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Quantum focusing is a powerful conjecture that plays a key role in the current proofs of many well-
known quantum gravity theorems, including various consistency conditions, and causality constraints in
AdS=CFT. We conjecture a (weaker) restricted quantum focusing, which we argue is sufficient to derive all
known essential implications of quantum focusing. Subject to a technical assumption, we prove this
conjecture in braneworld semiclassical gravity theories that are holographically dual to Einstein gravity in a
higher-dimensional anti–de Sitter spacetime.
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I. INTRODUCTION

Spacetime is emergent in quantum gravity: at length
scales much larger than the Planck length, an approximate
semiclassical description emerges where local quantum
fields propagate on a smooth spacetime manifold.
Despite its approximate nature, semiclassical gravity

quantifies and explains deep quantum gravity concepts
in simple geometric terms. The generalized entropy is
central to this story. Let B be a partial Cauchy slice, such
that ∂B is a smooth codimension-two spacelike submani-
fold. The generalized entropy of B is defined as [1–3]

SgenðBÞ ¼
Að∂BÞ
4Gd

þ SðBÞ þ � � � ; ð1Þ

where SðBÞ denotes the von Neumann entropy of the bulk
fields in B and the ellipsis denotes subleading contributions
to the generalized entropy from higher-curvature correc-
tions to Einstein gravity [4].
The importance of the generalized entropy becomes

particularly evident in the context of AdS=CFT [5]. Any
conformal field theory (CFT) subsystem is dual to a
quantum extremal region B, i.e., a stationary point of the
generalized entropy functional [6,7], with SgenðBÞ equal
to the boundary subsystem’s von Neumann entropy.1

This has, for example, led to a derivation of the Page
curve [9–11], extending even beyond AdS=CFT [12,13].

Furthermore, quantum extremal regions dictate salient
features of the holographic bulk-to-boundary map, result-
ing, for instance, in concrete proposals for its computa-
tional complexity [14]. This has important consequences
for the reconstruction of the black hole interior [14,15]
and has further sharpened some proposed resolutions to the
firewall paradox in evaporating black holes [16–18].
In addition, the generalized entropy outside black hole
apparent horizons2 has been identified with a coarse-
grained entropy, giving the generalized second law of such
horizons a statistical explanation [19–21].
The quantum focusing conjecture (QFC) [22], the quan-

tum analogue of the classical focusing theorem, is a power-
ful constraint in semiclassical gravity whose implications
are at the heart of the above discoveries’ consistency. For
example, the QFC is a crucial assumption in various
existence proofs of quantum extremal regions [14,23,24]
and their compatibility with causality on the boundary CFT
[23,25]. The QFC also implies the quantum Bousso bound,
quantum singularity theorems [26,27], the generalized
second law of causal horizons and holographic screens [28],
and the quantum null energy condition [22,29–31].
Despite its prominent role in semiclassical gravity and

holography, quantum focusing remains without a general
proof. The goal of this paper is to (partly) fill this gap. In
Sec. II we conjecture a condition weaker than the QFC,
which is sufficient to replace it in the aforementioned
applications. Section III includes a proof of this and another
relevant constraint in braneworld semiclassical gravity
theories that are holographically dual to Einstein gravity
in an asymptotically (locally) Anti–de Sitter (AdS) space-
time (henceforth referred to as braneworld gravity). We
conclude in Sec. IV with a discussion of some related ideas
and future directions.

1This is a special case of a more complicated story [8].
However, these complications can be ignored in a very large
class of states.
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2More accurately, quantum minimar surfaces [19–21].
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II. RESTRICTED QFC

We begin by defining some relevant objects. Let JþðBÞ
be the causal future of B and NþðBÞ ¼ ðJ̇þðBÞ − BÞ ∪ ∂B
a null hypersurface with affine generators ki (¼ ∂v). Now,
let ΣV be a Cauchy slice nowhere to the past of ∂B that
intersects NþðBÞ at v ¼ VðyÞ ≥ 0 (v ¼ 0 on ∂B, and y
denotes transverse coordinates on ∂B which label the
generators) and let BV ¼ ΣV ∩ JþðBÞ (see Fig. 1).
Let VλðyÞ be a one-parameter family of non-negative

functions that satisfy ∂λVλðyÞ ≥ 0. The QFC states that [28]

∂λΘðkÞðVλ; yÞ ≤ 0 for all y; ð2Þ
where

ΘðkÞðV; yÞ ¼
4Gdffiffiffiffiffiffi
hV

p δSgenðBVÞ
δVðyÞ ð3Þ

is called the quantum expansion [28] of BV at y∈ ∂BV and
hV is the determinant of the induced metric on ∂BV .
It is easy to see that the QFC implies

ΘðkÞð0; yÞ ≤ 0; for y∈Γ ⊆ ∂B ⇒
Vj∂B−Γ¼0

ΘðkÞðV; yÞ ≤ 0; ð4Þ

where Vj
∂B−Γ ¼ 0 means that V is zero on all generators

emanating from ∂B − Γ.
Interestingly, Eq. (4) is all that is required of the QFC in

the applications mentioned in the Introduction. A lookalike
condition, unrelated to the QFC, that is also crucial to the
aforementioned applications is3

ΘðlÞð0; yÞ ≤ 0⇒
VðyÞ¼0

ΘðlÞðV; yÞ ≤ 0; ð5Þ

where for any region BV we define li as the past-outward-
directed vector field orthogonal to ∂BV . Then, ΘðlÞðV; yÞ is
defined in obvious analogy with Eq. (3) (see Fig. 1).
Throughout our discussion so far, we can interchange

JþðBÞwithDþðBÞ (the future domain of dependence of B).
That is, we can consider inward deformations of B along
future-directed null geodesics orthogonal to ∂B. Then, ki

would be future-inward directed and li would be past-
inward directed. Together, conditions (4) and (5), along
with their inward and time-reversed versions, imply all of
the applications mentioned in (the fourth paragraph of) the
Introduction.4 It is therefore highly desirable to prove them.
Here, we conjecture a restricted QFC, which states that

ΘðkÞðVλ; yÞ ¼ 0 ⇒ ∂λΘðkÞðVλ; yÞ ≤ 0: ð6Þ

Even though the restricted QFC is weaker than the QFC, it
is sufficient to derive (4). To see this, pick any Vλ such that
V0ðyÞ ¼ 0 and V1ðyÞ ¼ VðyÞ, which further satisfies the
property that for each y, ΘðkÞðVλ; yÞ is a differentiable
function of λ. We expect that all physical states allow such a
choice.5 Then, a violation of (4) at some transverse point y
implies that there exists a λ such that ΘðkÞðVλ; yÞ ¼ 0, but
∂λΘðkÞðVλ; yÞ > 0. Therefore, (6) implies (4).
Similarly, the following inequality implies (5):

ΘðlÞðVλ; yÞ ¼ 0 ⇒
∂λVλðyÞ¼0

∂λΘðlÞðVλ; yÞ ≤ 0: ð7Þ

The rest of the paper is mainly devoted to proving
conditions (6) and (7) in braneworld gravity.

III. PROOF OF RESTRICTED QUANTUM
FOCUSING IN BRANEWORLD GRAVITY

We introduce the braneworld setup briefly in Sec. III A,
reviewing the salient points of the construction for our
purposes, before delving into the proofs of conditions (6)

FIG. 1. Given a partial Cauchy slice B, we define the null
hypersurface NþðBÞ ¼ ðJ̇þðBÞ − BÞ ∪ ∂B whose generators are
depicted with straight lines with tangent vectors ki. A future
Cauchy slice ΣV intersects NþðBÞ at v ¼ VðyÞ. On any surface
v ¼ VðyÞ, we can define a null vector field li orthogonal to it,
which is outward and past-directed. The quantum expansions
ΘðkÞ and ΘðlÞ of BV are given by the rates of change of SgenðBVÞ,
per unit transverse area, per unit affine length, as the region is
deformed locally at ∂BV along the ki and li directions, respec-
tively.

3This condition involves a variation of the von Neumann
entropy of B under null deformations of ∂B at different points.
This can be rewritten as an expression involving the von
Neumann entropy of three subsystems, which by the strong
subadditivity of the von Neumann entropy acquires a sign
[28,32]. But Eq. (5) also involves a contact term contribution
from the Dong entropy piece of the generalized entropy [4].

4It is a straightforward exercise to show this in most cases
which we leave to the interested and/or skeptical reader. Tech-
nically, an additional, often overlooked (and independent of the
QFC) assumption is involved: the loss of generators along Nþ,
which happens generically due to caustics and self-intersections,
cannot increase the value of Sgen. Separately, to arrive at the
quantum null energy condition, one needs to approach a
classically stationary point y on ∂B through a family of surfaces
that satisfy ΘðkÞ ¼ 0 at y in the G → 0 limit.

5The reader might object that, for example, in shock-wave
geometries with a delta-function energy source this is not the
case. However, such delta-function divergences only make sense
as a distribution, and a physically reasonable state needs to
involve a proper smearing of such delta functions which would
then allow a differentiable choice.

ARVIN SHAHBAZI-MOGHADDAM PHYS. REV. D 109, 066023 (2024)

066023-2



and (7) in Sec. III B. For much more elaborate discussions
of braneworld holography setups, see Refs. [33–44].

A. Brane setup

In the standard AdS=CFT setup, to compute the CFTd
partition function holographically one considers a cutoff
surface at z ¼ ϵ, where z is the Fefferman-Graham (FG)
radial coordinate of AdSdþ1, and computes the bulk action
including theGibbons-Hawking-York terms. Then, as ϵ is sent
to zero, appropriate counterterms are added to cancel
divergences.
One way to think about braneworld holography is to

instead consider a (physical) cutoff surface at a finite
distance with a metric that is free to fluctuate. The
previously divergent contributions (no longer removed
by counterterms) may now be interpreted as induced
gravity on the brane (e.g., as in the Randall-Sundrum
model [33]) which is coupled to a strongly interacting
holographic CFT. This is a semiclassical gravity theory on
the brane that is holographically dual to a higher-dimensional
classical (Einstein gravity) theory.
Explicitly, consider the bulk action

Itotal ¼
1

16πGdþ1

Z
ddþ1x

ffiffiffiffiffiffi
−ḡ

p �
R̄þ dðd − 1Þ

L2

�

þ 1

8πGdþ1

Z
brane

ddx
ffiffiffiffiffiffi
−g

p ðK − TÞ; ð8Þ

whereGdþ1 and L denote the bulk Newton constant and the
AdS radius, respectively, R̄ denotes the bulk Ricci scalar,
and K ¼ gijKij is the trace of the brane extrinsic curvature
tensor Kij. There also exists a brane-tension term (propor-
tional to T) which can fine-tune the brane location. The
intrinsic metric on the brane is free to fluctuate, resulting in
the equations of motion

Kij ¼ ðK − TÞgij: ð9Þ
A practical way to find explicit brane solutions like this

is to start with an asymptotically locally AdSdþ1 solution in
FG coordinates,

ds2 ¼ L2

z2
ðdz2 þ g̃ijðx̃; zÞdx̃idx̃jÞ; ð10Þ

with the condition (always achievable by an appropriate
rescaling of z) that the smallest length scale on
g̃ijðx̃; z ¼ 0Þ, denoted by L0, satisfies L0 ≫ L. Then, the
FG expansion remains valid at z ∼ L and it is easy to check
that, with T ¼ ðd − 1Þ=L, the brane will be located at

z ¼ LþOðL=L0Þ; ð11Þ

where the subleading corrections are x̃ dependent in
general. Importantly, by using the FG expansion one can

check that the induced gravity on the brane is Einstein
gravity plus higher-curvature corrections that are sup-
pressed by powers of L [38]:

Ibrane ¼
1

16πGd

Z
ddx

ffiffiffiffiffiffi
−g

p �
RþOðL2R2Þ�þ ICFT; ð12Þ

where x denotes brane coordinates,OðL2R2Þ schematically
denotes higher-derivative corrections, and ICFT denotes the
(nonlocal) action of the holographic CFT. Here,

Gd ∼
Gdþ1

L
: ð13Þ

Combined with Ld−1=Gdþ1 ∼ c, where c denotes the CFT’s
effective number of degrees of freedom, this gives

cGd ∼ Ld−2: ð14Þ

Therefore, L is the scale of the breakdown of the semi-
classical expansion on the brane.
For a general discussion, it is more convenient to

consider Riemann normal coordinates in a neighborhood
of the brane:

ds2 ¼ dn2 þ gijðn; xÞdxidxj; ð15Þ

where the brane is located at n ¼ 0. In these coordinates,
the brane equation of motion (9) at n ¼ 0 gives

∂ngij ¼ −
2

L
gij: ð16Þ

Now, consider a partial Cauchy slice B of the brane
spacetime. We have

SgenðBÞ ¼
AðX̄ðBÞÞ
4Gdþ1

; ð17Þ

where AðX̄ðBÞÞ denotes the area of the minimal area bulk
extremal surface X̄ðBÞ homologous to B [34,35,38–41,45].
We may view Eq. (17) as a definition of SgenðBÞ for our
purposes, though it must be possible to derive it from an
independent definition of SgenðBÞ. Note that the homology
condition here does not necessarily mean ∂X̄ ¼ ∂B. In
general, ∂B ⊂ ∂X̄, where some connected components of
∂X̄ may end with Neumann boundary conditions on a brane
(see Fig. 2).
A powerful feature of the brane-world scenario is that

merely bulk Einstein gravity induces Einstein gravity plus
higher derivative corrections to all orders (in cGd) on the
brane. This is a very convenient setup to study quantities
like the generalized entropy and conditions like the
restricted QFC which make sense to all orders in
the semiclassical expansion (controlled by L). Of course,
the bulk theory receives both quantum and stringy correc-
tions (discussed in Sec. IVA), which on the brane are
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interpreted as 1=c and inverse-coupling corrections,
respectively.
Before going on, we comment on connections to

previous works. In [38], Eq. (17) was expanded in small
L where it was shown to reproduce the Bekenstein-
Hawking entropy for the region B plus quantum corrections
and local extrinsic curvature terms on ∂B [4]. Furthermore,
our setup is close in spirit to the work of [46], which in the
standard AdS=CFT setup used the Hubeny-Rangamani-
Takayanagi formula [47,48] to prove the quantum null
energy condition in holographic CFTs (see also later work
[49,50]). The brane setup here is of course different in that
it is a gravitational theory. But, in addition, there are two
major technical differences with [46]. First, contrary to
[46], we do not analyze the extremal surface X̄ in a “near
boundary/brane” expansion. The treatment is fully non-
perturbative in that regard, enabling us to draw conclusions
that hold to all orders in the brane semiclassical expansion
parameter L. Furthermore, in [46] a crucial inequality was
derived from “entanglement wedge nesting,” proven earlier
only in the context of standard AdS=CFT [51]. We there-
fore use another, more direct technique here.

B. Proof

Let X̄μðn; yaÞ specify embedding coordinates for X̄,
where μ denotes bulk coordinates and ya is an extension
of the coordinates on ∂B to the bulk. We work in a gauge
where X̄n ¼ n. Therefore, X̄μ ¼ ðn; X̄iðn; yaÞÞ such that
X̄iðn ¼ 0; yaÞ is the embedding coordinates of the ∂B on
the brane. For simplicity, we can pick coordinates on the
brane such that X̄iðn ¼ 0; yaÞ ¼ yaδia (no summation). Let
H̄αβðn; yaÞ denote the induced metric on X̄μ.6 Here α and β
are either n or ya, the coordinates on X̄. Then,

A½X̄� ¼
Z

dndya
ffiffiffiffi
H̄

p
; ð18Þ

where H̄ ¼ detðH̄αβÞ. By taking a functional derivative of
this area subject to the null deformation of B in the ki or li

directions, we can compute the corresponding quantum
expansions,

ΘðkÞðB; yÞ ¼ −
kμtμ

lS

����
∂B
; ð19Þ

ΘðlÞðB; yÞ ¼ −
lμtμ

lS

����
∂B
; ð20Þ

where B in the argument of Θmeans evaluating it at V ¼ 0.
Further, kμ andlμ are the push-forwards of ki andli, tμ is the
unique unit-normalized tangent vector of X̄ orthogonal to
∂B, and lS ¼ Gdþ1=Gd, the effective short-distance cutoff
of the local gravitational theory on the brane.7 Note that by
definition lS ∼ L, and lS is simply introduced for conven-
ience. Therefore, we take appropriate gauge-invariant length
scales associated with the background spacetime, state, and
region B to be much larger than lS to respect the semi-
classical regime. Note that since X̄ is extremal, the only
contribution to Eqs. (19) and (20) comes from the subset of
∂X̄ with Dirichlet boundary conditions, i.e. ∂B.
In our gauge, we have H̄naj∂B ¼ 0, a condition that we

can preserve in a neighborhood of ∂B on X̄ by defining the
extension of the ya coordinates into the bulk appropriately.
We also have

H̄nnðn; yÞ ¼ 1þ gij∂nX̄i
∂nX̄j: ð21Þ

To make sure that X̄ is a spacelike surface, we need
H̄nn > 0. Using Eq. (19), one can write ∂nX̄i in terms of the
quantum expansions of B,

∂nX̄ijn¼0¼−
lSΘðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−2l2
SΘðkÞΘðlÞ

q ki−
lSΘðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−2l2
SΘðkÞΘðlÞ

q li;

ð22Þ

where ki and li are normalized such that kili ¼ 1. Then,

Hnnjn¼0 > 0 ⇒ 2l2
SΘðkÞΘðlÞ < 1: ð23Þ

In fact, we expect (and henceforth assume) from the
validity of the semiclassical expansion that

FIG. 2. An arbitrary region B on the (top) brane is shown with a
minimal area extremal surface X̄ homologous to it. While some
connected components of X̄ end on ∂B, in general there may be
others that end on another brane (satisfying a Neumann boundary
condition). In such cases, we can glue the solution to itself across
the lower brane, reducing to a scenario with only a Dirichlet
boundary condition.

6To sum up the notation, μ and ν are bulk indices, i and j are
brane indices, α and β denote indices along X̄, and a denotes
indices on ∂B. So, e.g., μ ¼ fn; ig and α ¼ fn; ag.

7More specifically, this scale is the species scale of the brane
semiclassical theory. At this scale, the equations for the metric
remain classical, though they are no longer local. This is
analogous to physics at the string scale. See Ref. [52].
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jΘðkÞΘðlÞj ≪ l−2
S : ð24Þ

This makes sense becauseΘðkÞΘðlÞ is a coordinate-invariant
quantity related to the brane region and state. For example,
if we take B to be the ball of radius R in Minkowski space,
this condition is equivalent to R ≫ lS, which is clearly
required for the validity of the semiclassical analysis. From
now on, we add the condition (24) to the list of other
curvature invariants that satisfy the semiclassical condition.
Let Vλ¼0ðyÞ ¼ 0. Without loss of generality, we focus on

the conditions (6) and (7) when evaluated at λ ¼ 0. In order
to compute ∂λΘðkÞðVλÞjλ¼0 and ∂λΘðlÞðVλÞjλ¼0, we need to
calculate the response of the extremal surface X̄ðBÞ to an
infinitesimal deformation of B at ∂B in the ki direction.
A deformation of X̄ can be specified by a deformation
vector field αk̄μ þ βlμ in the normal bundle of X̄, where k̄μ

and lμ are null vector fields orthogonal to X̄ (which we
normalize with k̄μlμ ¼ 1) and α and β are scalar functions
on X̄. To deform X̄, we can then follow (by a fixed affine
parameter λ) geodesics fired from X̄ along αk̄μ þ βlμ. After
some computation from Eq. (19), we get

∂λΘðkÞðVλ; yÞ ¼
1

lSðH̄nnÞ12
�
−ki∂nðαk̄i þ βliÞjn¼0

þ l3
SðH̄nnÞ32ΘðkÞ∂λðΘðkÞΘðlÞÞ

�
: ð25Þ

At ∂B, the deformation of X̄ projected onto the brane
needs to satisfy the following condition:

ðαk̄i þ βliÞj
∂B ¼ ð∂λVλÞki; ð26Þ

where k̄i and li are the projections of k̄μ and lμ onto the
brane. In general, k̄i (li) is different from ki (li). See Fig. 3.
Using the definitions of k̄μ and lμ, it is possible to derive

k̄ij
∂B ¼ ki þ

−1þ l2
SΘðkÞΘðlÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2l2

SΘðkÞΘðlÞ
q

l2
SΘ2

ðlÞ
li;

ð27Þ

lij
∂B ¼

1 − l2
SΘðkÞΘðlÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2l2

SΘðkÞΘðlÞ
q
2

li

−
l2
SΘ2

ðlÞ
2

ki: ð28Þ

From this, we can derive

αj
∂B ¼

1 − l2
SΘðkÞΘðlÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2l2

SΘðkÞΘðlÞ
q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2l2

SΘðkÞΘðlÞ
q ∂λVλ; ð29Þ

βj
∂B ¼

1 − l2
SΘðkÞΘðlÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2l2

SΘðkÞΘðlÞ
q

l2
SΘ2

ðlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2l2

SΘðkÞΘðlÞ
q ∂λVλ: ð30Þ

We can simplify the above expressions using only
l2
SΘðkÞΘðlÞ ≪ 1:

k̄ij
∂B ¼ ki −

l2
SΘ2

ðkÞ
2

li þ � � � ; ð31Þ

lij
∂B ¼ li −

l2
SΘ2

ðlÞ
2

ki þ � � � ; ð32Þ

and

αj
∂B ¼ ∂λVλ þ � � � ; ð33Þ

βj
∂B ¼

l2
SΘ2

ðkÞ
2

∂λVλ þ � � � : ð34Þ

As an important side note, it does not make sense to
demand that the absolute values of lSΘðkÞ and lSΘðlÞ are
small because their values can change under a simultaneous
rescaling of ki and li. In other words, these dimensionless
quantities are coordinate dependent.8

As functions on X̄, α and β are constrained by the fact
that the deformation of X̄ needs to take it to a nearby
extremal surface. Deriving this constraint is a straightfor-
ward exercise (see, e.g., [53]). The result is

FIG. 3. B is a subregion on the brane (located at n ¼ 0). The
generalized entropy of B is computed by the Bekenstein-Hawking
entropy of theminimal area bulk extremal surface X̄ homologous to
B. The null vector fields ki and li orthogonal to ∂B and the null
vector fields k̄μ and lμ orthogonal to ∂X̄ are depicted. ki and k̄μ

align at a point y∈ ∂B where ΘðkÞðB; yÞ ¼ 0.

8For example, for an evaporating black hole in infalling
Eddington-Finkelstein coordinates, it is possible to make them
arbitrarily large [10,11].
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0
B@ D̂þ −ς̄2ðlÞ−8πGT̄μνl

μlν

−ς̄2ðk̄Þ−8πGT̄μνk̄μk̄ν D̂−

1
CA
�
α

β

�
¼ 0;

ð35Þ

where ς̄2ðkÞ and ς̄2ðlÞ denote shear-squared terms on X̄, and

D̂� ¼ −∇2 ∓ 2χα∇α −
�
χ̄αχ̄α �∇αχ̄

α þ Ḡμνk̄μl
ν −

r̄
2

�
;

ð36Þ

where ∇α is the covariant derivative on X̄μ, χ̄α ¼ lμ∇αk̄μ,
Ḡμν is the bulk Einstein tensor, and r̄ is the intrinsic Ricci
scalar on X̄.
The matrix in Eq. (35) is a particular linear operator

acting on pairs of scalar functions on X̄. The result is a
“cooperative elliptic system,” which has in particular been
studied in [54] and was first discussed in the context of the
standard AdS=CFT correspondence in [53]. We use an
important theorem in these works, a special case of which
(adapted to our needs) we state here:
Theorem 1. Consider a fully coupled cooperative elliptic

system, i.e., a system of linear differential equations

�
L̂1 f

g L̂2

��
A

B

�
¼ 0; ð37Þ

where A and B are functions on an open domain U of Rn, f
and g are nonpositive functions, and Li (for i ¼ 1 or 2) are
elliptic operators,

L̂i ¼ ðHiÞαβ∂α∂β þ ðbiÞα∂α þ ci; ð38Þ

where ðHiÞαβ are positive-definite matrices for each i. Now,
suppose Eq. (37) has a supersolution ðAþ; BþÞ, i.e.,

AþjU ≥ 0; ð39Þ

BþjU ≥ 0; ð40Þ

ðL̂1Aþ þ fBþÞjU ≥ 0; ð41Þ

ðL̂2Bþ þ gAþÞjU ≥ 0; ð42Þ

and either Aþ or Bþ is nonzero somewhere on ∂U, or either
(41) or (42) is not saturated somewhere in U. Then, for any
(sufficiently smooth) solution ðA;BÞ to Eq. (37), either

�
Aj

∂U ≥ 0

Bj
∂U ≥ 0

⇒

�
AjU > 0;

BjU > 0;
ð43Þ

or
�
AjU ¼ 0;

BjU ¼ 0:

In [53], Theorem 1 was applied to the extremal surface
deviation (35) in the standard AdS=CFT context. We
assume that the extension of this theorem from domains
of Rn to a manifold like X̄ is trivial. The bulk null energy
condition implies9

ð−ς̄2ðk̄Þ − 8πGT̄μνk̄μk̄νÞ
���
X̄
≤ 0; ð44Þ

ð−ς̄2ðlÞ − 8πGT̄μνl
μlνÞ

���
X̄
≤ 0: ð45Þ

In the highly nongeneric case where one of the above
inequalities in saturated everywhere on X̄, the analysis
becomes trivial. Therefore, without losing anything, we
restrict to the case where they are both nonsaturated some-
where on X̄. Then, the only remaining step tomakeTheorem1
nontrivially applicable is to demonstrate the existence of a
supersolution. In the standard AdS=CFT context, this follows
from the (classical) maximin prescription [51].
This brings us to our main technical assumption: in our

setup, where the bulk is cut off by a brane, we henceforth
assume that such a supersolution exists. We leave a proof of
this assumption to future work, but we comment here on
why we believe this is a mild assumption. It is possible to
prove that the matrix operator in Eq. (35) has a real
eigenvalue (called the principal eigenvalue) that is equal
to or smaller than the real part of all of its other eigenvalues,
and whose corresponding eigenvector is a pair of positive
functions on X̄ [55]. The central assumption here would
then follow if this eigenvalue is positive. In the standard
AdS=CFT setup, the positivity of this eigenvalue is a
simple consequence of the (classical) maximin prescrip-
tion. Now, from Eq. (11), we expect that for an X̄ anchored
to the brane, this eigenvalue is only perturbatively (in
L=L0) different from that of standard AdS=CFT, therefore
maintaining its positive sign.
Last, if there exist connected components of ∂X̄ satisfy-

ing Neumann boundary conditions on some brane, we can
“double up” the solution by gluing across the brane, which
would then reduce the boundary conditions of X̄ to purely
Dirichlet ones (see Fig. 2).
Assuming the existence of a supersolution, it follows that

�
αj

∂B ≥ 0

βj
∂B ≥ 0

⇒
�
αjX̄ ≥ 0;

βjX̄ ≥ 0:
ð46Þ

9Alternatively, we can simply assume the (classical) restricted
focusing in the bulk.
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Armed with (46), we can now prove our main results, the
conditions (6) and (7). First, since ∂λVλ ≥ 0, Eqs. (33) and
(34) imply the lhs of (46). Furthermore, ΘðkÞ ¼ 0 simplifies
Eq. (25) in the following way:

ΘðkÞðB; yÞ ¼ 0

⇒ ∂λΘðkÞðVλ; yÞjλ¼0 ¼ −
αki∂nk̄i þ ∂nβ

lS

����
n¼0

: ð47Þ

By Eq. (30), βðn ¼ 0; yÞ ¼ 0. Then, Eq. (46) implies that

∂nβðn; yÞjn¼0 ≥ 0: ð48Þ

To make contact with kil
i, we first use k̄μk̄μ ¼ 0:

ðk̄nÞ2 þ gijk̄ik̄j ¼ 0; ð49Þ

where k̄n is the component of k̄μ orthogonal to the brane.
Note that ΘðkÞðB; yÞ ¼ 0 implies k̄iðn ¼ 0; yÞ ¼ ki, which
in turn implies k̄nðn ¼ 0; yÞ ¼ 0. Taking an n derivative
results in

gijki∂nk̄jðn; yÞjn¼0 ¼ 0; ð50Þ

where we made use of the brane equations of motion
∂ngijjn¼0∝gij, k̄iðn¼0;yÞ¼ki, and k̄n∂nk̄nðn; yÞjn¼0 ¼ 0.
The last condition requires showing that ∂nk̄n is convergent
enough as n → 0 which we have relegated to the Appendix.
Putting everything together,

ΘðkÞðB; yÞ ¼ 0

⇒ ∂λΘðkÞðVλ; yÞjλ¼0 ¼ −
∂nβðn; yÞjn¼0

lS
≤ 0: ð51Þ

This concludes the proof of (6). Let us emphasize the role
played by the condition ΘðkÞ ¼ 0 in the restricted QFC.
Through Eq. (30), it implies βðn ¼ 0; yÞ ¼ 0, which by
Eq. (46) leads to ∂nβðn; yÞjn¼0 ≥ 0, something crucial in
deriving the bound in Eq. (51). Without it, we were unable to
prove a bound on ∂λΘðkÞðVλÞ. However, in Sec. IV B we
discuss a concrete sense in which βðn; yÞ ≥ 0 “approxi-
mately” bounds how positive ∂λΘðkÞðVλ; yÞ can get when
ΘðkÞðVλ; yÞ ≠ 0. Note also that the derivation of Eq. (51) did
not rely on truncating the small-lS expansion anywhere, and
therefore the result is expected to be true to all orders in the
lS expansion.10

For the condition (7), we have

ΘðlÞðB; yÞ ¼ 0

⇒
∂λVλðyÞ¼0

∂λΘðlÞðVλ; yÞjλ¼0 ¼ −
∂nαðn; yÞjn¼0

lS
≤ 0: ð52Þ

The inequality in (52) follows from

∂λVλðyÞ ¼ 0 ⇒ αðn ¼ 0; yÞ ¼ 0 ⇒ ∂nαðn; yÞjn¼0 ≥ 0;

ð53Þ

where the second implication follows from the condi-
tion (46).
In the remainder of this section, we discuss two addi-

tional inequalities that follow from the strong subadditivity
of the von Neumann entropy (see footnote 3 and [28,32]).
These are

δΘðkÞðV; yÞ
δVðy0Þ

����
y≠y0

≤ 0; ð54Þ

δΘðlÞðV; yÞ
δVðy0Þ

����
y≠y0

≤ 0: ð55Þ

Deriving these conditions is a nice consistency check. This
can be done by choosing Vλ ¼ λδd−2ðy − y0Þ. Then, for
y ≠ y0,

δΘðkÞðV; yÞ
δVðy0Þ

����
V¼0

¼ −1
lS

�
∂nβðn; yÞjn¼0

þ l2
SΘðkÞðB; yÞ2

2
∂nαðn; yÞjn¼0

�
; ð56Þ

δΘðlÞðV; yÞ
δVðy0Þ

����
V¼0

¼ −1
lS

�
∂nαðn; yÞjn¼0

þ l2
SΘðlÞðB; yÞ2

2
∂nβðn; yÞjn¼0

�
; ð57Þ

where we have dropped terms suppressed by l2
SΘkΘl,

which are not relevant since they multiply either ∂nβ or ∂nα
in the expressions above. Now, the condition (46) implies
that for y ≠ y0,

∂nαðn; yÞjn¼0 ≥ 0; ð58Þ

∂nβðn; yÞjn¼0 ≥ 0; ð59Þ

resulting in the desired signs (54) and (55).

IV. DISCUSSION

The following ideas will be explored and expanded on in
forthcoming work.

10In fact, hinging on the existence of the extremal surface X̄,
the proof holds nonperturbatively.
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A. Bulk quantum and higher-curvature corrections

Even though Eq. (17) already includes all perturbative-
in-Gd corrections, it receives additional bulk quantum, i.e.,
OðGdþ1Þ, and higher-curvature corrections, i.e., OðδÞ,
where δ is the small scale suppressing the higher-curvature
terms in the bulk gravity action. Studying these corrections
(which are 1=c and inverse coupling corrections from the
brane perspective) is very important since it will elucidate
whether restricted QFC (or at least its proof here) is an
accident of a leading-order analysis of the braneworld
or something that holds more generally. We comment on
how one could extend the proof of restricted QFC to
include these corrections, leaving a thorough analysis to
future work. Following the quantum extremal surface
prescription [56], we assume that the exact formula, i.e.,
to all orders in bulk perturbation theory, for the brane
generalized entropy is given by

SgenðBÞ ¼ SgenðH̄ðBÞÞ; ð60Þ

where H̄ðBÞ is the homology slice of the quantum extremal
surface X̄ðBÞ homologous to B with the smallest bulk
generalized entropy. Here the bulk generalized entropy is
given by

Sbulkgen ðH̄ðBÞÞ ¼ QðX̄ðBÞÞ þ SbulkðH̄ðBÞÞ þ � � � ; ð61Þ

where QðX̄Þ is the Dong entropy functional [4]

QðX̄Þ ¼ AðX̄Þ
4Gdþ1

þOðλÞ ð62Þ

and SbulkðH̄ðBÞÞ denotes the bulk von Neumann entropy
in HðBÞ.
To prove (6) and (7), these perturbative corrections only

matter if Eq. (48) is saturated at leading order. For the
condition (6), saturation implies

∂nβðn; yÞjn¼0 ¼ 0: ð63Þ

A generalization of the Hopf lemma [57] then implies the
very stringent condition that

βjX̄ ¼ 0: ð64Þ

That is, at leading order a small null deformation of ∂B in
the null direction generates a null deformation everywhere
on X̄. Inspecting the extremal surface deviation (35), this
also implies that to leading order (in δ or Gdþ1) X̄ lies on a
locally stationary horizon. This simplifies the analysis
greatly. The next-to-leading-order corrections can be
solved for explicitly by Eq. (35). A possibility is that
∂λΘðkÞðVλ; yÞ reduces at next-to-leading-order to integrated
bulk restricted QFC. Higher-order corrections will not be
important if the saturation of the integrated bulk restricted

QFC is only possible to all orders in the bulk δ or Gdþ1

expansions. A similar argument can be made for the
condition (7).
One could also consider a generalization of our setup

where additional intrinsic brane curvature terms (beyond
the pure tension term) are added directly to the brane
action [58]. If such terms are perturbatively small, i.e., they
only cause small changes to the coefficients of the brane
gravity derivative expansion, Eq. (12), then it is possible
that the treatment discussed earlier in this subsection would
suffice to generalize the proofs of restricted QFC. If such
corrections are large though, we do not know how to use
our method to derive the restricted QFC. One possibility is
that such theories are pathological. This possibility was
discussed in [59], where the authors emphasized that
nontension terms added to the brane lead to a brane null
geodesic not being a bulk null geodesic (since Kij will no
longer be proportional to gij), therefore violating the “brane
causality condition,” i.e., there will be bulk causal curves
connecting points on the brane that are spacelike separated
on the brane’s causal structure.

B. Approximate QFC

By Taylor expanding β near n ¼ 0, we get [modulo O(1)
factors in the coefficients]

βðn; yÞ ∼ l2
SΘ2

ðkÞ − nlSð∂λΘðkÞ þ Θ2
ðkÞÞ

þ n2∂2nβðn; yÞjn¼0 þOðn3Þ: ð65Þ

From Eq. (35), we have that ∂
2
nβðn; yÞjn¼0 ∼ l−2

S .
Therefore, if at some value of n the first two terms become
equal while their absolute values are much larger than the
third- and higher-order terms, then βðn; yÞ ≥ 0 would be
violated. It is easy to check that this leads to an “approxi-
mate quantum focusing” condition11

∂λΘðkÞ ≲ ð∂λVλÞΘ2
ðkÞ: ð66Þ

This bound becomes a sharp statement when there exists a
perturbative parameter ϵ in the problem and ∂λΘðkÞ and ΘðkÞ
acquire ϵ expansions. Then, in the ϵ → 0 limit, (66) states
that the leading lhs term, if it is of lower order in ϵ than the
leading rhs term, is nonpositive.
It would be interesting to explore nontrivial applications

of (66). Here we provide one. In [60], it was found that in
Einstein gravity plus higher-curvature corrections, classical
focusing (of the Dong entropy functional [4]) is upheld on
cross sections of a causal horizon that is a slight perturba-
tion of a Killing horizon. This was shown by observing that
∂λΘðkÞ ¼ −Gdð∂λVλÞTijkikj þOðG2

dÞ, which is then non-
positive at OðGdÞ by the null energy condition.

11Douglas Stanford suggested a similar bound during a
discussion about this work.
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While this does not follow from the restricted QFC
(since ΘðkÞ is generally nonzero on such perturbed hori-
zons), it does follow from (66): on the perturbed horizon,
ΘðkÞ ¼ OðGdÞ, forcing any leading term in ∂λΘðkÞ lower
than OðG2

dÞ to be nonpositive.

C. Does a QFC counterexample exist?

As discussed earlier, while restricted quantum focusing
(6) has a natural proof in the braneworld scenario, it is not
clear to us how to leverage the same technique to prove the
original QFC (2). This begs the question of whether the
QFC is true.
Here we discuss a setup where a QFC counterexample

may be plausible. By Raychaudhuri’s equation in Einstein
gravity, we have

Θ0
ðkÞ ¼ −

θ2ðkÞ
d − 2

− ς2ðkÞ − 4Gd

�
2πhT̂ijikikj − Ŝ00ðkÞ

�
; ð67Þ

where θðkÞ and ς2ðkÞ are the classical expansion and the

shear-squared of ∂B, respectively, hT̂iji is the expectation
value of the renormalized stress-energy tensor, and

Θ0
ðkÞδ

d−2ðy − y0Þ ¼ lim
V→λδd−2ðy−y0Þ

∂λΘðkÞðVλ; yÞ; ð68Þ

Ŝ00ðkÞδ
d−2ðy − y0Þ ¼ lim

V→λδd−2ðy−y0Þ
∂λ

�
1ffiffiffiffiffiffi
hV

p δŜ
δV

����
Vλ

�
; ð69Þ

where Ŝ denotes the renormalized von Neumann entropy of
bulk fields. In [61,62], substantial evidence was provided
that for interacting CFTs, at least when the domain of
dependence of B is a Rindler wedge, we have

2πhT̂ijikikj ¼ Ŝ00ðkÞ: ð70Þ

Now, let B be a ball in flat space. We then expect new
terms in Eq. (70). In particular, by dimensional analysis we
expect a term proportional to θðkÞŜ

0
ðkÞ. Such a term does not

have a definite sign and, when θðkÞ=S0ðkÞ ¼ OðGdÞ, its sign
may affect the sign of Θ0

ðkÞ.
Interestingly, when we instead consider the restricted

QFC, where we have the additional constraint ΘðkÞ ¼ 0,
i.e.,

ΘðkÞ ¼ θðkÞ þ 4GdŜ
0
ðkÞ ¼ 0; ð71Þ

then θðkÞŜ
0
ðkÞ does acquire a definite sign, giving the

restricted QFC a fighting chance. Examples like this will
be explored in forthcoming work.
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APPENDIX: JUSTIFYING EQ. (50)

The bulk metric in a neighborhood of the brane is
given by

ds2 ¼ dn2 þ gijðn; xÞdxidxj: ðA1Þ

The vector fields k̄μ are orthogonal to X̄ and null, so, in
particular,

k̄n þ gijk̄i∂nX̄j ¼ 0; ðA2Þ

ðk̄nÞ2 þ gijk̄ik̄j ¼ 0: ðA3Þ

Taking n derivatives of the above equations, we get

lim
n→0

ð∂nk̄n þ gij∂nk̄i∂nX̄j þ gijk̄i∂2nX̄jÞ ¼ 0; ðA4Þ

lim
n→0

ðk̄n∂nk̄n þ gij∂nk̄ik̄jÞ ¼ 0; ðA5Þ

where we used ΘðkÞðB; yÞ ¼ 0 and the brane equations of
motion to simplify the first expression. By Eq. (22), a
combination of the above equations gives

lim
n→0

2
64∂nk̄n

0
B@1þ lSΘlk̄nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2l2
SΘðkÞΘðlÞ

q
1
CAþ gijk̄i∂2nX̄j

3
75 ¼ 0:

ðA6Þ

SinceΘðkÞðB; yÞ andΘðlÞðB; yÞ are finite, this implies via
Eq. (22) that ∂nX̄ijn¼0 is finite. We now take advantage of
the extremal surface equation:

1ffiffiffiffi
H̄

p ∂α

� ffiffiffiffi
H̄

p
H̄αβ

∂βX̄i
�þ H̄αβΓ̄i

kl∂αX̄
k
∂βX̄l ¼ 0: ðA7Þ

This equation relates gijk̄i∂2nX̄jjn¼0 to terms involving
∂nX̄i. By the smoothness of ∂B, we expect ΘðkÞðB; yÞ and
ΘðlÞðB; yÞ to be well behaved (e.g., finite and differentiable
at y), which then forces gijk̄i∂2nX̄jjn¼0 to be finite. Since
k̄nðn ¼ 0; yÞ ¼ 0, Eq. (A6) now implies the desired result
that limn→0 k̄nðn; yÞ∂nk̄nðn; yÞ ¼ 0.
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