(5)
ϵMNKLP. We will also need the relation

ϵTMNKLϵTPQRS ¼ −3PMN
PQ

KL
RS þ

4

5
δMN
PQ δKLRS þ 4δMN

RS δKLPQ:

ðA8Þ

APPENDIX B: GENERALIZED
DIFFEOMORPHISMS AND WEIGHTS

Consider transformations under generalized diffeomor-
phisms of a scalar of weight zero

δΛϕ ¼ 1

2
ΛMN

∂MNϕ: ðB1Þ

For its derivative we have the following transformation law

δΛ∂KLϕ ¼ ∂KLδΛϕ ¼ 1

2
∂KLðΛMN

∂MNϕÞ

¼ 1

2
ΛMN

∂KL∂MNϕþ 1

2
∂MNϕ∂KLΛMN

¼ 1

2
ΛMN

∂MN∂KLϕþ ∂KMϕ∂LNΛMN

þ ∂MLϕ∂KNΛMN −
1

2
∂KLϕ∂MNΛMN; ðB2Þ

where in the last equality we used the identity
∂½MNϕ∂KL�ΛMN ¼ 0, that follows from the section con-
straint (28). Hence, one concludes that ∂MNφ is a gener-
alized covector with weight λ ¼ − 1

5
and λ̃ ¼ −1. As a

result we see that derivative ∂MN adds certain weight. Note
that if the scalar ϕ had a nonvanishing weight λφ, i.e.,
transformed as

δΛϕ ¼ 1

2
ΛMN

∂MNϕþ λϕ
2
ϕ∂MNΛMN; ðB3Þ

its derivative ∂KLϕ would not transform as generalized
covector.
Consider now a generalized vector VMN of weight

λ½V� ¼ 6
5
(λ̃ ¼ 2) whose transformation reads

δΛVMN ¼ 1

2
ΛKL

∂KLVMN − 2VL½N
∂LKΛM�K þVMN

∂KLΛKL:

ðB4Þ

Let us now show that its derivative ∂MNVMN transforms
covariantly

δΛ∂MNVMN ¼ 1

2
ΛKL

∂KL∂MNVMN þ
�
1

2
∂MNΛKL

∂KLVMN − 2∂MNVLN
∂LKΛMK þ ∂MNVMN

∂KLΛKL

�

þ ð−2VLN
∂MN∂LKΛMK þ VMN

∂MN∂KLΛKLÞ

¼ 1

2
ΛKL

∂KL∂MNVMN þ 1

2
∂MNVMN

∂KLΛKL: ðB5Þ

Where we have used the section condition rewritten as

3∂½MNΛKL
∂KL�VMN þ 1

2
∂MNVMN

∂KLΛKL ¼ 1

2
∂MNVMN

∂KLΛKL ðB6Þ

to simplify terms in the first parentheses and the identity 3VMN
∂½MN∂KL�ΛKL ¼ 0 for the terms in the second parentheses.
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APPENDIX C: DERIVATION OF BIANCHI IDENTITIES IN FLAT INDICES

Bianchi identity 1.
Let us first define symbols fAB;CD ¼ ED

M∂ABEC
M, where again ∂AB ¼ EA

MEB
N
∂MN , and we transform flat SL(5)

indices to curved by generalized vielbein in SLð5Þ × Rþ. Taking into account that E∈ 24 ⊕ 1 of the group SL(5) such
defined tensor can be decomposed into irreducible representations as

fAB;CD ∈ 10 ⊗ ð24 ⊕ 1Þ ¼ 10 ⊕ 10 ⊕ 15 ⊕ 40 ⊕ 175: ðC1Þ

In terms of component tensor the decomposition can be written as follows

fAB;CD ¼ 2

9
fABδDC þ 1

9
fC½AδDB� −

1

9
qABδDC −

5

9
qC½AδDB� −

1

2
YC½AδDB� þ ZABC

D þ ΞABC
D; ðC2Þ

where

fAB ¼ fAB;CC ∈ 10;

qAB ¼ fC½B;A�C ∈ 10;

YAB ¼ fCðA;BÞC ∈ 15;

ZABC
D ¼ −

4

3
ϵABCEFZEFD ∈ 40;

ΞABC
D ∈ 175: ðC3Þ

For the 40 one has Z½ABC� ≡ 0, and for the 175 one has Ξ½ABC�D ≡ 0, ΞAB;C
A ≡ 0, ΞAB;C

A ≡ 0. Note that from the two
irreps 10 only the combination θAB ¼ 1

10
ðfAB þ qABÞ survives when considering generalized Lie derivative as well as the

full action.

δEAB
EC

M ¼ FABC
DED

M;

FABC
D ∈ 10 ⊕ 15 ⊕ 40: ðC4Þ

3D½μðeν̄νeρ̄ρ�EA
MEB

NF ν̄ ρ̄
ABÞ ¼N o1

−
1

16
ϵMNPQR

∂PQðeμ̄½μeν̄νeρ̄ρ�e−
3
7

ð7ÞE
C
RE−1F μ̄ ν̄ ρ̄Ce

1
14

ð7ÞÞ; ðC5Þ

using (48) the left-hand side can be rewritten as

3D½μðeν̄νeρ̄ρ�EA
MEB

NF ν̄ ρ̄
ABÞ ¼ 3EA

MEB
Neν̄½νeρ̄ρDμ�ðF ν̄ ρ̄

ABÞ þ 3F ½μνj λ̄F λ̄jρ�MN þ 6F ðEÞ½μjC½MF jνρ�N�C; ðC6Þ

and similarly the right hand side

−
1

16
ϵMNPQR

∂PQðeμ̄½μeν̄νeρ̄ρ�e−
3
7

ð7ÞE
C
RE−1F μ̄ ν̄ ρ̄Ce

1
14

ð7ÞÞ ¼ −
1

16
e
− 1
14

ð7Þϵ
MNPQREE

Reμ̄½μeν̄νeρ̄ρ�∂PQðe
1
14

ð7ÞF μ̄ ν̄ ρ̄EÞ

−
3

16
ϵMNPQRFPQ½μj λ̄F λ̄jνρ�R −

1

16
e
− 5
14

ð7Þϵ
MNPQRF μνρC∂PQðEC

RE−1Þ:
ðC7Þ

The last term here can be worked out using (C2)

−
1

16
e
− 5
14

ð7Þϵ
MNPQRF μνρC∂PQðEC

RE−1Þ ¼ −
1

16
e
− 5
14

ð7Þϵ
MNPQRF μνρCð−fPQ;R

C þ fPQ;D
DEC

RÞ

¼ −
1

16
e
− 5
14

ð7Þϵ
MNPQRF μνρC

�
2

3
fPQδRC þ 2

3
qPQδRC − ZPQR

C

�
: ðC8Þ

Using above results and definition (21) we obtain the first Bianchi identity (80a).

KIRILL GUBAREV and EDVARD T. MUSAEV PHYS. REV. D 109, 066024 (2024)

066024-20



Bianchi identity 2.
Using (48)

4D½μðeν̄νeρ̄ρeσ̄ σ�EA
MF ν̄ ρ̄ σ̄ AÞ ¼ 6F ½μνjλ̄F λ̄jρσ�M þ 4F ðEÞ½μjMCF jνρσ�C þ 4EA

Meν̄½νeρ̄ρeσ̄σDμ�F ν̄ ρ̄ σ̄ A; ðC9Þ

and

∂MNðeμ̄μeν̄νeρ̄ρeσ̄ σe−
4
7

ð7ÞEC
NE−1F μ̄ ν̄ ρ̄ σ̄

Ce
3
14

ð7ÞÞ ¼ eμ̄μeν̄νeρ̄ρeσ̄ σe
− 3
14

ð7ÞEC
N
∂MNðF μ̄ ν̄ ρ̄ σ̄

Ce
3
14

ð7ÞÞ þ 4FMN½μj λ̄F λ̄jνρσ�N

þ F μνρσ
CE∂MNðEC

NE−1Þ; ðC10Þ

the last term here due to 53 is

E∂MNðEC
NE−1Þ ¼ EA

Mð10θAB − YABÞ ¼ EA
M

�
2FABD

D −
1

2
FDðABÞD

�
: ðC11Þ

Using above in the identities (67c) we obtain (80b).
Bianchi identity 3.
To find the third identities in flat indices we need to work out the following

−
3

10
e−1ð7Þ∂MNðe

5
7

ð7ÞEA
MEB

NF ½μ̄ ν̄ABδλ̄�ρ̄e
2
7

ð7ÞÞ ¼ −
3

10
e
−2
7

ð7Þ∂ABðe
2
7

ð7ÞF ½μ̄ ν̄ABÞδλ̄�ρ̄ −
3

10
E2F ½μ̄ ν̄ABδλ̄�ρ̄∂MNðE−2EA

MEB
NÞ; ðC12Þ

where the last term can be transformed as follows

−
3

10
E2F ½μ̄ ν̄ABδλ̄�ρ̄∂MNðE−2EA

MEB
NÞ ¼ −

6

10
F ½μ̄ ν̄ABδλ̄�ρ̄EEA

M
∂MNðE−1EB

NÞ

¼ −6F ½μ̄ ν̄ABδλ̄�ρ̄θAB ¼ −
6

5
F ½μ̄ ν̄ABδλ̄�ρ̄FABC

C: ðC13Þ

Substituting this in (67d) we obtain Bianchi identities (80c).
Bianchi identity 4.
The Bianchi identities (67f) can be rewritten in the following form

0 ¼ −2D½μ̄jFMNjν̄� λ̄ þ
4

5
FMN½μ̄ρ̄δν̄� λ̄F ðEÞ

ρ̄A
A þ 2F ½μ̄jρ̄λ̄FMNjν̄�ρ̄ − F μ̄ ν̄

ρ̄FMNρ̄
λ̄ þ e

−1
7

ð7Þ∂MNðe
1
7

ð7ÞF μ̄ ν̄
λ̄Þ

þ 4

5
e
−1
7

ð7Þ∂MNðe
1
7

ð7ÞF
ðEÞ½μ̄jAAÞδjν̄�λ̄: ðC14Þ

To rewrite this in flat indices one has to turn curved indices of the flux under the derivative in the first term into flat ones:

2D½μ̄jðEA
MEB

NFABjν̄� λ̄Þ ¼ 2EA
MEB

ND½μ̄jðFABjν̄�λ̄Þ þ 4FAB½ν̄λ̄Dμ̄�ðE½B
NÞEA�

M

¼ 2EA
MEB

ND½μ̄jðFABjν̄�λ̄Þ þ 4FAB½ν̄λ̄FE
μ̄�C

½BEA�
MEC

N: ðC15Þ

Using this we obtain the deisired identities (80d) with flat indices.
Bianchi identity 5*.
To write the combined Bianchi identities (79) in flat indices we start with

2D½μðeν̄ν�F ðEÞ
ν̄A

BÞ ¼ 2eν̄½νDμ�ðF ðEÞ
ν̄�ABÞ þ F μν

ν̄F ðEÞ
ν̄A

B ðC16Þ

and rewrite

−∂ACðe−
2
7

ð7Þe
μ̄
μeν̄νF μ̄ ν̄

BCe
2
7

ð7ÞÞ ¼ −e−
2
7

ð7Þe
μ̄
μeν̄ν∂ACðF μ̄ ν̄

BCe
2
7

ð7ÞÞ − F μ̄½νjBCFACjμ�μ̄: ðC17Þ

Using the above in (79) we arrive at (80e).
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Bianchi identity 6.
The identities (67h) can be rewritten in the following form

DμFABC
E ¼N o7

−
1

2
∂½ABjF ðEÞ

μjC�E þ δ½AjE∂CDF ðEÞ
μjB�D −

1

2
δC

E
∂½AjDF ðEÞ

μjB�D − 2F ½AjDC
EF ðEÞ

μjB�D − FABD
EF ðEÞ

μC
D

þ FABC
DF ðEÞ

μD
E: ðC18Þ

We will also need the following identity

∂ABðe−
1
7

ð7Þe
μ̄
μF ðEÞ

μ̄C

E
e
1
7

ð7ÞÞ ¼ e
−1
7

ð7Þe
μ̄
μ∂ABðF ðEÞ

μ̄C

E
e
1
7

ð7ÞÞ þ FABμ
μ̄F ðEÞ

μ̄jCE: ðC19Þ

Using the above in the (67h) we obtain precisely (80f).
Bianchi identity 7.
Here we start with rewriting terms in the identities (67i) as follows

−∂MNFKLμ̄
ν̄ þ ∂KLFMNμ̄

ν̄ ¼ −EAB
KL∂MNFABμ̄

ν̄ þEAB
MN∂KLFABμ̄

ν̄ þEAB
PQFPQμ̄

ν̄ð−∂MNEAB
KL þ ∂KLEAB

MNÞ: ðC20Þ

Terms in the second line can bewritten back in terms of generalized fluxes, using the fact thatFPQμ̄
ν̄ is antisymmetric in PQ

EAB
PQFPQμ̄

ν̄ð−∂MNEAB
KL þ ∂KLEAB

MNÞ ¼ 2F ½KjQμ̄
ν̄fMN;jL�Q − 2F ½MjQμ̄

ν̄fKL;jN�Q: ðC21Þ

Finally using the decomposition (C2) for fAB;CD, properties of its components and the section constraint we obtain (see
Cadabra calculation FMNmunu in [26])

2F ½KjQμ̄
ν̄fMN;jL�Q − 2F ½MjQμ̄

ν̄fKL;jN�Q ¼ 2F ½KjQμ̄
ν̄FMN;jL�Q − 2F ½MjQμ̄

ν̄FKL;jN�Q: ðC22Þ

As the result we have

−∂MNFKLμ̄
ν̄ þ ∂KLFMNμ̄

ν̄ ¼ −EAB
KL∂MNFABμ̄

ν̄ þ EAB
MN∂KLFABμ̄

ν̄ þ 2F ½KjQμ̄
ν̄FMN;jL�Q − 2F ½MjQμ̄

ν̄FKL;jN�Q; ðC23Þ

that after substitution into (67i) gives us (80g).
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