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We define generalized Gaussian states for quantum cosmological models based on the suð1;1Þ algebra,
with particular emphasis on its realization in group field theory for a single field mode, and study their
semiclassical properties. These states are generalizations of coherent, squeezed, and thermal states
considered previously. As two possible characterizations of semiclassicality, we contrast the requirement of
small relative fluctuations in volume and energy with the saturation of the Robertson-Schrödinger
uncertainty principle. We find that for the most general class of states, the appearance of small relative
fluctuations, which we take as the main criterion relevant for the emergence of cosmology, is mostly
determined by the amount of displacement used to define the state. We also observe that defining such
generalized Gaussian states is less straightforward in the algebraic approach to canonical quantization of
group field theory, and discuss special cases.
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I. INTRODUCTION

Describing macroscopic phenomena in quantum
mechanics and quantum field theory often requires a semi-
classical approximation. In a canonical setting, such an
approximation may be implemented by choosing suitable
states with (to be specified) semiclassical properties,
whereas in the path integral it is often associated with
stationary phase approximations. A prime example, closely
related to what we will discuss in the following, is the
description of a macroscopic electromagnetic field in terms
of coherent or squeezed states in quantum optics. In
general, an important question is whether coherence or
semiclassical properties of an initially chosen state will be
preserved under time evolution. This is famously the case
for the harmonic oscillator (or free quantum fields), but not
for more general interacting quantum systems.
In quantum gravity and quantum cosmology, identifying

a semiclassical spacetime description is a rather crucial
requirement, both conceptually and for making the link
to the low-energy world in which we do not observe
spacetime superpositions. In traditional Wheeler-DeWitt
quantum cosmology, semiclassical spacetime was often

identified in a WKB (Wentzel-Kramers-Brillouin) regime
in which the wave function is assumed to be highly
oscillating. This approximation is at the heart of applica-
tions to cosmological perturbation theory, in which the
curved spacetime quantum field theory setting of infla-
tionary cosmology emerges from the semiclassical limit of
quantum cosmology (see, e.g., [1–3]). The notion of semi-
classicality applied here is different from that of using
coherent states or wave packets; a WKB state is (by
assumption) not localized in configuration space, but rather
describes an entire classical trajectory “all at once.”
Loop quantum gravity (LQG), one of the most estab-

lished approaches to the problem of quantum gravity, offers
its own proposals for the semiclassical limit. Again, here
we focus on the canonical formulation of the theory, in
which one works with quantum states living on super-
positions of graphs. A class of coherent states for LQG,
which has found many applications in the literature, was
proposed in [4], whereas more recent proposals include [5].
These states realize the traditional properties of coherent
states, peakedness around a given classical configuration
with small uncertainties. In general, given the rather com-
plicated dynamics of full LQG, it is not clear whether these
semiclassical properties would be preserved dynamically.
In this paper, we focus on the group field theory (GFT)

approach [6] whose canonical formulation is closely related
to the canonical formalism for LQG; Fock space quantiza-
tions of GFT lead to state spaces that can be interpreted
in terms of spin-network states of LQG [7]. One may ask
what kind of GFT quantum states could be used for a
semiclassical, macroscopic limit of the theory, relevant in

*acalcinari1@sheffield.ac.uk
†s.c.gielen@sheffield.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 109, 066022 (2024)

2470-0010=2024=109(6)=066022(25) 066022-1 Published by the American Physical Society

https://orcid.org/0000-0003-3028-0587
https://orcid.org/0000-0002-8653-5430
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.066022&domain=pdf&date_stamp=2024-03-25
https://doi.org/10.1103/PhysRevD.109.066022
https://doi.org/10.1103/PhysRevD.109.066022
https://doi.org/10.1103/PhysRevD.109.066022
https://doi.org/10.1103/PhysRevD.109.066022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


particular in the application to cosmology. Here, a particu-
larly influential idea has been to use analogies with
condensed matter physics and think of a “condensate” of
quanta of geometry, or LQG spin-network vertices [8–10].
Such a condensate can be characterized in a mean-field
approximation, or equivalently using a Fock coherent state
built on the fundamental field operators or the annihilation
and creation operators of the theory. Many cosmological
applications of GFT have focused exclusively on such
coherent states in extracting a semiclassical limit [11]. Our
goal here is to broaden this perspective and discuss a class
of semiclassical states that go beyond the simplest choice of
Fock coherent states. In particular, we want to write down
the most general Gaussian state associated with a single
GFT (Peter-Weyl) field mode, and also discuss mixed states
following the work of [12] on thermal states in GFT. We
will build on the work of [13], which already discussed
some more general types of coherent states built on the
suð1;1Þ algebra of observables most relevant for cosmol-
ogy, and extend the results of that paper substantially.
While we are mostly interested in GFT models, our

results are much more generally applicable to any suð1;1Þ
cosmological scenario. For example, as pointed out in [14],
isotropic models of loop quantum cosmology and (bosonic)
GFT cosmology can be seen as different realizations of the
same underlying structure (sometimes called “harmonic
cosmology” [15]). The suð1;1Þ Lie algebra was then also
investigated in detail in the context of loop cosmology in
[16], where it was realized that dynamics could be
implemented as SU(1, 1) transformations, and it was later
associated with the “Complexifier-Volume-Hamiltonian
(CVH) algebra” in [17] (see also [18] for more
recent work).
When discussing the relative merits of possible choices

of semiclassical states, we need to be clear about what
properties we require for a state to be considered semi-
classical. Here we follow to a large extent the criteria set out
in the context of GFT in [13]; our main requirement for
semiclassicality is that the relative uncertainty in the
volume, ðΔV̂Þ=hV̂i, can be made arbitrarily small—in
particular, at late times or large volumes after dynamical
evolution. This criterion is similar to what is often required
for a semiclassical limit in loop quantum cosmology [19].
We also require a small relative uncertainty in the
Hamiltonian (associated with the matter coupled to gravity
in GFT), which is time-independent. In contrast, one could
also require that a semiclassical state saturate the lower
bound on uncertainties implied by the uncertainty principle,
in its stronger Robertson-Schrödinger form. We will argue
that this second requirement seems less relevant physically,
since the right-hand side of the uncertainty principle is in
general state-dependent, and one can end up with an
equality for which both sides are large. For the context
of GFT and the most relevant cosmological observables,
energy and volume, we will find a conflict between the two

requirements: states with small relative uncertainties do not
saturate the Robertson-Schrödinger inequality, while those
that saturate the inequality do not have small relative
uncertainties. This discrepancy was observed for squeezed
states in [13]; again we generalize this discussion to general
Gaussian states.
We will show that while general Gaussian states can be

constructed using displacement, squeezing, and thermality,
semiclassical properties are mostly determined only by the
magnitude of displacement: squeezed or thermal states
alone are not semiclassical in the sense we require, and
hence do not lead to a good interpretation in terms of
emergent cosmology. These results can be seen as justify-
ing to an extent the emphasis on Fock coherent states in the
GFT literature. While most of our analysis uses the
deparametrized approach to the canonical quantization,
in which a scalar matter field is used as a time variable
throughout [20], we also discuss general Gaussian states in
the more commonly used “algebraic” approach based on a
kinematical Hilbert space. In that setting, we find that
generalizations of simple coherent states are difficult to
construct, and only very simple versions of squeezing and
thermality can be straightforwardly defined. We also
encounter a number of technical issues related to diver-
gences in the definition of states and observables. Ignoring
these as much as possible, the general qualitative state-
ments agree with those found in the deparametrized
approach.
Section II reviews the main ingredients in the canonical

quantization of GFT, leading to the emergence of homo-
geneous and isotropic cosmology (satisfying a generalized
Friedmann equation) from the simplest dynamics for a
single field mode in the Peter-Weyl decomposition. In
Sec. III, we discuss different definitions of semiclassicality
and study the examples of coherent and squeezed states
explicitly. This analysis is then generalized to general
Gaussian states in Sec. IV. Given that the algebraic
approach to canonical quantization is used in most of
the GFT literature, in Sec. V we discuss our efforts at
obtaining similar types of states in that approach.
Appendices contain details on expectation values, varian-
ces, and covariances and the Robertson-Schrödinger uncer-
tainty principle; the general definition of Gaussian states
and the thermofield formalism; and details on the possible
construction of semiclassical “condensate” states in the
algebraic approach.

II. COSMOLOGY FROM GROUP FIELD THEORY

GFT is a relatively young, nonperturbative, and back-
ground-independent approach to quantum gravity, which
generalizes matrix and tensor models [21] by including Lie
group structures imported from formalisms like LQG and
spin foam models [22]. The fundamental object in this
framework is the group field φ, whose arguments replace
the discrete indices of a tensor with a number of continuous
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variables taking values in a Lie group. In models of interest
for us, this group consists of four copies of SU(2), so as to
resemble the structure of spin networks of LQG, but
different choices are possible (see, e.g., [23]). One can
then couple gravity to a free massless scalar field χ ∈R,
which can serve as a relational time variable [11]. A real
group field is then a map

φ∶ SUð2Þ4 ×R → R;

φðgI; χÞ ¼ φðgIh; χÞ ∀ h ∈ SUð2Þ; ð1Þ

where requiring invariance of the field under the right
diagonal group action provides a notion of discrete gauge
invariance. The general action for a real group field reads

S½φ� ¼ 1

2

Z
d4g d4g0 dχ φðgI; χÞKðgI; g0IÞφðg0I; χÞ þ V½φ�;

ð2Þ

where dg is the Haar measure on SU(2). Here, KðgI; g0IÞ is a
quadratic kinetic operator, and V½φ� is a generally nonlocal
interaction term. Requiring the kinetic term to respect the
symmetries of a minimally coupled massless scalar field
(shift and sign-reversal symmetries) implies that KðgI; g0IÞ
should not depend on χ, but be a differential operator in χ,
without derivatives of odd powers [11,24]. The simplest
choice is therefore to assume the minimal form

KðgI; g0IÞ ¼ Kð0ÞðgI; g0IÞ þ Kð2ÞðgI; g0IÞ∂2χ ; ð3Þ

which is commonly adopted in the literature [20,25,26].
Radiative corrections coming from renormalization [27]
can dictate the specific forms of Kð0Þ and Kð2Þ, but we can
leave them general for our purposes. Within a broader class
of models, one can in principle have higher derivatives with
respect to χ [11,24]; Eq. (3) would then be seen as an
approximation in which the contribution of these higher-
derivative terms is small.
Similarly to what can be done in tensor models for

quantum gravity, and thanks to the connection with spin
foam models, a perturbative expansion of the GFT partition
function can formally generate an infinite sum over discrete
geometries, or Feynman graphs h. For a real φ, and for
models with only a single interaction with coupling λ,
one finds

ZGFT ¼
Z

Dφ e−S½φ� ¼
X
h

λnV ðhÞAh; ð4Þ

where nVðhÞ is the number of vertices in h and Ah are
Feynman amplitudes. Remarkably, the sum (4) is over
graphs that for suitable choices of V½φ� can be seen as
discrete “histories of geometry,” and whose Feynman
amplitudes Ah are in correspondence with spin foam

amplitudes [28,29]. In this sense, the Feynman amplitudes
of a GFT with action (2) can be associated with a discrete
quantum gravity path integral, and the expansion (4)
generates a sum over two-complexes (or discrete spacetime
histories), weighted by the coupling λ of the interac-
tion term.
GFT models for a full theory of quantum gravity still

remain formal, as it is not clear how to make mathematical
sense of (4). It is already very difficult to compute
individual transition amplitudes Ah between quantum
geometries. Here, we will focus on a canonical quantiza-
tion, which provides very useful insights into the cosmo-
logical sector of GFT [9,10]. This quantization is the
simplest in an approximation in which one neglects the
interaction V½φ�, which is what we will do in the following.
Restriction to the free theory, while motivated by computa-
tional simplicity, is often justified when looking at cos-
mological models: neglecting correlations between “quanta
of geometry” can be interpreted as describing GFT con-
figurations of high symmetry, associated with macroscopic
homogeneous spacetimes.
A geometrical interpretation of GFT is obtained by

associating a 3-simplex (tetrahedron) with the group field
φðgI; χÞ. In a dual picture, one can think equivalently of
φðgI; χÞ as an abstract node with four links labeled by
SU(2) arguments, and an additional real label χ. This is
equivalent to the way in which four-valent spin network
nodes represent geometric tetrahedra in LQG. The nomen-
clature spin network derives from the Peter-Weyl theorem,
which allows decomposing φ as

φðgI; χÞ ¼
X
J

φJðχÞDJðgIÞ;

DJðgIÞ ¼
X
nI

RjI;{
nI

Y4
a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ja þ 1

p
DðjaÞ

ma;naðgaÞ: ð5Þ

Here, φJðχÞ are complex functions (subject to reality
conditions), and the compact notation for the modes �J ¼
ðjI;�mI; {Þ encodes representation (or spin) labels
jI ∈N0=2; magnetic indices mI; nI ∈ ½−jI; jI�; and inter-
twiner labels {. In the convolution DJðgIÞ, RjI;{

nI are

intertwiners1 for the spins jI, and DðjÞ
m;nðgÞ are Wigner

D-matrices for the irreducible unitary representations of
SU(2). The mode decomposition (5) shifts the focus from
group variables to the more convenient spin variables. In
this representation, the free GFT action [with kinetic term
given by (3)] has the form [20]

1SU(2) intertwiners are equivariant linear maps from the tensor
product ⊗I jI to the trivial representation. They form a vector
space, with basis labeled by {. Such tensors appear in Eq. (5)
because of property (1).
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S½φ� ¼ 1

2

Z
dχ
X
J

φ−JðχÞðKð0Þ
J þ Kð2Þ

J ∂
2
χÞφJðχÞ: ð6Þ

A canonical quantization of (6) can now be obtained in a
deparametrized formalism. (There is another approach
commonly used in GFT which we call algebraic quantiza-
tion; see Sec. V.) In a deparametrized approach, we choose
a degree of freedom to parametrize the others before
quantization; here, the obvious candidate is the matter
clock χ. One then performs the Legendre transform,
introducing a conjugate momentum πJðχÞ to the group
field and finding a relational Hamiltonian [20]:

H ¼ −
1

2

X
J

�
πJðχÞπ−JðχÞ

Kð2Þ
J

þ Kð0Þ
J φJðχÞφ−JðχÞ

�
: ð7Þ

The Hamiltonian (7) defines dynamics of any observable
via Poisson brackets—or, in the quantum theory defined in
the Heisenberg picture, of any operator via the Heisenberg
equation. Adopting the Heisenberg picture from now on,
we promote the field and its momentum to operators with
canonical (equal-time) commutation relations:

½φ̂JðχÞ; π̂J0 ðχÞ� ¼ iδJJ0 : ð8Þ

As in any bosonic field theory, one can now define ladder
operators with commutation relations

�
âJðχÞ; â†J0 ðχÞ

� ¼ δJJ0 ð9Þ

and construct a Fock space, starting from a vacuum j0i
(interpreted as a “no geometry” state) such that
âJðχÞj0i ¼ 0. Excitations created by these ladder operators
are interpreted as quanta of geometry: a one-particle state

represents a quantum tetrahedron (or

four-valent node) decorated with a real variable χ and
group-theoretic information encoded in J.
The specific expression of the Hamiltonian (7) in terms

of ladder operators depends on the signs of the kinetic
terms Kð0Þ and Kð2Þ in (6)—when they have opposite signs,
the Hamiltonian is of squeezing type:

Ĥ ¼ 1

2

X
J

ωJðâ†Jâ†−J þ âJâ−JÞ;

ωJ ¼ −sgnðKð0Þ
J Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jKð0Þ

J =Kð2Þ
J j

q
: ð10Þ

For modes for which Kð0Þ and Kð2Þ have the same sign, on
the other hand, one obtains the Hamiltonian of a harmonic
oscillator. One also defines a number operator in the usual
way as

N̂ðχÞ ¼
X
J

â†JðχÞâJðχÞ ¼
X
J

N̂JðχÞ: ð11Þ

The squeezing Hamiltonian (10) creates pairs of GFT
quanta (with opposite magnetic indices) from the vacuum
state, providing a compelling picture for an expanding
cosmological geometry. The number of quanta in these
unstable modes will then (for generic initial conditions)
quickly exceed the number of quanta in any of the stable
modes, for which the particle number is constant.
To obtain a cosmological interpretation, a central role is

played by the volume operator

V̂ðχÞ ¼
X
J

vJâ
†
JðχÞâJðχÞ ¼

X
J

V̂JðχÞ; ð12Þ

where the vJ’s correspond to the volumes of quanta with
representation data J. These volume values can be formally
obtained from a geometrical quantization of tetrahedra in
terms of SU(2) recoupling theory [30], and they have been
thoroughly described in the LQG literature (see, e.g., [31]),
where they define the volume operator acting on four-
valent spin network nodes. The operator (12) describes a
global notion of spatial volume seen as the sum of many
discrete building blocks carrying their own (quantum)
volume.

A. suð1;1Þ algebra and FLRW cosmology

In addition to restricting to the free GFT, one often
also restricts the setup to a single Peter-Weyl mode J, or
a coupled pair of modes fJ;−Jg. In the latter case, one
can choose “symmetric” initial conditions âJð0Þ ¼ â−Jð0Þ,
which are preserved under time evolution [20]. The
Hamiltonian then effectively describes single-mode
squeezing. A more direct way of picking out a single mode
is to consider a J with magnetic indices mI ¼ 0 (so that
J ¼ −J); this is a somewhat mild assumption, as no geo-
metrical observable depends on the values of the magnetic
indices. It turns out that considering only a single mode
(i.e., only excitations of the same “type”) is enough to
obtain the correct cosmological dynamics of a flat FLRW
universe [11]. Moreover, for a wide class of models, such
an assumption can be justified by the fact that some modes
[those for which jωJj in (10) is largest] grow faster than all
others, and so eventually dominate [32]. This means that an
effective restriction to a single mode (or a small number of
physically indistinguishable modes) would also emerge
dynamically at sufficiently late times, which is the regime
we might want to compare with classical cosmology. We
will use this restriction throughout the rest of the paper and
only study quantum states for a single Peter-Weyl mode.
Restricting to a single mode means that the sums over

modes J trivialize to only one term. In order to simplify
the notation, we will henceforth drop the index J in our
single-mode expressions. We now deal with a quantum
system described by bosonic operators âðχÞ and â†ðχÞ,
with ½âðχÞ; â†ðχÞ� ¼ 1. The main operators of interest for
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cosmological purposes are the Hamiltonian (10) and the
volume (12), which reduce to

Ĥ ¼ −
ω

2

�
â†2 þ â2

�
;

V̂ðχÞ ¼ vN̂ðχÞ ¼ vâ†â; ð13Þ
where v can be thought of as the volume of one GFT
quantum. As mentioned, the operators (13) generate the Lie
algebra suð1;1Þ, extended by a central element [13,14].
The algebra is closed by adding

Ĉ ¼ i
v
2

�
â†2 − â2

�
; ð14Þ

which would be related to the “Thiemann complexifier” in
some analogous LQG models [17]. Here, (14) does not
have a direct physical interpretation but determines whether
the resulting cosmology has a time-reversal symmetry.
The suð1;1Þ algebra of these operators follows from their
composition in terms of ladder operators: one traditionally
defines the three possible quadratic combinations
K̂0 ¼ 1

4
ðâ†âþ ââ†Þ, K̂þ ¼ 1

2
â†2, and K̂− ¼ 1

2
â2, which

satisfy the suð1;1Þ algebra

½K̂0; K̂�� ¼ �K̂�; ½K̂−; K̂þ� ¼ 2K̂0: ð15Þ

In our case, the GFT operators relate to these suð1;1Þ
generators as

Ĥ ¼ −ωðK̂þ þ K̂−Þ;
V̂ ¼ 2vK̂0 −

v
2
;

Ĉ ¼ ivðK̂þ − K̂−Þ; ð16Þ

and the algebra closes as

½V̂; Ĥ� ¼ 2iωĈ;

½Ĉ; V̂� ¼ 2i
v2

ω
Ĥ;

½Ĉ; Ĥ� ¼ 2iω

	
v
2
þ V̂



; ð17Þ

where we see the central element (identity operator)
appearing in the third relation.
We stress that while we focus on GFT in this paper,

the suð1;1Þ structure (together with a cosmological
interpretation) is the only necessary ingredient for all
our main results. Relations analogous to (17) are described
in other realizations of suð1;1Þ quantum cosmo-
logy [14,15]—for example, in loop quantum cosmology
(where this algebra commonly appears [16,18]).
We can now turn to the dynamics of such operators. Ĥ

determines the evolution of any other operator Ô via the
Heisenberg equation

i
dÔ
dχ

¼ ½Ô; Ĥ�: ð18Þ

From this, one can obtain the solutions [13] (here and in the
following, we will adopt a somewhat unusual notation—fα
instead of fðαÞ for trigonometric and hyperbolic functions;
this is to save space in lengthy expressions below)

V̂ðχÞ ¼ −
v
2
þ
	
V̂ þ v

2



cosh2ωχ þĈ sinh2ωχ ; ð19Þ

ĈðχÞ ¼ Ĉ cosh2ωχ þ
	
V̂ þ v

2



sinh2ωχ ; ð20Þ

where V̂ ¼ V̂ð0Þ and Ĉ ¼ Ĉð0Þ. We can now see that,
while V̂ represents the volume at χ ¼ 0, the presence of Ĉ
determines whether the volume evolution (19) has a
symmetry under χ → −χ. Since we are working in the
Heisenberg picture, the solutions (19) and (20) do not refer
to any choice of quantum state; in fact, (19) is all one needs
to obtain an effective Friedmann equation. Taking expect-
ation values, one finds

	
1

hV̂ðχÞi
dhV̂ðχÞi

dχ



2

¼ 4ω2

	
1þ v

hV̂ðχÞi −
1

hV̂ðχÞi2

×
�hV̂i2 þ vhV̂i − hĈi2�
: ð21Þ

For large volumes (or late times χ → �∞), (21) is con-
sistent with the classical Friedmann equation,2 provided the
identification between the GFT coupling and Newton’s
constant ω2 ¼ 3πG. The two subleading contributions
can be seen as GFT corrections to classical cosmology.
In particular, the 1=hV̂ðχÞi2 term is responsible for the
generic resolution of the big bang singularity, which is
replaced with a cosmological bounce through a minimal
nonsingular volume.
We point out that (21) holds regardless of whether the

quantum state one uses to compute expectation values is a
pure or mixed state. All that is needed to obtain (21) is a
(linear) operation mapping operators to their expectation
values, and the density matrix expression hV̂ðχÞi ¼
trðρ̂ V̂ðχÞÞ is as good as the pure-state evaluation hV̂ðχÞi ¼
hψ jV̂ðχÞjψi. This point was not stressed in [13], where (21)
was obtained, and will allow us to investigate semiclassical
properties of mixed (in particular thermal) states in later
sections. As we review below, only a few types of states
(mainly Fock coherent states) are typically used in GFT

2In general relativity, the Friedmann equation for the spatial
volume V of a flat FLRW cosmology with a massless scalar field
χ, using a gauge where χ is the time coordinate, can be written as
ð1V dV

dχÞ2 ¼ 12πG.
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cosmology. This is where we wish to expand the literature:
we will discuss criteria that can classify states as semi-
classical and present Gaussian states as the most general
family of semiclassical states for our theory.

III. SEMICLASSICAL PROPERTIES
AND CANDIDATE STATES

While true for any quantum state, the effective
Friedmann equation (21) is a relation between expectation
values only. To claim that this equation is a good descrip-
tion of the dynamics of cosmological observables, one
needs to adopt quantum states that show some semiclassical
features, such as coherent states. More generally, one needs
to specify criteria for any candidate state for cosmology
to be considered as semiclassical. Here, we focus on two
criteria that are commonly used: the study of relative
uncertainties, and the Robertson-Schrödinger uncertainty
principle. We define variances and covariances for any
operators Â and B̂ as

ðΔÂÞ2 ¼ hÂ2i − hÂi2; ð22Þ

ΔðÂ B̂Þ ¼ 1

2
hfÂ; B̂gi − hÂihB̂i; ð23Þ

where f·; ·g is the anticommutator.
Our first criterion for semiclassicality would be to require

that relative uncertainties ðΔÂÞ2=hÂi2 be small, at least in
a large-volume or late-time regime where the classical
theory is expected to emerge; here, Â could be either the
Hamiltonian Ĥ or volume V̂. One can also check what
happens to the operator Ĉ defined in (14), even though its
interpretation is less transparent; hence, it is unclear whether
this operator would need to be semiclassical.
There is another characterization of semiclassical states

that makes use of the quantities (22) and (23)—namely, the
saturation of the Robertson-Schrödinger (RS) uncertainty
principle [33]. For the GFT operators (13), the uncertainty
principle reads

ðΔV̂Þ2ðΔĤÞ2 ≥ jΔðV̂ ĤÞj2 þ ω2hĈi2: ð24Þ

For basic examples in standard quantum mechanics, an
inequality of this type is saturated (it becomes an equality)
for canonically conjugate pairs when using coherent (or
more generally Gaussian) states; but in general, it is not
guaranteed that there are states for which (24) can be
minimized. As the volume evolves in time, the RS
uncertainty principle (24) is a statement for each χ.
In the context of GFT cosmology or quantum cosmology

in general, demanding small relative uncertainties seems
physically more relevant than minimizing uncertainties by
demanding equality in (24); nothing in (24) requires both
sides to be small in any sense, whereas the Universe appears

to be sharp to observations, without quantum effects on large
scales. Hence, we would say that a good candidate state for
GFT cosmology models primarily needs to show small
relative uncertainties. As wewill see shortly, (Fock) coherent
states have this property; we will also define more general
states that are semiclassical in this sense.
From (19), we can derive the χ-dependent form of the

volume variance, as well as that of the covariance between
the volume and the Hamiltonian,

ðΔV̂χÞ2 ¼ ðΔV̂Þ2cosh22ωχ þ ðΔĈÞ2sinh22ωχ
þ ΔðV̂ ĈÞsinh4ωχ ; ð25Þ

ΔðV̂χĤÞ ¼ ΔðV̂ ĤÞcosh2ωχ þ ΔðĈ ĤÞsinh2ωχ ; ð26Þ

where from now on we use subscripts to indicate time-
dependent operators; operators with no subscript refer to
initial conditions (i.e., to χ ¼ 0). We can then immediately
derive the large-volume limit of relative uncertainties by
taking χ → �∞ in these expressions: ðΔĤÞ2=hĤi2 does
not evolve in time, but for the relative volume fluctuations
we find using (25) and (19),

ðΔV̂χÞ2
hV̂χi2

⟶
χ→�∞ ðΔV̂Þ2 þ ðΔĈÞ2 � 2ΔðV̂ ĈÞ

ðhV̂i þ v
2
� hĈiÞ2 : ð27Þ

To verify the RS uncertainty principle, we would also need
the limit

ðΔðV̂χĤÞÞ2
hV̂χi2hĤi2 þ ω2

hĈχi2
hVχi2hĤi2

⟶
χ→�∞ ðΔðV̂ ĤÞ � ΔðĈ ĤÞÞ2

ðhV̂i þ v
2
� hĈiÞ2hĤi2 þ

ω2

hĤi2 : ð28Þ

All these quantities are determined by the initial conditions
only. Notice that the late-time limit χ → þ∞ in general
differs from the limit χ → −∞ (as indicated by the �
notation), so that the asymmetry described by the quantity
Ĉ is manifest here.
One might also be interested in the evolution of these

quantities beyond the strict infinite-volume limit χ → �∞.
We will show some examples for general evolution of the
RS inequality (24) and the relative uncertainties of the
volume operator. For analytical results, we derive expan-
sions in powers of the inverse volume as

ðΔV̂χÞ2
hV̂χi2

¼ Aþ B
v

hV̂χi
þ C

v2

hV̂χi2
þ � � � ; ð29Þ

where A;B; C;… are functions of initial conditions. Such
an expansion captures very well the full evolution as soon
as we are in the macroscopic regime hV̂χi ≫ v.
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We shall see that the saturation of (24) does not
necessarily indicate that the states under question have
small relative fluctuations; conversely, states such as the
simplest Fock coherent states, which are semiclassical by
looking at relative fluctuations, fail to minimize (24). In the
rest of this section, we briefly review quantum states that
have been investigated in the context of GFT cosmology.
We explicitly check whether the RS uncertainty principle
is minimized, and we obtain the exact dynamics of the
relative uncertainties for the volume in closed form. These
properties will serve as comparison for the new family of
states presented in Sec. IV.

A. Coherent states

The most commonly used states in the GFT cosmology
literature are Fock coherent states, introduced already
in [10] and used in different ways in the deparametrized
formalism [20] and the algebraic approach [11,34]. As is
customary in bosonic theories, coherent states can be
defined via the action of the displacement operator D̂ðαÞ
on the Fock vacuum as

jαi ¼ D̂ðαÞj0i;
D̂ðαÞ ¼ eαâ

†−ᾱ â; α ∈ C: ð30Þ

These have the key property that, at χ ¼ 0, âð0Þjαi ¼ αjαi.
Appendix A contains a table with all the quantities of
interest computed with the state (30).
One can easily check that the RS uncertainty principle

(24) for V̂ and Ĥ is not saturated by coherent states. For
instance (using Table I in Appendix A), we see that at
χ ¼ 0, (24) reads

v2ω2

2
jαj2 þ v2ω2jαj4 ≥ v2ω2jαj4: ð31Þ

This feature occurs because (13) and (14) are suð1;1Þ
compositions of the bosonic ladder operators, whereas the
Fock coherent state is coherent with respect to â and â†.
One can in fact show that (24) is never saturated by
coherent states. We refer to Appendix A, where we report
explicitly the analytical expressions representing the gen-
eral case of (24); such a minimization does not happen at
any time, and in particular not as χ → �∞, where the
system is meant to become semiclassical.
As one might expect, this does not really spoil the semi-

classical nature of coherent states in the sense of relative
uncertainties. Decomposing α into modulus and argument
as α ¼ jαj expðiϑÞ, one can see that the relative uncertain-
ties at χ ¼ 0 (again, see Appendix A),

ðΔV̂Þ2C
hV̂i2C

¼ 1

jαj2 ;

ðΔĤÞ2C
hĤi2C

¼ 4jαj2 þ 2

4jαj4 cos22ϑ
;

ðΔĈÞ2C
hĈi2C

¼ 4jαj2 þ 2

4jαj4 sin22ϑ
; ð32Þ

can be made arbitrarily small by choosing appropriate jαj
and avoiding parameters for which ϑ is a multiple of π

4
[or of

the form π
4
þ k π

2
with k∈Z, if we are only interested in

small ðΔĤÞ2C=hĤi2C]. Away from χ ¼ 0, from (19) and (25),
one finds the volume relative uncertainty:

ðΔV̂χÞ2C
hV̂χi2C

¼ ð4jαj2 þ 1Þcosh4ωχ þ 4jαj2sin2ϑsinh4ωχ − 1

ðð2jαj2 þ 1Þcosh2ωχ þ 2jαj2sin2ϑsinh2ωχ − 1Þ2 :

ð33Þ

By choosing jαj to be large, this can be made arbitrarily
small at all times: consider the asymptotic behavior of (33)
for large jαj,

ðΔV̂χÞ2C
hV̂χi2C

∼
1

jαj2
sin2ϑ sinh4ωχ þ cosh4ωχ

ðsin2ϑ sinh2ωχ þ cosh2ωχÞ2
; ð34Þ

and notice that 1=jαj2 multiplies a bounded function in χ.
For late times, we recover the results of [13]

ðΔV̂χÞ2C
hV̂χi2C

⟶
χ→�∞ 2ð1þ 4jαj2ð1� sin2ϑÞÞ

ð1þ 2jαj2ð1� sin2ϑÞÞ2
≕AC: ð35Þ

Again, this becomes arbitrarily small for large jαj and
avoiding the values ϑ ¼ π

4
þ k π

2
.

We can also expand (33) in inverse volume powers,
finding

ðΔV̂χÞ2C
hV̂χi2C

¼ AC

	
1þ v

hV̂χi



þ CC

v2

hV̂χi2
þO

	
1

hV̂χi4


;

ð36Þ

with

CC ¼ −
jαj2 � 2jαj4ðsin2ϑ � 1Þðjαj2ðcos4ϑ þ 1Þ þ 3Þ

ð2jαj2ðsin2ϑ � 1Þ � 1Þ2 :

ð37Þ

We see that the 1=hV̂ðχÞi correction is such that in (29),
BC ¼ AC, which is similar to the terms in the Friedmann
equation (21). Higher contributions can be found, but they
only minimally improve the expansion, whose key behav-
ior is already captured at the 1=hV̂ðχÞi2 order.
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B. Squeezed states

Mimicking standard quantum mechanics notation,
squeezed states can be defined via the action of the
squeezing operator ŜðzÞ on the Fock vacuum as

jzi ¼ ŜðzÞj0i;
ŜðzÞ ¼ e

1
2
ðzâ†2−z̄â2Þ; z∈C: ð38Þ

We decompose z as z ¼ reiψ , where r and ψ are real
parameters.
These squeezed states can be seen as part of the

Perelomov-Gilmore class of coherent states [35] associated
with SUð1; 1Þ; this is how they were introduced for GFT
in [13]. As described in [13], the volume operator (13) is
bounded from below only in the suð1;1Þ representations
of the positive ascending series; when one restricts to the
cases of interest for GFT,3 the Perelomov-Gilmore coherent
states coincide exactly with the squeezed states that we
define here.
Contrary to coherent states, one can readily find that

squeezed states do saturate the RS uncertainty principle
(24) for the operators V̂ and Ĥ. Using again Table I in
Appendix A, at χ ¼ 0 one explicitly has

v2ω2

16
sinh22rð2sinh22rcos2ψ þ cosh4r þ 3Þ

¼ v2ω2

16
cos2ψ sinh24r þ

v2ω2

4
sin2ψ sinh22r: ð39Þ

This minimization happens because we are interested in
uncertainties of the GFT operators (13) and (14), which
form the suð1;1Þ structure that squeezed states are built
on. [An analogous result for SUð1; 1Þ coherent states in
loop quantum cosmology is reported in [16].] Turning on
time dependence, we find that the uncertainty principle is
indeed an exact equality throughout the whole evolution for
the state in Eq. (38). Again, we refer to Appendix A for the
analytical expressions at generic times; there we show that
the RS uncertainty principle is minimized for all values of
χ, and in particular in the late-time limit χ → �∞.
The minimization of the RS principle does not neces-

sarily mean that relative uncertainties of cosmological
observables are small, and indeed we find at χ ¼ 0 (see
Table I in Appendix A)

ðΔV̂Þ2S
hV̂i2S

¼ 2 coth2r ;

ðΔĤÞ2S
hĤi2S

¼ 2þ 2 sec2ψ csch22r;

ðΔĈÞ2S
hĈi2S

¼ 2þ 2 csc2ψ csch22r: ð40Þ

All these quantities are bounded from below by 2. One
can still check whether the situation improves with time
evolution; a minimal requirement for semiclassicality is
that relative uncertainties are only small at large volume.
Using (19) and (25), one can readily write down the exact
time evolution of the relative uncertainties as

ðΔV̂χÞ2S
hV̂χi2S

¼ 2
sinψ sinh2r sinh2ωχ þ cosh2r cosh2ωχ þ1

sinψ sinh2r sinh2ωχ þ cosh2r cosh2ωχ −1

¼ 2

	
1þ v

hV̂χi



: ð41Þ

Hence, the lower bound of 2 for the relative uncertainty
holds at all times; a uniform large-volume limit of 2 was
already found in [13].
As a final remark on squeezed states, we point out that a

“dipole condensate” state

jξi ¼ exp
	
1

2
ξâ†â†



j0i; ξ∈C ð42Þ

is nothing else but a non-normalized squeezed state. States
similar to (42) were introduced as possible condensate-like
states in the early stages of GFT cosmology [10] (we will
return to a discussion of these states in the algebraic
approach later). Given the norm

hξjξi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jξj2

p ; ð43Þ

we should assume jξj < 1 in order to obtain a normal-
izable state.
To see that (42) is a squeezed state, we write the

squeezing operator ŜðzÞ in “normal form” [36],

ŜðzÞ ¼ exp

	
z

2jzj tanh jzjâ
†2



× exp

	
− ln cosh jzj

	
â†âþ 1

2





× exp

	
−

z̄
2jzj tanh jzjâ

2



; ð44Þ

so that one can write a squeezed state as

3The representations of the positive discrete series are labeled
by a real parameter k called Bargmann index. Using the bosonic
realization of suð1;1Þ [Eq. (15)] and wishing to include the Fock
vacuum among the eigenstates of the volume operator, one is led
to choose k ¼ 1=4, for which all the results of [13] coincide with
the ones described here.
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jzi ¼ ŜðzÞj0i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh jzjp exp

	
z

2jzj tanh jzjâ
†2


j0i: ð45Þ

Equation (45) shows that a dipole state (42) is a (rescaled)
squeezed state (38), jξi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh jzjp jzi, where the dipole
parameter ξ and the squeezing parameter z are related by

ξ ¼ z
jzj tanh jzj: ð46Þ

Since they are just squeezed states, dipole condensates have
no chance of being semiclassical according to the criterion
of small relative uncertainties.

IV. GAUSSIAN STATES

Gaussian states can be defined in several equivalent ways.
Traditionally, they are presented in quantum mechanics
textbooks as states whose characteristic functions and quasi-
probability distributions (also known as Wigner functions)
are Gaussian functions. Equivalently, especially in the quan-
tum optics and quantum information literature, Gaussian
states are often described as states which are fully deter-
mined by the first and second canonical moments only [37].
Other characterizations are possible, both physical (as mini-
mum uncertainty states) and mathematical (see [38] for
connections to complex structures and symplectic forms).
We will focus on an equivalent but more operational

definition of Gaussian states, given as Gibbs states of
generic second-order Hamiltonians of bosonic fields [37].
Specifically, they can be defined as arising from the action
of the displacement operator (30) and squeezing operator
(38) on a thermal state [39] (see Appendix B)

ρ̂Gðα; z; βÞ ¼ D̂ðαÞŜðzÞρ̂βŜ†ðzÞD̂†ðαÞ; ð47Þ

where, denoting the usual Fock states by jni ¼
ðn!Þ−1=2ðâ†Þnj0i,

ρ̂β ¼
e−βâ

†â

trðe−βâ†âÞ ¼ ð1 − e−βÞ
X
n

e−βnjnihnj: ð48Þ

β > 0 is a free parameter, the analogue of the inverse
temperature in the usual canonical ensemble.
A key property of Gaussian states is that (in the

Schrödinger picture) they retain their Gaussian nature
under time evolution; Ûρ̂GÛ

† is also a Gaussian state if
Û is the unitary time evolution operator.4 This property

motivates studies of “Gaussian” quantum mechanics, in
which one restricts to Gaussian-preserving measurements
and transformations, and where quadratic Hamiltonians are
fundamental [41]. In this setting, one avoids the difficulties
that come with higher-order dynamics.
Of course, the family of pure Gaussian states is a subset

of (47) obtained in the vanishing “temperature” limit,

ρ̂G ⟶
β→∞

D̂ðαÞŜðzÞj0ih0jŜ†ðzÞD̂†ðαÞ ≕ jα; zihα; zj. These
states are the well-known displaced squeezed states, which
relate nicely to the simpler states discussed in the previous
section.
The general class of states (47) can straightforwardly

be imported in our GFT framework [and analogue
suð1;1Þ cosmologies] since, as detailed in Sec. II A, we
deal with a bosonic system governed by a second-order
Hamiltonian (13). The state (47) can in fact also be
understood along the lines of [12], where GFT states are
defined as statistical equilibrium states of exponential form
e−Ô for some operator Ô. The parameter β in (48) is to
be taken formally (for instance, as the periodicity in the
one-parameter flow of a KMS state or as a Lagrange
multiplier [12]) and does not necessarily relate to a physical
notion of temperature. Effectively, given that N̂ ¼ â†â
represents the number of quanta, β in (48) could be seen
as more akin to a chemical potential of a grand canonical
ensemble.
Equipped with the new and generalized family of

states (47), we can now turn to the calculation of quantities
of interest for harmonic cosmology; Appendix B outlines
helpful tools for using (47) to obtain the following
results. First, we compute the expectation value of the
three main operators for our models, given in (13) and (14).
One finds

hV̂iG ¼ v
�jαj2 þ Nβ cosh2rþ sinh2r

�
;

hĤiG ¼ −
ω

2

�
2jαj2 cos2ϑ þð2Nβ þ 1Þ sinh2r cosψ

�
;

hĈiG ¼ v
2

�
2jαj2 sin2ϑ þð2Nβ þ 1Þ sinh2r sinψ

�
; ð49Þ

where we denote the thermal expectation value [computed
with (48)] of the number operator as

Nβ ≔ hN̂ithermal ¼ trðρ̂βâ†âÞ ¼
1

eβ − 1
: ð50Þ

By means of (50), the reduction to pure states (β → ∞)
is achieved by setting Nβ ¼ 0. Next, we evaluate vari-
ances (22) and covariances (23). Incorporating the dis-
placement and squeezing phases into a shorthand F� ¼
cos2ϑ cosψ � sin2ϑ sinψ and noticing that 2Nβ þ 1 ¼
cothβ=2, one finds

4For a quadratic Hamiltonian, the evolution operator can
always be decomposed as Û ¼ eiγŜðzÞD̂ðαÞR̂ðϕÞ, where R̂ðϕÞ ¼
expðiϕâ†âÞ is the rotation operator and expðiγÞ a phase factor
[40]. While a rotation operator can in principle enter the
definition of Gaussian states (47), it does not affect any result
(see Appendix B for details).
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ðΔV̂Þ2G ¼ v2

4

�
4jαj2cothβ

2
ðcosh2r þ Fþsinh2rÞ þ coth2β

2

cosh4r − 1
�
;

ðΔĤÞ2G ¼ ω2

8

�
8jαj2cothβ

2
ðcosh2r þ F−sinh2rÞ þ coth2β

2

ð1þ 2sinh22rcos2ψ þ cosh4rÞ þ 2
�
;

ðΔĈÞ2G ¼ v2

8

�
8jαj2cothβ

2
ðcosh2r − F−sinh2rÞ þ coth2β

2

ð1þ 2cosh4rsin2ψ þ cos2ψ Þ þ 2
�
; ð51Þ

and

ΔðV̂ ĤÞG ¼ −
vω
4

�
4jαj2cothβ

2
ðsinh2rcosψ þ cosh2rcos2ϑÞ þ coth2β

2

sinh4rcosψ
�
;

ΔðV̂ ĈÞG ¼ v2

4

�
4jαj2cothβ

2
ðsinh2rsinψ þ cosh2rsin2ϑÞ þ coth2β

2

sinh4rsinψ
�
;

ΔðĤ ĈÞG ¼ −
vω
4

�
4jαj2cothβ

2
sinh2rðsin2ϑcosψ þ cos2ϑsinψÞ þ coth2β

2

sinh22rsin2ψ
�
: ð52Þ

The quantities in (49), (51), and (52) combine in a non-
trivial way coherent, squeezed, and thermal contributions;
they generalize the expressions for simple states reported in
Appendix A, being now (at the same time) functions of
α ¼ jαjeiϑ, z ¼ reiψ , and β.
Expectation values, variances, and covariances are all the

ingredients one needs to analyze the semiclassical criteria
discussed in Sec. III. For instance, using the first two
expressions in (51), the first in (52), and the last in (49), it is
straightforward (albeit tedious) to see that the Robertson-
Schrödinger uncertainty principle (24) is not minimized by
Gaussian states at χ ¼ 0. One can in fact prove that the
inequality is never saturated for any χ, much like with
coherent states. As expected, the inequality becomes an
identity only when α ¼ Nβ ¼ 0, which is the case of a pure
squeezed state (39). Details on the Robertson-Schrödinger
principle for Gaussian states are given at the end of
Appendix A.
More importantly, we now show that Gaussian states can

be chosen to have small quantum fluctuations. Even with
such a large parameter space (spanned by α, z, and β), one
can notice from (51) and (49) that it is always possible
to manipulate the displacement parameter α to make
relative uncertainties arbitrarily small at χ ¼ 0. While
squeezed and thermal states alone do not allow for such
a feature, squeezing and thermal effects can lead to semi-
classical Gaussian states as long as one uses a large enough
displacement. To make this more explicit, we can expand
the fluctuations stemming out of (51) and (49) for large jαj,
obtaining

ðΔV̂Þ2G
hV̂i2G

∼
1

jαj2 cothβ
2

�
cosh2rþFþ sinh2r

�
; ð53Þ

ðΔĤÞ2G
hĤi2G

∼
1

jαj2 cos22ϑ
cothβ

2

�
cosh2rþF− sinh2r

�
; ð54Þ

ðΔĈÞ2G
hĈi2G

∼
1

jαj2 sin22ϑ
cothβ

2

�
cosh2r −F− sinh2r

�
: ð55Þ

These expressions still refer to χ ¼ 0, so they generalize
(32) and (40). We now discuss the dynamics of quantum
fluctuations, focusing on the volume operator.
Recall from Sec. II that the single-mode GFT

Hamiltonian (13) makes the evolution operator ÛðχÞ ¼
e−iĤχ a squeezing operator (with purely imaginary squeez-
ing parameter). Relations allowing a reordering of dis-
placement and squeezing operators, or the composition of
two squeezing operators into one, are well known (see
Appendix B), and it might be tempting to work in the
Schrödinger picture and to define

ρ̂Gðα; z; β; χÞ ¼ ÛðχÞD̂ðαÞŜðzÞρ̂βŜ†ðzÞD̂†ðαÞÛ†ðχÞ ð56Þ

as a time-dependent Gaussian state. However, one finds
that using properties such as (B2) and (B3) on (56) leads
to very complicated calculations, due to the mixing of para-
meters. We thus keep working in the Heisenberg picture, in
which the explicit dynamical equations (19), (25), and (26)
allow us to obtain the χ evolution of all the quantities of
interest. For example, the dynamics of the volume expect-
ation value reads

hV̂χiG ¼ v
2

�
2jαj2�cosh2ωχ þ sinh2ωχsin2ϑ

�
− 1

þ cothβ
2

�
sinh2ωχsinh2rsinψ þ cosh2ωχcosh2r

��
:

ð57Þ

While it is not useful to show all the other χ-dependent
counterparts of (49), (51), and (52) in full, one can compute
them in the same fashion [also using (20) for quantities
containing Ĉ]. Crucially, we find that Gaussian states can
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be chosen to make the volume relative uncertainties, ðΔV̂χÞ2G=hV̂χi2G, arbitrarily small at all times. We can analytically show
this again by considering the asymptotic behavior of the evolving volume fluctuations for large jαj, finding

ðΔV̂χÞ2G
hV̂χi2G

∼
cothβ=2
jαj2

sinh4ωχðsin2ϑ þ sinh2r sinψÞ þ cosh4ωχðsinh2r sin2ϑ sinψ þ1Þ þ sinh2r cos2ϑ cosψ
ðsin2ϑ sinh2ωχ þ cosh2ωχÞ2

: ð58Þ

Again avoiding the problematic values ϑ ¼ π
4
þ k π

2
, this is

the product of a bounded function (in χ) and a factor 1=jαj2,
which can hence be made arbitrarily small at all times. The
function exhibits similar features to the coherent-states case
and generalizes (34) to Gaussian states by also keeping
squeezing and thermal contributions. The dynamics hence
do not spoil the semiclassical behavior of suitably chosen
Gaussian states. To give some graphical intuition, we also

plot in Fig. 1 a few instances illustrating some interplay
between the various state parameters, in particular exem-
plifying that jαj can make ðΔV̂χÞ2G=hV̂χi2G as small as
desired at all times. Compared to the choice of jαj, the other
parameters seem to have relatively minor impact on the
relative uncertainty.
Finally, we can explicitly find the asymptotic behavior

represented by the plateaus in Fig. 1:

ðΔV̂ðχÞÞ2G
hV̂ðχÞi2G

⟶
χ→�∞

2 −
8jαj4ðsin2ϑ � 1Þ2

½2jαj2ðsin2ϑ � 1Þ � cothβ=2ðcosh2r � sinh2rsinψ Þ�2
≕AG; ð59Þ

which generalizes (35) and shares the same properties. In particular, approximating (59) for large jαj, we can see that it can
be made arbitrarily small:

AG ∼
2

jαj2
cothβ=2ðcosh2r � sinh2rsinψÞ

ð1� sin2ϑÞ
: ð60Þ

We can also expand ðΔV̂χÞ2G=hV̂χi2G in inverse volume powers as per (29), finding

ðΔV̂χÞ2G
hV̂χi2G

¼ AG

	
1þ v

hV̂χi



þ CG

v2

hV̂χi2
þO

	
1

hV̂χi3


; ð61Þ

where, using h� ¼ cothβ
2
ðcosh2r� sinh2r sinψ Þ to encapsulate squeezing and thermal contributions,

CG ¼ h�ð4jαj2ðsin2ϑ � 1Þ � h�Þ
8

�
8jαj2cos2ϑcotψðh� − h∓Þ � cot2ψ ðh� − h∓Þ2 ∓ 4

2h�ðh� � 4jαj2ðsin2ϑ � 1ÞÞ

þ 2jαj2ðsin2ϑ ∓ 1Þ ∓ h∓
h� � 2jαj2ðsin2ϑ � 1Þ ∓ 2jαj2ðhþ þ h− þ 2jαj2cos22ϑ � sin2ϑðh∓ − h�ÞÞ þ h−hþ − 4

ðh� � 2jαj2ðsin2ϑ � 1ÞÞ2
�
: ð62Þ

FIG. 1. Volume relative uncertainties with Gaussian states for some state parameters.
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Interestingly, here again BG ¼ AG, as with all the other
states. One can check that CG reduces to (37) for r ¼ 0 and
β → ∞ (since h� → 1) and vanishes for α ¼ 0 and β → ∞
[cf. Eq. (41)].
To summarize, we have seen that the general family of

Gaussian states contains states with small relative uncer-
tainties and can thus be regarded as semiclassical. This
property is realized for the volume, the Hamiltonian, and
the Ĉ operator in the context of GFT cosmology, and it
holds at all times (crucially at late times, where quantum
fluctuations are actually expected to be small). Because all
harmonic cosmologies [14,15] rely on the same underlying
Lie algebra, these results actually hold for any general
suð1;1Þ (or CVH) quantum cosmological scenario.
As for coherent states, Gaussian states do not saturate
the Robertson-Schrödinger uncertainty principle, showing
again that it is not clear whether such a criterion should be
invoked to classify states as semiclassical.

V. ALGEBRAIC APPROACH TO GFT
COSMOLOGY

In this section, we explore the role and behavior of
semiclassical states in the original formalism of the GFT
cosmology program [7], which we denote algebraic
approach, following [25]. In particular, we investigate
whether generalized Gaussian states can exist, and we
highlight differences with the deparametrized approach
adopted in previous sections.
The algebraic formalism for group field theory shares

some similarities with a standard Dirac quantization. It is
based on the construction of a kinematical Hilbert space of
abstract states, among which physical states are selected
by demanding that they satisfy a constraint coming from
the underlying theory. Following Sec. II, states in the
GFT kinematical Fock space would be unphysical quantum
tetrahedra (or spin-network-like states), on which dynami-
cal equations are imposed a posteriori, usually in a
mean-field regime [9–11]. However, unlike in a Dirac
quantization, one here assumes that physical states are
elements of the original Hilbert space. This assumption is,
strictly speaking, inconsistent, since such states have
infinite norm.5 Moreover, working in a “timeless” setting,
one defines kinematical operators as relational observables
(e.g., the volume as a function of the scalar field χ), which
may also contain infinities. We will encounter divergences
at many points in this section, so that our expressions need
to be treated as formal and subject to some regularization
procedure (some ideas for dealing with these infinities
include [12,34]). We are mainly interested in a general
conceptual comparison with the analysis of previous

sections; regardless of divergences, one can check whether
one can define Gaussian-like states in this formalism, in the
sense of at least approximately physical states.
Aiming to extract effective cosmological dynamics, we

work with a similar setup to the one described in Sec. II, the
main difference being that the group field (1) is now
complex valued. Restricting again to a single Peter-Weyl
mode [and hence dropping SU(2) arguments as in
Sec. II A], we deal with a free complex group field theory,
where the classical equation of motion reads

ð∂2χ − ω2ÞφðχÞ ¼ 0 ð63Þ

with ω2 ¼ −Kð0Þ=Kð2Þ [cf. Eq. (6)]. A canonical quantiza-
tion performed in this approach requires promoting the
field and its complex conjugate to operators φ̂ and φ̂† with

�
φ̂ðχÞ; φ̂†ðχ0Þ� ¼ δðχ − χ0Þ: ð64Þ

The key deviation from the deparametrized approach of
Sec. II is the fact that the operators φ̂ðχÞ and φ̂†ðχÞ are not
thought of as evolving in time, but as separate independent
operators for each value of χ. Using these as abstract ladder
operators, one can now construct a kinematical Fock space
with vacuum j0i satisfying φ̂ðχÞj0i ¼ 0. Then, for instance,
the state associated with a single (unphysical) GFT quan-
tum with a given (fixed) value of χ reads φ̂†ðχÞj0i, not to
be confused with the dynamical one-particle state â†ðχÞj0i
of Sec. II A. Kinematical analogues of the number and
volume operators are naturally defined in this approach
as V̂ðχÞ ¼ vN̂ðχÞ ¼ vφ̂†ðχÞφ̂ðχÞ.
Among these kinematical states, one needs to identify

physical ones. To do this, from the GFT action one
can derive Schwinger-Dyson equations for correlation
functions,

�
Ψ
���� δÔδφ̂† − Ô

δS½φ̂; φ̂†�
δφ̂†

����Ψ


¼ 0; ð65Þ

which must be satisfied for physical states, where Ô is any
polynomial functional of the field operators. In practice,
one truncates this infinite tower of equations by considering
a few very simple choices for Ô, the most common being
the identity operator. Indeed, setting Ô ¼ 1 in Eq. (65)
amounts to requiring that the operator version of the Euler-
Lagrange equations hold on average.
Alternatively, one can require physical states to

satisfy [9–11]

δS½φ̂; φ̂†�
δφ̂† jΨi ¼ 0; ð66Þ

which can be seen as the imposition of a quantum
constraint on jΨi typical of a Dirac quantization scheme.

5For a more standard Dirac quantization of (free) GFT that
uses group averaging to define a physical Hilbert space, see [42].
The resulting theory is close, though not exactly equivalent, to the
deparametrized theory defined earlier.
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Compared to requiring some expectation value to vanish
(usually given by the first Schwinger-Dyson equation), (66)
provides a stronger condition for defining exactly physical
states. We shall see that one can quickly find at least one
exact solution for a free GFT; moreover, we explore some
other possibilities in Appendix C, where we show that to
be a solution of the constraint (66) (and hence physical),
a generic jΨi must satisfy strict conditions. Whether one
uses (66) or a truncation of (65), the task in this approach is
to find equations for the functions defining the states. Such
conditions ensure the corresponding states are either exact
or approximate solutions of the quantum dynamics.
The only class of states (including the more specific

proposal of [34]) which has been successfully used to
extract cosmological dynamics is given by field coherent
states:

jσi ¼ D̂ðσÞj0i;

D̂ðσÞ ¼ exp

	Z
dχ
�
σðχÞφ̂†ðχÞ − σðχÞ φ̂ðχÞ�
; ð67Þ

which we define in analogy with (30) using a displacement-
like operator. Due to the Baker-Campbell-Hausdorff
formula, (67) is equivalent to a single-particle condensate
state of the type usually adopted in the literature, jσi¼
N σexpð

R
dχσðχÞφ̂†ðχÞÞj0i, withN σ¼expð−1

2

R
dχjσðχÞj2Þ,

which explicitly shows a divergent norm [N σ ¼ 0 for any σ
solving (63)]. One way of regularizing the state jσi is by
introducing an ad hoc cutoff in χ, which would represent an
arbitrarily large (but finite) range of validity for the resulting
effective relational dynamics.6

While often described as an approximate solution in the
literature (even for GFT models based on the free theory),
we stress that states of the form (67) can solve (66) exactly.
Indeed, due to the property φ̂ðχÞjσi ¼ σðχÞjσi, (67) is
a physical state provided that the displacement para-
meter σðχÞ satisfies the classical free GFT equation of
motion (63), namely ð∂2χ − ω2ÞσðχÞ ¼ 0. The solution to
this equation dictates how dynamics are implemented in the
algebraic approach, as geometrical quantities inherit χ
dependence through σðχÞ. In particular, one can obtain
the volume expectation value

hV̂ðχÞiσ ¼ v
hσjφ̂†ðχÞφ̂ðχÞjσi

hσjσi ¼ vjσðχÞj2;

σðχÞ ¼ Aeωχ þ Be−ωχ ; ð68Þ
where A and B are constants, and show that it satisfies a
Friedmann-like equation similar to (21). This can be
expressed by means of the quantities [11,32]

E ¼ −4ReðAB̄Þ; Q ¼ 2ImðAB̄Þ; ð69Þ

so that

	
1

hV̂ðχÞiσ
dhV̂ðχÞiσ

dχ



2

¼ 4ω2

	
1þ vE

hV̂ðχÞiσ
−

v2Q2

hV̂ðχÞi2σ



:

ð70Þ

Apart from differences in numerical factors, such effective
cosmological dynamics share the properties of (21) and
essentially describe the same scenario discussed at the
end of Sec. II A. The crucial difference is that in order to
obtain (70), we had to specifically use the state (67), as
indicated by the index of hV̂ðχÞiσ . In contrast, the effective
Friedmann equation (21) of the deparametrized approach
holds in any state.
Note that even if the volume itself does not show any

infinities, volume fluctuations diverge as

ðΔV̂Þ2σ
hV̂i2σ

¼ δð0Þ
jσðχÞj2 : ð71Þ

If one removes the distribution δð0Þ by means of some
regularization procedure [e.g., replacing the Dirac delta
in (64) with a Kronecker delta by considering smeared
observables [12], or imposing the dynamics in a different
way by working with the peaked coherent states of [34] ],
Eq. (71) gets automatically smaller and smaller over time
as σðχÞ grows exponentially [cf. Eq. (68)]. In this sense,
one might then argue that these coherent states are
semiclassical.
Because the effective Friedmann equation (70) seems to

rely on coherent states, it is natural to ask whether one can
use more general states, such as Gaussian states, to obtain a
similar result. Given how dynamics are implemented in the
algebraic approach, we shall see that it is not clear whether
Gaussian states are a useful option for this framework.
In order to define generalized Gaussian states, we resort to
the thermofield formalism, since a well-defined procedure
in terms of thermal-like density matrices is not directly
available in the algebraic approach to GFT. The thermofield
dynamics were developed in the context of GFT in [12] for
thermal coherent states; this naturally extends to the case of
Gaussian states following the strategy of Appendix B, with
suitably generalized definitions. Explicitly, in analogy
with (B16), a Gaussian-like state in the algebraic approach
can be defined as7

jσ; ζ; βi ¼ D̂ðσÞŜðζÞj0βi; ð72Þ

6One might argue that this does not represent an issue, as the
free-theory approximation breaks down at some χ [when the
interactions in Eq. (2) become important], so one should not trust
the model for too large χ anyway.

7Just like (67), the state (72) has a divergent norm. Again, one
could impose a cutoff in the χ integrations, but in this case the
divergences are even more severe. See Appendix C for details on
condensate states and their norms.
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where we introduce a squeezing-like operator

ŜðζÞ ¼ exp

	
1

2

Z
dχ
�
ζðχÞφ̂†2ðχÞ − ζðχÞφ̂2ðχÞ�
 ð73Þ

and the algebraic counterpart of the thermal vacuum (B11),

j0βi ¼ T̂ ðθβÞj0; 0̃i;

T̂ ðθβÞ ¼ exp

	Z
dχθβðχÞ

�
φ̂†ðχÞ ˆ̃φ†ðχÞ − φ̂ðχÞ ˆ̃φðχÞ�
:

ð74Þ

The general construction of Appendix B applies here: the
state j0; 0̃i is a product vacuum for the doublet kinematical
Hilbert space, and the tilde operators ˆ̃φðχÞ and ˆ̃φ†ðχÞ satisfy
the algebra (64) while commuting with nontilde operators,
etc. In particular, one can make use of the relation
sinh2ðθβðχÞÞ ¼ ðeβðχÞ − 1Þ−1 [cf. Eq. (B15)] to express
results in terms of the statistical parameter βðχÞ.
Such a Gaussian-like state is not physical, as it does not

solve the constraint (66). More precisely, focusing on
the case of a pure Gaussian state for simplicity, one can
start from (66) with jσ; ζi ¼ D̂ðσÞŜðζÞj0i and obtain the
condition

�
∂
2
χ −ω2

�	
σðχÞþ ζðχÞ

jζðχÞj tanhðjζðχÞjÞ
�
φ̂†ðχÞ− σðχÞ�
¼ 0;

ð75Þ

which cannot generically be solved for the displacement
and squeezing functions σðχÞ and ζðχÞ. Including thermal
contributions only results in a more complicated equation
with no interesting novelties, as T̂ ðθβÞ is essentially a

generalized squeezing operator just like ŜðζÞ. While setting
ζ ¼ 0 in (75) returns the classical equation of motion for
σðχÞ [which makes the coherent-like state (67) physical],
notice that setting σ ¼ 0 shows that a purely squeezed-like
state jζi ¼ ŜðζÞj0i is also unphysical, as

ð∂2χ − ω2Þ
	
ζðχÞ
jζðχÞj tanhðjζðχÞjÞφ̂

†ðχÞ



¼ 0 ð76Þ

cannot yield a solution for the squeezing function ζðχÞ.
The usual strategy in this situation is to shift the attention

towards averages, and require that the state be only approxi-
mately physical. We can use the general Gaussian states (72)
in (65)—e.g., with Ô ¼ 1—to determine the form of our
state parameters as functions of χ. One finds that the first
Schwinger-Dyson equation does not provide a condition for
the squeezing and thermal functions:

�
δS½φ̂; φ̂†�

δφ̂†


σ;ζ;β

¼ ð∂2χ − ω2Þhφ̂ðχÞiσ;ζ;β

¼ ð∂2χ − ω2ÞσðχÞ ¼ 0: ð77Þ

As essentially observed in [12] for thermal coherent states,
we can only determine the χ dependence for the displace-
ment parameter σðχÞ, which in particular is the same as in
the (pure) coherent-states scenario. This is due to the fact
that squeezed states jζi, and thus also squeezed thermal
states jζ; βi, have a vanishing field expectation value
hζ;βjφ̂ðχÞjζ;βi¼ 0. As a consequence, one cannot use (77)
to extract dynamical information for ζ and β.
Since going to Schwinger-Dyson equations of higher

order is rather complicated (see Appendix C for an attempt
with dipole states and squeezed-like states), we can follow
the idea of [12] and assume that the parameters ζ and β
are constant. While the dynamics is still governed by the
same function σðχÞ, this simple generalization does affect
observable averages (such as the volume), and hence the
resulting Friedmann equation, with new static contributions
of squeezing and thermal nature. From the volume expect-
ation value computed with (72),

hV̂ðχÞiσ;ζ;β ¼ v
�jσðχÞj2 þ δð0Þ sinh2ðjζjÞ

þ δð0Þðeβ − 1Þ−1 coshð2jζjÞ�; ð78Þ

one finds the following effective Friedmann equation: 
1

hV̂ðχÞiσ;ζ;β
dhV̂ðχÞiσ;ζ;β

dχ

!
2

¼ 4ω2

 
1þ v

hV̂ðχÞiσ;ζ;β
ðEþ EÞ− v2

hV̂ðχÞi2σ;ζ;β
ðQ2 þQ2Þ

!
;

ð79Þ

where E and Q are given in (69), and the squeezing and
thermal contributions are encoded in

E ¼ δð0Þ�1 − cothðβ=2Þ coshð2jζjÞ�;
Q2 ¼ −

1

4
EðE þ 2EÞ: ð80Þ

As mentioned, we formally keep the Dirac delta distribu-
tions in these expressions, assuming one can get rid of them
by using, e.g., a smearing procedure [12]. Notice that such
divergences affect the thermal and squeezing contributions
already at the level of the volume expectation value.
Of course, when ζ ¼ 0 and β → ∞, Eq. (79) reduces to

(70), since E ¼ Q ¼ 0. Similarly, one can check that the
result of [12] with a “static thermal cloud” emerges by
setting ζ ¼ 0. We remark, however, that both (79) and the
modified Friedmann-like equation of [12] represent only
a somewhat weak generalization of (70), as the new
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contributions are assumed to be χ independent; this is an
arbitrary assumption that was made because the model is
not predictive for ζ and β [cf. Eq. (77)].
Along the same lines, one can also find new constant

contributions to the volume fluctuations for general
Gaussian-like states. Since all the χ dependence is encoded

in the displacement parameter σðχÞ, one can proceed to
remove the divergences of the usual kind and find again
that relative uncertainties are automatically tamed under
time evolution. To give a concrete but concise example,
pure8 Gaussian-like states jσ; ζi yield the following relative
uncertainties:

ðΔV̂Þ2σ;ζ
hV̂i2σ;ζ

¼ δð0Þ 2jζjjσðχÞj
2 coshð2jζjÞ þ sinhð2jζjÞðσðχÞ2ζ̄ þ σðχÞ2ζÞ þ δð0Þjζjsinh2ð2jζjÞ

2jζjðjσðχÞj2 þ δð0Þsinh2ðjζjÞÞ2 : ð81Þ

Since σðχÞ grows exponentially, one easily finds that at late
times (81) reduces to an analogue of (53) (in this case with
β → ∞). Of course, in the limit ζ → 0, one recovers (71).
Notice that when σ ¼ 0, one is left with an expression
which incidentally has no divergences, namely
ðΔV̂Þ2ζ=hV̂i2ζ ¼ 2 coth2ðjζjÞ [as in Eq. (40)]. We show a
similar feature for dipole states (expected to be a type of
squeezed state) in Appendix C.

VI. CONCLUSIONS

In this paper, we constructed the wide class of (mixed)
Gaussian states in the context of group field theory and
suð1;1Þ quantum cosmological models, and we analyzed
relevant properties for such states to be semiclassical and
lead to a macroscopic cosmology. Inspired by bosonic
theories in other areas of quantum mechanics, in particular
quantum optics and quantum information theory, we
defined the family of Gaussian states in its most general
form, obtaining the most general state by applying dis-
placement and squeezing operators to a pure thermal state.
Since such states are generally defined as equilibrium (or
Gibbs) states, Gaussian states should carry a statistical
interpretation. In a discrete setting such as GFT, the notion
of particle number allows one to think of a statistical
ensemble where adding or removing quanta might come
with some intrinsic cost in “energy” (usually the chemical
potential in thermodynamics). In this sense, the “thermal”
effects appearing in our results are not inherently related to
some physical temperature like the one adopted in standard
cosmology, but a grand canonical interpretation might be
more meaningful. From this perspective, discrete GFT
models can add new features to cosmological scenarios
which are missing in the continuum. However, giving a
precise physical meaning to statistical parameters is highly
nontrivial for a background-independent quantum gravity
theory, where spacetime is only seen as emergent. Here we
restrict ourselves to studying thermality from a mathemati-
cal point of view.
While all existing work in GFT cosmology focuses on

some type of coherent states, our results extend this past
work to the most general family of semiclassical states,
under the assumptions of a free theory and a single field

mode. The general family includes pure coherent and
squeezed states as special cases, as well as thermal (or
generally mixed) states constructed along the lines of [12].
With the exception of Sec. V, the paper mainly focuses on
the deparametrized approach to canonical quantization of
GFT. We give explicit analytical results for the relevant
quantum fluctuations at all relational times, for both
Fock coherent states and the Perelomov-Gilmore family
of SUð1; 1Þ coherent states (herein called squeezed states).
These return and generalize the late-time results of [13].
We distinguish between two possible properties that can
be associated with semiclassicality: the requirement that
relative uncertainties (in the geometrical observables of
interest) be small, and the saturation of the Robertson-
Schrödinger uncertainty principle, which was never prop-
erly investigated in GFT (for similar work in loop quantum
cosmology, see, e.g., [43]). We argue that saturation of the
Robertson-Schrödinger equality is a less useful criterion in
practice; for instance, simple Fock coherent states would
not be semiclassical according to this, yet they yield relative
uncertainties that can be arbitrarily small, which seems
physically more relevant. On the other hand, states which
do saturate the Robertson-Schrödinger inequality, such as
squeezed states, show large relative uncertainties and are
hence not semiclassical (as already argued in [13]).
For a free GFT and single field mode, the dynamics are

given by a simple quadratic bosonic Hamiltonian. Hence,
the class of Gaussian states studied here represents the most
general family of semiclassical states for the cosmological
models under investigation. In the most general case,
we studied the two possible semiclassicality criteria using
analytical expressions for all the dynamical quantities of
interest. One key result is that, while general Gaussian
states just like coherent states do not saturate the
Robertson-Schrödinger inequality, the fluctuations of the
relevant geometrical observables (energy and volume) can
be made arbitrarily small, at all relational times (especially
in the late-time limit, where a classical cosmology is
expected to emerge). Not too surprisingly, this behavior

8One can write down an expression including β, but it is not
insightful to show this in full, since thermal contributions are of
squeezing type (see thermofield formalism in Appendix B) and
assumed to be constant.
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is mainly governed by the displacement parameter, which
can be manipulated arbitrarily so as to allow for non-
vanishing thermal and squeezing contributions. In this
sense, Gaussian states can be regarded as semiclassical.
All such results rely on the algebra generated by the

volume, the Hamiltonian, and the Ĉ operator (dubbed CVH
algebra in [17]). For this reason, our findings apply to any
general quantum system based on the suð1;1Þ algebra, in
particular provided that one can give a cosmological inter-
pretation to some of the generators. Apart from GFT [13], a
standard example ofsuð1;1Þ cosmology is provided by loop
quantum cosmology [16,18], another realization of the
harmonic cosmology of [14,15]. Similar ideas were also
applied to FLRW cosmological models in [44], where the
CVH algebra slð2;RÞð≃suð1; 1ÞÞ allows one to formulate
quantum cosmology as a one-dimensional conformal field
theory.
We then studied similar questions in the algebraic

approach to GFT cosmology, where states in a kinematical
Hilbert space are subject to additional dynamical equations
(constraints) in order to be seen as physical. In our attempts
to generalize previous results to a wider class of states, we
looked at different possible definitions of Gaussian-like
states and used these to extract effective dynamics. A state
is physical in an exact sense when it is annihilated by the
free GFT equation of motion, and it can be considered
approximately physical when at least one of the Schwinger-
Dyson equations is satisfied. Ignoring as much as possible
the known issues related to divergent norms, which affect
all physical states in this formalism, we defined a family of
generalized Gaussian states assuming that they could be
regularized. Regardless of these divergences, we found that
in the general family of Gaussian states, there seem to be no
(even approximately) physical states. The only Gaussian
states that are physical turn out to be the pure coherent
states considered in previous literature. In light of these
findings, we analyzed a simplified scenario, which includes
the thermal construction of [12], where all the time
dependence is encoded in the displacement function.

With this assumption, we found an effective Friedmann
equation which generalizes previous works with new
(albeit constant) contributions, as well as volume fluctua-
tions that decrease over time, just like for coherent states.
We also found a class of physical states that are more
general than coherent states, but these are not Gaussian
states and are (in general) not semiclassical.
In line with the ideas of exploring the connection

between entanglement, entropy, and geometry, which has
seen recent attention, for example, in LQG [45], a natural
direction for future work is to investigate similar questions
in the context of GFT. In particular, it would be interesting
to generalize the construction of our paper to multiple
modes—specifically, to more general squeezed states like
those used in areas such as quantum optics [46] or cosmo-
logy [47]. One could explore whether our results hold for
two-mode (or generically multimode) Gaussian states, at
least in the deparametrized approach where such states can
be easily defined. This extension could add new features to
GFT cosmological scenarios which are not captured by our
single-mode construction.
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APPENDIX A: UNCERTAINTY PRINCIPLE

In this appendix, we analyze in detail the Robertson-
Schrödinger (RS) inequality (24) for all states described in
this paper. First, Table I reports the expectation values,
variances, and covariances for the operators of interest at
χ ¼ 0, using coherent states (30) and squeezed states (38).
Moreover, using the analytical expressions for the time
evolution of variances and covariances [cf. Eqs. (25)
and (26)], we explicitly compute the dynamical behavior
of the left-hand side and right-hand side of the RS
inequality (24). For coherent states, we find

TABLE I. Useful quantities computed with coherent states jαi and squeezed states jzi, where the displacement
and the squeezing parameters are decomposed as α ¼ jαjeiϑ and z ¼ reiψ .

Coherent states Squeezed states

hV̂i vjαj2 v sinh2r
hĤi − ω

2
ðᾱ2 þ α2Þ ¼ −ωjαj2 cos2ϑ − ω

2
sinh2r cosψ

hĈi i v
2
ðᾱ2 − α2Þ ¼ vjαj2 sin2ϑ v

2
sinh2r sinψ

ðΔV̂Þ2 v2jαj2 v2
2
sinh22r

ðΔĤÞ2 ω2

2
ð1þ 2jαj2Þ ω2

8

�
3þ cosh4r þ2 cos2ψ sinh22r

�
ðΔĈÞ2 v2

2
ð1þ 2jαj2Þ v2

8

�
3þ cosh4r −2 cos2ψ sinh22r

�
ΔðV̂ ĤÞ − vω

2
ðᾱ2 þ α2Þ ¼ −vωjαj2 cos2ϑ − vω

4
cosψ sinh4r

ΔðV̂ ĈÞ i v
2

2
ðᾱ2 − α2Þ ¼ v2jαj2 sin2ϑ v2

4
sinψ sinh4r

ΔðĤ ĈÞ 0 − vω
4
sin2ψ sinh22r
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ðΔV̂χÞ2CðΔĤÞ2C ¼ v2ω2

8
ð2jαj2 þ 1Þ�4jαj2ðsinh4ωχ sin2ϑ þ cosh4ωχÞ þ cosh4χω −1

�
;

�
ΔðV̂χĤÞ�2C þ ω2hĈχi2C ¼ v2ω2

4

�
4jαj4 cosh22ωχ cos22ϑ þ

�
2jαj2ðcosh2ωχ sin2ϑ þ sin2ωχÞ þ sinh2ωχ

�
2
�
;

which can only be equal if vωjαj2 cosh2ωχ ¼ 0. Since we exclude the trivial cases with vanishing GFT parameters and with
α ¼ 0 (which would reduce a coherent state jαi to the vacuum j0i), there is no χ for which the Robertson-Schrödinger
relation is saturated. Conversely, for squeezed states we find that the uncertainty principle is minimized at all times:

�
ΔV̂χ

�
2
SðΔĤÞ2S ¼ �ΔðV̂χĤÞ�2S þ ω2hĈχi2S

¼ v2ω2

16

�
sinh22ωχ

�
sinh42rsin

2
2ψ þ 4cosh22r

�þ cosh22ωχ
�
4sinh22rsin

2
ψ þ sinh24rcos

2
ψ

�
þ 1

4
sinh4ωχsinψ

�
8sinh32rcosh2rcos2ψ þ 6sinh4r þ sinh8r

��
:

In other words, χ evolution does not change the statement of whether the RS uncertainty principle is saturated. Figure 2
shows this feature for some state parameters. Other than studying generic intermediate times, we can in particular also
evaluate the large-volume limits (27) and (28) using the quantities in Table I. We find

ðΔV̂χÞ2C
hV̂χi2C

ðΔĤÞ2C
hĤi2C

⟶
χ→�∞ ð2jαj2 þ 1Þ½1þ 4jαj2ð1� sin2ϑÞ�

jαj4cos22ϑð1þ 2jαj2ð1� sin2ϑÞÞ2
;

ðΔðV̂χĤÞÞ2C
hV̂χi2ChĤi2C

þ ω2
hĈχi2C

hVχi2ChĤi2C
⟶
χ→�∞ 1þ 4jαj2ð2jαj2 þ 1Þð1� sin2ϑÞ

jαj4cos22ϑð1þ 2jαj2ð1� sin2ϑÞÞ2

and

ðΔV̂χÞ2S
hV̂χi2S

ðΔĤÞ2S
hĤi2S

⟶
χ→�∞

4þ 4csch22rsec
2
ψ ;

ðΔðV̂χĤÞÞ2S
hV̂χi2ShĤi2S

þ ω2
hĈχi2S

hVχi2ShĤi2S
⟶
χ→�∞

4þ 4csch22rsec
2
ψ ;

showing confirmation of the above statements for both classes of states.
In a similar fashion, one can also deal with the more general Gaussian states (47). As with coherent states, one finds that

Gaussian states do not minimize the RS principle at any χ. For χ ¼ 0, one can quickly read off from the results in Sec. IV
that the right-hand side and the left-hand side of the inequality do not match, namely

FIG. 2. Left-hand side (LHS) and right-hand side (RHS) of the RS inequality [Eq. (24)] for coherent (α ¼ 1) and squeezed (z ¼ 1)
states, setting v ¼ 1. The first two panels show that coherent states do not saturate the inequality at early or late times; the last panel
shows that squeezed states saturate Eq. (24) at all times.
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ðΔV̂Þ2GðΔĤÞ2G ¼ v2ω2

32

�
4jαj2Bðcosh2r þ Fþsinh2rÞ þ B2cosh4r − 1

��
8jαj2Bðcosh2r þ F−sinh2rÞ

þ B2
�
2sinh22rcos2ψ þ cosh4r þ 1

�þ 2
�
;

ðΔðV̂ ĤÞÞ2G þ ω2hĈi2G ¼ v2ω2

16

�
B2
�
4jαj2ðcosh2rcos2ϑ þ sinh2rcosψ Þ þ Bsinh4rcosψ

�
2 þ 4ð2jαj2sin2ϑ þ Bsinh2rsinψÞ2

�
;

where B ¼ cothβ=2 and F� ¼ cos2ϑ cosψ � sin2ϑ sinψ . As with any other states, one can also use the time-dependent
expressions (25) and (26) to compute the behavior of the uncertainty principle under time evolution. Even though such
results can be calculated analytically, we do not report the (lengthy) Gaussian state expressions because they are not
insightful; we refer the reader to Fig. 3 instead. On the other hand, we show explicitly that the inequality is not saturated for
χ → �∞. Using again the convenient large-volume limits (27) and (28), one can compare the product of the (late-time)
volume and Hamiltonian relative uncertainties

ðΔV̂χÞ2G
hV̂χi2G

⟶
χ→�∞

2 −
8jαj4ðsin2ϑ � 1Þ2

½2jαj2ðsin2ϑ � 1Þ � Bðcosh2r � sinh2rsinψÞ�2
;

ðΔĤÞ2G
hĤi2G

¼ 8Bjαj2ðcosh2r þ F−sinh2rÞ þ B2ð2sinh22rcos2ψ þ cosh4r þ 1Þ þ 2

2ð2jαj2cos2ϑ þ Bsinh2rcosψÞ2

with

ðΔðV̂χĤÞÞ2G
hV̂χi2GhĤi2G

þ ω2
hĈχi2G

hVχi2GhĤi2G
⟶
χ→�∞ 4

ð2jαj2cos2ϑ þ Bsinh2rcosψÞ2

þ B2½4jαj2ðsinh2rðcosψ � sin2ϑþψÞ þ cosh2rcos2ϑÞ þ Bðsinh4rcosψ � sinh22rsin2ψÞ�2
ð2jαj2cos2ϑ þ Bsinh2rcosψÞ2½2jαj2ðsin2ϑ � 1Þ þ Bðsinh2rsinψ � cosh2rÞ�2

to see that the saturation of the RS relation does not occur at
late times. Since the complexity of Gaussian states makes
these expressions somewhat intransparent, we report in
Fig. 3 a graphical demonstration of the exact time evolution
for some state parameters.

APPENDIX B: GAUSSIAN STATES AND
THERMOFIELD FORMALISM

In this appendix, we present the features of Gaussian
states that lead to the definition in Eq. (47), as well as the
tools used to obtain all the results of Sec. IV. We start by
means of a pivotal result, originally investigated in [40] (see
also [37,38] for modern perspectives), which states that

when dealing with second-order bosonic Hamiltonians, the
most general Gaussian state can always be expressed as
three types of unitary operators acting on the thermal state
ρ̂β [Eq. (48)] (or on the Fock vacuum j0i for pure Gaussian
states). These so-called “fundamental Gaussian unitaries”
are the squeezing, displacement, and rotation operators

ŜðzÞ ¼ e
1
2
ðzâ†2−z̄â2Þ;

D̂ðαÞ ¼ eαâ
†−ᾱ â;

R̂ðϕÞ ¼ eiϕâ
†â; ðB1Þ

where ðz; αÞ∈C, z ¼ reiψ and ðr;ψ ;ϕÞ∈R.

FIG. 3. Left-hand side (LHS) and right-hand side (RHS) of the RS principle [Eq. (24)] for Gaussian states, setting v ¼ 1. The
inequality is not saturated at early or late times, regardless of the choice of parameters.
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To prove that a generic Gaussian state can be taken to be
of the form (47), one can first notice that the operators
in (B1) satisfy

R̂ðϕ1ÞR̂ðϕ2Þ ¼ R̂ðϕ1 þ ϕ2Þ;
D̂ðα1ÞD̂ðα2Þ ¼ e

1
2
ðα2α1−α2α1ÞD̂ðα1 þ α2Þ;

Ŝðz1ÞŜðz2Þ ¼ eiϕ=2Ŝðz3ÞR̂ðϕÞ; ðB2Þ

where, defining ta ¼ tanhðraÞ expðiψaÞ, ϕ and z3 are

determined by eiϕ ¼ 1þt1t2
j1þt1t2j and t3 ¼ t1þt2

1þt1t2
. Moreover,

one finds that operators of different types “compose in a
closed way”—namely,

Ŝ†ðzÞD̂ðαÞŜðzÞ ¼ D̂ðα coshr −ᾱeiψ sinhrÞ; ðB3Þ

R̂†ðϕÞŜðzÞR̂ðϕÞ ¼ Ŝðe−2iϕzÞ; ðB4Þ

R̂†ðϕÞD̂ðαÞR̂ðϕÞ ¼ D̂ðe−iϕαÞ: ðB5Þ

Since the state parameters are arbitrary, properties (B2)–(B5)
show that one can define a Gaussian state by acting on ρ̂β
with any number of the operators in (B1), in any order.
Finally, we can see that it is no loss of generality to define
Gaussian states without using the rotation operator.
Using (B4) and (B5), starting from an arbitrary definition
of Gaussian states, we could move the rotation operator
until it acts on ρ̂β (or on j0i in the case of zero temperature).
These operations only change the free parameters z and α,
which were arbitrary to being with, by a phase. But R̂ðϕÞ
leaves both ρ̂β and j0i invariant, and hence has no effect
whatsoever.
Central to the computation of expectation values with

(both pure and mixed) Gaussian states is the action of the
displacement operator and squeezing operator on â and â†:

Ŝ†ðzÞâ ŜðzÞ ¼ coshrâþ eiψsinhrâ†;

Ŝ†ðzÞâ†ŜðzÞ ¼ coshrâ† þ e−iψ sinhrâ; ðB6Þ

D̂†ðαÞâ D̂ðαÞ ¼ âþ α;

D̂†ðαÞâ†D̂ðαÞ ¼ â† þ ᾱ: ðB7Þ

From these, one can see that expressions of the form
Ŝ†ðzÞD̂†ðαÞfðâ; â†ÞD̂ðαÞŜðzÞ are in general simpler than
D̂†ðαÞŜ†ðzÞfðâ; â†ÞŜðzÞD̂ðαÞ for any function f of the
ladder operators. This is why, for instance, displaced
squeezed states jα; zi ¼ D̂ðαÞŜðzÞj0i are usually adopted
as pure Gaussian states instead of squeezed coherent states
jz; αi ¼ ŜðzÞD̂ðαÞj0i [the same applies to our general
definition (47)]; the property (B3) effectively allows us
to choose the most convenient ordering.

While by use of (B6) and (B7) one can obtain all the
expressions of Sec. IV using the density matrix ρ̂G (47) and
the standard techniques for calculating traces, we outline
here the thermofield formalism as a very useful tool to
extract the same results (in particular, if one wishes to use a
computational software, such as Mathematica). This also
allows us to link the present paper with the work of [12],
where such a formalism was adopted to introduce thermal
effects in GFT.
Thermofield dynamics were introduced in [48] (see [49]

for a recent detailed treatment) as a formalism to link
ensemble averages of statistical mechanics to expectation
values computed with a temperature-dependent vacuum
state, dubbed thermal vacuum and denoted j0βi. In a nut-
shell, such a framework establishes a correspondence
between a density matrix, which in our case is of thermal
type ρ̂β [Eq. (48)], and the pure vector state j0βi, such that

tr
�
ρ̂βÔ

� ¼ h0βjÔj0βi: ðB8Þ

In [48], it is shown that one can define a thermal vacuum
satisfying (B8) only by enlarging the conventional Fock
space. Specifically, one needs to double it by adding a
fictitious system (denoted with a tilde) identical to the one
under investigation. For simple theories such as our single-
mode GFT cosmological models, this means introducing a
new pair of bosonic ladder operators ( ˆ̃a, ˆ̃a†) and construct-
ing a second Fock space from a “tilde vacuum” j0̃i in the
standard way, with

�
ˆ̃a; ˆ̃a†

� ¼ 1; ˆ̃aj0̃i ¼ 0: ðB9Þ

The tilde operators commute with the nontilde operators,
as they live in distinct spaces. The next step in the thermo-
field formalism is to define a “product vacuum” in the
doublet Hilbert space as a zero-temperature ground state,
from which one can construct product states in the usual
manner:

j0; 0̃i≡ j0i ⊗ j0̃i;
âj0; 0̃i ¼ ˆ̃aj0; 0̃i ¼ 0;

jn; m̃i ¼ ðâ†Þnð ˆ̃a†Þmffiffiffiffiffi
n!

p ffiffiffiffiffiffi
m!

p j0; 0̃i: ðB10Þ

Finally, the correspondence with thermal states is estab-
lished by introducing temperature through a Bogoliubov
transformation that mixes the real and fictitious systems:

j0βi ¼ T̂ðθβÞj0; 0̃i; T̂ðθβÞ ¼ eθβðâ† ˆ̃a
†−â ˆ̃aÞ: ðB11Þ

The so-called thermalizing operator T̂ðθβÞ is a two-mode
squeezing operator, and the real parameter θβ encodes
temperature in a way that will enable us to verify (B8). One
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can easily check that the transformed, now temperature-
dependent, ladder operators

âβ ¼ T̂ðθβÞâT̂†ðθβÞ ¼ coshθβ â − sinhθβ ˆ̃a
†;

˜̂aβ ¼ T̂ðθβÞ ˜̂aT̂†ðθβÞ ¼ coshθβ ˆ̃a − sinhθβ â
† ðB12Þ

indeed annihilate the state (B11):

âβj0βi ¼ ˆ̃aβj0βi ¼ 0: ðB13Þ

The operators (B12) and their adjoints still satisfy the
bosonic algebra, because Bogoliubov transformations are
canonical. Therefore, one can construct a Fock space with
respect to the β-dependent operators, where general states
read

jn; m̃; βi ¼ T̂ðθβÞjn; m̃i ¼ ðâ†βÞnð ˆ̃a†βÞmffiffiffiffiffi
n!

p ffiffiffiffiffiffi
m!

p j0βi: ðB14Þ

The association of the thermal vacuum j0βi with a
density matrix ρ̂β as given in (48) is obtained by determin-
ing θβ as a function of β. This is done by imposing the
condition (B8) for the number operator so that, thanks to
(50), one has

1

eβ − 1
¼ trðρ̂βâ†âÞ ¼ h0βjâ†âj0βi ¼ sinh2θβ ; ðB15Þ

where the right-hand side is computed using the thermal
vacuum (B11). The fictitious system is understood as
unphysical and is only introduced as a useful tool. We
are not interested in expectation values of tilde operators;
this helps to define a simple thermofield counterpart of
Gaussian states.
Starting from the thermal vacuum j0βi, we can construct

states by analogy with (30) and (38), and hence use
displacement and squeezing operators to define general
Gaussian states in the thermofield formalism. Indeed, we
can generalize the GFT coherent thermal states of [12],
defining the thermofield analogue of ρ̂G [cf. Eq. (47)] as

jα; z; βi ¼ D̂ðαÞŜðzÞT̂ðθβÞj0; 0̃i
¼ D̂ðαÞŜðzÞj0βi; ðB16Þ

which clearly reduces to a pure Gaussian state when β → ∞
(or equivalently, θβ → 0). Since the thermalizing operator
(B11) is of squeezing type, the order in which the operators
appear in (B16) is in principle arbitrary (see above
discussion) and was chosen for convenience. There is,
however, a subtlety: while D̂ðαÞ and ŜðzÞ only act on the
nontilde sector, T̂ðθβÞ is a two-mode operator which mixes
the physical and fictitious parts. Thus, choosing T̂ðθβÞ to be
to the left of D̂ðαÞ and/or ŜðzÞ requires the introduction of

ˆ̃Dðα̃Þ and/or ˆ̃Sðz̃Þ, with α̃ ¼ ᾱ and z̃ ¼ z̄ (see [49] for
details).9

On the other hand, if the mixing between the physical
and the fictitious sectors happens first [i.e., T̂ðθβÞ is to the
right of every other operator as in (B16)], one is free to
displace and squeeze only the nontilde component of the
state. Of course, one can also include the tilde operators
ˆ̃DðᾱÞ and ˆ̃Sðz̄Þ acting from the left in (B16) (as done in [12]
for coherent states), but this is not necessary; it would only
be relevant if one were interested in the expectation values
of tilde operators. In short, the state (B16) is the simplest
thermofield analogue of the Gaussian density matrix (47).
The explicit computational convenience of the thermo-

field formalism comes from the following transformation
rules of our GFT ladder operators:

T̂†ðθβÞâ T̂ðθβÞ ¼ coshθβ âþ sinhθβ ˆ̃a
†;

T̂†ðθβÞâ†T̂ðθβÞ ¼ coshθβ â
† þ sinhθβ ˆ̃a; ðB17Þ

which were tacitly used to compute the right-hand side
of (B15). The transformations (B17), together with (B6)
and (B7), allow us to forget entirely about Gaussian density
matrices and taking traces. This makes calculations very
mechanical: one first simply computes expectation values
with (B16) exactly as if using pure states; then, one makes
use of the identification (B15) to map the thermofield
results to the standard (β-dependent) results of the density
matrix approach.

APPENDIX C: CONDENSATE STATES
AND PHYSICALITY CONDITIONS

In this appendix, we focus on states that have been
proposed in the algebraic approach to GFT [8–10], and we
study their properties in relation to the questions addressed
in this paper. As mentioned in Sec. V, the single-particle
condensate state ubiquitously adopted in the literature,

jσi ¼ N σ exp

	Z
dχσðχÞφ̂†ðχÞ



j0i;

N σ ¼ exp

	
−
1

2

Z
dχjσðχÞj2



; ðC1Þ

with σðχÞ solving the classical equations of motion
[cf. Eq. (68)], is an exact solution of the constraint (66) for
a free GFT, as it is equivalent to (67). After some regulari-
zation (e.g., a cutoff in χ) is adopted to make the state well
defined, this yields compelling cosmological effective

9One can, for example, use the state T̂ðθβÞD̂ðαÞ ˆ̃DðᾱÞ×
ŜðzÞ ˆ̃Sðz̄Þj0; 0̃i or any other alternative definition achieved by
changing the operator ordering; they will all be related to jΨG; βi
in (B16) via (B3).
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dynamics (70), as well as volume uncertainties (71) which
are well behaved if one considers smeared observables.
Next to (C1), two-particle (or dipole) condensate states

jξi ¼ N ξ exp

	
1

2

Z
dχξðχÞφ̂†ðχÞφ̂†ðχÞ



j0i;

N ξ ¼ exp

 
−
X∞
k¼1

1

4k
δð0Þ

Z
dχjξðχÞj2k

!
ðC2Þ

were also initially proposed for GFT cosmology [10], even
though they were never used to obtain relational dynamics.
Here, we return to these states because of the connection
with squeezed states [see Sec. III B, and in particular
Eq. (46)], which makes them part of the Gaussian states
family. Indeed, assuming one can make such two-particle
states well defined, dipoles (C2) and squeezed-like states
ŜðζÞj0i [with ŜðζÞ in (73)] correspond to the same type of
states and share the same properties.
An important difference between the normalization

factor N ξ in (C2) and the one given in [10] is the appea-
rance of a Dirac delta function δð0Þ due to the commutator
(64), which does not appear for models without a matter
scalar field. A cutoff in χ, while required to make sense of
the integrals in N ξ, is not enough to make the state well
defined; some other regularization would be needed to deal
with the δð0Þ. As in Sec. III B, we will proceed to study
properties of dipole states, assuming that a way of regu-
larizing (C2) is found [and hence leaving formal δð0Þ
factors in our expressions]. We shall see that, even assum-
ing they exist, dipole states are not viable candidates as
semiclassical states for the class of GFT models discussed
in this paper, for a number of reasons.
Formally keeping divergences in all our expressions

below, one can “blindly” follow the usual strategy to derive
a cosmological scenario by focusing on the volume
operator. Computing its expectation value with respect to
(C2), one finds

hV̂ðχÞiξ ¼ v
hξjφ̂†ðχÞφ̂ðχÞjξi

hξjξi

¼ vδð0Þ jξðχÞj2
1 − jξðχÞj2 ; ðC3Þ

where again the commutator (64) gives rise to a δð0Þ. Since
the expectation value (C3) is positive by construction,
one concludes that the dipole function must satisfy the
condition

jξðχÞj < 1; ðC4Þ

similarly to what we observed in Sec. III B. Next, we shall
find that for any ξðχÞ, quantum fluctuations of these states

are never small. To see this, one first computes the volume
variance as

ðΔV̂ðχÞÞ2ξ ¼ v2
�
δð0Þhφ̂†ðχÞφ̂ðχÞiξ

þ hφ̂†2ðχÞφ̂2ðχÞiξ − hφ̂†ðχÞφ̂ðχÞi2ξ
�

¼ v2δ2ð0Þ 2jξðχÞj2
ðjξðχÞj2 − 1Þ2 ; ðC5Þ

so that the relative uncertainty reads

ðΔV̂ðχÞÞ2ξ
hV̂ðχÞi2ξ

¼ 2

jξðχÞj2 : ðC6Þ

Even though the δð0Þ distributions fortuitously cancel [as
already seen below Eq. (81)], such fluctuations can never
be made small because of the condition (C4). This means
that dipole states never become semiclassical according to
our main criteria.
One can now turn to the task of finding the form of ξðχÞ

using dynamical equations, but as anticipated for squeezed-
like states in Sec. V, this does not seem to be possible. First
of all, the dipole state (C2) is not exactly physical, since it
does not solve the constraint (66). To be precise, using the
property φ̂ðχÞjξi ¼ ξðχÞφ̂†ðχÞjξi, one can obtain from (66)
the condition �

∂
2
χ − ω2

��
ξðχÞφ̂†ðχÞ� ¼ 0; ðC7Þ

which cannot yield a solution for the dipole function ξðχÞ.
Equation (C7) is the analogue of (76) translated into the
notation of dipole states via (46).
One could then try to find ξðχÞ as an approximate solu-

tion from expectation values of the type (65). As already
assessed in Sec. V for more general states [cf. Eq. (77)],
the first Schwinger-Dyson equation does not help in this
respect, since dipoles have a vanishing field expectation
value. Climbing the tower of Schwinger-Dyson equations
would entail setting, e.g., Ô ¼ φ̂ in (65), which gives

ð∂2χ − ω2Þhξjφ̂ðχ0Þφ̂ðχÞjξi ¼ 0: ðC8Þ

Calculating explicitly the correlation function
hξjφ̂ðχ0Þφ̂ðχÞjξi yields

�
∂
2
χ − ω2

�	
δðχ − χ0Þ ξðχÞ þ ξðχ0ÞjξðχÞj2

1 − jξðχ0Þj2jξðχÞj2



¼ �∂2χ − ω2
�	

δðχ − χ0Þ ξðχÞ
1 − jξðχÞj2



¼ 0; ðC9Þ

where in the last step we use the relation
δðχ − χ0Þfðχ; χ0Þ ¼ δðχ − χ0ÞfðχÞ. To show the connection
with squeezed-like states one last time, one can write the
same Schwinger-Dyson equation using the state jζi ¼
ŜðζÞj0i defined via (73), finding
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ð∂2χ − ω2Þ
	
δðχ − χ0Þ ζðχÞ

2jζðχÞj sinhð2jζðχÞjÞ



¼ 0: ðC10Þ

Unfortunately, it seems that no nontrivial solution to either
(C9) or (C10) exists. Schwinger-Dyson equations of higher
order would be even harder to solve. In short, two-particle
states such as squeezed-like states or dipoles (C2) do not
seem to be suitable candidate states for the GFT models
under investigation. Specifically, while they are clearly not
semiclassical [cf. Eq. (C6)], it is also not clear whether one
can tackle the problem of finding a condition for the
function ξðχÞ so as to extract dynamics [in the same way
that σðχÞ gave rise to (70)] in any meaningful way.
These observations are in conflict with some results of

[10], where a detailed account on dipole states can be

found. In particular, in the specific case of a GFT coupled to
a matter scalar field χ, the condition on the dipole function
is not given by the classical GFT equation of motion (63),

ð∂2χ − ω2ÞξðχÞ ¼ 0; ðC11Þ

as was claimed in [10]. Interestingly, by plugging the
solution of (C11) [i.e., ξðχÞ ¼ αeωχ þ βe−ωχ] into the
volume expectation value (C3), one finds new effective
cosmological dynamics, where the volume diverges as
hVðχÞiξ ∼ ðχ − χ0Þ−1 in a finite relational time10 χ ¼ χ0.
In particular, assuming α and β are small [so as to satisfy
(C4)] and real for simplicity, one has the effective
Friedmann equation

	
1

hV̂ðχÞiξ
dhV̂ðχÞiξ

dχ


2

¼ 4ω2

	
C1 −

vC2

hV̂ðχÞiξ
þ C3

v
hV̂ðχÞiξ þ

C4

v2
hV̂ðχÞi2ξ



; ðC12Þ

where C1 ¼ 1–12αβ, C2 ¼ 4αβ, C3 ¼ 2–12αβ, and C4 ¼
1–4αβ. Note that the last two terms in (C12) effectively
behave like matter components with equations of state
typical of “dust” and “dark energy,” respectively. To see this
explicitly, we recall that in classical cosmology, the rela-
tional Friedmann equation for the volume as a function of χ
takes the form [13,50]	

1

VðχÞ
dVðχÞ
dχ



2

¼
X
i

AiVðχÞ−wiþ1; ðC13Þ

where Ai are constants and i labels the different types of
perfect fluids (with equations of state pi ¼ wiρi) in the
Universe. Comparing (C12) and (C13), one can readily find
the “effective equation-of-state parameters” w3 ¼ 0 and
w4 ¼ −1. Note that a term ∼1=hV̂ðχÞi2ξ , usually character-
izing effective Friedmann equations coming from GFT, is
absent in the “dipole cosmological dynamics” [Eq. (C12)].
While this path might have some interesting implications
from a phenomenological point of view, it is not clear why
one should assume (C11) to begin with.
To shed some light on the more general question of

finding physical states, we conclude by deriving the general
solution to the constraint (66), or

ð∂2χ − ω2Þφ̂ðχÞjΦi ¼ 0: ðC14Þ

Any element jΦi of the Fock space can be written as

jΦi ¼
X∞
n¼0

Z
dχ1…dχn

�
fnðχ1;…χnÞ

× φ̂†ðχ1Þ…φ̂†ðχnÞ
�j0i; ðC15Þ

where the functions fn are totally symmetric under
exchange of their arguments. Substituting this form into
(C14) and using the commutator (64), it follows that we
would need

X∞
n¼0

n
Z

dχ1…dχn−1
�ð∂2χ − ω2Þfnðχ; χ1;…; χn−1Þ

× φ̂†ðχ1Þ…φ̂†ðχn−1Þ
�j0i ¼ 0; ðC16Þ

which is true if and only if

Z
dχ1…dχn−1

�ð∂2χ − ω2Þfnðχ; χ1;…; χn−1Þ

× φ̂†ðχ1Þ…φ̂†ðχn−1Þ
� ¼ 0 ∀ n: ðC17Þ

If such equations are satisfied by some fn, then the state
jΦi is physical. For example, forgetting about normaliza-
tion, the coherent state (C1) corresponds to (C15) with

fnðχ1;…; χnÞ ¼
1

n!
σðχ1Þ…σðχnÞ: ðC18Þ

The conditions (C17) for the first few n’s read

10If ðα; βÞ∈R, one finds hVðχÞiξ ∼ vð1−4αβÞ−1=2
2ωðχ−χ0Þ , with the time of

divergence given by ωχ0 ¼ ln
�
1þ

ffiffiffiffiffiffiffiffiffiffi
1−4αβ

p
2α

�
.
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ð∂2χ − ω2ÞσðχÞ ¼ 0; n ¼ 1;R
dχ1σðχ1Þφ̂†ðχ1Þð∂2χ − ω2ÞσðχÞ ¼ 0; n ¼ 2;R

dχ1dχ2σðχ1Þσðχ2Þφ̂†ðχ1Þφ̂†ðχ2Þð∂2χ − ω2ÞσðχÞ ¼ 0; n ¼ 3;

..

.

ðC19Þ

Clearly, all these conditions are met if σðχÞ satisfies the
classical GFT equation of motion (63). Note that the
constants 1=n! in (C18) do not play a role in obtaining
(C19), so (C18) can straightforwardly be generalized to
fnðχ1;…; χnÞ ¼ cnσðχ1Þ…σðχnÞ, where cn’s are generic
coefficients. In other words, one can define a slightly more
general class of exact physical states,

jFσi ¼ F

	Z
dχσðχÞφ̂†ðχÞ



j0i; ðC20Þ

where F can be any function that can be expressed in a
power series, generalizing the previously used exponential.
However, all these (physical) states are non-normalizable
regardless of F; even the simple one-particle state

, for example, would require a

cutoff as . It seems the only regular

physical state of the theory (when defined without cutoff) is
the Fock vacuum.
As a last example, we can use the general expressions in

(C17) to confirm that the two-particle condensate state (C2)
cannot be a physical state. Again forgetting about the
normalization, (C15) reduces to a dipole state by choosing
fnðχ1;…; χnÞ ¼ 0 for n ¼ 2mþ 1 and

fnðχ1;…; χnÞ ¼
1

2mm!
δðχ1 − χmþ1Þ…δðχm − χ2mÞ

× ξðχmþ1Þ…ξðχ2mÞ for n¼ 2m; ðC21Þ

where m∈N. The state would be physical if the conditions
in (C17) are satisfied. However, excluding the trivial (odd)
ones, the first few read

ð∂2χ − ω2ÞðξðχÞφ̂†ðχÞÞ ¼ 0; n ¼ 2;R
dχ1ξðχ1Þðφ̂†ðχ1ÞÞ2ð∂2χ − ω2ÞðξðχÞφ̂†ðχÞÞ ¼ 0; n ¼ 4;R

dχ1dχ2ξðχ1Þξðχ2Þðφ̂†ðχ1ÞÞ2ðφ̂†ðχ2ÞÞ2ð∂2χ − ω2ÞðξðχÞφ̂†ðχÞÞ ¼ 0; n ¼ 6;

..

.

ðC22Þ

which reduce to the condition (C7).
In conclusion, it seems that only states built from

iterations of the same single creation operatorR
dχσðχÞφ̂†ðχÞ, generically given by (C20) and in particular

including the coherent state (C1) or equivalently (67), are

exact solutions of (C14), and hence physical states. To the
best of our knowledge, no other (nontrivial) state can be
found such that the infinitely many conditions of (C17) are
satisfied. This question needs to be investigated more in
future work.
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