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We derive the dynamics of (isotropic) scalar perturbations from the mean-field hydrodynamics of full
Lorentzian quantum gravity, as described by a two-sector (timelike and spacelike) Barrett-Crane group
field theory model. The rich causal structure of this model allows us to consistently implement in the
quantum theory the causal properties of a physical Lorentzian reference frame composed of four minimally
coupled, massless, and free scalar fields. Using this frame, we are able to effectively construct relational
observables that are used to recover macroscopic cosmological quantities. In particular, small isotropic
scalar inhomogeneities emerge as a result of (relational) nearest-neighbor two-body entanglement between
degrees of freedom of the underlying quantum gravity theory. The dynamical equations we obtain for
geometric and matter perturbations show remarkable agreement with those of classical general relativity for
sub-Planckian modes. Quantum gravity effects produce important deviations from the classical general
relativistic dynamics for trans-Planckian modes, which we show to be associated to subhorizon scales in the
physical reference frame we are employing.
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I. INTRODUCTION

The prevailing ΛCDM (Λ cold dark matter) paradigm [1]
gives a remarkably accurate description of the large-scale
structure of our Universe in terms of a homogeneous and
isotropic Friedmann-Lemaître-Robertson-Walker (FLRW)
background spacetime, complemented by small, inhomo-
geneous perturbations thereof. This nearly homogeneous
and isotropic geometry is sourced by a cosmic fluid
permeating the Universe. Within the ΛCDM paradigm,
this fluid is composed of standard and nonstandard matter,
in the form of a cosmological constant Λ and cold dark
matter.
However, despite its successes, this model falls short of

providing a complete physical and conceptual clarification
of critical open questions about our Universe touching for
instance on the fate of the initial big bang singularity, the
origin of cosmic structure, the enigmatic nature of dark

energy and dark matter, and the issue of the Hubble tension.
Quantum gravity (QG) may help shed some light on these
unanswered questions. On the other hand, cosmology, with
its precision observations, presents itself as an incredibly
promising testing ground for quantum gravity theories. For
these reasons, extracting cosmological physics from QG is
a key step to make substantial progress in both QG and
theoretical cosmology.
Nevertheless, extracting cosmology from full QG is a

formidable challenge, especially for approaches with “pre-
geometric” degrees of freedom that differ significantly from
the continuum fields of standard cosmology. Thus, two
main difficulties arise in this endeavor: (i) The transition
from the microscopic realm of QG cosmological physics
requires an appropriate definition of a semiclassical and
continuum limit [2]. This possibly involves a coarse-
graining procedure where macroscopic degrees of freedom
are identified as effectively emerging from the underlying
QG entities [3]. (ii) Inherent to background independent
approaches to QG is the absence of the conventional
spacetime manifold structure. Consequently, notions of
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time evolution and spatial localization can only be under-
stood in a relational sense [4–8].
Tensorial group field theories (TGFTs) [9–12] constitute a

promising framework that offers a versatile tool set to tackle
both of the aforementioned challenges. Combinatorially,
TGFTs can be seen as a higher-dimensional generalization
of matrix models [13] and are closely related to tensor
models [14–17]. TGFT models which are enriched by
quantum geometric degrees of freedom (encoded in group
theoretic data) are called group field theories (GFTs) [9,18]
and can be seen as quantum and statistical field theories of
spacetime defined on a group manifold. Owing to their
quantumgeometric interpretation,GFTmodels can be related
to many other QG approaches, such as loop quantum
gravity (LQG) [19–21], spin foammodels [22,23], simplicial
gravity [24–28], or dynamical triangulations [29–32].
It is generally expected that the continuum limit

of TGFTs manifests itself in a phase of coarse-grained
collective behavior [33–36]. Although extremely challeng-
ing, substantial progress in exploring the phase diagram of
TGFTs has been accomplished by adapting powerful tools
from local statistical and quantum field theories; see for
instance [12,37–45]. Primary examples of these techniques
are the functional renormalization group (FRG) method-
ology [46–49] and Landau-Ginzburg mean-field theory
[48,50,51]. Of particular relevance for this article, the
Landau-Ginzburg method has been applied recently to
quantum geometric TGFT models with Lorentzian signa-
ture, finding a remarkable robustness of the mean-field
approximation [36,52].
Inspired by the physics of Bose-Einstein condensates

[53], the GFT condensate cosmology program [34,54–57]
models this mean-field description of GFTs in terms of
coherent peaked states (CPSs) subject to the classical GFT
equation of motion [57–63]. In this way, this program has
successfully reproduced the Friedmann dynamics for spa-
tially homogeneous and isotropic flat geometries at late
relational times, while at early relational times, the initial
big bang singularity of classical cosmology is replaced by a
big bounce [57,61–63]. Of particular relevance to our
present work, all of these results, initially obtained using
an Engle-Pereira-Rovelli-Livine (EPRL)-like GFT model
[27,64], have been independently reproduced through an
extended formulation of the Barrett-Crane (BC) model
[65]. This observation hints at a potential universal behav-
ior of different microscopic GFT models after coarse
graining in the continuum limit [36].
Scalar cosmological perturbations in the GFT conden-

sate cosmology framework have been studied in [66–69],
and most notably in [70] where the dynamics of general
relativity (GR) in the super-horizon limit of large pertur-
bation wavelength are reproduced. For non-negligible wave
vectors k, qualitative deviations from classical results arise
in the spatial derivative term of the perturbation equations.
Building on the interpretations for this mismatch proposed

in [70], here, we suggest that it ultimately originates from
(i) an insufficient coupling between the physical reference
frame and the causal structure of the underlying geometry
and (ii) a lack of quantum gravitational correlations
generating the macroscopic inhomogeneities.
In this paper, we address these issues by making use of

the richer causal structures available in the extended
Barrett-Crane GFT model. We derive the dynamics of
scalar cosmological perturbations which are remarkably
closer to those of GR and thereby significantly improve the
results of [70]. To accomplish this, we first establish a
connection between the causal character of the quantum
geometry and that of the clock and rods, thus making the
Lorentzian interpretation of the physical frame manifest.
Building on this interplay, we introduce perturbed coherent
peaked states that capture the collective behavior of space-
like and timelike tetrahedra. At the background level, these
states reproduce the homogeneous cosmological dynamics
obtained in previous studies. Perturbations on the other
hand are encoded in the two-body quantum entanglement
within and between the spacelike and timelike sector. This
procedure differs significantly from the purely spacelike
perturbations of [70] and can be seen as out-of-condensate
perturbations. Finally, we extract and study the dynamics of
cosmological perturbations from the mean-field quantum
dynamics associated to such perturbed CPS, and we
compare our results to predictions of classical GR. We
refer the reader who is interested only in the cosmological
dynamics and not its derivations directly to Sec. IV E.
The paper is organized as follows: We begin by setting

up the complete BC model with spacelike and timelike
tetrahedra in Sec. II A, introducing in particular the two-
sector Fock space. In Sec. II B, we couple four reference
and one matter field to the model, proposing a restriction to
couple clocks and rods to the causality of the underlying
geometry. Within the causally extended setting, CPS and
their relational dynamics are introduced in Sec. III, first at
the background and then at the level of first-order pertur-
bations. In Secs. IVA–IV C, we study the expectation
values of relevant operators with respect to the condensate
state and derive dynamical equations thereof in an effective
relational fashion. Solutions of these equations are ana-
lyzed in Sec. IV E and compared to solutions of the
classical perturbation equations from GR.

II. COMPLETE BARRETT-CRANE MODEL:
SPACELIKE AND TIMELIKE TETRAHEDRA

After a brief discussion on the status of causality in
GFTs, we introduce the Barrett-Crane TGFT model with
spacelike and timelike tetrahedra in Sec. II A. Thereafter,
the coupling of matter and reference fields to this
model are discussed in Sec. II B. In particular, we present
the possibility to relate the causal nature of clocks and
rods to the causal structure of the underlying quantum
geometry.
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A. Spacelike and timelike tetrahedra

As introduced in Sec. I, GFTs are quantum and statistical
field theories, defined on a group manifold G, endowed
with a quantum geometric interpretation. One-particle
excitations of a d-dimensional simplicial GFT are inter-
preted as (d − 1)-dimensional simplices which, under non-
local interactions, form d-dimensional simplices that
collectively build up spacetime. A choice of group G,
dimension d, and GFT-action SGFT defines a specific GFT
model, the partition function of which can be perturbatively
expanded in terms of Feynman amplitudes dual to sim-
plicial pseudomanifolds [11,12,14]. Depending on the
representation employed, these amplitudes can be associ-
ated to either spin foam or simplicial gravity amplitudes.
The basic prerequisite for thiswork is a quantumgeometric

GFT model with an accessible causal structure, the impor-
tance of which is highlighted in approaches like causal
dynamical triangulations [30–32] or causal set theory [71].
The issue of properly encoding microcausality within GFTs,
spin foam models, and LQG has been scarcely studied (see,
e.g., Refs. [72–77]) and only recently aroused interest once
again. This has been triggered by studies on the asymptotics
[78–83] of the Conrady-Hnybida extension [84,85] of the
EPRL spin foam model [23,86] which includes spacelike
and timelike tetrahedra to encode Lorentzian quantum
geometries. In addition, in the context of effective spin foams
[87–89], the path integral for Lorentzian quantum gravity has
been studied, shedding light on causality violating configu-
rations [90–92]. Finally, forming the basis of the present
work, a completion of the Lorentzian Barrett-Crane GFTand
spin foam model [72,73,93] with d ¼ 4 and G ¼ SLð2;CÞ
has been developed in [17] which also includes timelike and
lightlike tetrahedra.

1. The Lorentzian Barrett-Crane GFT model

Restricting to spacelike tetrahedra and to homogeneous
and isotropic condensates, it has been shown in [65] that at
late times flat Friedmann dynamics emerge for the volume of
the Universe. In this work, we go beyond this setting and
include, as aminimal extension, also timelike tetrahedrawhile
excluding lightlike tetrahedra from the outset (assumption
DS1). Indeed, as we will argue below, timelike tetrahedra are
necessary to properly couple the reference fields according to
the signature of the quantum geometric building blocks (see
Sec. II B formore details). As the results of Sec. IV show, this
restricted set of causal configurations is already sufficient to
yield GR-like cosmological perturbations.
Within the extension to spacelike and timelike tetrahe-

dra, the group fields are functions φðgv; XαÞ with
α∈ fþ;−g assigning a spacelike, respectively a timelike
signature. The four group elements gv ¼ ðg1; g2; g3; g4Þ are
elements of SLð2;CÞ, and Xα is a normal vector with the
according signature. More precisely, Xα is an element of the
homogeneous space SLð2;CÞ=UðαÞ, where UðþÞ ¼ SUð2Þ

and Uð−Þ ¼ SUð1; 1Þ are the stabilizer subgroups of the
respective normal vectors

Xþ ¼ ð1; 0; 0; 0Þ; X− ¼ ð0; 0; 0; 1Þ: ð2:1Þ
The fields φ� exhibit two defining symmetries,

φðgv; XαÞ ¼ φðgvh−1; h · XαÞ; ∀ h∈SLð2;CÞ; ð2:2Þ

φðgv; XαÞ ¼ φðgvuv; XαÞ; ∀ u1;…; u4 ∈UXα
; ð2:3Þ

referred to as closure and simplicity constraints, respec-
tively, or both together as geometricity constraints. UXα

denotes the stabilizer subgroup of SLð2;CÞ with respect to
the normal vector Xα, which is isomorphic to UðαÞ. Based
on the ideas of [26,27], extending the domain SLð2;CÞ4 by
the normal vector allows one to impose the constraints in a
covariant and commuting fashion. Consequently, Xα is only
considered as an auxiliary nondynamical variable that does
not carry intrinsic geometric information.
Following the introduction of the fields φ, the model is

then defined by its action S½φ; φ̄�, which decomposes into a
kinetic part,

K½φ; φ̄� ¼
X
α

Z
SLð2;CÞ8

dgvdgw

×
Z

SLð2;CÞ=UðαÞ

dXαφ̄ðgv; XαÞKαðgv; gwÞφðgw; XαÞ;

ð2:4Þ
with kernelsKα and an interaction part V½φ; φ̄�, the latter of
which is explicitly given in [17,65]. A priori, the interaction
V does incorporate all possible simplicial interactions
composed of altogether five tetrahedra of spacelike and
timelike signature.
For explicit computations as well as to connect to the

spin foam formalism [22,23], the spin representation of the
group field is a crucial tool that is going to be utilized
heavily in this work. Following the constructions of [17],
the expansion of φðgv; XαÞ in terms of unitary irreducible
SLð2;CÞ-representation labels ðρ; νÞ∈R × N=2 of the
principal series is given by

φðgv;XþÞ¼
Z

dρv
X

jvmvlvnv

φρv
þ;jvmv

Y4
i¼1

ρ2i D
ðρi;0Þ
jimilimi

ðgigXÞĪρi;þ
limi

;

ð2:5Þ
φðgv;X−Þ¼

Z
dρv
X
νv

X
jvmvlvnv

φρvνv
−;jvmv

×
Y4
i¼1

ðρ2i δνi;0þν2i δðρiÞχνiÞDðρi;νiÞ
jimilini

ðgigXÞĪρiνi;−
lini

:

ð2:6Þ
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The continuous label ρ∈R is associated to spacelike faces,
irrespective of the containing tetrahedron being spacelike
or timelike. ν∈ 2Nþ is associated to timelike faces, which
are necessarily contained in timelike tetrahedra. These
conditions follow from the simplicity constraint of the
Barrett-Crane model [17,65], derived in the framework of
integral geometry [94]. I� are invariant symbols that
ensure the constraints of Eqs. (2.2) and (2.3) which, upon
integration over the normal vector, yield generalized
Barrett-Crane intertwiners Bρvνv;α

lvnv
defined in [17].

2. Extended Fock space

The extension of the GFT model to include also timelike
tetrahedra necessitates the definition of an extended Fock
space structure. That is because the individual field
operators φ̂ðgv; XþÞ and φ̂ðgv; X−Þ are defined on different
domains and act on different Fock spaces. These two
sectors, denoted byFþ andF−, respectively, are defined as

F� ≔ ⨁
∞

N¼0

symðHð1Þ
� ⊗ … ⊗ HðNÞ

� Þ; ð2:7Þ

where the one-particle Hilbert spaces for spacelike and
timelike tetrahedra are given by

Hþ ≔ L2ðSLð2;CÞ4 × H3=∼þÞ; ð2:8Þ

(see also [65]) and

H− ≔ L2ðSLð2;CÞ4 × H1;2=∼−Þ: ð2:9Þ

Here,∼� denotes the imposition of geometricity constraints
with respect to a timelike and spacelike normal, respectively.
These normal vectors are elements of the two-sheeted and
one-sheeted hyperboloids, Xþ ∈H3 and X− ∈H1;2.
The total Fock spaceF of the theory is constructed as the

tensor product of Fþ and F−, i.e.,

F ≔ Fþ ⊗ F− ¼ ⨁
∞

Ntot

⨁
NþM¼Ntot

symðH⊗N
þ Þ ⊗ symðH⊗M

− Þ:

ð2:10Þ

As usual in quantum field theory, the linear structure of the
individual and total Fock spaces is strictly only possible
when interactions, as introduced for the complete BC
model in [17], are neglected, as assumed hereafter. For a
discussion of this matter for the single-sector Fock space,
we refer to [58]. Creation and annihilation operators of
spacelike and timelike tetrahedra, abbreviated as φ̂†

� and
φ̂�, respectively, are defined in terms of the creation and
annihilation operators of the respective sectors. We fre-
quently suppress the trivial action on the opposite sector,
e.g., φ̂þ ≡ φ̂þ ⊗ 1−. Following the usual commutation
rules, the operators φ̂� satisfy the algebra

½φ̂�; φ̂
†
�� ¼ 1�; ½φ̂�; φ̂�� ¼ ½φ̂†

�; φ̂
†
�� ¼ 0; ð2:11Þ

where 1� is the identity on F� respecting closure and
simplicity constraints. Notice that, by construction, oper-
ators of different sectors mutually commute

½φ�;φ
†∓� ¼ ½φ̂�; φ̂∓� ¼ ½φ̂†

�; φ̂
†∓� ¼ 0: ð2:12Þ

The vacuum state j0i of the total Fock space is naturally
defined as the state which is annihilated by both, φ̂þ and
φ̂−. It therefore corresponds to the tensor product of the
respective vacuum states, i.e., j0i ¼ j0iþ ⊗ j0i−.

3. Operators

Building up on the Fock space structure we introduced,
operators are in general defined as convolutions of kernels
with creation and annihilation operators (see [20,57,62] for
further details).1 For the purposes of this work, we are
particularly interested in one- and two-body operators on
both sectors, i.e., the spacelike and timelike ones. The most
important one-body operators are the α-number operator

N̂α ¼
Z

dgvdXαφ̂
†ðgv; XαÞφ̂ðgv; XαÞ; ð2:13Þ

and the spatial three-volume operator

V̂ ¼
Z

dgvdXþφ̂†ðgv; XþÞVðgvÞφ̂ðgv; XþÞ: ð2:14Þ

In spin representation, the kernel V of the volume operator
is given in analogy to the eigenvalues of the LQG volume
operator [95–98]. In case of isotropy of the representation
labels ðρi ≡ ρÞ the kernel scales as V ∼ ρ3=2 [57,62,65].
A two-body operator Ôαβ that describes a nontrivial

correlation between the sectors α and β is generally
given by

Ôαβ ¼
Z

dgvdXαdgwdXβOðgv; Xα; gw; XβÞφ̂†

× ðgv; XαÞ × φ̂†ðgw; XβÞ; ð2:15Þ

where × symbolizes operator multiplication, “ ·”, if α ¼ β
or a tensor product, “⊗”, if α ≠ β. Notice that, Ôαβ does not
factorize in general, thus creating an entangled state when
acting on a product state in Fþ ⊗ F−. In Sec. III B, we

introduce three such operators, cδΦ;cδΨ, and cδΞ, which
encode two-body quantum entanglement, constituting the
source of cosmological perturbations that we later derive.

1If the group is noncompact and the field symmetries yield
empty group integrations, a regularization procedure is required,
for which we refer to [58,65] (assumption KS5).
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B. Coupling scalar fields: Matter and physical
Lorentzian reference frame

As mentioned in Sec. I, in background independent
theories, physical observables are naturally understood as
relational, localizing dynamical degrees of freedom with
respect to other dynamical degrees of freedom. However,
the implementation of a relational description in full
general relativity is quite complicated, even more so for
quantum gravity theories. This is especially true for
approaches characterized by new fundamental pregeomet-
ric degrees of freedom, since relationality—as we usually
understand it—is tightly related to the emergence of
continuum notions [57]. In the context of classical homo-
geneous cosmology, the simplest implementation of the
relational strategy involves a minimally coupled massless
free (MCMF) scalar field, which serves as a relational clock
[99,100]. If inhomogeneities are taken into account, 3
additional degrees of freedom, serving as relational rods,
are required. This can be achieved by including three more
MCMF “rod” scalar fields [100]. Another explicit example
for such a physical reference frame is given by Brown-
Kuchař dust [101–103], which has for instance been
employed to define a fully relational cosmological pertur-
bation theory [104,105].
In this work, following [70], we implement the relational

strategy by using a physical Lorentzian reference frame
composed of four MCMF scalar fields, serving as the
dynamical clock and rods of our system. Furthermore, we
introduce an additional MCMF “matter” scalar field which
is assumed to dominate the field content of the emergent
cosmology (assumption DS5). Following the strategy of
[62,106,107], the scalar fields are coupled to the GFT in
such a way that the Feynman amplitudes correspond to
simplicial gravity path integrals with a minimally coupled
scalar field placed on dual vertices of the triangulation and
propagating along dual edges (see DS2). As shown in detail
in Refs. [62,106], this is realized by extending the domain
of the group field by the scalar field values,

φðgv; XαÞ → φðgv; Xα; χμ;ϕÞ; ð2:16Þ

where χμ ¼ ðχ0; χ Þ are the four reference fields with χ0

being the clock and χ being the three rods, and where ϕ
denotes the additional “matter” scalar field. We use
μ; ν;…∈ f0; 1; 2; 3g as indices for the reference fields as
well as for harmonic coordinates, discussed in Appendix C.
Lower Latin letters i; j;…∈ f1; 2; 3g denote hereby
spatial components. For other than harmonic coordinates,
spacetime indices are given by lower Latin letters
a; b;…∈ f0; 1; 2; 3g.
The two kinetic kernels Kα, entering Eq. (2.4), are

extended to

K�ðgv; gwÞ → K�ðgv; gw; ðχμ − χ0μÞ2; ðϕ − ϕ0Þ2Þ; ð2:17Þ

respecting the translation and reflection invariance of the
classical actions for the fields χμ and ϕ. Importantly, it is
the kinetic kernels which encode the propagation of the
scalar fields along the simplicial complex. Since the scalar
field is understood to be constant on a single simplex,
the five group fields entering the vertex action V½φ; φ̄�
carry the same scalar field value. In this sense, the
interactions are local with respect to the scalar field degrees
of freedom [65,106].
Notice that the Fock space structure introduced in

Sec. II A naturally extends to the case where such scalar
fields are present, such that the nonzero commutation
relations of Eq. (2.11) are given by

½φ̂�ðχμ;ϕÞ; φ̂†
�ðχ0μ;ϕ0Þ� ¼ 1�δð4Þðχμ − χ0μÞδðϕ − ϕ0Þ:

ð2:18Þ
Also, operators now include an integration over the full
domain including the scalar field values. For instance, the
α-number operator is now defined as

N̂α ¼
Z

dgv dXα d4χ dϕ φ̂†ðgv; Xα; χμ;ϕÞφ̂ðgv; Xα; χμ;ϕÞ:

ð2:19Þ
For further details, we refer to [57,65].

1. Clock and rods

In GR, perturbation equations clearly distinguish
between derivatives with respect to (clock) time and (rods)
space. As we can see explicitly from, e.g., Eq. (C17), it is
not just a matter of signature: when the physical frame is
made of four minimally coupled, massless, and free scalar
fields, their harmonic behavior imposes a different relative
weight of a4 between (relational) space and time deriva-
tives. Since symmetries on field space of the classical
action are naturally reflected at the level of the kernels of
the GFT action [62], one would naively expect that, by
imposing Lorentz symmetry at the level of the frame field
action, one would recover effective equations which at least
show the right signature of temporal and spatial derivative
terms. However, as shown in [70], this seems not to be the
case: The signature of effective equations turns out to be
independent on the symmetries of the frame action, and to
be fixed essentially only by the parameters of the CPSs. On
top of that, in the effective perturbation equations derived
in [70], temporal and spatial derivatives enter with the same
weight. As emphasized already in [70], this property of the
effective equations is the source of a crucial mismatch with
GR when perturbations momenta are k > 0.
Both of the above results seem to suggest a difficulty in

distinguishing between rods and clock at the level of the
underlying GFT. This difficulty, however, may be solved by
carefully coupling the frame according to the causal
structure of the underlying geometry. To do so, in this
work we take advantage of the extended structure of the
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present model, which, crucially, includes both spacelike
and timelike tetrahedra.
In the next two following paragraphs, we restrict our

attention to the reference fields, since we do not intend to
impose the same causality conditions on the matter field ϕ.

2. Classical and discrete perspective

In the continuum, the action of the four reference fields is
given by

S½χ� ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p X3
μ¼0

gab∂aχμ∂bχμ; ð2:20Þ

and we enforce our assumption on the signature of clock
and rods in terms of the conditions

gð∂χ0; ∂χ0Þ < 0; ð2:21aÞ

gð∂χi; ∂χiÞ > 0; ð2:21bÞ

meaning that the clock has a timelike gradient and rods
have a spacelike gradient. Notice that here we are not
imposing a Lorentz symmetry (on field space) of the action.
Indeed, as already argued in [70], only this choice for
the action guarantees the appropriate sign for the energy
density of the four fields. We note two points here: First,
the conditions on the gradients are not implied by the
Klein-Gordon equation, but constitute indeed an additional
physical requirement. Second, despite the point-particle
intuition, a massless scalar field does not necessarily have a
lightlike gradient. One of the simplest counter examples is
that of a massless scalar field in a homogeneous back-
ground that can be used as a clock, therefore having a
timelike gradient.2

Introducing a discretization of the continuum scalar field
theory on a two-complex Γ, where the fields are placed on
dual vertices v∈Γ, the action can be written as

SΓ½χ� ¼
1

2

X
ðvv0Þ∈Γ

V�ð4Þ
ðvv0Þ

X3
μ¼0

�
χμv − χμv0

lðvv0Þ

�
2

; ð2:22Þ

with V�ð4Þ
ðvv0Þ being the Voronoi four volume dual to the dual

edge ðvv0Þ and with lðvv0Þ being the dual edge length [108].
The sum over ðvv0Þ denotes the sum over all dual edges
which already suggests that, after quantization, the scalar
field dynamics are going to be encoded in the edge
amplitudes, i.e., in the kinetic kernels of the GFT.
Notice, that the discretization of a continuum field theory
is always accompanied by ambiguities in the construction
of discrete derivatives and dual geometric quantities [108].

A necessary condition for a discretization to be viable is
that it exhibits the correct continuum limit [109].
Given the Lorentzian structure of the original con-

tinuum manifold, Γ is the dual complex of a Lorentzian
discretization. This implies that edges ðvv0Þ which are
dual to spacelike and timelike tetrahedra are timelike
and spacelike, respectively, for which a visual intuition
is given in Fig. 1. Notice that (i) the propagation of the
scalar field is only sensitive to the signature of the dual
edges and (ii) lightlike dual edges are excluded as a
consequence of lightlike tetrahedra being excluded from
the outset. Based on this, the discrete scalar field action in
Eq. (2.22) can then be split into spacelike and timelike
dual edges

SΓ½χ� ¼ SþΓ ½χ� þ S−Γ ½χ�; ð2:23Þ

defined by

SΓ½χ�¼
1

2

X3
μ¼0

� X
ðvv0Þt:l:

wvv0 ðχμv−χμv0 Þ2þ
X

ðvv0Þs:l:
wvv0 ðχμv−χμv0 Þ2

�
;

ð2:24Þ

where wvv0 denotes the geometric coefficients V�ð4Þ
ðvv0Þ=l

2
ðvv0Þ.

Clearly, both types of reference fields propagate a priori
on both types of dual edges. In analogy to the continuum
equations (2.21), we propose to align the causal character
of the reference frame with that of geometry by intro-
ducing the conditions

χ0v − χ0v0 ¼ 0; for ðvv0Þ spacelike; ð2:25aÞ

χiv − χiv0 ¼ 0; for ðvv0Þ timelike: ð2:25bÞ

Formulated geometrically, the clock propagates along
timelike dual edges, and rods propagate along spacelike

FIG. 1. Left: a spacelike tetrahedron (teal) and its correspond-
ing timelike dual edge (pink), connecting the dual vertices v and
v0. Following the restriction in Eq. (2.25a), the clock χ0 only
propagates along timelike dual edges. Right: a timelike tetrahe-
dron (pink) and its corresponding spacelike dual edge (teal). In
this case, Eq. (2.25b) imposes that rods χi only propagate along
spacelike dual edges.

2The authors thank S. Gielen and D. Oriti for a clarifying
exchange on this matter.
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dual edges, as depicted in Fig. 1.3 As a result, the discrete
scalar field action splits into a clock and a rod part,
associated to the signature of the respective dual edges. In
the following, we discuss the realization of the conditions
(2.25) at the level of the GFT coupling.

3. Restriction of kinetic kernels

Proceeding in parallel to [106], the scalar field coupling
is obtained by considering the simplicial gravity path
integral on a given complex Γ for the coupled gravity-
matter system. As geometric quantities, dual edge lengths,
and tetrahedron volumes can be rewritten in terms of
bivector variables B∈ slð2;CÞ. Then, the GFT model
which generates these amplitudes is derived, showing that
the details of propagation are encoded in the kinetic kernel,
while the GFT interaction is local with respect to the scalar
fields. In particular, the details of the discretized geometric

quantities L�
vv0 and Vð3Þ

vv0 are encoded in the kinetic kernels,
which we keep implicitly defined for the rest of this work.
As a result of the assignment of clocks to timelike dual

edges and rods to spacelike dual edges above, the kinetic
kernels K� have a restricted dependence, given by

Kþðgv; gw; ðχ − χ0Þ2Þ ¼ Kþðgv; gw; ðχ0 − χ00Þ2Þ; ð2:26aÞ

K−ðgv; gw; ðχ − χ0Þ2Þ ¼ K−ðgv; gw; jχ − χ 0j2Þ: ð2:26bÞ

This structure of the kinetic kernels corresponds to a
strong imposition of the classical discrete conditions in
Eq. (2.25). Clearly, a weaker imposition (e.g., via a
Gaussian) including quantum fluctuations around the
classical behavior is also possible. For the rest of this
work, we assume Eqs. (2.26) to hold (assumption DS2).
Notice again, that the matter field ϕ is a priori not affected
by this restriction.

III. COHERENT PEAKED STATES AND
PERTURBATIONS

A crucial ingredient for the extraction of cosmological
physics is the identification of states that can be associated
with continuum, classical physics. Since GFTs are many-
body quantum field theories of atoms of spacetime, by
analogy with condensed matter systems, one would natu-
rally expect these states to exhibit some form of collective
behavior. The simplest form of such collective behavior is
captured by coherent (or condensate) states. Importantly,
strong evidence has recently been provided for the exist-
ence of such a condensate phase in quantum geometric
TGFTs [36,52]. One-body condensates of spacelike

tetrahedra (whose condensate wave function encodes the
macroscopic physics of the system) have indeed been
used to derive an effective cosmological dynamics that
exhibits a resolution of the big bang into a big bounce
[57,62,65] and offers intriguing phenomenological impli-
cations such as dynamical isotropization [110], emergent
inflation [111,112], or a late-time de Sitter phase [113].
Motivated by these encouraging results and given the need
to introduce timelike tetrahedra to improve the frame
coupling, we propose to describe the background compo-
nent of our collective states as the tensor product of a
spacelike and a timelike one-body condensate

jσ; x0i ⊗ jτ; x0; xi ¼ N σN τeσ̂⊗1þ1⊗τ̂j0i; ð3:1Þ

where the spacelike and timelike condensate states (whose
details are discussed in Secs. III A 1 and III A 2) are
denoted as jσ; x0i and jτ; x0; xi respectively. At the right-
hand side of the above equation, we have rewritten the two
condensate states as exponentials of the one-body operators
σ̂ and τ̂, respectively acting on the vacuum of Fþ ⊗ F−.
Finally, N σ and N τ are normalization factors. We empha-
size that the timelike condensate state jτ; x0; xi is part of the
background since the spatial peaking on x only enters the
peaking function and not the reduced condensate wave
function τ̃, as discussed in detail down below.
Given the above choice of background states, the most

natural way to describe cosmological inhomogeneities
would seem to be to include small inhomogeneous
perturbations of the one-body condensate wave functions
(since this is where the macroscopic physics of the
system is encoded). However, as it will become clear in
Sec. III C 1, the mean-field dynamics of the two one-body
condensate wave functions turn out to be completely
decoupled (at least in the regime of negligible interactions
that we will consider below). Therefore, this choice would
produce results that are effectively equivalent to those
found in [70], and thus eventually lead to the puzzling
indistinguishably between clocks and rods discussed in
the previous section and to the consequent mismatch
with GR.
For this reason, and following the intriguing idea that

nontrivial geometries are associated with entanglement of
quantum gravity degrees of freedom, in this paper we
propose an alternative description of cosmological inho-
mogeneities in terms of correlations of the underlying GFT
quanta. Since, however, cosmological inhomogeneities are
a macroscopic phenomenon from the QG perspective, the
perturbations describing them should be realized in a
collective manner at the level of the GFT. Therefore, we
consider states of the form

jΔ; x0; xi ¼ N Δ exp
�
σ̂ ⊗ 1þ 1 ⊗ τ̂ þ cδΦ ⊗ 1þ cδΨ

þ 1 ⊗ cδΞ�j0i; ð3:2Þ

3Notice that these conditions enforce the gradients of clocks
and rods to have only temporal, respectively spatial, entries,
which is a stronger condition than requiring the signature to be
timelike or spacelike.
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where the perturbations are encoded in the operatorscδΦ,cδΨ,
and cδΞ (see also KS1). In general, these can be a combi-
nation of n-body operators, each of which encoding n-body
correlations within and in between the spacelike and time-
like sectors. However, in the following, wewill restrict to the
simplest nontrivial case, i.e., two-body operators. Also, as
the perturbations are assumed to be small, the final form of
states we will employ are a linearized version of Eq. (3.2).
Notice that in the picture we propose, we do not consider
perturbations at the level of quantum geometric operators
but rather at the level of the states, chosen appropriately to
describe GR-like perturbations.
Finally, in Sec. III C, we derive and discuss the effective

relational dynamics of the linearized perturbed states.

A. Coherent peaked states for spacelike
and timelike tetrahedra

As discussed above, our working assumption is that the
spacelike and timelike sector of the background structure
separate. Since the total Fock space F , introduced in
Sec. II A, is given in terms of a tensor product of Fþ
and F−, the states of the background are therefore product
states.

1. Spacelike CPS

On the spacelike Fock space Fþ, we introduce the
coherent peaked state

jσϵþ;πþ
0
; x0i ¼ N σ exp

�Z
dgv dXþ d4χ dϕσϵþ;πþ

0
;x0ðgv; Xþ; χ0;ϕÞφ̂†ðgv; Xþ; χμ;ϕÞ

�
j0i; ð3:3Þ

which is assumed to be normalized via the factor N σ

[57,65]. The key ingredient is the condensate wave function
σϵþ;πþ

0
;x0 , with x0 being the reference field value on which

the state is peaked and with ϵþ and πþ0 characterizing the
peaking properties (see [57,63] for further details on the
formalism of coherent peaked states). It can be understood
as a mean field, since it is the expectation value of the
spacelike group field operator

hσϵþ;πþ
0
; x0jφ̂ðgv; Xþ; χμ;ϕÞjσϵþ;πþ

0
; x0i

¼ σϵþ;πþ
0
;x0ðgv; Xþ; χ0;ϕÞ: ð3:4Þ

The condensate wave function factorizes as

σϵþ;πþ
0
;x0ðgv; Xþ; χ0;ϕÞ ¼ ηϵþðχ0 − x0; πþ0 Þσ̃ðgv; Xþ; χ0;ϕÞ;

ð3:5Þ

wherein

ηϵþðχ0 − x0; πþ0 Þ ¼ N ϵþ exp

�
−
ðχ0 − x0Þ2

2ϵþ

�
eiπ

þ
0
ðχ0−x0Þ

ð3:6Þ

encodes the Gaussian peaking on the reference field value
x0 together with a phase factor that ensures finiteness of the
reference field momenta [57,65] (see also KS3). N þ

ϵ is a
normalization factor of the Gaussian function. The remain-
ing geometric information is carried by the reduced con-
densate wave function σ̃ðgv; Xþ; χ0;ϕÞ.

2. Choice of spacelike peaking

We have chosen a particular peaking for the spacelike
condensate wave function as well as a specific dependence
on the components of the reference fields χμ. Recall that the
group field φðgv; Xþ; χμ;ϕÞ does depend on all compo-
nents of the reference fields, even if the kinetic kernel is
restricted according to Eq. (2.26a). However, since we want
the background condensates to be associated to perfectly
homogeneous geometries, the condensate wave function is
peaked only on a chosen clock value, and the reduced
condensate wave function is a function of the clock only
(assumption KS3).

3. Symmetries of σ̃

Importantly, the reduced condensate wave function σ̃
satisfies additional symmetries besides that of the group
field, given in Eqs. (2.2) and (2.3). First, notice that the
embedding of a single tetrahedron in Minkowski space, as
dictated by the group field, is not a gauge-invariant
information. In fact, we argue that the embedding infor-
mation should be realized in a relational fashion, which is
ensured by the clock peaking. As argued in [65], so-called
adjoint covariance

σ̃ðgv; Xþ; χ0;ϕÞ ¼ σ̃ðhgvh−1; h · Xþ; χ0;ϕÞ;
∀ h∈SLð2;CÞ; ð3:7Þ

can be understood as averaging over the embedding of a
single tetrahedron, therefore eliminating this gauge-variant
information. The resulting domain of the reduced con-
densate wave function carries the correct number of
degrees of freedom, corresponding to the homogeneous
spatial metric at a relational instance of time, i.e., it is
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diffeomorphic to minisuperspace [57,59,65]. We refer to
this property as relational homogeneity [57].4 The remain-
ing two conditions are most clearly seen in spin represen-
tation. A priori, the four spacelike faces of a tetrahedron,
labelled by ρi, take different values. Imposing however that
the tetrahedra are equilateral, which is often referred to as
an isotropy condition [62,65], we fix for the remainder all
ρi to be equal (assumption KS2).5 Furthermore, the
SLð2;CÞ-intertwiner labels arising from Eq. (3.7) are fixed
[65]. To simplify matters even further, we assume that the
condensate is dominated by a single spin label ρ, as
justified by [65,110,114] (assumption DC2). As a result
of all of these additional conditions, the reduced condensate
wave function has a spin representation given by

σ̃ρðχ0;ϕÞ≡ σ̃ðχ0;ϕÞ; ð3:8Þ

where we suppress the fixed label ρ in the notation for the
remainder. Following this introduction of coherent states
for the spacelike background, we elaborate in the following
on the timelike background.

4. Timelike CPS

Following the arguments of the introduction of this
section, we assume the timelike background to be described
by a condensate which, as it turns out in Sec. IV, proves
sufficient to capture GR-like perturbations. Following this
idea, we denote the condensate state on F− as

jτϵ−;π−
0
;δ;πx ; x

0; xi ¼ N τ exp

�Z
dgvdX−d4χdϕτϵ−;π−

0
;δ;πx;x0;xðgv; X−; χμ;ϕÞφ̂†ðgv; X−; χμ;ϕÞ

�
j0i; ð3:9Þ

which is now an eigenstate of the timelike group field operator, again normalized by the factorN τ. Similar to the spacelike
case, the timelike condensate wave function τϵ−;π−

0
;δ;πx;x0;x factorizes according to

τϵ−;π−
0
;δ;πx;x0;xðgv; X−; χμ;ϕÞ ¼ ηϵ−ðχ0 − x0; π−0 Þηδðjχ − xj; πxÞτ̃ðgv; X−; χ0;ϕÞ; ð3:10Þ

where τ̃ðgv; X−; χ0;ϕÞ is the timelike reduced condensate
wave function. Besides a clock peaking, the timelike
condensate is also peaked on the rod variables χ via

ηδðjχ − xj; πxÞ ¼ N δ exp

�
−
jχ − xj2

2δ

�
eiπxjχ−xj: ð3:11Þ

We have chosen an isotropic peaking of the rod variables
with the same parameters δ and πx for every spatial direction,
following the strategy of [70] (see also KS2 and KS3).

5. Choice of timelike peaking

Since the timelike condensate is associated to the back-
ground structure, the reduced condensate wave function
τ̃ðgv; χ0;ϕ; X−Þ only depends on the relational clock χ0. A
peaking on rod variables is added for the timelike con-
densate to associate spatial derivatives to the timelike
sector, as we discuss in more detail in Sec. III C 2 (see
also assumption KS3).

6. Symmetries of τ̃

In addition to the symmetries of φ̂ðgv; X−; χμ;ϕÞ, we
introduce additional conditions to the timelike reduced
condensate wave function τ̃, similar to σ̃ above. Most
importantly, these restrictions ensure that τ̃ carries the
correct degrees of freedom. First, τ̃ also satisfies adjoint
covariance

τ̃ðgv;X−;χ0;ϕÞ¼ τ̃ðhgvh−1;h ·X−;χ0;ϕÞ; ∀ h∈SLð2;CÞ;
ð3:12Þ

with the resulting SLð2;CÞ-intertwiner label in spin rep-
resentation being fixed. As a result, the domain of τ̃
corresponds to the metric degrees of freedom on a
(2þ 1)-dimensional slice at a given instance of relational
time. Therefore, the number of degrees of freedom of the
spacelike and timelike condensates is the same, which is
important for the later analysis. Since timelike tetrahedra
admit an arbitrary mixture of spacelike and timelike faces,
the reduced condensate wave function τ̃ carries a priori all
possible combinations of ðρ; 0Þ and ð0; νÞ labels, as
Eq. (2.6) indicates. In the following, we are going to
restrict to the case where the condensate wave function only
carries spacelike faces and fix the corresponding label to
the same label ρ as for σ̃ (assumptions KS2, KS4, and
DC2). Besides a simplification of the dynamics, there are
two further reasons to restrict to spacelike faces only. First,
current developments in the Landau-Ginzburg mean-field

4Previously, the equivalence of minisuperspace and the domain
of the condensate wave function had been established using only
the geometric variables [59,62,65]. In this work, however, we
advocate for a relational notion of such an equivalence.

5Notice that while this notion of isotropy seems natural from a
geometric point of view, a different restriction onto the reduced
condensate wave function has been explored [110]. However, at
the level of the background dynamics this produces physically
equivalent results which is line with naive universality arguments.
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analysis of the complete Barrett-Crane model [36,52,115]
suggest that a condensate phase for timelike tetrahedra
exists if the faces are all spacelike. Second, as detailed
in [17], correlations between spacelike and timelike tetra-
hedra can only be mediated via spacelike faces. Hence,
correlations between the spacelike and timelike sector,
introduced below, are only possible if the faces carry the
same signature.
As a result, the timelike reduced condensate wave

function in spin representation is of the form

τ̃ρðχ0;ϕÞ≡ τ̃ðχ0;ϕÞ; ð3:13Þ

where we again suppress the fixed label ρ in the remainder.
In summary, the background structure on the total Fock

space is defined by the state

jσϵþ;πþ
0
; x0i ⊗ jτϵ−;π−

0
;δ;πx ; x

0; xi; ð3:14Þ

on which the group field operators act accordingly. The
effective relational dynamics of this background state is
computed in Sec. III C 1.

B. Perturbed coherent peaked states

Following the introduction of this section, inhomo-
geneities are encoded in the perturbed coherent peaked
state of Eq. (3.2), with the three two-body operatorscδΦ ⊗ 1−;cδΨ, and 1þ ⊗ cδΞ sourcing a quantum entangle-
ment within and between the spacelike and timelike
sectors. These three operators are defined in analogy to
Ôþþ; Ôþ−, and Ô−− in Eq. (2.15), respectively. The bilocal
functions Oαβ are referred to as kernels.
A priori, the kernels δΦ; δΨ, and δΞ that define the three

operators above are bilocal functions on the respective
domains. On both copies of the domain, we impose the
same restrictions as for the spacelike and timelike reduced
condensate wave functions, respectively (see assumptions
KS3, KS4, and DC2). As a result, the spin representation of
the three kernels is explicitly given by

δΦðχμ;ϕ;χ0μ;ϕ0Þ; δΨðχμ;ϕ;χ0μ;ϕ0Þ and δΞðχμ;ϕ;χ0μ;ϕ0Þ;
ð3:15Þ

where we suppressed the dependence on the fixed
SLð2;CÞ-representation label ρ in the notation.6 Crucially,
the three two-body operators do not factorize into one-body

operators if the kernels do not factorize accordingly. As a

result, acting with cδΦ;cδΨ, and cδΞ on the tensor product of
spacelike and timelike condensate creates an entangled
state in the respective sectors.
Finally, since we are interested in small perturbations, we

employ the linearized form of jΔ; x0; xi, given by

jΔ; x0; xi ≈N Δð1þ cδΦþ cδΨþcδΞÞjσ; x0i ⊗ jτ; x0; xi:
ð3:16Þ

This is the state that we are going to employ for computing
the cosmological dynamics, including perturbations. In the
following two sections, we show how to obtain effective
relational dynamics as the expectation value of the GFT
equations of motion and how to connect macroscopic
quantities such as the three volume to the expectation
value of quantum geometric operators.

C. Effective relational dynamics of perturbed CPS

Average relational dynamics of GFT condensates are,
at a mean-field level, obtained by taking the expectation
value of the GFT equations of motion with respect to the
macroscopic state jΔ; x0; xi; see also DS3. Owing to the
presence of two fields, corresponding to spacelike and
timelike tetrahedra, there are two effective relational
equations of motion, which are given by	

Δ; x0; x




 δS½φ̂; φ̂†�
δφ̂ðgv; Xα; xμ;ϕÞ





Δ; x0; x� ¼ 0; ð3:17Þ

for each signature α∈ fþ;−g. Notice, that these equations
correspond to the first of an infinite tower of Schwinger-
Dyson equations [58,62]. Ultimately, the dynamics of the
perturbed CPS jΔ; x0xi will govern the dynamics of
cosmological observables obtained as the expectation value
of GFT operators with respect to jΔ; x0xi. However, as it
requires particular care, we dedicate to this step Secs. IVA–
IV C while focusing here only on the dynamics of the
condensate.
For the remainder of this work, we assume negligible

interactions (assumption DS4), which was shown in [62,65]
to be a valid approximation at late but not very late times; see
also [58] for a discussion. Notice, that the argument
provided therein also applies to the timelike sector. One
of the crucial consequences of this assumption is that higher
orders of the Schwinger-Dyson equations reduce to powers
of the lowest order equations (3.17), as we show in
Appendix B. Hence, solutions of Eq. (3.17) solve also all
higher orders. We comment on this matter in more detail in
Sec. V. Notice that despite negligible interactions, the
spacelike and timelike sectors get coupled via the space-
like-timelike quantum correlation δΨ, as we show in detail
in Sec. III C 2.

6Notice, that the functions δΦ; δΨ, and δΞ carry a dependence
on the clock and on the rods. Together with the restriction in
Eq. (3.27) below, where the two copies of reference fields are
identified via a δ distribution, the domain of these kernels
corresponds to the metric degrees of freedom at a relational
spacetime point. Thus, the two-body correlations describe per-
turbations of the relational notion of homogeneity by a direct rod
dependence.
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Owing to the presence of perturbations, the two equa-
tions of motion can be separated into a zeroth-order
background part and a first-order perturbation part,
which we discuss separately in Secs. III C 1 and III C 2,
respectively.

1. Background equations of motion

At background level, the two equations of motion in spin
representation are given by

0 ¼
Z

dχ0dϕ0Kþðχ0; ðϕ − ϕ0Þ2Þσðχ0 þ x0;ϕ0Þ; ð3:18Þ

0 ¼
Z

d4χdϕ0K−ðχ ; ðϕ − ϕ0Þ2Þτðχ0 þ x0; χ þ x;ϕ0Þ;

ð3:19Þ

where we note that due to spatial homogeneity, the
background equation of motion on the spacelike sector
would actually contain an empty integration over the rods
χi which we henceforth regularize by introducing a
fiducial cell of finite volume. For a further analysis,
we perform a Fourier transform of the matter field
variables ϕ → πϕ. Following [70], we assume a peaking
of both condensate wave functions on a fixed scalar field
momentum pϕ, realized by a Gaussian peaking. Since the
scalar field is minimally coupled, its canonical conjugate
momentum is constant at the classical continuum level.
We translate this idea to the present context by peaking
on a fixed value pϕ (assumption KC1). Exploiting
furthermore the peaking properties of σ and τ, defined
in Eqs. (3.5) and (3.10), respectively, we obtain the
dynamical equations for the reduced condensate wave
functions σ̃ and τ̃:

∂
2
0σ̃ðx0; pϕÞ − 2iπ̃þ0 ∂0σ̃ðx0; pϕÞ − E2þðπϕÞσ̃ðx0; pϕÞ ¼ 0;

ð3:20Þ

∂
2
0τ̃ðx0;pϕÞ−2iπ̃−0 ∂0τ̃ðx0;pϕÞ−E2

−τ̃ðx0;pϕÞ¼0; ð3:21Þ

where the quantities E� and π̃�0 are defined in
Appendix D 1, to which we refer for further details.
Following the procedure of [57,62,70], the reduced

condensate wave functions can be decomposed into a
radial and angular part, denoted as rαðx0; pϕÞ and
θαðx0; pϕÞ, respectively. Splitting the resulting equations
into a real and imaginary part, one obtains

r00αðx0; pϕÞ −
Q2

αðpϕÞ
r3αðx0; pϕÞ

− μ2αðpϕÞrαðx0; pϕÞ ¼ 0; ð3:22Þ

θ0αðx0; pϕÞ − π̃α0 −
QαðpϕÞ
r2αðx0; pϕÞ

¼ 0; ð3:23Þ

where a prime denotes differentiation with respect to x0,Qα

are integration constants and the μα are defined as μ2αðpϕÞ ≔
E2
αðpϕÞ − ðπ̃α0Þ2. As demonstrated in Appendix D 1, E− and

thus μ− are actually independent of the peaked matter
momentum pϕ.

2. Classical limit

As elaborated previously [57,62,63], the semiclassical
limit of the condensate is obtained at late relational time-
scales where the moduli of the condensate wave functions
rα are dominant with respect to Qα and μα but where
interactions are still negligible (see also DC1).
Furthermore, it has been shown in [110], that in this limit,
expectation values of for instance the volume operator are
sharply peaked, providing a highly nontrivial consistency
check for the semiclassical interpretation. In this limit, the
background equations of motion simplify significantly,
yielding solutions

σ̃ðx0; pϕÞ ¼ σ̃0eðμþþiπ̃þ
0
Þx0 ; ð3:24Þ

τ̃ðx0; pϕÞ ¼ τ̃0eðμ−þiπ̃−
0
Þx0 ; ð3:25Þ

where σ̃0 and τ̃0 are determined by initial conditions. These
two equations will be heavily employed to derive the
dynamics of cosmological quantities at the background
level such as the volume dynamics in Eq. (4.8), the
dynamics of spacelike and timelike particle number in
Eqs. (4.32) and (4.33), or the dynamics of the background
scalar field in Eq. (4.52). Furthermore, the dynamics of the
cosmological observables at first order in perturbations
crucially depend on the background condensate solu-
tions above.
This concludes the effective background equations of

motion. In the next section, we compute the effective
equations of motion at first order in perturbations.

3. Perturbed equations of motion

At first order in perturbations, there are two equations,
one for the spacelike and one for the timelike sector. Since
there are three distinct two-body correlations δΦ; δΨ, and
δΞ, there is a dynamical freedom for one of the variables if
one assumes negligible interactions and works within a
first-order perturbative framework. In the following, we
utilize this freedom to relate the functions δΦ and δΨ via an
arbitrary function fðχμÞ that will be ultimately fixed by
matching the perturbed volume to the classical quantity
of GR. We provide a physical interpretation of this
assumption in Sec. IV B in terms of the perturbations of
the timelike number operator, δN−.

4. Spacelike perturbed dynamics

Dynamics of the spacelike sector at first order of
perturbations are governed by
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0 ¼
Z

d4χdϕ0Kþððχ0Þ2; ðϕ − ϕ0Þ2Þ

×
Z

d4χ0dϕ00�δΨðχμ þ xμ;ϕ0; χμ0;ϕ00Þτ̄ðχμ0;ϕ00Þ

þ δΦðχμ þ xμ;ϕ0; χμ0;ϕ00Þσ̄ðχ00;ϕ00Þ: ð3:26Þ

As a first simplification, we choose the bilocal kernel δΨ to
depend only on one copy of relational frame data
(assumption KC2), i.e.,

δΨðχμ; πϕ; χμ0; π0ϕÞ ¼ δΨðχμ; πϕÞδð4Þðχμ − χ0μÞδðπϕ − π0ϕÞ:
ð3:27Þ

From a simplicial gravity perspective, locality with respect
to the reference fields χμ corresponds to correlations only
within the same four simplex, which can be compared to
nearest-neighbor interactions in statistical spin systems.
For the momenta of the matter field πϕ, the condition is
interpreted as momentum conservation across tetrahedra of
the same four simplex. Next, we exploit the dynamical
freedom for one of the perturbation functions by imposing
the relation (assumption DC3)

δΦðχμ; πϕÞ ¼ fðχμÞδΨðχμ; πϕÞ; ð3:28Þ

with the complex valued function f defined as

fðχ0; χ Þ ¼ fðχ0Þeiθfðχ0Þjηδðjχ − xjÞje2iπþ0 χ0 : ð3:29Þ

Here, f and θf are real functions that only depend on the
reference clock χ0. In addition, we consider the following
relations between the peaking parameters ϵ� and π�0 of the
different sectors:

ϵþ ¼ ϵ−; πþ0 ¼ −π−0 ; ð3:30Þ

also entering assumption KC3. Besides simplifying
the spacelike equations of motion at first order in pertur-
bations, we show in Sec. IVA that the expression of the
perturbed three-volume δV takes a manageable form under
Eq. (3.30).
Within this set of choices, the peaking properties of the

spacelike and timelike condensate wave functions yield the
following equation of motion for δΨ:

0 ¼ ∂
2
0ðδΨðJ0 ¯̃τ þ feiθf ¯̃σÞÞ − 2iπ̃þ0 ∂0ðδΨðJ0 ¯̃τ þ feiθf ¯̃σÞÞ

− E2þδΨðJ0 ¯̃τ þ feiθf ¯̃σÞ þ α¯̃τ∇2
xδΨ; ð3:31Þ

for which a detailed derivation is provided in Appendix D 2.
All of the functions above depend on the peaked value of the
matter momentum, pϕ, but we suppress that dependence for
notational clarity. As written out explicitly before, the two
reduced condensate wave functions σ̃ and τ̃ depend on the

relational time x0 since they are part of the background,while
in contrast, δΨðxμ; pϕÞ depends on all four reference field
values. The remaining coefficients EþðpϕÞ; π̃þ0 ; J0 and α are
defined in Appendix D 2 and are entirely determined by
peaking parameters and the peaked matter momentum pϕ.
Solving the background equations of motion and

inserting them in the first-order perturbation equation,
one obtains an equation for δΨ which is of the general form

0¼δΨ00 þ t1ðx0;pϕÞδΨ0 þ t0ðx0;pϕÞδΨþs2ðx0;pϕÞ∇2
xδΨ;

ð3:32Þ

with complex functions tiðx0; pϕÞ and s2ðx0; pϕÞ. The
conditions on these coefficients to yield GR-like perturba-
tion equations are discussed in Sec. IV.

5. Timelike perturbed dynamics

As we will explicitly see in the next section, the
dynamics of observables other than the spatial three
volume, such as the matter field, its momentum, or the
total number operator, are governed by the equations of
motion of both sectors, spacelike and timelike. For this
reason, in the following, we study the perturbed equations
of motion on the timelike sector which, in spin represen-
tation, are given by

0 ¼
Z

d4χdϕ0K−ðjχ j2; ðϕ − ϕ0Þ2Þ

×
Z

d4χ0dϕ00�δΨðχ00; χ 0;ϕ0; χμ þ xμ;ϕ00Þσ̄ðχ00;ϕ00Þ

þ δΞðχμ þ xμ;ϕ0; χ00; χ 0;ϕ00Þτ̄ðχμ0;ϕ00Þ: ð3:33Þ

Using the peaking properties of σ and τ, the locality
condition in Eq. (3.27), the relation of peaking parameters
in Eq. (3.30), as well as the classical background equations
of motion in Eqs. (3.24) and (3.25), one obtains

0¼ ¯̃σ

Z
d3χK−ðjχ j;p2

ϕÞ
�
∂
2
0δΨþ2μþ∂0δΨ−

Kð2Þ
þ

Kð0Þ
þ

δΨ
�

þ ¯̃τKð0Þ
− J0;0½∂20δΞþ2μ−∂0δΞ−βδΞþγ∇2

xδΞ�; ð3:34Þ

for which a derivation is given in Appendix D 2, including a
definition of the parameters β and γ. Since the space
dependence of the first term is integrated out, solutions
δΞ need to be space independent, i.e., δΞðxμ; pϕÞ≡
δΞðx0; pϕÞ. Hence, the space derivative acting on δΞ
vanishes, and the equation reduces to a second-order
inhomogeneous ordinary differential equation. In particular,
the pure time dependence of δΞ will have important
consequences for the behavior of timelike particle number
perturbations δN−, discussed in detail in Sec. IV B.
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IV. DYNAMICS OF OBSERVABLES

In the spirit of obtaining cosmology as a hydrodynamic
limit of QG, classical cosmological quantities are associ-
ated with averages on the above condensate states of
appropriate one-body observables defined within the
GFT Fock space. Importantly, this can only hold under
the assumption that quantum fluctuations of such observ-
ables on the states of interest are small. As emphasized
in [63,116], this classicality requirement is automatically
satisfied at late relational times. For this reason, in the
following we will focus only on this regime.
Observables of interest for cosmological applications can

be roughly divided into two categories: geometric observ-
ables (such as volume, area, curvature, etc.) and matter
observables (such as the scalar field operators and their
momenta). However, as one might expect, not all operators
available in the quantum theory fall into these two
categories. A particularly important example of “observ-
ables” that have no classical counterpart are number
operators, i.e., operators that count the number of GFT
(timelike and/or spacelike) quanta. In fact, the classical
limit turns out to be associated with a large number of
quanta in the condensate and is thus directly controlled by
the above quantities.
More concretely, one can compute the expectation value

of a second-quantized operator Ô on the perturbed con-
densate states jΔ; x0; xi by using the algebra of creation and
annihilation operators. The result can be split generically as

Oðx0; xÞ≡ hΔ; x0; xjÔjΔ; x0; xi ¼ Ōðx0Þ þ δOðx0; xÞ;
ð4:1Þ

where Ō and δO are background and perturbed contribu-
tions, respectively. Note that, owing to the peaking proper-
ties of the states jΔ; x0; xi, the above expectation value is
localized in relational space and time. In this sense, the
quantities obtained are effective relational observables. As
such, their dynamics should be compared, at least in an
appropriate limit, with the dynamics of the corresponding
classical cosmological relational observables. Since these
are gauge-invariant extensions of gauge-fixed quantities,
one could alternatively compare the dynamics of the above
expectation values with the dynamics of the corresponding
classical cosmological observables in harmonic gauge

(since the physical frame used to localize quantities is in
fact harmonic) [57,58,62,70], as derived in Appendix C.
In Secs. IVA–IV C, respectively, we will compute

expectation values and dynamics of geometric, number,
and matter operators. Then, in Sec. IV D we will use the
results of the previous sections to derive the dynamics of an
appropriate “curvature-like variable.” Finally, in Sec. IV E,
we will compare the effective GFT perturbation dynamics
with the GR ones in harmonic gauge.

A. Volume operator and related geometric observables

Classically, the geometry of a flat, slightly inhomo-
geneous universe is characterized by the line element

ds2 ¼ −a6ð1þ 2AÞdt2 þ a4∂iBdtdxi

þ a2ðð1 − 2ψÞδij þ 2∂i∂jEÞdxidxj; ð4:2Þ

where we have considered only scalar perturbations
captured by the small functions A, B, ψ , and E. Note that,
for the reasons explained above, Eq. (4.2) is written in
harmonic gauge. At the background level, this means
working in harmonic (N̄2 ¼ a6), rather than proper
(N̄2 ¼ 1) or conformal (N̄2 ¼ a2) time, while at the level
of perturbations this forces the functions A, B, ψ , and E to
satisfy the constraints (C13) (see Appendix C for more
details).
Note that isotropic information on the spatial geometry

is fully captured by the local three volume, ffiffiffiffiffiffiffiffiffiffi−gð3Þ
p ¼

a3ð1 − 3ψ þ∇2EÞ. In this section, we will mainly focus on
computing the expectation value of the corresponding
three-volume GFT operator. Note that while this is clearly
sufficient to characterize the full geometry of a homo-
geneous and isotropic universe [in particular, the Hubble
parameter isH ¼ V̄ 0=ð3V̄Þ], it is a strong restriction at the
perturbation level, as it only captures information related to
a specific combination of ψ and E. To extract a full-fledged
cosmological perturbation theory from GFTs, it is therefore
imperative to construct more sophisticated geometric
observables. This is an avenue of research that has been
only tentatively explored [117,118]. We will return to this
topic in Sec. V.
Using the choices on the perturbation functions δΦ and

δΨ in Eqs. (3.27) and (3.28), respectively, the expectation
value of V̂ on the perturbed condensate state jΔ; x0; xi is
given by

hΔ; x0; xjV̂jΔ; x0; xi ¼ v
Z

d4χdπϕσ̄ðχ0; πϕÞσðχ0; πϕÞ þ 2vRe

�Z
d4χdπϕδΨðχμ; πϕÞσ̄ðχ0; πϕÞτ̄ðχμ; πϕÞ

�
þ 2vRe

�Z
d4χdπϕfðχμÞδΨðχμ; πϕÞσ̄ðχ0; πϕÞσ̄ðχ0; πϕÞ

�
; ð4:3Þ

where v is similar to a volume eigenvalue [62,65], scaling as ρ3=2. Applying Eq. (3.30) and exploiting the peaking properties
of σ and τ, the volume expectation value becomes
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hΔ;x0;xjV̂jΔ;x0;xi¼vjσ̃ðx0;pϕÞj2
Z

d3χþ2vRe

�
J0δΨðxμ;pϕÞ ¯̃σðx0;pϕÞ¯̃τðx0;pϕÞþ

J2
2
¯̃σðx0;pϕÞ ¯̃τðx0;pϕÞ∇2

xδΨðxμ;pϕÞ
�

þ2vRefδΨðxμ;pϕÞfðx0Þeiθfðx0Þ ¯̃σðx0;pϕÞ ¯̃σðx0;pϕÞg: ð4:4Þ

The first term, containing an empty rod integration (see assumption KS5), defines the background volume

V̄ ¼ vjσ̃ðx0; pϕÞj2; ð4:5Þ

while the remaining two contributions make up the perturbations of the volume

δVðxμ; pϕÞ ¼ 2vRe
�
δΨðxμ; pϕÞfðx0Þeiθfðx0Þ ¯̃σðx0; pϕÞ ¯̃σðx0; pϕÞ

�
þ 2vRe

�
J0δΨðxμ; pϕÞ ¯̃σðx0; pϕÞ ¯̃τðx0; pϕÞ þ

J2
2
¯̃σðx0; pϕÞ ¯̃τðx0; pϕÞ∇2

xδΨðxμ; pϕÞ
�
: ð4:6Þ

From the dynamics derived in Sec. III C, we can straight-
forwardly obtain the dynamics of the background and the
perturbed averaged volume. This will be done in the next
two paragraphs.

1. Background volume

At the level of the background, the expectation value of
the spatial volume operator in a classical limit (see
assumption DC1) is given by

V̄ðx0; pϕÞ ¼ σ̃20e
2μþx0 : ð4:7Þ

Performing derivatives with respect to the clock field value
x0, V̄ satisfies

V̄ 0

3V̄
¼ 2

3
μþðpϕÞ;

�
V̄ 0

3V̄

�0
¼ 0: ð4:8Þ

In terms of the Hubble parameter H ¼ V̄ 0=ð3V̄Þ in
harmonic gauge, these equations read as

H 2 ¼ 4

9
μ2þðpϕÞ; H 0 ¼ 0: ð4:9Þ

In GR, the Hubble parameter in harmonic gauge for a
universe filled with MCMF scalar fields is also constant.
Thus, the GFT background dynamics matches the classical
GR ones if (see Sec. C 1)

μ2þðpϕÞ ¼
3

8M2
Pl

π̄2ϕ; ð4:10Þ

where π̄ϕ is the constant momentum of the matter field ϕ at
background level.
The factor of the Planck mass in Eq. (4.10) present at the

level of the classical Einstein equations [see Eq. (C3)] and
thus needs to be accounted for in the matching procedure.
Working with fields of energy dimension 1, ½ϕ� ¼ 1, and

thus with conjugate momenta of energy dimension 2,
½πϕ� ¼ 2; the matching is therefore consistent with the fact
that ½μþ� is required to be 1.

2. Volume perturbations

To study the dynamics of δV [defined in Eq. (4.6)] it is
convenient to perform a split of the complex-valued function
δΨ into its modulus and phase, δΨ ¼ Rðxμ; pϕÞeiΘ.
We pose the condition that this phase is in fact constant;
see also assumption DC4.7 As a result, the overall phases of
the first and second term inside the real parts of δV are
respectively given by

θ1 ¼ Θþ θfðx0Þ − 2π̃þ0 x
0; ð4:11Þ

θ2 ¼ Θ: ð4:12Þ

Exploiting once more the dynamical freedom on δΦ, and
thus on the function fðχ0; χ Þ entering Eq. (3.28), we set
θf ¼ π

2
þ 2π̃þ0 x

0. In momentum space of the rod variable,
whichwe consider for the remainder of Sec. IV, the resulting
form of δV is given by

δVðx0; kÞ
2vσ̃0τ̃0

¼
�
cosðΘÞeðμþþμ−Þx0

�
J0 −

J2
2
k2
�

þ sinðΘÞe2μþx0 σ̃0
τ̃0

f

�
R: ð4:13Þ

Put in this form, the perturbed volume δV is directly related
to the modulus R by a time- and momentum-dependent
factor A,

7Assuming instead a time-dependent phase and splitting the
equation into a real and imaginary part, one finds Θ0 ¼ c=R2 with
some time-dependent factor c. SinceR is however space dependent
and we require Θ to be only time dependent, the function c must
vanish, and we conclude that Θ is in fact constant.
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δVðx0; kÞ
2vσ̃0τ̃0

≕Aðx0; kÞR: ð4:14Þ

Therefore, the dynamics of δV are essentially governed by
the dynamics of R, which we discuss next.
Introducing the function

gf ≔ ðσ̃0feμþx0 þ J0τ̃0eμ−x
0Þ; ð4:15Þ

the dynamics of δΨ ¼ ReiΘ for a constant phase Θ are
given by

0 ¼ R00 þ 2
g0f
gf

R0 þ
�
g00f
gf

− μ2þ

�
R −

ατ̃0eμ−x
0

gf
k2R; ð4:16Þ

which straightforwardly follows from Eq. (3.31) and the
derivations of Sec. III C 2. Combining Eqs. (4.13) and
(4.16), the dynamical equation for the perturbed volume δV
is given by

δV00 þ
�
2
g0f
gf

− 2
A0

A

�
δV 0 þ

�
g00f
gf

− μ2þ þ 2

�
A0

A

�
2

−
A00

A
− 2

g0f
gf

A0

A

�
δV −

ατ̃0eμ−x
0

gf
k2δV ¼ 0: ð4:17Þ

The above equation, and thus any solution of it, clearly
depends on the function gf encoding the aforementioned
mean-field dynamical freedom. Remarkably, however, this
freedom can be fixed entirely by requiring the above equation
to take the same functional form (at least in the late time,
classical regime) of the corresponding GR one, given
in Eq. (C18).
To see this explicitly, we start from the spatial derivative

term, whose prefactor a4, as mentioned in Sec. I, could not
be recovered by considering a perturbed condensate of only
spacelike tetrahedra [70]. Exactly because of the additional
timelike degrees of freedom, and thus of the above dynami-
cal freedom, here we can easily recover the appropriate pre-
factor, by simply requiring the function gf to satisfy

−
ατ̃0eμ−x

0

gf
¼ a4 ¼ σ̃8=30 e8μþx

0=3; ð4:18Þ

where a is the scale factor. The above condition corresponds
to the following choice of f:

f ¼ −
τ̃0
σ̃0

eðμ−−μþÞx0ðJ0 þ αa−4Þ; ð4:19Þ

fixing the aforementioned dynamical freedom completely
(see assumption DC3).8

As a result of this fixing, the function gf satisfies the
following derivative properties:

g0f
gf

¼ μ− −
8

3
μþ;

g00f
gf

¼
�
μ− −

8

3
μþ

�
2

: ð4:20Þ

Inserting the expression of f into the function Aðx0; kÞ, one
obtains

A0

A
¼ μþ þ μ−

þ 8

3
μþ

α τ̃0
σ̃0
sinðΘÞa−4

cosðΘÞðJ0 − J2
2
k2Þ − τ̃0

σ̃0
sinðΘÞðJ0 þ αa−4Þ :

ð4:21Þ

As we see from the above equation, in general A is a
complicated function of the momenta k. As a consequence,
the same holds for the factors in front of δV 0 and δV in
Eq. (4.17). This is in sharp contrast to what happens in GR;
see again Eq. (C18). However, this undesired k dependence
can be easily removed by choosing Θ ¼ n π

2
with odd

integer n and assuming that J0 is negligible with respect to
αa−4 (assumptions KC3, DC4, and DC5). Notice that this is
equivalent to ðδπx=ϵπþ0 Þ2a−4 ≫ 1 which is ensured by the
condition πx ≫ πþ0 . Under these assumptions, the deriva-
tives of A take the form

A0

A
¼ −

5

3
μþ þ μ−;

A00

A
¼
�
−
5

3
μþ þ μ−

�
2

: ð4:22Þ

Combining Eqs. (4.20) and (4.22), the perturbed volume
equation attains the form

δV 00 − 3H δV 0 þ a4k2δV ¼ 0; ð4:23Þ

where we identified H ¼ 2
3
μþ from the background

equations. Expressed instead in terms of the ratio δV=V̄,
the relative perturbed volume equation is given by�

δV
V̄

�00
þ 3H

�
δV
V̄

�0
þ a4k2

�
δV
V̄

�
¼ 0: ð4:24Þ

Remarkably, the two coefficients in front of the zeroth and
first derivative term in Eq. (4.23) are both completely fixed
by the background parameter μþ.

9 In fact, the parameter μ−,
characterizing the behavior of the timelike condensate,
does not enter the perturbed volume equation at all. Even

8Note that the initial conditions for scale factor are chosen such
that the present day value at time x0� is normalized, i.e., aðx0�Þ ¼ 1.
Therefore, a < 1 for all times x < x0� and therefore, the volume
factor a−4 in the equation above is not negligible.

9The values of these two coefficients are a direct consequence
of matching the spatial derivative term. If the exponent of a is
chosen to be λ∈R instead of 4, the first derivative coefficient is
given by −2μþð2λþ 1Þ. Since the a4 factor is crucial for
obtaining the appropriate behavior of perturbations, we fix λ ¼ 4.
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though the inclusion of a timelike condensate allows one to
nicely match the functional form of Eq. (4.24) (in particular
solving all the issues reported in [70]) with that of the GR
Eq. (4.67), the GFT volume perturbation equation does
show some new intriguing features, which we investigate in
detail in Sec. IV E.

3. Scale factor observables

Before closing this section, we would like to emphasize
that the cosmological equations obtained at the level of
background and perturbations do not depend on the fact
that we choose the three volume to encode the (scalar,
isotropic) geometric information. In fact, due to homo-
geneity and isotropy at the level of the background
condensate, one could heuristically consider some geo-
metric observable O whose expectation value is associated
to jσ̃j2 at the background level and which would classically
be interpreted as an appropriate power of the scale factor:
hOi ∼ ad. Examples other than the volume would be length
for d ¼ 1 or area for d ¼ 2, although we remark that here
we do not attempt to provide a rigorous definition for these
operators, but rather to offer heuristic insights based on
their collective nature (i.e., their properties as second
quantized GFT operators). Reiterating the same derivation
as above but now with general d, the relation of μþ andH
is given by

H ¼ O0

Od
¼ 2μþ

d
: ð4:25Þ

At the perturbed level, the GFT equations would show
exactly the same behavior as for the volume, namely,

δO00
GFT − dH δO0

GFT þ a4k2δOGFT ¼ 0: ð4:26Þ

Perturbations of the classical quantity, δOGR, would instead
be described by

δO00
GR − 2dH δO0

GR þ d2H 2δOGR þ a4k2δOGR ¼ 0;

ð4:27Þ

which shows that the differences in the equations of δV
from GFT and GR do not arise from considering the
“wrong” geometric observable.

B. Number of quanta

The number operator, introduced in Eq. (2.13), is clearly
the simplest second-quantized operator available in the
Fock space. However, as we mentioned above, it is
extremely important to characterize the classical and
continuum limit of the QG system. On the two-sector Fock
space, one can define individual number operators N̂α,
counting the number of spacelike and timelike tetrahedra,
respectively, or the total number operator N̂ ¼ N̂þ þ N̂−.
Forming the expectation value of N̂α with respect to
jΔ; x0; xi, the contributions of the background and pertur-
bations are respectively given by

N̄þ ¼ jσ̃ðx0; pϕÞj2; ð4:28Þ

N̄− ¼ jτ̃ðx0; pϕÞj2; ð4:29Þ

and

δNþ ¼ 2Re

�Z
d4χdπϕδΨðχμ; πϕÞ

�
σ̄ðχ0; πϕÞτ̄ðχμ; πϕÞ þ fðχμÞσ̄2ðχ0; πϕÞ

�
; ð4:30Þ

δN− ¼ 2Re

�Z
d4χdπϕ

�
δΨðχμ; πϕÞσ̄ðχ0; πϕÞτ̄ðχμ; πϕÞ þ δΞðχμ; πϕÞτ̄2ðχμ; πϕÞ

�
; ð4:31Þ

wherein a regularization of an empty rod integration
entering N̄þ is understood. By considering a single-spin
condensate, the number operator on the spacelike sector is
directly related to the volume operator by the factor of v,
V̂ ¼ vN̂þ. Therefore, the expectation values of N̂þ and V̂
are related by v at every order of perturbations.
The expectation value of the timelike number operator

will be particularly important in the following for two main
reasons. First, the matching conditions of the volume
perturbations that we derived in Sec. IVA can be interpreted
as a condition on δN−, detailed in the last paragraph below.
Second, the number operators enter the expressions for the
matter observables which we analyze in Sec. IV C.

1. Background: Spacelike sector

The number of spacelike tetrahedra N̄þ at background
level satisfies

N̄0þ
N̄þ

¼ 2μþ;
�
N̄0þ
N̄þ

�0
¼ 0; ð4:32Þ

where μþ is related to the scalar field momentum π̄ϕ as
determined by Eq. (4.10). Following from the single-spin
assumption, spacelike particle number and volume are
proportional to each other. Thus, the exponential form of
N̄þ reflects the form of the scale factor (or the three
volume) which is exponential in the relational clock χ0.
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2. Background: Timelike sector

At the background level, the number of timelike tetra-
hedra satisfies the equations

N̄0
−

N̄−
¼ 2μ−;

�
N̄0

−

N̄−

�0
¼ 0: ð4:33Þ

Since the spatial background geometry is fully determined
by the spacelike condensate, there are a priori no matching
conditions for the parameterμ−with respect to an observable
of classical GR. This is also due to a lack ofGFTobservables
that characterize the geometry of timelike slices. Such
observables could also help in decidingwhether the timelike
condensate state is actually sufficient to characterize a
timelike slice in a spatially, but not temporally homogeneous
setting. Further research might reveal additional constraints
on μ−, as we discuss in more detail in Sec. V.
We also remark that the exponential behavior of N̄þ and

N̄− guarantees expectation values of background observ-
ables to be sharply peaked, necessary for a classical
interpretation. For further references on such a classical-
ization, see [63,110,116].

3. Perturbations: Spacelike sector

At first order of perturbations, δNþ is related to δV by a
constant factor of v. This implies in particular that

δNþ
N̄þ

¼ δV
V̄

: ð4:34Þ

Given the dynamics of δV=V̄ in Eq. (4.23) after matching
with GR, the ratio δNþ=N̄þ satisfies�

δNþ
N̄þ

�00
þ 3H

�
δNþ
N̄þ

�0
þ a4k2

�
δNþ
N̄þ

�
¼ 0: ð4:35Þ

4. Perturbations: Timelike sector and interpretation
of matching conditions

In Secs. III C 3 and IVA we introduced some important
conditions on the perturbed condensate wave function. This
allowed us to simplify the intricate equations of motions of
δΨ and to match the GR functional form of the perturbed
volume equations. Remarkably, there is a direct physical
interpretation of these conditions in terms of the perturbed
timelike particle number, which we detail in the following.
Considering δN− in Eq. (4.31), we perform again a split

of all the complex-valued quantities into a modulus and a
phase. For the first term, δΨσ̄ τ̄, the choice of peaking
parameters in Eq. (3.30) leads to a phase which only
consists of Θ. Therefore, by setting Θ ¼ n π

2
with n an odd

integer, this contribution to δN− vanishes with the remain-
ing term being

δN−¼2Re

�Z
dχ0δΞðχ0;πϕÞ ¯̃τ2ðχ0;πϕÞη2ϵþðχ0−x0;πþ0 Þ

�
:

ð4:36Þ

Since δΞ is only time dependent, as we have shown in
Sec. III C 3, it follows that δN−ðxμ; pϕÞ≡ δN−ðx0; pϕÞ
only depends on the relational time. Thus, from a relational
perspective, the perturbation of the timelike tetrahedra
number can be absorbed into the background and does not
contribute to the space-dependent first-order perturbations.
Although this triviality of perturbations in the number of

timelike tetrahedra seems to suggest some sort of effective
“irrelevance” of purely timelike correlations, we note that
the above result is due to matching conditions imposed only
on a spacelike operator (i.e., the volume). It is conceivable
that by considering classical matching conditions on both
spacelike and timelike observables, purely timelike corre-
lations would play a more important role.

C. Dynamics of matter observables

In this section, we will derive the dynamics of the
“matter” (i.e., the only nonframe) scalar field ϕ. Its classical
relational dynamics is captured by the expectation values of
suitably defined matter and momentum operators

Φ̂α ¼
1

i

Z
dgvdXαdχμdπϕφ̂†ðgv; Xα; χμ; πϕÞ

×
δ

δπϕ
φ̂ðgv; Xα; χμ; πϕÞ; ð4:37Þ

Π̂α
ϕ¼
Z

dgvdXαdχμdπϕφ̂†ðgv;Xα;χμ;πϕÞπϕφ̂ðgv;Xα;χμ;πϕÞ:

ð4:38Þ

Notice that the scalar field operator is denoted by Φ̂ which
is not to be confused with the spacelike-spacelike pertur-

bation cδΦ and its functionΦ. We also recall that, in contrast
to the reference fields χμ, we do not assume a priori that the
scalar field propagates only along dual edges of a certain
causal character.
In perfect analogy with Secs. IVA and IV B, we separate

the expectation value of the above operators on the
condensate states jΔ; x0; xi in background and perturba-
tions. Expectation values of Φ̂α at the background and
perturbed level evaluate to

Φ̄þ ¼ 1

i
¯̃σðx0; πϕÞ

δ

δπϕ
σ̃ðx0; πϕÞ






πϕ¼pϕ

; ð4:39Þ

Φ̄− ¼ 1

i
¯̃τðx0; πϕÞ

δ

δπϕ
τ̃ðx0; πϕÞ






πϕ¼pϕ

; ð4:40Þ
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and

δΦþ ¼ 1

i

Z
d4χdπϕ

�
σ̄∂πϕðδΦσ̄Þ þ δΦσ∂πϕσ þ σ̄∂πϕðδΨτ̄Þ þ δΨτ∂πϕσ


; ð4:41Þ

δΦ− ¼ 1

i

Z
d4χdπϕ

�
τ̄∂πϕðδΨσ̄Þ þ δΨσ∂πϕτ þ τ̄∂πϕðδΞτ̄Þ þ δΞτ∂πϕτ


; ð4:42Þ

respectively. Since we work in momentum space while
peaking on momentum, the operators Π̂α

ϕ and N̂α are
closely defined, and thus, the corresponding expectation
values are simply given by

Π̄α
ϕ ¼ N̄αðx0; pϕÞpϕ; ð4:43Þ

and

δΠα
ϕ ¼ pϕδNα: ð4:44Þ

In the following two paragraphs, we analyze the dynamics
of these expectation values and suggest a matching to the
quantities ϕ and πϕ of general relativity.

1. Background part

To compute Φ̄α, we recall the decomposition of the
condensate wave functions into a radial and angular part,
rαðx0; πϕÞ and θαðx0; πϕÞ, respectively. Keeping only dom-
inant contributions in rα, one obtains

Φ̄α ¼ N̄α∂πϕθαjπϕ¼pϕ
: ð4:45Þ

Solutions of the background phases θα are given by

θα ¼ π̃αx0 −
Qα

μαr2α
þ Cα; ð4:46Þ

whereQα andCα are integration constants. Then, the zeroth
order expectation value of Φ̂α is given by

Φ̄α ¼ −∂πϕ

�
Qα

μα

�
þ 2

Qα

μαr2α
ð∂πϕμαÞx0 þ N̄α∂πϕCα






πϕ¼pϕ

:

ð4:47Þ

As a consequence of the peaking properties of σ and τ, the
timelike condensate parameter μ− is independent of πϕ, i.e.,
∂πϕμ− ¼ 0. If we choose in addition Cα to be independent

of πϕ, Φ̄α is an intensive quantity for both α, as one would
expect for a scalar field:

Φ̄þ ¼ −∂πϕ

�
Qþ
μþ

�
þ 2

Qþ
μþ

ð∂πϕμþÞx0





πϕ¼pϕ

;

Φ̄− ¼ −
1

μ−
∂πϕQ−






πϕ¼pϕ

: ð4:48Þ

In order to connect these expectation values to the scalar
field variable ϕ of GR, one needs to define a way to
combine the expectation values Φα. To that end, we notice
that the scalar field is intensive and canonically conjugate
to the extensive quantity Π̂ϕ. In analogy to the chemical
potential in statistical physics, one possible way to combine
Φþ and Φ− is to consider the weighted sum

ϕ ¼ Φþ
Nþ
N

þΦ−
N−

N
; ð4:49Þ

where all the quantities appearing are the full expectation
values, containing zeroth- and first-order terms. N denotes
the expectation value of the total number of GFT particles,
i.e., N ¼ Nþ þ N−. Expanding all the quantities to linear
order, we identify the background scalar field as

ϕ̄ ¼ Φ̄þ
N̄þ
N̄

þ Φ̄−
N̄−

N̄
: ð4:50Þ

Assuming that N̄þ ≫ N̄− at late times, corresponding to
μþ > μ− (see also assumption DC6) and reflecting
that the background is predominantly characterized
by the spatial geometry, the matter field can be approxi-
mated as

ϕ̄ ≈ Φ̄þ: ð4:51Þ

Using Eq. (4.48), we see that the scalar field is linear in
relational time, as expected classically. Thus, we can easily
match the classical GR background equations for ϕ̄:
imposing Qþ ¼ π2ϕ, yields

ϕ̄0 ¼ pϕ; ϕ̄00 ¼ 0; ð4:52Þ

as required. Besides the relation μþ > μ−, the background
matching does not impose any further conditions on Q−
and the precise form of μ−.
For Πα

ϕ, we notice that this quantity grows with the
system size, given by the respective number of tetrahedra
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N̄α. At lowest order, we therefore identify the classical
quantity π̄ϕ as

π̄ϕ ¼ Π̄þ
ϕ þ Π̄−

ϕ

N̄
¼ N̄þ þ N̄−

N̄þ þ N̄−
pϕ ¼ pϕ; ð4:53Þ

which corresponds to the peaked matter momentum pϕ.
With this identification, the GFT parameter μþ can be
expressed by the peaked matter momentum as

M2
Plμ

2þðpϕÞ ¼
8

3
π̄2ϕ ¼ 8

3
p2
ϕ; ð4:54Þ

where again a factor of Planck mass has been added to
ensure the correct energy dimensions.

2. First-order perturbations

Given the expectation values δΦα in Eqs. (4.41) and
(4.42), we perform a partial integration in πϕ and only keep
dominating terms, yielding

δΦþ ¼ 2Re

�Z
d4χdπϕ

�
δΦσ̄2∂πϕθþ þ δΨτ̄2∂πϕθþ

�
;

ð4:55Þ

δΦ− ¼ 2Re

�Z
d4χdπϕ

�
δΨσ̄2∂πϕθ− þ δΞτ̄2∂πϕθ−

�
:

ð4:56Þ

Using the relation of δΦ and δΨ in Eq. (3.28), as well
as the assumptions on the peaking parameters of σ and
τ in Eq. (3.30), the first-order expectation value δΦþ
evaluates to

δΦþ ¼ δNþðxμ; πϕÞ∂πϕθþ





πϕ¼pϕ

¼ δNþ
N̄þ

ϕ̄: ð4:57Þ

In contrast to δΦþ, the evaluation of δΦ− is more intricate
since the peaking properties of τ̄2 yield a time derivative
expansion when integrating over the reference field.
However, as we show next, the perturbed scalar field δϕ
does not explicitly depend on δΦ− under the assumption
that μþ > μ−. Following the definition of ϕ in Eq. (4.49), at
linear order in perturbations, one obtains

δϕ ≈ ϕ̄

�
δNþ − δN−

N̄þ

�
þ Φ̄−

δN−

N̄þ
: ð4:58Þ

Since the timelike number perturbation δN− is only time
dependent, and therefore part of the background, the factors
of δN−=N̄þ are negligible, and one is left with

δϕ ¼
�
δV
V̄

�
ϕ̄: ð4:59Þ

Applying Eqs. (4.24) and (4.52) for δV=V̄ and ϕ̄, respec-
tively, the dynamical equation for δϕ from GFT is given by

δϕ00 þ a4k2δϕ ¼ ð−3H ϕ̄þ 2ϕ̄0Þ
�
δV
V̄

�0
: ð4:60Þ

Notice that the right-hand side of this partial differential
equation constitutes a source term that is absent in the
classical equation of ϕGR, given in Eq. (C28), formulated in
harmonic gauge. We discuss the different features of GFT
and GR solutions in Sec. IV E.
Let us consider now the first-order matter momentum

variable δΠα
ϕ which, as for the background variable, scales

with the system size. In order to connect this quantity to the
intrinsic quantity δπϕ of GR, dividing δΠα

ϕ by the particle
number is required. In principle, there are two different
ways to do so, both of which we present in the following.
First, one can define δπϕ as the first-order term of

δπϕ ¼ð1Þ Π
þ
ϕ þ Π−

ϕ

Nþ þ N−
¼ 0; ð4:61Þ

where all the quantities entering this expression contain
both, zeroth- and first-order perturbations. However, in this
case δπϕ ¼ 0. Operatively, this could be interpreted as a
perturbation of the background momentum π̄ϕ. Since this is
a constant of motion, any such perturbation would vanish
by construction.
Alternatively, one could perturb only the momenta and

keep the particle numbers at zeroth order. In this case, δπϕ
is given by

δπϕ ¼ð2Þ δΠ
þ
ϕ þ δΠ−

ϕ

N̄þ þ N̄−
≈ pϕ

δNþ
N̄þ

¼ pϕ
δV
V̄

: ð4:62Þ

None of the options above offer a matching to the
classical perturbed momentum variable δπ0ϕ, defined in
Eq. (C33) as the 0 component of the conjugate momentum
of ϕ at linear order. The main difficulty in matching these
two quantities is that the classical equation (C33) depends
on the perturbation of the lapse function, A. To recover this
quantity from the fundamental QG theory, one would need
additional (relational) geometric operators other than the
volume. We will return to this issue when in Sec. V.

D. A Mukhanov-Sasaki-like equation

In classical cosmology, physical information is encoded
in perturbatively gauge-invariant quantities (see [119–124]
for a review), such as the Bardeen [125,126] and the
curvature perturbation variables ζ [126,127] and R [128],
defined in Eq. (C38). The latter, usually called comoving
curvature perturbation, is especially important in infla-
tionary physics, being proportional to the so-called
Mukhanov-Sasaki variable [129–131].
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However, as discussed in Appendix C, R cannot be
constructed out of volume and matter observables only.
That is because, as emphasized already at the beginning of
Sec. IVA, the volume δV=V̄ is composed of both pertur-
bation functions ψ and E. In order to single out the function
E and identifying it with expectation values of GFT
operators, one would have to relax isotropy (see
assumption KS2) and introduce anisotropic observables,
such as the areas of orthogonal two surfaces. Until such
operators are defined, the importance of which we highlight
in Sec. V B, we introduce a “curvature-like” variable R̃,

R̃ ≔ −
δV
3V̄

þH
δϕ

ϕ̄0 ; ð4:63Þ

in analogy to R. As remarked above, classically, R is
gauge invariant under infinitesimal transformations
xμ ↦ xμ þ ξμ. In contrast, R̃, as defined above [see also
Eq. (C40)], is classically gauge invariant only in the super-
horizon limit. In the context of GFT however, the quantity
R̃GFT defined above is obtained by combining effectively
relational observables (obtained via averages on CPSs), and
thus it is (effectively) gauge invariant by construction. Still,
as for the volume and matter observables, its dynamics can
be directly compared with that of GR in harmonic gauge.
Applying the GFT dynamics for δV=V̄ and δϕ to R̃,

given in Eqs. (4.24) and (4.60), respectively, yields

R̃00 þ a4k2R̃ ¼
�
3H −

1

4M2
Pl

ðϕ̄2Þ0
��

δV
V̄

�0
: ð4:64Þ

Similar to the perturbed matter equation from GFT, the
differential equation for R̃ contains a source term on the
right-hand side that is not present in the classical case,
Eq. (C41). We explicitly compare the solutions of R̃GR

and R̃GFT in Sec. IV E, showing that the discrepancies
are negligible under certain assumptions on the initial
conditions.
We close this section by presenting a different expression

for the Mukhanov-Sasaki-like equation which is closer to
standard cosmology formulations. As mentioned above,
since Eq. (4.64) is expressed in a fully relational fashion
using the physical scalar reference frame, it is most
naturally compared to the GR-equation formulated in
harmonic coordinates, given in Eq. (C41). However, in
standard cosmology, it is common practice to use con-
formal-longitudinal coordinates instead. Since we work in a
manifestly coordinate-independent setting, we need to
introduce a parametrization of the reference fields to make
the connection to this representation in GFT. Adapted to the
scalar reference frame, we introduce harmonic coordinates
and then change to the conformal-longitudinal system (see
Appendix C 3 for more details). As a relational quantity,
R̃GFT is manifestly gauge invariant and thus behaves as a

scalar under the parametrization change. Moreover, as it is a
first-order quantity, only the background change from
harmonic time to conformal time τ matters, yielding

d2R̃
dτ2

þ 2H
dR̃
dτ

þ k2R̃ ¼
�
3H −

1

4M2
Pl

d
dτ

ðϕ̄2Þ
�
d
dτ

�
δV
V̄

�
;

ð4:65Þ

where H is the Hubble parameter with respect to con-
formal time.

E. Solutions of GFT and GR perturbations

In this section, we provide a direct comparison of
emergent perturbations from GFT and classical perturba-
tions from GR. In particular, we study solutions of the GFT
and GR equations to see how the differences in the
respective differential equations are reflected in their
solutions. This allows one to determine conditions on
initial values under which the GFT curvaturelike variable
R̃GFT shows good agreement with R̃GR even for inter-
mediate and subhorizon modes a2k≳H .

1. Volume perturbations

In momentum space for the rod variable, the dynamics of
the relative volume perturbation δV=V̄ are captured by�
δV
V̄

�00

GFT
þ a4k2

�
δV
V̄

�
GFT

¼ −3H
�
δV
V̄

�0

GFT
; ð4:66Þ

�
δV
V̄

�00

GR
þ a4k2

�
δV
V̄

�
GR

¼ 0; ð4:67Þ

for GFT and GR, respectively. A derivation of the classical
equation is given explicitly in Appendix C 1. These
equations can be analytically solved, yielding�

δV
V̄

�
GFT

¼ e−3H x0=2

�
cGFT1 J−3=4

�
a2k
2H

�
þ cGFT2 J3=4

�
a2k
2H

��
; ð4:68Þ

�
δV
V̄

�
GR

¼ cGR1 J0

�
a2k
2H

�
þ cGR2 Y0

�
a2k
2H

�
; ð4:69Þ

where Jn and Yn are Bessel functions of the first and second
kind, respectively. Requiring that classical GR perturba-
tions are constant in the superhorizon regime a2k=H ≪ 1

imposes the condition cGR2 ¼ 0. Matching the GFT pertur-
bations in the superhorizon limit, one obtains the two
conditions
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cGFT1 ¼ 0; cGFT2 ¼
�
4
H

k

�
3=4

Γð7=4ÞcGR1 : ð4:70Þ

With these choices of initial conditions, we thus have�
δV
V̄

�
GFT

¼ cGR1 Γ
�
7

4

��
4H

k

�
3=4

e−3H x0=2J3=4

�
a2k
2H

�
;

ð4:71Þ�
δV
V̄

�
GR

¼ cGR1 J0

�
a2k
2H

�
; ð4:72Þ

depicted in Fig. 2 for cGR1 ¼ 0.01. By assumption, the
perturbations are smaller than the background volume, and

thus, cGR1 is required to be smaller than 1. As we are going
to show in the following paragraphs, this is consistent
with finding good matching of matter and curvaturelike
perturbations.
The deviations between GFT and GR volume pertur-

bations are twofold, and become relevant for modes
a2k=H ≳ 1. First, as the perturbations cross the
Hubble horizon, the ratio ðδV=V̄ÞGFT is more strongly
suppressed by an additional exponential factor of
e−3H x0=2. Second, the phase of the two functions
is shifted. This becomes apparent by considering an
asymptotic expansion of δV=V̄ in terms of large modes
a2k=H ≫ 1∶

�
δV
V̄

�
GFT
⟶
a2k=H ≫1

ffiffiffi
π

p
cGR1 Γ

�
7

4

��
4H

k

�
5=4

e−5H x0=2 sin

�
π

8
−

a2k
2H

�
; ð4:73Þ

�
δV
V̄

�
GR
⟶
a2k=H ≫1

ffiffiffi
π

p
cGR1

�
4H

k

�
1=2

e−H x0 cos

�
π

4
−

a2k
2H

�
: ð4:74Þ

We will give a physical interpretation for this subhorizon
deviations at the end of this section.
The initial conditions have been chosen so that the

matching of δVGFT=V̄ and δVGR=V̄ holds for superhorizon
modes. Attempting a matching with different initial
conditions naturally leads to matching conditions
which are inconsistent under relational time evolution.
More precisely, matching the two perturbations at a
certain time x0� and at a certain scale k=H which is not
superhorizon, the volume perturbations will only match at
this instance of time and show strong deviations for all
x0 ≠ x0�. Therefore, we conclude that one obtains the
closest matching with initial conditions assigned in the

superhorizon regime, which is in fact common practice
in standard cosmology [119–121,123,124]. In the follow-
ing paragraphs, we will therefore assume that δV=V̄
is given by Eqs. (4.71) and (4.72) for GFT and GR,
respectively.

2. Matter perturbations

Matter perturbations in GFT and GR are respectively
governed by

δϕ00
GFT þ a4k2δϕGFT ¼ ð−3H ϕ̄þ 2ϕ̄0Þ

�
δV
V̄

�0

GFT
; ð4:75Þ

FIG. 2. Evolution of relative volume perturbations δV=V̄ as dictated by GFT, respectively GR. Here, we set the integration constant

cðGRÞ1 ¼ 10−2. Notice, that the quantities ðx0;H Þ and ðk;H Þ only appear as a product, respectively a quotient, setting the two scales for
the system H x0 and k=H . The drawn momenta lie in the range k=H ∈ f10−3;…; 102g, where lighter blue corresponds to larger
modes. Qualitatively, this range captures superhorizon, intermediate, and subhorizon modes, respectively.
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δϕ00
GR þ a4k2δϕGR ¼ 0; ð4:76Þ

where we refer to Appendix C 2 for a derivation of the
classical equation. While the GR matter equation forms a
closed system, the matter perturbation equation of GFT
does not close, since the relative volume perturbation enters
as a source term on the right-hand side. However, as we
show in this paragraph, these inhomogeneities are con-
trolled by the parameter cGR1 . To make this statement
explicit, notice that the solution of δϕGR is given by

δϕGRðx0; kÞ ¼ dGR1 J0

�
a2k
2H

�
: ð4:77Þ

For simplicity, we set dGR1 ¼ 1 in the remainder, such that
the difference of initial conditions for δϕ and δV=V̄ is
captured by cGR1 . The differential equation for δϕGFT is
solved numerically. Given initial conditions δϕGFTð−5Þ ¼
dGR1 and δϕ0

GFTð−5Þ ¼ 0, the dynamics of GFT and GR
matter perturbations show good agreement, as Fig. 3
visualizes. A more direct comparison of the two perturba-
tions for a fixed mode, say k=H ¼ 103, and for varying
constant cGR1 is given in Fig. 4.

3. Curvaturelike perturbations

Similar to the matter perturbations, the equations for the
curvaturelike perturbation R̃

R̃00
GFT þ a4k2R̃GFT ¼

�
3H −

1

4M2
Pl

ðϕ̄2Þ0
��

δV
V̄

�0

GFT
;

ð4:78Þ

R̃00
GR þ a4k2R̃GR ¼ 0; ð4:79Þ

derived from GFT and GR, respectively, differ in a source
term on the right-hand side of the GFT equation. Since R̃
is by definition a linear combination of the volume

perturbation ratio δV=V̄ and the matter perturbation δϕ,
the initial conditions must be chosen accordingly.
With the choices for δVGR=V̄ and δϕGR of the previous

paragraphs, being dGR1 ¼ 1 and cGR1 not fixed, the curva-
turelike perturbation equation of GR is solved by

R̃GR ¼
�

1ffiffiffi
6

p −
cGR1
3

�
J0

�
a2k
2H

�
: ð4:80Þ

It is important to notice that cGR1 enters the expression of the
classical quantity R̃GR explicitly, in contrast to the classical
matter perturbations δϕGR. To find the behavior of R̃GFT,
we solve its governing differential equation numerically,

with initial conditions R̃ð−5Þ ¼ 1ffiffi
6

p − cGR
1

3
and R̃0ð−5Þ ¼ 0.

The result is depicted on the left-hand side of Fig. 5, next to
the analytical solution of GR.
Matching of GFT and GR solutions is controlled by the

parameter cGR1 , which now enters both R̃GR and R̃GFT. A
comparison of the classical and the GFT solutions for a
fixed mode k=H ¼ 103 and different values of cGR1 is
depicted in Fig. 6. As explained above, R̃GFT is gauge

FIG. 3. Solutions of matter perturbations derived from GFTand GR, respectively, where we set dGR1 ¼ 1. In this plot, the modes k=H
lie again in the set f10−3;…; 102g with the same color coding as for δV. Furthermore, the initial condition of the relative volume
perturbations is fixed to cGR1 ¼ 10−2.

FIG. 4. For fixed mode k=H ¼ 103, this plot shows a
comparison of the GFT (blue) and GR (dashed red) solutions
depending on the value of cGR1 . Clearly, the two solutions closely
agree for small cGR1 .
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invariant as a relational quantity, while R̃GR changes under
gauge transformations as R̃GR ↦ R̃GR þ k2ξ. One can
exploit this gauge freedom on the GR side to improve
the matching for a fixed mode. However, a consistent
improvement of matching between R̃GFT and R̃GR by
choosing a certain ξ is not possible for all modes.
Therefore, there does not exist a gauge where the matching
of GFT and GR perturbations is perfect at all modes.

Summarizing, the GFT perturbation equations for δV=V̄,
δϕ and R̃ do not close in that the relative volume
perturbation enters the equations for δϕ and R̃ as a source
term. While solutions for δV=V̄ can be fully matched only
in the superhorizon limit, both δϕ and R̃ can be matched
for a wide range of modes by requiring the ratio cGR1 =dGR1 to
be a small value (as required for the self-consistency of the
perturbative setting).

FIG. 5. Solutions of curvaturelike perturbations R̃ in GFT and GR, respectively, where the integration constant is fixed to cGR1 ¼ 1.
The range of modes and the associated coloring in the plots are as for δV and δϕ above.

FIG. 6. Comparison of classical (dashed red) and GFT solution (blue) for different values of cGR1 at a fixed mode k=H ¼ 103. For
cGR1 ¼ 10−2, the curves show almost perfect matching and are therefore visually indistinguishable.
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It should be emphasized that under the above conditions,
the mismatch between GFT and GR solutions is in general
only important for trans-Planckian modes, as explicitly
shown in [132]. For smaller modes (and in particular for
any mode of cosmological interest), the GFT perturbation
dynamics are perfectly consistent with those of GR [132].
However, as we emphasized above, the GFT and GR
dynamics differ only in the subhorizon regime. This is
because, as we argue below, there is a natural corres-
pondence between the subhorizon a2k=H ≫ 1 and trans-
Planckian modes when the cosmological system is
relationally described in terms of a physical reference
frame consisting of four massless scalar fields.

4. Subhorizon and trans-Planckian modes

Particularly important in this paragraph, we work in
units of 8πG ¼ 1 and explicitly keep track of factors
of Planck masses. Starting this classical analysis,
we introduce harmonic coordinates χμ ¼ κμxμ (no summa-
tion over μ) [70], with κμ dimensionful constants. As
explained in Appendix C, harmonic coordinates are, at
the background, defined by the harmonic gauge condition
a3=N ¼ cH ¼ const. In this paragraph, we keep the
constant cH arbitrary and set it to unity otherwise. Then,
the energy momentum tensor, defined in Eq. (C24), is
given by

M2
PlTμν ¼

X3
λ¼0

ðκλÞ2
�
δλμδ

λ
ν −

gμν
2

gρσδλρδλσ

�
þ ∂μϕ∂νϕ −

gμν
2

gρσ∂ρϕ∂σϕ; ð4:81Þ

with background (00) component

M2
PlT̄00 ¼

1

2

�
ðκ0Þ2 þ ðϕ̄0Þ2 þ 3a4

κ2

c2H

�
: ð4:82Þ

which can be expressed equivalently via the canonical
conjugate momenta as

M2
PlT̄00 ¼

1

2

��
πϕ
cH

�
2

þ
�
πχ0

cH

�
2

þ 3
ðπχiÞ2
a4

�
: ð4:83Þ

Notice that we set κ ≡ κi, motivated by relational isotropy
(see assumption KS2).10 Because of the particular align-
ment of coordinates and reference frame, the constants
∂μκ

ixi already enter at the background level. Notice, that
this strongly differs from cosmology in coordinates, where
the spatial coordinates only enter the perturbed quantities.

At zeroth order in perturbations, the Einstein equations are
given by11

3H 2 ¼ 1

2M2
Pl

�
ðκ0Þ2 þ ðϕ̄0Þ2 þ 3a4

κ2

c2H

�
: ð4:84Þ

As one can check explicitly from, e.g., Eq. (C17), following
the definition ofH 2 above, the subhorizon condition is re-
expressed as

a4k2 ≫ H 2 ≥
a4κ2

2M2
Plc

2
H
: ð4:85Þ

Now, in order for the coordinates xμ to have mass
dimension of −1 (given that ½χμ� ¼ 1), the mass dimension
of the κμ needs to be 2. This is consistent with the fact that
κμ is proportional to the canonical conjugate momentum
which has a mass dimension of 2. Thus, we can rewrite κμ

in terms of the Planck-mass and some dimensionless
constant κ̃μ, i.e., κμ ¼ κ̃μM2

pl. The subhorizon condition
can therefore be recast into

k2 ≫
κ̃2

c2H
M2

pl: ð4:86Þ

Choosing a time coordinate that is perfectly adapted to the
physical clock suggests κ̃0 ¼ 1. Furthermore, we choose
κ̃=cH ¼ κ̃0, such that the rod contribution to the energy
momentum is equal to that of the clock at present time
when a ¼ 1. In this case, the subhorizon condition implies
that

k2 ≫ M2
pl; ð4:87Þ

which suggests that the subhorizon regime is in fact trans-
Planckian in the physical reference frame adopted.
Importantly, this conclusion is based on the rod contribu-
tion to T̄00 which, as argued in Appendix C 3, is generic and
not only a particular feature of the harmonic coordinate
system.
Notice that this issue becomes only apparent when one

considers inhomogeneities, since in the homogeneous set-
ting there is no notion of superhorizon and subhorizon
regimes. This is why choosing κμ ¼ 1 or κμ ¼ M2

pl did not
make any practical difference in previous studies (e.g.,
in [62] κμ ¼ 1 was imposed when comparing the effective
GFTequations with GR). Clearly, the result that subhorizon
modes are trans-Planckian in the standard effective field

10Importantly, we define perturbations at the level of the on
shell energy-momentum tensor rather than perturbing the fields
and then splitting Tμν. This procedure is more natural from the
perspective of perturbing the Einstein equations.

11Notice, that this is the form of the Einstein equations when
considering all of the matter momenta. For the argument that we
make here, it is important to keep the contributions of the ðκμÞ2.
When matching the homogeneous GFT equations to background
cosmology, we assume that πϕ dominates the matter content; see
also DS5.

JERCHER, MARCHETTI, and PITHIS PHYS. REV. D 109, 066021 (2024)

066021-24



theory treatment of linear cosmological perturbations in the
relational frame used here calls for a better understanding
and further investigations. Specifically, it should be checked
if this also holds for the more realistic case of a dust frame.
We comment on the relation to the so-called Trans-
Planckian Censorship Conjecture (TCC) in Sec. VA.

5. Summary

Summarizing this section, we compared geometric and
matter perturbations in GFT and GR, which we combined
to construct a curvaturelike variable R̃. The GFT effective
dynamics of these perturbations (when the ratio of initial
conditions cGR1 =dGR1 is small) are in remarkable agreement
with GR for non-Planckian modes, as explicitly shown
in [132]. Here, we have shown that these trans-Planckian
corrections (with a clear quantum gravitational origin12)
manifest themselves prominently at subhorizon scales, in
virtue of a correspondence between subhorizon and trans-
Planckian modes due to the relational description that we
are adopting.
Notice, that all perturbation quantities remain small

under relational time evolution, implying that the pertur-
bative framework defined here is in fact self-consistent.
Finally, classical corrections to the standard cosmological
perturbation equations coming from the presence of
reference fields only enter proportionally to the rod variable
κ2, which in turn can be consistently neglected (see
Appendix C 2 for further details).

V. SUMMARY AND CONCLUSION

In this section, we provide a summary and discussion of
the main results obtained in this article. First, in Sec. VA,
we review the main ideas of this work and the procedures
applied to obtain our results. Thereafter, in Sec. V B, we
discuss in more detail the two main results and how these
can serve as an important step toward a better under-
standing of the microscopic nature of cosmic perturbations
and toward connecting GFT perturbations with cosmologi-
cal observations. Moreover, we provide an overview of
pursuing research directions that we consider fruitful.

A. Summary

Throughout this paper, our explorations have been
guided by two overarching principles, both of which are

facilitated by the extended causal structure of the complete
BC model [17]. The first principle is that the causal
properties of frame fields should be faithfully transferred
to the quantum theory. The second principle is that
inhomogeneities of cosmological observables emerge from
quantum entanglement between GFT quanta.
Following the first principle, in Sec. II A we introduced

the complete BC GFT model for Lorentzian quantum
gravity, including both spacelike and timelike tetrahedra.
This is a minimal framework in which the first principle
above can be consistently implemented. The inclusion of
timelike tetrahedra necessitates an extension of the Fock
space structure, which we realized by means of a tensor
product between the spacelike and timelike sector. We
extended the algebra of creation and annihilation operators
to the tensor product Fock space. Still at the level of
kinematics, we introduced in Sec. II B five minimally
coupled massless free scalar fields to the GFT model,
serving as a relational frame and matter content, respec-
tively. Here, we made the first guiding principle manifest
by restricting the kinetic kernels of the GFT in such a way
that the clock and the rods only propagate along timelike,
respectively spacelike dual edges.
The second principle was implemented instead in

Sec. III, where we introduced the concept of perturbed
coherent peaked states. These extend the concept of
spacelike CPSs [57,63] in two ways. At the level of the
background, we complemented the spacelike CPS by
introducing a condensate also on the timelike sector. The
specific form of the condensate wave functions and their
peaking properties have been guided by geometric and
relational isotropy (see assumption KS2) as well as to
simplify the ensuing computations of perturbed observ-
ables. The second important difference between these states
and the spacelike CPSs is that in the former, perturbations
are associated with the action of three types of two-body
operators, which encode correlations between and within
spacelike and timelike sectors. This is how the second
principle above is implemented in our framework.
Thereupon, in Sec. III C, we derived dynamical equations
for the perturbed condensate in a relational manner as the
expectation value of the full quantum dynamics with
respect to the perturbed CPS.
In Sec. IV, we derived the background and perturbed

dynamics of observables by computing expectation values
of GFT operators with respect to the perturbed CPS. To
compare such emergent quantities to observables of GR,
we introduced matching conditions that relate macroscopic
GFT observables with cosmological quantities. At the
background level, we reproduced the results of [57,65],
showing that for late relational times, the dynamics of the
spatial volume V̄ and the scalar field ϕ̄ in GFT and GR
agree. We computed the dynamics of the perturbed spatial
volume δV and the perturbed matter field δϕ in Secs. IVA
and IV C, respectively. Their effective equations show a

12Note that because of the single-spin assumption DC2, the
source term appearing in Eqs. (4.66), (4.75), and (4.78), which
produces the above corrections, can be equivalently written as
proportional to ðδV=V̄Þ0 and ðδNþ=N̄þÞ0. Although it is not
possible to distinguish between the two quantities within this
approximation, we note that there is a crucial conceptual differ-
ence between them, since the latter has no classical counterpart.
Should further studies identify the source term as proportional to
ðδNþ=N̄þÞ0, this would provide further evidence that the devia-
tions discussed in this section are quantum gravitational in nature.
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significant improvement compared to [57] as the harmonic
spatial derivative term of GR, entering with a factor of a4, is
now faithfully reproduced. Also, we combined geometric
and matter perturbations into a curvaturelike quantity R̃,
the dynamics of which again show an improvement with
respect to previous work. Despite the similarities between
the effective dynamics of GFT and GR perturbations,
deviations in the form of source terms are present in the
differential equations for δV; δϕ, and R̃. To study these
differences further we provided a comparison between
solutions of perturbations in Sec. IV E. Remarkably, the
curvaturelike observable R̃GFT shows very good agreement
with R̃GR for sub-Planckian modes if initial conditions are
chosen appropriately. Quantum gravity corrections become
important instead for trans-Planckian modes [132], which
we have shown to be naturally associated with subhorizon
scales in the relational framework we employ.

B. Discussion and outlook

In this section we discuss the two main results of this
work. First, that from the perspective of the underlying
quantum gravity theory, cosmological perturbations can be
seen as arising from quantum correlations. Second, that the
macroscopic effective dynamics of these perturbations
show some deviations from GR at scales that we interpret
as trans-Planckian in our physical scalar frame.

1. Cosmological perturbations
and quantum entanglement

The first of the two results mentioned above provides
crucial insights into the intrinsically quantum nature of
cosmological perturbations. Moreover, it concretely sub-
stantiates the intuition, shared by many approaches to QG,
that nontrivial geometries are associated with entanglement
between the fundamental geometric degrees of freedom;
see for instance [133–143].
In this work, entanglement is encoded in relational two-

body nearest neighbor correlations between GFT atoms,
and it is lifted to the macroscopic level (and thus associated
with cosmological quantities) by the properties of two-
body coherent states. These states deviate substantially
from one-body condensate states, and their differences can
be seen perturbatively as entangled “out-of-condensate”
components. We leave it to future research to investigate
the associated entanglement entropy.
We emphasize however that this is the only quantum

effect that has been incorporated since the microscopic
dynamics are still obtained within a mean-field analysis. As
shown in Appendix B, this is a very robust approximation
as long as GFT interactions are negligible. Interactions will
eventually become important at very late times [57,62], and
thus their study will be crucial for determining the self-
consistency of the framework. When interactions are
present, the inclusion of out-of-condensate perturbations

will require a systematic analysis of the quantum properties
of the GFT field. This scenario (in the simpler deparame-
trized setting of [144]) is studied in [145] by perturbatively
splitting the GFT field into a classical homogeneous part
and an inhomogeneous quantum field.
Finally, we leave it as an interesting avenue of future

research to extend our analysis to a causally complete GFT
formulation of the EPRL model [23,86]. Since recent
results suggest that the BC and EPRL models could lie
in the same universality class [36,52,65,87,89,146,147],
we do not expect substantial differences between the
perturbation theory of these two models. However, once
our framework matured sufficiently to model tensor
perturbation modes, it will be interesting to investigate
if these are anomalously polarized in the EPRL model,
as can be expected from the parity oddness of the Holst
term [148–154].

2. Emergent effective dynamics
of cosmological perturbations

Including timelike tetrahedra turned out to be crucial to
obtain effective dynamics of cosmological perturbations
similar to GR. However, several parameters associated with
the timelike sector of our states were not involved at all in
the GR matching and are thus completely unconstrained.
This “passive” behavior of timelike quanta, exemplified by
the fact that the GR matching forces their perturbed number
to be trivial (see Sec. IV B), admits two possible inter-
pretations. First, it could reflect mathematically that our
Universe can be fully described at the background level by
evolving spacelike quantities only. On the other hand, it
could be due to the fact that only spacelike quantities have
been considered in this work. In this case, one would expect
that extending the analysis to other types of geometric
observables (especially the extrinsic curvature) would
constrain the free parameters of the timelike sector of
our states.
However, the presence of such “irrelevant” free param-

eters in the timelike sector is a blessing in disguise. Indeed,
it implies that the emergent perturbation equations are
determined by only a set of parameters which turn out to be
fixed by the requirement of consistency with the back-
ground dynamics. In other words, the predictions made by
these models under a mean-field approximation are in
principle easily falsifiable by comparison with cosmo-
logical observations. There are three different levels (in
increasing order of conceptual and computational complex-
ity) at which one could try to make contact with
observations.

3. Phenomenology

First, one could try to phenomenologically incorporate
the modified dynamics of trans-Planckian modes arising
from GFT into the Standard Cosmological Model. Since,
for an inflationary phase slightly longer than the minimum
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period, all modes observed today were originally trans-
Planckian [155], this could already produce nontrivial
observable effects. Note that this would not technically
violate the TCC [156–158], since in principle the quantum
gravity effects captured by these phenomenological models
need not be described in terms of an effective field theory.

4. Extraction of full cosmological dynamics

A more systematic approach would be to derive the
emergent cosmological perturbation dynamics from the full
QG theory. However, this requires (i) the construction of
additional operators to extract the full effective (aniso-
tropic) geometry, (ii) the inclusion of the appropriate matter
content, and (iii) the generalization of the analysis per-
formed here to early times. Let us discuss the above three
points in some more detail.

(i) The construction of additional geometric operators
is extremely important for several reasons. First, it
would allow us to extend our analysis to other
cosmological observables such as the comoving
curvature R, requiring the introduction of aniso-
tropic observables (see Sec. IV D). Such observables
would also be important to reconstruct the full
effective metric, including not only scalar perturba-
tions, but also vector and, most importantly tensor
perturbations. The construction of anisotropic oper-
ators would require one to represent only relational
observables in the GFT Fock space, which is,
however, a highly nontrivial task [57]. Finally, it
is conceivable that modeling tensor perturbations
requires the inclusion of lightlike tetrahedra as these
are expected to propagate along lightlike dual edges.
Studies in GFT cosmology mostly focused on
minimally coupled massless free scalar fields
[62,106] although recently, the analysis has been
extended to include a nontrivial potential [159]. To
move toward a more realistic matter content, one
would have to include cosmic fluids. Considerable
effort has been devoted to the study of dust in
classical and quantum gravity (see, e.g., [99,100]
and [105,160–162] for cosmological applications),
since it not only constitutes a key component of the
Universe, but also serves as a natural physical
reference frame. In fact, it is the reference frame
in which the cosmological principle is formulated,
and thus in which background and perturbations are
defined. This is particularly important, since the
mixing between subhorizon and trans-Planckian
modes emphasized in Sec. IV E hinges on the
definition of perturbations with respect to our
physical scalar frame. Coupling dust to GFT models
would therefore allow us to set up more realistic
cosmological models, in which one could explore
delicate issues such as the subhorizon/trans-Planck-
ian mixing. Importantly, it would also allow us to

test the physical covariance (or violation thereof) of
the emergent cosmological dynamics. As a final
comment on this point, we report that matter
components may also emerge due to the underlying
GFT dynamics; see [113] for an example.

(ii) Generalizing the current analysis to earlier times
would be important to understand the imprint of the
quantum gravity bounce on the perturbations. More-
over, for the perturbation theory developed here to
be self-consistent also in this regime it will be
important to check if the energy density of the
perturbations remains bounded and small compared
to the background quantum geometry so that back
reaction effects can be ignored. This concerns in
particular perturbations of trans-Planckian wave-
length and was dubbed the “real trans-Planckian
issue” in another setting [163,164]. In general,
however, the mean-field equations become consid-
erably more complicated as the density of the
background condensate decreases [70]. In particular,
recent results [165] seem to suggest that, in the
superhorizon limit, the early times emergent dynam-
ics cannot be reconciled with that of any modified
gravity theory.

5. Initial conditions from the fundamental theory

Finally, in both the methods discussed so far, the
primordial power spectrum would be obtained by a
Fock quantization of the macroscopic degrees of freedom.
This is a strategy that is followed, for example, in both
condensed matter physics [166] and loop quantum cos-
mology [163,167–175] (see [164,176] for a review). From
the perspective of QG, however, it would be natural to
look for a mechanism for generating the cosmological
initial conditions that can be derived entirely from the
fundamental theory. If the statistical properties of the
cosmological inhomogeneities and anisotropies are ulti-
mately due to quantum gravity fluctuations, their descrip-
tion may require going beyond the effective relational
framework (which is based on observable averages) used
here, and considering relational observables rigorously
defined on the GFT Fock space. Similarly, one could
explore the possibility that the inflationary mechanism is
purely quantum geometric in nature, although this pos-
sibility has already been ruled out in some phenomeno-
logical GFT models [111,112].
In closing, we hope that our results on the coupling

of a physical Lorentzian reference frame and on the
exploration of the link between quantum geometric entan-
glement and cosmological perturbations will impact on a
wider set of quantum gravity approaches. In particular, we
believe that our work strengthens the argument for models
that incorporate a causally complete set of discrete
Lorentzian geometries such as causal dynamical triangu-
lations [29,30,32], causal sets [71], Lorentzian Regge
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calculus [89–92,177], or Lorentzian spin foams and
LQG [78,82–85].
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APPENDIX A: LIST OF ASSUMPTIONS

In this Appendix, we present an exhaustive list of the
assumptions made in order to arrive at the results we
obtained in the main body of this work. Naturally, the
assumptions can be split into kinematic and dynamic ones.
Furthermore, we split the assumptions into two categories,
namely structural ones and those stemming from matching
with GR perturbations. The former category contains
assumptions that are motivated either conceptually or that
simplify technically challenging computations.

1. Kinematic assumptions

Kinematic approximations are related to the properties of
the specific states we are considering.

a. Structural

KS1 (Perturbed condensate states). In this paper, we
model a spatially homogeneous and isotropic space-
time with scalar perturbations by perturbed conden-
sate states, which extend the notion of usual
condensate states [55,56,58–60,62,110,178] in two
ways. First, given the causally extended structure
including timelike tetrahedra, the background contains
an additional timelike condensate, introduced in
Sec. III A 4. Second, perturbations are encoded in

two-body operators that create an entanglement within
and between the spacelike and timelike sector. As
discussed in Sec. Vand Appendix B, this is a first step
in the direction of out-of-condensate perturbations.

KS2 (Geometrical and relational isotropy). The space-
like and timelike condensate wave functions as well as
the correlation functions δΦ; δΨ, and δΞ are required
to satisfy a quantum analog of isotropy, realized by
setting all the area eigenvalues of the faces f of a
tetrahedron to the same value, ρf ¼ ρ. Moreover, the
spacelike peaking encoded in the condensate wave
function τ is isotropic by choosing the same peaking
parameters for all of the three spatial directions. This
also ensures that in a derivative expansion for the
effective relational equations, only the Laplace oper-
ator with respect to the rod variables enters.

KS3 (Peaking and frame-dependence). Following the
strategy of [57,63,70], the condensate wave function
factorizes into a peaking term and a reduced wave
function. On the spacelike sector, the peaking function
only contains the clock variable, while the timelike
condensate is peaked on clock and rods. This ensures
that the spatial derivative, acting on the volume
perturbations, is only associated to spacelike dual
edges. The peaking functions are Gaussians with a
nontrivial phase and a small width. As argued
in [57,63], a nonvanishing ϵ as well as a nonvanishing
phase are required in order to guarantee that all
quantum fluctuations of observables associated to
the reference fields are small in the classical regime.
Both of the reduced condensate wave functions, σ̃ðχ0Þ
and τ̃ðχ0Þ, only depend on relational time as they are
assumed to be part of the background. For the two-
body correlations δΦ; δΨ, and δΞ, no peaking is
encoded, and an explicit rod dependence is assumed
in order to render these functions part of the pertur-
bations. Notice that in spite of assuming a rod
dependence of δΞ, the dynamical equations, together
with Eq. (3.28), render this function only time
dependent as we argue in Sec. III C 2.

KS4 (Signature of tetrahedra and faces). We extend the
spacelike Barrett-Crane model by timelike tetrahedra
and leave the inclusion of lightlike tetrahedra for
future research. For the timelike condensate, entering
the perturbed CPS in Eq. (3.2), we assume that the
corresponding timelike tetrahedra contain spacelike
faces only. This assumption is supported by two
reasons: (i) Recent studies in [115] suggest that only
spacelike faces contribute to a condensate phase and
(ii) timelike and spacelike tetrahedra can interact only
via spacelike faces, as shown in [17].

KS5 (Regularization). At several points of the analysis,
infinities appear that need to be treated appropriately.
Extended closure in Eq. (2.2) yields empty SLð2;CÞ
integrations in the definition of the GFT action,
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two-body operators and the equations of motion. On
the other hand, due to spatial homogeneity and the fact
that σ is peaked only on the clock, the spacelike
background equations in Sec. III C 1 as well as the
background expectation value of the three-volume
operator in Sec. IVA contain empty rod integrations.
Both types of divergencies are considered to be
unphysical, and we consider only the finite factors
of these expressions.

b. Motivated by classical matching

KC1 (Peaking on matter momenta). We assume the
condensate wave functions σ and τ to be peaked on the
matter momentum πϕ, realized by a Gaussian function
without phase. This is necessary in order to recover the
Friedmann equations at the background level as well
as to render feasible perturbation equations for the
condensate and the observables in Secs. III C and IV,
respectively. As pointed out in [70], a deeper physical
intuition for this peaking may be obtained when
considering a scalar field with nontrivial potential.

KC2 (Local perturbation functions). A priori, the two-
body correlations δΦ; δΨ, and δΞ are bilocal functions
of the relational reference frame and the matter
momentum πϕ. To make contact to localized pertur-
bations, we assume that the two arguments are
identified via a δ distribution. Following the simplicial
gravity picture, this assumption would correspond to
correlations within the same four simplex with mo-
mentum conservation across tetrahedra.

KC3 (Peaking parameters). To render the computations
of Sec. IV feasible and to allow for a more straightfor-
ward matching of GFT and GR perturbations, we
assume that the peaking parameters ϵ� and π�0 of the
spacelike and timelike sector are related as ϵþ ¼ ϵ−

and πþ0 ¼ −π−0 . Furthermore, we assume that the
phase parameters πx and π

þ
0 satisfy the strong inequal-

ity πx ≫ πþ0 , which yields a drastic simplification for
the dynamical equation of the perturbed volume
in Eq. (4.17).

2. Dynamic assumptions

Dynamic approximations are related to the details of the
GFT action and on how background and perturbed equa-
tions for the condensate and the observables are obtained.

a. Structural

DS1 (GFT action and causal building blocks). We
choose to work with an extension of the Lorentzian
Barrett-Crane model [17,65] and here study its
cosmological implications while including spacelike
and timelike tetrahedra and excluding lightlike ones.
Thus, the configurations are the two group fields φþ
and φ− which are distinguished in their domain and

in the form of the simplicity constraint, given
in Eq. (2.3).

DS2 (Scalar field coupling). Clock and rod fields χμ as
well as the matter field ϕ are coupled to the GFT such
that the Feynman amplitudes correspond to a simpli-
cial gravity path integral with the fields propagating
along dual edges. As discussed in [106], this coupling
is obtained in a semiclassical limit, which is an
assumption that should be kept in mind. In order to
turn the scalar reference frame into a physical Lor-
entzian reference frame, we align its causal character
with that of the geometry by imposing restrictions on
the kernels in Eqs. (2.26). As elaborated in Sec. II B,
the physical picture of these conditions is that the
clock propagates along timelike dual edges and the
rods propagate along spacelike dual edges.

DS3 (Mean-field dynamics). We assume the effective
dynamics to be well approximated by the mean-field
equations. In fact, as we show in Appendix B and
discuss in the conclusion, the mean-field equations
solve the higher-order Schwinger-Dyson equations if
negligible interactions and linear perturbation theory
are assumed.

DS4 (Negligible interactions). When taking expectation
values with respect to the perturbed CPS jΔ; x0; xi,
interaction terms are expected to be negligible in the
effective dynamics. It has been shown in [62], that
the error induced by this assumption grows with the
number of GFT particles. This assumption can there-
fore be consistently implemented at late but not very
late times. See also [58] for a complementary dis-
cussion on this matter.

DS5 (Classical matter content). We assume that the
matter content of the classical theory, given by the five
fields χμ and ϕ, is dominated by ϕ. In this way,
perturbations of χμ are considered to be negligible,
and inhomogeneities of matter and geometry can be
defined unambiguously with respect to the clock and
rod fields. In Appendix C 2, we compute the correc-
tions to the classical Einstein equations if one would
not neglect the frame contributions to the energy-
momentum tensor.

b. Motivated by classical matching

DC1 (Mesoscopic regime). Classical dynamics are
obtained in a mesoscopic regime, where the averaged
number of particles of the system is taken to be large
enough to allow for both a continuum interpretation
of the expectation values of relevant operators
and classical behavior, but not too large that inter-
actions are dominating. Furthermore, the perturbation
equations of Secs. III C and IV simplify significantly
in this regime, as the condensate wave functions
are solved by simple exponential functions; see
Eqs. (3.24) and (3.25).
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DC2 (Single-spin dominance). We assume that
coefficients of σ, τ and the two-body correlations
δΦ; δΨ, and δΞ in spin representation are dominated
by a single representation label ρ, mostly suppressed
in the notation. For the background condensates,
this assumption is supported by the studies of
Refs. [65,110,114,179], which show that under
rather generic assumptions on the kinetic kernels
of the GFT, a dominant representation emerges
dynamically.

DC3 (Dynamical freedom). Exploiting the dynamical
freedom of having two first-order equations for three
functions, we relate the spacelike-spacelike correla-
tion δΦ and the spacelike-timelike correlation δΨ via a
function f. This function is chosen such that the
dynamical equation for δΨ as well as the definition
of δV simplify drastically. Finally, when matching the
a4 term in front of the spatial derivative of δV in
Eq. (4.17), the function f is fixed completely. As we
detail in Sec. V B, it is left open for future studies to
include interactions (see for instance Ref. [145] for
further details) such that the number of independent
first-order equations matches the number of perturba-
tion functions and no such dynamical freedom is
present.

DC4 (Constant phase). Splitting the perturbation func-
tion δΨ into modulus R and phase Θ, we assume the
phase to be constant, rendering the dynamical equa-
tions of δΨ and δV feasible. Moreover, Θ is set to n π

2

in Sec. IVA, simplifying the dynamical equation for
δV in Eq. (4.17). One can show that if one relaxes the
constant-Θ condition to a pure time dependence, then
consistency requires that Θ is in fact constant. Clearly,
the most general case is given for Θ carrying a space
dependence. However, the resulting equations of
motion for the perturbation function as well as for
observables take a highly intricate form, which does
not allow for further analytical studies.

DC5 (Normalized scale factor). As commonly done in
standard cosmology, the scale factor a is normalized
to 1 at present relational time, such that it takes
smaller values for all earlier relational times. Notice,
that this assumption is not in contradiction with a
large GFT-particle number or, equivalently, a large
volume. That is because the volume is given by a3

times a fiducial volume factor, which can be much
larger than 1.

DC6 (Timelike particle number). When computing the
dynamics of matter observables, we assumed that the
effective mass parameters of the spacelike and time-
like sector satisfy μþ > μ−. This assumption is guided
by the intuition that the background is predominantly
described by the spacelike condensate. Indeed, as a
consequence, one finds that the background number of
spacelike GFT particles dominates over the timelike

particle number in the classical limit. In Sec. IV C, this
leads to a simplification of the emergent equations for
the perturbed matter field δϕ and the perturbed matter
momentum δπϕ.

APPENDIX B: GOING BEYOND MEAN FIELD
IN THE ABSENCE OF INTERACTIONS

In this Appendix, we show that in the absence of
interactions, higher-order Schwinger-Dyson equations
reduce to powers of the lowest mean-field equation. This
result is of interest for the perturbed coherent states
introduced in Sec. III B, as these states constitute out-of-
condensate perturbations only if interactions are taken into
account. Furthermore, this result is exactly the reason for
the dynamical freedom of one of the two-body correlation
functions which we exploited in Sec. IV to match the
perturbations of GR.
For a polynomially bounded functional O½φα; φ̄α� on

field space, where α refers to either the spacelike or the
timelike group field, the Schwinger-Dyson equations are
given by 	

δO
δφ̄α

−O
δS
δφ̄α

�
¼ 0: ðB1Þ

The polynomial expansion of the operator O is given by

O½φα; φ̄α� ¼
X
k;l;m;n

Oklmnφ̄
kþφlþ ⊗ φ̄m

−φ
n
−; ðB2Þ

with Oklmn being the kernel. Given the perturbed state jΔi,
defined in Sec. III B, the expectation value of O up to first
order in perturbations is schematically given by

hΔjOjΔi ¼ Ojσ;τ þ
�
2φ̄þ

δO
δφþ






σ;τ

þ δ2O
δφ2þ






σ;τ

�
δΦ

þ
�
φ̄−

δO
δφþ






σ;τ

þ φ̄þ
δO
δφ−






σ;τ

�
δΨ

þ
�
2φ̄−

δO
δφþ






σ;τ

þ δ2O
δφ2−






σ;τ

�
δΞþ c:c:; ðB3Þ

where a vertical line indicates that the operator O is
functionally evaluated on the condensate wave functions
σ and τ.
Building up on this result, we consider now the

Schwinger-Dyson equation under the assumption that
interactions are absent, i.e., S ¼Pα φ̄αKαφα. At zeroth
order, the equations then take the form

δO
δφ̄α






σ;τ

¼ OKαφαjσ;τ; ðB4Þ
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which, for O ¼ 1, reproduces the mean-field equation
studied in Sec. III C 1.
At first order, we look at the coefficients in front of the

same perturbation function. For instance, the δΨ term is
given by

φ̄−
δ2O

δφþδφ̄α






σ;τ

þ φ̄þ
δ2O

δφ−δφ̄α






σ;τ

¼ φ̄−
δðOKαφαÞ

δφþ






σ;τ

þ φ̄þ
δðOKαφαÞ

δφ−






σ;τ
; ðB5Þ

with the other coefficients given in a similar form.
Clearly, upon solutions of the zeroth-order equation, also
the first-order equations are satisfied. Hence, higher-order
Schwinger-Dyson equations do not yield additional
dynamical equations if one works (i) in a perturbative
setting and (ii) in the absence of interactions. This can be
also shown by computing n-point Green functions which,
in perturbation theory and in the absence of interactions,
factorize into one-point functions corresponding to the
mean field. This is demonstrated for a single-sector GFT
in [58]. As a consequence, we find in the analysis of the
two-body correlation functions in Sec. III C a dynamical
freedom for one of the variables. The results of this
Appendix suggest that in order to obtain higher-order
out-of-condensate equations, one would need to take
interactions into account. We comment on this matter
further in Sec. V.

APPENDIX C: CLASSICAL PERTURBATION
THEORY

In this Appendix, we provide an overview of the
perturbation equations for geometry and matter in classical
general relativity. In order to allow for a simpler compari-
son with relational GFT results, we mostly use harmonic
coordinates fxμg which are adapted to the reference field
fχμg via the relation χμ ¼ κμxμ (no summation over μ),
where κμ are some dimensionful proportionality factors
[107]. In harmonic coordinates, the reference fields are
assumed to satisfy the Klein-Gordon equation at all orders
of perturbations. This can equivalently be rewritten as

Γλ
μνgμν ¼ 0; ðC1Þ

which poses a condition on the metric.

1. Geometry

At zeroth order, the line element of a spatially flat FLRW
spacetime with signature of ð−;þ;þ;þÞ is given by

ds2 ¼ ḡμνdxμdxν ¼ −N2dt2 þ a2dx2; ðC2Þ

where N is the lapse function, a is the scale factor, and dx2

the line element of three-dimensional Euclidean flat space.

Imposing harmonic gauge on the background yields
a3=N ¼ cH, where cH is an integration constant. For the
remainder, we set cH ¼ 1, and we assume that the matter
content is dominated by the matter field ϕ with conjugate
momentum πϕ.
Within these assumptions, the dynamics of the geometry

at background level are captured by

3H 2 ¼ 1

2M2
Pl

π̄2ϕ; H 0 ¼ 0; ðC3Þ

where H ¼ a0=a is the Hubble parameter in harmonic
coordinates and π̄ϕ is the background contribution of
the canonical conjugate of the scalar field, defined in
Eq. (C29). Introducing the background volume V̄ ¼ a3,
the geometric equations can be recast to

3

�
V̄ 0

3V̄

�
2

¼ 1

2M2
Pl

π̄2ϕ;

�
V̄ 0

3V̄

�0
¼ 0: ðC4Þ

To derive perturbed volume equations from GR, we
consider in the following first-order scalar perturbations of
the FLRW metric. Using the background harmonic gauge
condition, the line element is given by

ds2 ¼ −a6ð1þ 2AÞdt2 þ a4∂iBdtdxi

þ a2ðð1 − 2ψÞδij þ 2∂i∂jEÞdxidxj; ðC5Þ

with scalar perturbation functions A, B, ψ , and E. Einstein’s
equations at linear order yield [70,180]

1

2M2
Pl

ϕ̄0δϕ0 þ 3H ψ 0 − a4∇2ψ −H ∇2ðE0 − a2BÞ ¼ 0;

ðC6Þ

H Aþ ψ 0 −
1

2M2
Pl

ϕ̄0δϕ ¼ 0; ðC7Þ

E00 − a4∇2E ¼ 0; ðC8Þ

where δϕ is the scalar field perturbation. Combining
Eq. (C6) and the time derivative of Eq. (C7), we obtain

ψ 00 ¼ −H A0 − 3H ψ 0 þ a4∇2ψ þH ∇2ðE0 − a2BÞ:
ðC9Þ

To obtain an equation for the perturbed volume, which is
an observable accessible also from the GFT side, consider
on a slice of constant time the local volume elementffiffiffiffiffiffiffiffiffiffi

−gð3Þ
p ¼ V̄ þ δV ¼ a3ð1 − 3ψ þ∇2EÞ: ðC10Þ

Thus, we identify the perturbed spatial volume as
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δV
V̄

¼ −3ψ þ∇2E: ðC11Þ

Taking the second derivative of δV=V̄ and using Eqs. (C8)
and (C9), one obtains�
δV
V̄

�00
þ 3H

�
δV
V̄

�0
− a4∇2

�
δV
V̄

�
¼ 3H ðA0 þ a2∇2BÞ:

ðC12Þ

a. Harmonic gauge

At first order in perturbations, the harmonic gauge
conditions given by [180]

0 ¼ A0 þ 3ψ 0 −∇2ðE0 − a2BÞ; ðC13aÞ

0 ¼ ða2BÞ0 þ a4ðA − ψ −∇2EÞ; ðC13bÞ

which, imposed on Einstein’s equations (C6)–(C8),
yields [70,180]

ψ 00 − a4∇2ψ ¼ 0; A00 − a4∇2Aþ 4a4∇2ψ ¼ 0 ðC14Þ

E00−a4∇2E¼0; ða2BÞ00−a4∇2ða2BÞ−8a2ða2ψÞ0 ¼0:

ðC15Þ

Expressed in terms of the volume, the first harmonic gauge
condition is expressed as

A0 þ a2∇2B ¼
�
δV
V̄

�0
; ðC16Þ

such that the volume equation becomes�
δV
V̄

�00
− a4∇2

�
δV
V̄

�
¼ 0 ðC17Þ

or equivalently

δV 00 − 6H δV 0 þ 9H 2δV − a4∇2δV ¼ 0: ðC18Þ

To change to Fourier space in the rod variable, heavily
employed in Sec. IV, one can simply perform the sub-
stitution ∇2 → −k2 here and in the following.
Following [180], there is a residual gauge freedom in

performing a coordinate transformation

ξμ ↦ xμ þ ξμ; ðC19Þ

with ξμ ¼ ðξ0; ∂iξÞ satisfying

ðξ0Þ00 − a4∇2ξ0 ¼ ξ00 − a4∇2ξ ¼ 0; ðC20Þ

such that harmonicity is conserved. Under this transforma-
tion, the perturbation functions transform as [57,180]

ψ ↦ ψ þH ξ0; A ↦ A − ðξ0Þ0 − 3H ξ0; ðC21Þ

E ↦ E − ξ; B ↦ Bþ a2ξ0 − a−2ξ0: ðC22Þ

After introducing the matter equations in the following, we
combine the geometric and matter quantities in a single
fully gauge-invariant quantity, the so-called curvature
perturbation R.

2. Matter

The matter content of the classical theory consists of four
reference scalar fields χμ as well as one additional free
minimally coupled real scalar field ϕ, defined by the
continuum action

S½χμ;ϕ�¼−
1

2M2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p
gab
�
∂aϕ∂bϕþ

X3
μ¼0

∂aχ
μ
∂bχ

μ

�
:

ðC23Þ

In this form, the action poses a well defined variational
principle, yielding the Klein-Gordon equations for appro-
priate boundary conditions. One such admissible condition
is von Neumann boundary conditions which assume
vanishing variation of the gradients at the boundary. For
reference fields in harmonic coordinates, as used in the
remainder of this subsection, χμ ¼ κμxμ, this clearly applies
since ∂μχ

ν ¼ δνμκ
ν is constant and thus has vanishing

variation.
The energy momentum tensor in arbitrary coordinates is

given by

M2
PlTab ¼

X3
λ¼0

�
∂aχ

λ
∂bχ

λ −
gab
2

gmn
∂mχ

λ
∂nχ

λ

�
þ ∂aϕ∂bϕ −

gab
2

gmn
∂mϕ∂nϕ; ðC24Þ

which we assume to be dominated by the matter field ϕ.
The full equations of motion for ϕ are given by the massless
Klein-Gordon equation

∂μ

� ffiffiffiffiffiffi
−g

p
gμν∂νϕ

� ¼ 0: ðC25Þ

Linearizing in both, the scalar field and the metric, we
obtain the zeroth-order equation

ϕ̄00 ¼ 0 ðC26Þ

and the first-order perturbation equation

δϕ00 − a4∇2δϕ ¼ �A0 þ 3ψ 0 −∇2E0 þ a2∇2B

ϕ̄0; ðC27Þ
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respectively. Supplementing the latter with the harmonic
gauge condition in Eq. (C13a), δϕ satisfies

δϕ00 − a4∇2δϕ ¼ 0: ðC28Þ

To define the GR counterpart of the GFTobservables Π̂α
ϕ,

defined in Eq. (4.38), we introduce the momentum con-
jugate to the scalar field, commonly defined as

πμϕ ≔
∂L̃

∂ð∂μϕÞ
¼ −

ffiffiffiffiffiffi
−g

p
gμνð∂νϕÞ; ðC29Þ

where L̃ is the Lagrangian density, defined by the matter
field action above. Expanding up to linear order, the scalar
field momentum πμϕ is given by

πμϕ ¼ −
ffiffiffiffiffiffi
−g

p
ḡμ0∂0ϕ̄ − δ

ffiffiffiffiffiffi
−g

p
ḡμ0∂0ϕ̄

−
ffiffiffiffiffiffi
−g

p ðδgμ0∂0ϕ̄þ ḡμν∂νδϕÞ; ðC30Þ

which can be split into background and perturbed part,

πμϕ ¼ π̄μϕ þ δπμϕ: ðC31Þ

At the background level and in harmonic gauge, π̄μϕ is
given by

π̄0ϕ ¼ ∂0ϕ̄; π̄iϕ ¼ 0: ðC32Þ

The perturbed part of πμϕ is given by

δπ0ϕ ¼ ð−A − 3ψ þ∇2EÞϕ̄0 þ δϕ0; ðC33Þ

δπiϕ ¼ a2ϕ̄0
∂
iB − a4∂iδϕ: ðC34Þ

Applying the zeroth- and first-order equations for ϕ, the
perturbed momentum satisfies the relativistic energy-
momentum conservation equation

∂μδπ
μ
ϕ ¼ ðδπ0ϕÞ0 þ ∂iδπ

i
ϕ ¼ 0: ðC35Þ

Re-expressing this equation in terms of observables that are
available in GFT, being V̄; δV; ϕ̄, and δϕ, we find

ðδπ0ϕÞ0 − δϕ00 −
�
δV
V̄

�0
ϕ̄0 ¼ −A0ϕ̄0: ðC36Þ

While the left-hand side is given in terms of variables
available in GFT, the right-hand side contains the variable
A, which is not accessible by the GFT observable that is
available at the present state. In Sec. V B, we comment on
the importance of defining additional geometrical observ-
ables in GFT.

a. Classsical Mukhanov-Sasaki-like equation

As the transformations of Eqs. (C21) and (C22) show,
the harmonic gauge conditions leaves a residual gauge
freedom. Under these transformations, the perturbed scalar
field δϕ changes as

δϕ ↦ δϕ − ϕ̄0ξ0: ðC37Þ

Given this transformation behavior, one can combine ψ and
δϕ to a fully gauge-invariant quantity, the so called gauge-
invariant curvature perturbation

R ≔ ψ þH
δϕ

ϕ̄0 : ðC38Þ

Since in harmonic gauge, ψ and δϕ satisfy the same
equation, R satisfies [180]

R00 − a4∇2R ¼ 0: ðC39Þ

In the context of GFT, one does not have direct access to
the quantity ψ but rather to the perturbed volume δV. For
comparison of classical and GFT mechanics, we define the
curvaturelike perturbation R̃ as

R̃ ≔ −
δV
3V̄

þH
δϕ

ϕ̄0 : ðC40Þ

Again, since δV=V̄ and δϕ satisfy the same equation, R̃
obeys

R̃00 − a4∇2R̃ ¼ 0: ðC41Þ

Notice however, that R̃ is not gauge invariant but changes
as

R̃ ↦ R̃ −∇2ξ: ðC42Þ

Still, since ξ is assumed to satisfy the equation above, the
equation for R̃ does not change under gauge transformations.

b. Reference field corrections
to the perturbation equations

In this Appendix, we have so far assumed that the matter
content is dominated by the scalar field ϕ, neglecting
contributions of the clock and rod fields χμ. However, in
order to rule out the possibility that the source term in the
GFT perturbation equations (4.24), (4.60), and (4.64) is
associated to the potential contribution of the physical
reference frame, it is instructive to consider the background
and perturbed field equations with all matter terms,
similarly to what has been done, e.g., in [162] (albeit with
a different physical frame).
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At the background level, the Einstein equations take the
form

3H 2 ¼ 1

2M2
Pl

ðϕ̄02 þ ðκ0Þ2 þ 3κ2a4Þ; H 0 ¼ 1

M2
Pl

κ2a4;

ðC43Þ

which are readily dependent. Clearly, if one assumes π2ϕ to
dominate, consistency requires H 0 ¼ 0.
To compute the perturbed Einstein equations, we add the

frame contributions to the perturbed energy-momentum
tensor, the components of which are explicitly given by

M2
PlðδTχÞ00 ¼

ðκ0Þ2
a6

A −
κ2

a2
ð3ψ −∇2EÞ; ðC44Þ

M2
PlðδTχÞ0i ¼

κ2

a4
∂iB; ðC45Þ

M2
PlðδTχÞij¼δij

�
−
ðκ0Þ2
a6

Aþ κ2

a2
ð−ψþ∇2EÞ

�
−2

κ2

a2
∂
i
∂jE:

ðC46Þ

Using the Einstein tensor components of [180], the per-
turbed equations of motion are given by

1

2M2
Pl

ϕ̄0δϕ0 þ 3H ψ 0 − a4∇2ψ −H ∇2ðE0 − a2BÞ

þ 1

2M2
Pl

a4κ2ð3ðAþ ψÞ −∇2EÞ ¼ 0; ðC47Þ

H Aþ ψ 0 þ 1

2M2
Pl

ðκ2a2B − ϕ̄0δϕÞ ¼ 0; ðC48Þ

E00 − a4∇2Eþ 2

M2
Pl

κ2a4E ¼ 0; ðC49Þ

complemented by the harmonic gauge conditions in
Eqs. (C13). Already at this point, one observes that the
clock contributions, entering with ðκ0Þ2, will cancel out
upon the background equations as these only enter with the
perturbation function A. We leave a clarification of this
intriguing cancellation open for future investigations.
Following similar steps as above, we obtain a differential

equation for ψ∶

ψ 00 − a4∇2ψ þ 2

M2
Pl

κ2a4ðAþ ψÞ ¼ 0; ðC50Þ

that is modified by the presence of the rod contribution,
entering with κ2. Using the definition of the relative
perturbed volume as well as Eqs. (C49) and (C50), we
obtain

�
δV
V̄

�00
− a4∇2

�
δV
V̄

�
¼ −

2

M2
Pl

κ2a4
�
δV
V̄

− 3A

�
; ðC51Þ

which is modified compared to Eq. (C17) by a term that is
controlled via the rod variable κ.
The equation for the perturbed matter field δϕ is not

altered by the additional clock and rod contributions. Thus,
using the volume and matter equation, we obtain an
equation for R̃ in the presence of frame contributions:

R̃00 − a4∇2R̃ ¼ 2

M2
Pl

κ2a4
�
R̃ − Aþ 3

H

ϕ̄0 δϕþ 2
δϕ0

ϕ̄0

�
:

ðC52Þ

Clearly, all of the corrections compared to Eq. (C40)
enter with the rod variable κ and contain a mixture of
geometric and matter perturbations. Structurally, these
corrections are therefore quite different from those obtained
in [162], possibly as a result of the different gauge
fixing. Importantly, this result substantiates the interpreta-
tion of the source terms in the perturbation equations
obtained from GFT that we give in Sec. IV E. That is,
the source terms are not artifacts of reference frame
contributions but are rather interpreted as genuine quantum
gravity corrections.

3. Change of gauge

In ordinary cosmology, formulated without the use of
reference fields as relational coordinates, the most com-
monly used coordinates are so-called conformal longi-
tudinal (CL). In this section, we discuss the change from
harmonic to CL coordinates and the consequences for the
interpretation of clock and rod fields. To start with, the line
element is given by [122,123]

ds2 ¼ a2ðτÞ�−ð1þ 2Ψðτ; xÞÞdτ2 þ ð1 − 2Φðτ; xÞÞdx2;
ðC53Þ

in CL coordinates, where Ψ and Φ are the gauge-invariant
Bardeen variables. In order to transform from harmonic
coordinates fxμHg to CL coordinates fxμCLg, we have to
perform two transformations, first at the background to
conformal time and then a transformation at the level
of perturbations. For the background transformation we
consider

x0H → τðx0HÞ ¼
Zx0H
0

dx̃0a2ðx̃0Þ; ðC54Þ

such that a2dx0H ¼ dτ.
Following Eqs. (C21) and (C22), the perturbation

functions change upon the conformal transformation as
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ψ ↦ ψ þHζ0; A ↦ A −
d
dτ

ζ0 − 3Hζ0; ðC55Þ

E ↦ E − ξ; B ↦ Bþ ζ0 −
d
dτ

ξ; ðC56Þ

where we introduced the rescaled variable ζ0 ¼ a2ξ0

and the Hubble parameter in conformal time, H ¼ 1
a
da
dτ.

The line element of Eq. (C53) is then obtained via the
transformation

ζ0 ¼ E0 − B; ðC57Þ

ξ ¼ E: ðC58Þ

where A and ψ transform to

A ↦ A − 3HðE0 − BÞ − ðE0 − BÞ0 ≡Ψ; ðC59Þ

ψ ↦ ψ þHðE0 − BÞ≡ −Φ: ðC60Þ

Indeed as one can easily verify, the perturbation functions
Ψ and Φ are fully gauge invariant.
In the new coordinates, the gauge-invariant curvature

satisfies

d2R
dτ2

þ 2H
dR
dτ

−∇2R ¼ 0: ðC61Þ

Since R̃ is, in contrast toR, not gauge invariant, it changes
under the transformation above to

R̃ ↦ R̃ −∇2E: ðC62Þ

However, since the equation for E in Eq. (C8) is valid
manifestly (not only in harmonic gauge) and is the same as
that of R, the equation for R̃ in conformal longitudinal
gauge is given by

d2R̃
dτ2

þ 2H
dR̃
dτ

−∇2R̃ ¼ 0: ðC63Þ

As a result, R̃ satisfies the same equation in harmonic and
CL coordinates, but solutions of R̃ change accordingly.
We consider next the four reference fields fχμg, which

satisfy the Klein-Gordon (KG) equation

∂a

� ffiffiffiffiffiffi
−g

p
gab∂b

�
χμ ¼ 0: ðC64Þ

In harmonic coordinates, we chose adapted solutions of the
form χμ ¼ κμxμ. Plugging this ansatz into the KG equation,
one reobtains the harmonic gauge conditions

cμ ¼ ∂α

� ffiffiffiffiffiffi
−g

p
gαβ∂β

�
κμxμ ¼! 0: ðC65Þ

Crucially, since coordinates do in general not transform
as scalars nor do the four constraints cμ. That can also be
seen by the relation of cμ and the Christoffel symbols,
cμ ¼ Γμ

αβg
αβ, which are well known to not transform as

tensors. As a consequence, cμ ¼ 0 is only satisfied in
harmonic gauge and is violated in general in other
coordinates fxag, i.e., cμðxaÞ ≠ 0.
The behavior of clocks and rods differs significantly in

different coordinates. To see that explicitly, note that the
ansatz χ0 ¼ κ0x0 is only a solution of the KG equation in
harmonic coordinates and is invalid in particular in con-
formal-longitudinal coordinates. In contrast, plugging the
ansatz χi ¼ κixiCL into the KG equation in conformal-
longitudinal coordinates yields

∂ið
ffiffiffiffiffiffi
−g

p
gij∂jχl

� ¼ κl∂i
�
a2ð1þ Ψ −ΦÞδij∂jxlCL


¼ a4κl∂lðΨ −ΦÞ ¼ 0; ðC66Þ

where we expanded the geometric quantities up to first
order. The last equation above holds true on shell and by
assuming vanishing shear which is the case in our system.
Consequently, when plugging the on shell solution

χi ¼ κixiCL into the energy-momentum tensor, the back-
ground components T̄μνðxCLÞ contain a contribution of the
rods. Explicitly, we find in CL coordinates the inequalities

k2 ≫ H2 ≥
κ2

2M2
Pl

; ðC67Þ

where H is again the Hubble parameter in conformal time,
such that for κ ¼ M2

Pl, one obtains

k2 ≫ M2
Pl: ðC68Þ

Following the arguments of the last paragraph of Sec. IV E,
these inequalities show the mixing of subhorizon and trans-
Planckian modes. Concluding, the computations of this
section demonstrate that the observations of Sec. IV E are
not a particular feature of harmonic coordinates but are also
present using the commonly used conformal-longitudinal
coordinates.

APPENDIX D: DERIVATION OF CONDENSATE
DYNAMICS

In this Appendix we provide the detailed derivations of
the dynamical equations for the perturbed condensate
introduced in Sec. III B. To that end, we consider an
expansion of the kinetic kernels

Kþððχ0Þ2; π2ϕÞ ¼
X∞
n¼0

Kð2nÞ
þ ðπ2ϕÞ
ð2nÞ! ðχ0Þ2n; ðD1Þ
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K−ðjχ j2; π2ϕÞ ¼
X∞
n¼0

Kð2nÞ
− ðπ2ϕÞ
ð2nÞ! jχ j2n; ðD2Þ

the existence of which is supported by the studies of [106].
Notice that the reference fields are coupled to the GFT
model via the Eqs. (2.26a) and (2.26b), such that their
expansion differs slightly from that discussed in [70]. The
reduced condensate wave functions σ̃ and τ̃ are expanded in
derivatives

σ̃ðχ0 þ x0; πϕÞ ¼
X∞
n¼0

σ̃ðnÞðx0; πϕÞ
n!

ðχ0Þn; ðD3Þ

τ̃ðχ0 þ x0; πϕÞ ¼
X∞
n¼0

τ̃ðnÞðx0; πϕÞ
n!

ðχ0Þn; ðD4Þ

where σ̃ðnÞ denotes the n-th derivative with respect to the
clock argument, applying similarly to τ̃. These expansions
will be employed both, for the background as well as the
perturbed part of the equations of motion.

1. Background equations

a. Spacelike part

Using the expansions of Eqs. (D1) and (D3), the
(regularized) spacelike background equation (3.18) eval-
uates to

0 ¼
Z

dχ0Kþððχ0Þ2; π2ϕÞσ̃ðχ0 þ x0; πϕÞηϵþðχ0; πþ0 Þ

¼
X
m;n

Kð2mÞ
þ ðπ2ϕÞσ̃ðnÞðx0; πϕÞ

ð2mÞ!n!
Z

d4χηϵþðχ0; πþ0 Þðχ0Þ2mþn

≈Kð0Þ
þ

��
I0 þ I2

Kð2Þ
þ

2Kð0Þ
þ

�
σ̃ðx0; πϕÞ þ I1∂0σ̃ðx0; πϕÞ þ

1

2
I2∂20σ̃ðx0; πϕÞ

� Z
d3χ: ðD5Þ

Following [70], we introduced the function I2mþnðϵþ; πþ0 Þ,
defined as the χ0 integration, which can be explicitly
evaluated to

Inðϵþ; πþ0 Þ ¼ N ϵþ
ffiffiffiffiffiffiffiffiffiffi
2πϵþ

p  
i

ffiffiffiffiffi
ϵþ

2

r !
n

e−z
2
þHn

 ffiffiffiffiffi
ϵþ

2

r
πþ0

!
;

ðD6Þ

where Hn are the Hermite polynomials and z2þ ¼
ϵþðπþ0 Þ2=2. We truncated the expansion at order ϵþ, leading
to the condition that only terms with 2mþ n ≤ 2 contrib-
ute. Introducing the quantities

E2þðπϕÞ ≔
2

ϵþð2z2þ − 1Þ −
Kð2Þ

þ
Kð0Þ

þ
; ðD7Þ

π̃þ0 ≔
πþ0

2z2þ − 1
; ðD8Þ

we finally obtain

∂
2
0σ̃ðx0; πϕÞ − 2iπ̃þ0 ∂0σ̃ðx0; πϕÞ − E2þðπϕÞσ̃ðx0; πϕÞ ¼ 0:

ðD9Þ

b. Timelike part

On the timelike sector, the procedure to obtain the
equations of motion differs slightly because of the different
peaking properties of τ and the mere rod dependence of the
timelike kernel K−. Starting with Eq. (3.19) and inserting
the expansions of Eqs. (D2) and (D4), we obtain

0 ¼
Z

d4χK−ðjχ j2; π2ϕÞτ̃ðχ0 þ x0; πϕÞηϵ−ðχ0; π−0 Þηδðjχ j; πxÞ

¼
X
n

τ̃ðnÞðx0; πϕÞ
n!

Z
dχ0ηϵ−ðχ0; π−0 Þðχ0Þn

Z
d3χK−ðjχ j2; πϕÞηδðjχ j; πxÞ: ðD10Þ
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Assuming that the spatial integral is nonzero, the equations
factorize. Truncating at linear order in ϵ− finally yields

I−0 τ̃ðx0;πϕÞþI−1 ∂0τ̃ðx0;πϕÞþ
1

2
I−2 ∂

2
0τ̃ðx0;πϕÞ≈0; ðD11Þ

where I−n is defined equivalently to Eq. (D6) but evaluated
on the timelike peaking parameters ϵ− and π−0 . Introducing

E2
− ≔

2

ϵ−ð2z2− − 1Þ ; ðD12Þ

π̃−0 ≔
π−0

2z2− − 1
; ðD13Þ

the background equation for the timelike reduced conden-
sate wave function reads as

∂
2
0τ̃ðx0; πϕÞ − 2iπ̃−0 ∂0τ̃ðx0; πϕÞ − E2

−τ̃ðx0; πϕÞ ¼ 0: ðD14Þ

Notice that due to the interplay of peaking and kernel
dependencies, the quantity E− does not carry a matter
momentum dependence, in contrast to EþðπϕÞ.

2. Perturbation equations

Continuing the analysis of the equations of motion, we
derive in this section the perturbed equations of motion for
the spacelike and then the timelike sector.

a. Spacelike part

The starting point is Eq. (3.26), which we complement
by the peaking properties of the condensate wave functions
σ and τ. As for the background, we expand Kþ; σ̃, and τ̃
according to Eqs. (D1), (D3), and (D4). Also we use the
relation of δΨ and δΦ in Eq. (3.28) and the relation of
peaking parameters in Eq. (3.30). Truncating then at linear
order in ϵþ and δ, one obtains

0 ¼ Kð0Þ
þ ðp2

ϕÞ
��

I0 þ I2
Kð2Þ

þ
2Kð0Þ

þ

�
δΨðJ0;0 ¯̃τ þ feiθf ¯̃σÞ þ I1∂0ðδΨðJ0;0 ¯̃τ þ feiθf ¯̃σÞÞ

þ I2
2
∂
2
0ðδΨðJ0;0 ¯̃τ þ feiθf ¯̃σÞÞ þ ¯̃τI0

J0;ð0;0;2Þ
2

∇2
xδΨ

�
: ðD15Þ

All fields, σ̃, τ̃, and δΨ are evaluated at x0, respectively xi,
and the peaked matter momentum pϕ. Notice that the first-
order time derivative enters with a coefficient I1 and
not its complex conjugated because of the relation between
πþ0 and π−0 as well as the phase factor of the function
f in Eq. (3.29). The functions I0 and I2 are the functions
of temporal peaking parameters defined in the section
above, evaluated on the þ parameters. Owing to the
spatial peaking of the timelike condensate τ, coeffi-
cients Jm;ðn1;n2;n3Þ appear in the expression above,
defined as

Jm;ðn1;n2;n3Þ ¼
Z

d3χηδðjχ j; πxÞjχ j2m
Y3
i¼1

ðχiÞni : ðD16Þ

The relevant coefficients for the derivation of the equations
of motion are J0;0, J2;0, and J0;ð0;0;2Þ, explicitly defined
as [70]

J0;0 ¼ −2N δ

ffiffiffiffiffiffi
2π

p
π2δ3=2z2e−z

2

; ðD17Þ

J2;0 ¼ 4N δ

ffiffiffiffiffiffi
2π

p
π2δ5=2z4e−z

2

; ðD18Þ

J0;ð0;0;2Þ ¼
16

3
N δ

ffiffiffiffiffiffi
2π

p
πδ5=2z4e−z

2

; ðD19Þ

keeping only first-order contributions in the peaking
parameter δ, where z2 ¼ δπ2x=2.
Factorizing I2=2 from the spacelike perturbed equations

of motion above, we finally obtain

0 ¼ ∂
2
0ðδΨðJ0;0 ¯̃τ þ feiθf ¯̃σÞÞ − 2iπ̃þ0 ∂0ðδΨðJ0;0 ¯̃τ þ feiθf ¯̃σÞÞ

þ −E2þδΨðJ0;0 ¯̃τ þ feiθf ¯̃σÞ þ ατ̃∇2
xδΨ; ðD20Þ

where the parameter α is defined as

α ≔
I0J0;ð0;0;2Þ

I2
: ðD21Þ

b. Timelike part

To derive the perturbed condensate equation on the
timelike sector, given in Eq. (3.34), our starting point is
Eq. (3.33). We use the expansions of Eqs. (D2), (D3), and
(D4) as well as the relations of Eqs. (3.28) and (3.30) to
arrive at
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0 ¼
Z

d3χK−ðjχj2; p2
ϕÞ
�
I0δΨ ¯̃σ þ Ī1∂ðδΨ ¯̃σÞ þ I2

2
∂
2
0ðδΨ ¯̃σÞ

�
þKð0Þ

− ðp2
ϕÞ
��

I0J0;0 þ I0J2;0
Kð2Þ

−

Kð0Þ
−

�
δΞ ¯̃τ þ J0;0I1∂ðδΞ ¯̃τÞ

þ J0;0
I2
2
∂
2
0ðδΞ ¯̃τÞ þ I0

J0;ð0;0;2Þ
2

¯̃τ∇2
xδΞ
�
; ðD22Þ

where the coefficients I0; I2; J0;0; J2;0, and J0;ð0;0;2Þ are defined as above. Using the background equations of motion in the
classical limit, with solutions given by Eqs. (3.24) and (3.25), and factorizing J0;0I2=2, one obtains

0 ¼ ¯̃σ

Z
d3χK−ðjχ j; p2

ϕÞ
��

2I0
I2

þ ðπþ0 Þ2 þ μ2þ

�
δΨþ 2μþ∂0δΨþ ∂

2
0δΨ

�
þKð0Þ

− J0;0 ¯̃τ
��

2I0
I2

þ I0J2;0
I2J0;0

Kð2Þ
−

Kð0Þ
−

þ ðπþ0 Þ2 þ μ2−

�
þ 2μ−∂0δΞþ ∂

2
0δΞþ α

J0;0
∇2

xδΞ
�
: ðD23Þ

Using the definition of μ2− and introducing

β ≔ −
I0J2;0
I2J0;0

Kð2Þ
−

Kð0Þ
−

; γ ≔
α

J0;0
; ðD24Þ

the perturbed equation of motion on the timelike sector is finally given by

0 ¼ ¯̃σ

Z
d3χK−ðjχ j; p2

ϕÞ
�
∂
2
0δΨþ 2μþ∂0δΨ −

Kð2Þ
þ

Kð0Þ
þ

δΨ
�
þ ¯̃τKð0Þ

− J0;0
�
∂
2
0δΞþ 2μ−∂0δΞ − βδΞþ γ∇2

xδΞ

: ðD25Þ
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