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The weakly constrained double field theory, in the sense of Hull and Zwiebach, captures the subsector of
string theory on toroidal backgrounds that includes gravity, B-field, and dilaton together with all of their
massive Kaluza-Klein and winding modes, which are encoded in doubled coordinates subject to the “weak
constraint.” Due to the complications of the weak constraint, this theory was only known to cubic order.
Here we construct the quartic interactions for the case that all dimensions are toroidal and doubled. Starting
from the kinematic C∞ algebra K of pure Yang-Mills theory and its hidden Lie-type algebra, we construct
the L∞ algebra of weakly constrained double field theory on a subspace of the “double copied” tensor
product space K ⊗ K̄, by doing homotopy transfer to the weakly constrained subspace and performing a
nonlocal shift that is well-defined on the torus. We test the resulting three-brackets and establish their
uniqueness up to cohomologically trivial terms, by verifying the Jacobi identities up to homotopy for the
gauge sector.
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I. INTRODUCTION

String theory is often thought of as something quite
different from quantum field theory. There are, however,
formulations of string theory as an “ordinary” field theory,
known as string field theory, with the only somewhat
unusual feature being that it carries an infinite number of
component fields (see [1,2] for modern reviews). These
component fields include familiar fields such as vector
spin-1 gauge fields (in open string theory) or the tensor
spin-2 fluctuations of gravity (in closed string field theory).
Since string theory is UV-finite, we thus have with closed
string field theory a quantum field theory of gravity that is
at least perturbatively well-defined.
However, string theory and string field theory are

technically infamously involved and also include numer-
ous exotic ingredients such as extra dimensions and
infinite towers of massive fields of ever-increasing spin.
Undoubtedly, this state of affairs is part of the reason that so
far no compelling scenario has emerged of how to connect
string theory to real-world observations. At the same time,

general qualitative aspects of the real-world physics encoded
in the standard model of particle physics are naturally found
in string theory. Yang-Mills theory, for instance, which
governs all interactions in the realm of particle physics,
can be obtained from open string field theory by eliminating
(or rather integrating out) all massive string modes. Since
Yang-Mills theory defines a perfectly good quantum field
theory, without any need to pass to the full open string field
theory, one may thus wonder, by analogy, whether there are
consistent theories of quantumgravity that are “smaller” than
the full closed string field theory, perhaps consistent duality-
invariant subsectors of string theory that include only someof
the massive string modes. (Since general relativity and the
low-energy supergravity actions of string theory are certainly
non-renormalizable and are unlikely to be UV-finite, it is
clear that, in contrast to Yang-Mills theory, any putative
quantum gravity theory has to include some, and most
likely infinite towers of, extra states in order to improve
the UV behavior.)
In this paper, we explicitly construct a gravity theory,

known as the weakly constrained double field theory [3],
that includes some infinite towers of massive string modes,
which provide a promising subsector for two reasons:
First, at the level of scattering amplitudes there are deep
relations between open and closed string theory, the
Kawai-Lewellen-Tye (KLT) relations [4], which have been
shown by Bern, Carrasco, and Johansson (BCJ) to have
field theory analogs [5,6]. Such so-called “double copy”
constructions relate pure Yang-Mills theory to “N ¼ 0
supergravity,” i.e. Einstein-Hilbert gravity coupled to a
two-form (B-field) and a scalar (dilaton). In view of the
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double copy this theory is most efficiently formulated as a
(strongly constrained) double field theory (DFT) [7–10].
Second, DFT is believed to exist also in a weakly con-
strained version that features genuine massive string
modes and is expected to exhibit an improved UV behavior.
Concretely, weakly constrained DFT is defined on toroidal
backgrounds and includes the massless fields of N ¼ 0
supergravity together with all of their massive Kaluza-
Klein and winding modes. Such a theory can in principle
be derived from the full closed string field theory by
integrating out all fields that do not belong to the DFT
sector [11–13]. As argued by Sen, the weakly constrained
DFT so obtained would inherit the UV finiteness of string
theory [11]. Therefore, “bootstrapping” such a theory
directly from Yang-Mills theory via double copy, plausibly
upon also including α0 corrections [14,15], appears to be a
promising path toward quantum gravity.
The construction of weakly constrained DFT to be

presented here, which was announced and outlined in
[16], is based on homotopy algebras such as homotopy
Lie or L∞ algebras. In theoretical physics, such structures
were first discovered in string field theory [17] and only
later realized to govern also conventional field theories
such as Yang-Mills theory; see in particular the early work
of Zeitlin [18,19] (which remarkably already anticipated
aspects of double copy [20,21]). Homotopy algebras also
play a role in the formulation of quantum field theory due to
Costello [22] and Gwilliam-Costello [23]. We refer to [24]
for a self-contained introduction to L∞ algebras and the
general dictionary between field theories and L∞ algebras.
Using this framework one may start from Yang-Mills

theory, viewed as an L∞ algebra, and give a perfectly
precise meaning to the notion of “stripping off” color
factors. While there is no such thing as a field theory of
“color-stripped Yang-Mills fields,” there is a homotopy
algebra of such “fields,” a C∞ rather than an L∞ algebra.
Specifically, the vector space XYM, on which the L∞
algebra of Yang-Mills theory is defined, can be decom-
posed as the tensor product XYM ¼ K ⊗ g, where g is the
“color” Lie algebra of the gauge group, and the C∞ algebra
K encodes the “kinematics” of Yang-Mills theory [19]. C∞
algebras are homotopy versions of commutative associative
algebras, which means that the (graded commutative)
product is only associative “up to homotopy,” with the
failure of associativity being governed by a “three-
product.” The kinematic algebra K of Yang-Mills theory
is thus an “associative-type” algebra. However, the study of
scattering amplitudes underlying the double copy indicates
that there is also a hidden “Lie-type” algebra. At the level of
any local off-shell Lagrangian formulation there is no such
Lie algebra in the strict sense, not even up to homotopy, but
a further relaxation of the Lie algebra axioms was proposed
by Reiterer in [25] and proved to be realized in Yang-Mills
theory in four (Euclidean) dimensions (with complexified
fields and momenta). This algebra goes under the forbid-
ding yet fitting name BV□

∞ and is a generalization of a

Batalin-Vilkovisky (BV) algebra. Here □ refers to the flat
space wave operator that, being of second order, is the
origin of the obstructions that prevent K from carrying a
homotopy Lie algebra. Nevertheless, the BV□

∞ algebra
seems to be at the core of the so-called color-kinematics
duality of Yang-Mills scattering amplitudes. More recently,
for Yang-Mills theory in arbitrary dimensions (and space-
time signature), we displayed this algebra up to trilinear
maps [26].
In order to double copy Yang-Mills theory one considers

the tensor product K ⊗ K̄ with a second copy K̄ of the
kinematic algebra. This total space consists of functions of
doubled (unconstrained) coordinates (coordinates x asso-
ciated with K and coordinates x̄ associated with K̄). This
space inherits an algebra of precisely the same kind:
a BVΔ

∞ algebra, where Δ ¼ 1
2
ð□ − □̄Þ is the difference

of the respective wave operators. This unconstrained space
does not carry an unobstructed L∞ algebra, and hence no
consistent field theory, due to Δ being second order, but by
restricting to a suitable subspace one can eliminate the
obstructions. Identifying coordinates x with coordinates x̄
implies Δ≡ 0, which yields the strongly constrained
DFT that can be viewed as a duality invariant formulation
of N ¼ 0 supergravity. More precisely, so far this was
established to quartic order in fields [26]. (See [27] for a
quick and polemic introduction, [28–33] for DFT and
double copy, and [34–39] for homotopy algebras and
double copy.)
In this paper we will show how to construct weakly

constrained DFT for toroidal and hence Euclidean back-
grounds in which Δ ¼ 0 is imposed as a constraint on
fields, which then still genuinely depend on doubled
coordinates and hence encode both physical winding and
momentum modes. (Since all dimensions are toroidal and
doubled, this theory does not yet include a noncompact
time direction, which at least in conventional thinking
should remain undoubled. We leave the construction of the
full Lorentzian theory for future work.) To this end, one
performs homotopy transfer to the subspace with Δ ¼ 0
(see, e.g., [12] for a self-contained introduction to homo-
topy transfer). This still does not give an unobstructed L∞
algebra, but by further imposing an algebraic constraint
known from the level-matching constraints of string theory
one can redefine the desired three-bracket by a nonlocal but
perfectly well-defined shift so that one obtains a genuine
L∞ algebra to the order relevant for the quartic theory. This
solves a problem that was outstanding since the modern
inception of DFT by Hull and Zwiebach [3]. It should be
emphasized that this solution of the problem is unique, up
to cohomologically trivial redefinitions, given the “initial
data” of the differential B1 and two-bracket B2 of weakly
constrained DFT encoded in the cubic theory of [3].
What is perhaps the most striking aspect of this solution

of the long-open problem of constructing weakly con-
strained DFT is that it relates to, and in some ways is almost

ROBERTO BONEZZI et al. PHYS. REV. D 109, 066020 (2024)

066020-2



identical with, deep hidden structures that are present in
Yang-Mills theory proper, without any reference to gravity.
While the conventional Lagrangian formulation of Yang-
Mills theory relies only on the color Lie algebra g and the
kinematic C∞ algebra, the computation of scattering
amplitudes requires more structures, as for instance exhib-
ited in gauge conditions. Given these extra structures, the
kinematic vector space comes close to be a (homotopy) Lie
algebra, but this is obstructed by the wave operator□ being
of second order. When computing scattering amplitudes
one goes on-shell, so that □ gives zero when acting on
single fields (polarization vectors), but even then the
algebraic structure is obstructed since the product of two
on-shell fields is generally not on-shell. Thus, even on the
subspace with □ ¼ 0 the BV□

∞ algebra does not yield an
unobstructed homotopy Lie algebra. In the amplitude
literature it has been shown how to shift the kinematic
numerators so that these obey Jacobi-type identities, a
property known as color-kinematic duality. The problem of
constructing weakly constrained DFT is therefore techni-
cally analogous to the problem of making color-kinematics
manifest in Yang-Mills theory proper, just with BVΔ

∞
instead of BV□

∞. We hope to further explore this intriguing
connection in the future.
The remainder of this paper is organized as follows. In

Sec. II we introduce the C∞ algebra of the kinematic space
K of Yang-Mills theory, to the order of trilinear maps, and
we introduce the BV□

∞ algebra. While to a large part this is a
review of results presented in [26], we also introduce a
more streamlined notation for objects of K and its multi-
linear maps, which is instrumental in order to efficiently
compute the double copied maps in later sections. These
results are useful additions to [26], even just for strongly
constrained DFT. In Sec. III we prove, again to the order
of trilinear maps relevant for the quartic theory, that the
(unconstrained) doubled space K ⊗ K̄ carries a BVΔ

∞
algebra. Finally, in Sec. IV we construct weakly con-
strained DFT to quartic order, by first doing homotopy
transfer to the subspace with Δ ¼ 0 and then performing a
nonlocal but well-defined shift. We verify the inevitability
of this nonlocal shift by computing the three-brackets of
the gauge sector and by verifying the generalized Jacobi
identities. We close with a summary and outlook in Sec. V.
where we discuss possible applications and generalizations.
In two Appendixes we collect all maps for Yang-Mills
theory, and we give some of the technically challenging
proofs.

II. THE KINEMATIC ALGEBRA
OF YANG-MILLS

Here we start by reviewing the BV□
∞ algebra of Yang-

Mills theory, up to its trilinear maps. In doing so we will
introduce the necessary formalism and fix our conventions
and notation. We follow closely the discussion in [26,40],

although with some differences in the notation that, we
believe, lead to a more streamlined treatment.
We employ a formulation of Yang-Mills theory with an

auxiliary scalar field φ, whose action is given by [40]

S ¼
Z

ddx

�
1

2
Aμ
a□Aa

μ −
1

2
φaφ

a þ φa∂
μAa

μ

− fabc∂μAa
νAμbAνc −

1

4
feabfecdAa

μAb
νAμcAνd

�
; ð2:1Þ

where fabc are the structure constants of the color Lie
algebra g. The cubic and quartic vertices are standard, and
one recovers the usual action upon integrating out φ. In
Yang-Mills theory all objects, including gauge parameters,
fields, and field equations, take values in the Lie algebra g
of the gauge group. It is thus natural to view the space of
Yang-Mills theory as the tensor product K ⊗ g, where
elements of K are color-stripped local spacetime fields,
which we still refer to as gauge parameters, fields, and
so on.

A. The graded vector space K

Let us describe in more detail the structure of the
kinematic vector space K. It is a graded vector space given
by the direct sum of subspaces Ki of homogenous degree:
K ¼ ⨁3

i¼0Ki. Elements in each Ki are identified as gauge
parameters λ, fields A, field equations E, and Noether
identities N according to the following diagram:

K0 K1 K2 K3

λ A E N
: ð2:2Þ

We take the fieldA to contain both the (color-stripped) gauge
vector fieldAμ and the scalarφ, and similarly the equations of
motion E have a vector and a scalar component.
In order to display explicitly its degree structure,

we find it useful to view K as the tensor product of a
finite-dimensional graded vector space Z ¼ ⨁3

i¼0Zi with
the space of smooth spacetime functions of degree
zero: K ¼ Z ⊗ C∞ðMÞ. Here M is flat d-dimensional
Minkowski spacetime, but the signature is immaterial for
the following discussion. The vector space Z is defined by
giving a basis. To this end let us introduce a (dþ 2)-
component graded vector θM ¼ ðθþ; θμ; θ−Þ, where μ ¼
0; 1;…; d − 1 is a Lorentz vector index. The degrees of the
components are given by

jθþj ¼ 0; jθμj ¼ 1; jθ−j ¼ 2; ð2:3Þ

which we sometimes summarize by writing jθMj ¼ 1 −M,
where M means þ1, 0, or −1, depending on the
index. Next, we take a second copy of these vectors with
degrees shifted by one, which we denote by cθM, with
jcθMj ¼ 2 −M, or
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jcθþj ¼ 1; jcθμj ¼ 2; jcθ−j ¼ 3: ð2:4Þ

A basis of Z is then given by

ZA ¼ ðθM; cθMÞ: ð2:5Þ

The above characterization of Z exhibits the manifest Z2

symmetry that exchanges θM and cθM. This isomorphism
between the subspaces generated by θM and cθM, respec-
tively, can be implemented by nilpotent operators b and c
defined by their action on the basis ZA:

cðθMÞ ≔ cθM; cðcθMÞ ≔ 0;

bðθMÞ ≔ 0; bðcθMÞ ≔ θM: ð2:6Þ

The degrees of b and c are thus fixed to be jcj ¼ þ1 and
jbj ¼ −1, and from their definition one can see that they
obey the algebra

c2 ¼ 0; b2 ¼ 0; bcþ cb ¼ 1: ð2:7Þ

The basis elements ofZ can be displayed according to their
degree in a way that emphasizes the Z2 symmetry:

ð2:8Þ

where we have indicated the action of b (c acts by reversing
the arrows).
In addition to the above Z2 symmetry, Z can be

equipped with an odd symplectic bilinear form1 ω of
degree jωj ¼ −3, satisfying

ωðZ1; Z2Þ ¼ ð−1ÞZ1Z2ωðZ2; Z1Þ; ð2:9Þ

which is symmetric since it always pairs odd with even
elements.We specifyω by giving its componentsωðZA; ZBÞ
in the above basis:

ωðθþ; cθ−Þ ¼ ωðcθ−; θþÞ ¼ −1;

ωðθ−; cθþÞ ¼ ωðcθþ; θ−Þ ¼ þ1;

ωðθμ; cθνÞ ¼ ωðcθν; θμÞ ¼ ημν; ð2:10Þ

where ημν is the d-dimensional Minkowski metric and all
other pairings vanish.
Upon tensoring Z with smooth functions, we obtain the

kinematic space K of Yang-Mills theory. The degree in K

coincides with the one in Z, meaning that for an homo-
geneous element ψ ¼ ZfðxÞ one has jψ j ¼ jZj. An arbi-
trary element in K can thus be expanded as

ψ ¼ ZAψ
AðxÞ: ð2:11Þ

Comparing the degree structure (2.2) of K with (2.8), one
infers that Yang-Mills fields, parameters, and so on are
given by the following vectors in K with homogeneous
degrees:

λ ¼ θþλðxÞ∈K0;

A ¼ θμAμðxÞ þ cθþφðxÞ∈K1;

E ¼ θ−EðxÞ þ cθμEμðxÞ∈K2;

N ¼ cθ−N ðxÞ∈K3: ð2:12Þ

The Z2 structure and the action of b and c are inherited
from Z. One can indeed draw the same diagram (2.8) in K
to display the following:

ð2:13Þ

where we omitted the ZA and only wrote the component
fields. The odd symplectic pairing ω induces a degree −3
inner product h; i in K, defined by

hψ1;ψ2i ¼
Z

ddxψA
1 ðxÞψB

2 ðxÞωðZA; ZBÞ: ð2:14Þ

More specifically, using (2.10) one can see that the
nonvanishing pairings are between fields A and field
equations E:

hA; Ei ¼
Z

ddx½AμðxÞEμðxÞ þ φðxÞEðxÞ�; ð2:15Þ

and between gauge parameters λ and Noether identities N

hλ;N i ¼ −
Z

ddx λðxÞN ðxÞ: ð2:16Þ

B. C∞ algebra on K

Having described K as a graded vector space, we now
turn to reviewing the algebraic structures that can be
defined on it. The consistency of Yang-Mills theory as a
field theory (this includes, for instance, gauge covari-
ance of the field equations and closure of the gauge
algebra) is encoded, upon factoring out color, by a C∞
algebra structure on K [19,35,40]. This is a homotopy

1This is closely related to the field theoretic odd symplectic
structure of theBatalin-Vilkovisky formalism (see, e.g., [17,41–43]).
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generalization of a commutative associative algebra where
a graded vector space (K in the case at hand) is equipped
with multilinear maps or products mn obeying a set of
quadratic relations. For the case of Yang-Mills theory, the
only nonvanishing maps are an operatorm1 of degreeþ1, a
bilinear product m2 of degree zero, and a trilinear product
m3 of degree −1, summarized as jmnj ¼ 2 − n.
The nontrivial C∞ relations to be satisfied then consist of
(i) Nilpotency of m1:

m2
1ðψÞ ¼ 0; ð2:17Þ

stating that m1 is a differential, which makes K into
a chain complex. Physically, m2

1 ¼ 0 encodes, in
particular, gauge invariance of the free theory under
linearized gauge transformations.

(ii) The differential m1 acts as a derivation on m2

(Leibniz rule):

m1m2ðψ1;ψ2Þ ¼ m2ðm1ψ1;ψ2Þ
þ ð−1Þψ1m2ðψ1; m1ψ2Þ; ð2:18Þ

where ψ i in exponents always denotes the degree
jψ ij. This requirement ensures, upon tensoring
with color, consistency of Yang-Mills theory up to
cubic order.

(iii) The product m2 is associative up to homotopy:

m2ðm2ðψ1;ψ2Þ;ψ3Þ −m2ðψ1; m2ðψ2;ψ3ÞÞ
¼ m1m3ðψ1;ψ2;ψ3Þ þm3ðm1ψ1;ψ2;ψ3Þ
þ ð−1Þψ1m3ðψ1; m1ψ2;ψ3Þ
þ ð−1Þψ1þψ2m3ðψ1;ψ2; m1ψ3Þ; ð2:19Þ

which is responsible for consistency of the theory up
to quartic order and thus fully, given that Yang-Mills
theory has no higher vertices.

In a C∞ algebra, the products mn have to further obey
symmetry constraints under permutations of arguments.
Specifically, the mn have to vanish under so-called shuffle
permutations. For our purposes, the relevant symmetry
properties are

m2ðψ1;ψ2Þ − ð−1Þψ1ψ2m2ðψ2;ψ1Þ ¼ 0;

m3ðψ1;ψ2;ψ3Þ − ð−1Þψ1ψ2m3ðψ2;ψ1;ψ3Þ
þ ð−1Þψ1ðψ2þψ3Þm3ðψ2;ψ3;ψ1Þ ¼ 0; ð2:20Þ

which, for m2, is the same as graded symmetry. For the
following discussion we find it more convenient to work
with a different representation of m3, which we denoted
m3h in [26], defined as

m3hðψ1;ψ2;ψ3Þ≔
1

3
ðm3ðψ1;ψ2;ψ3Þ

þ ð−1Þψ1ψ2m3ðψ2;ψ1;ψ3ÞÞ;
m3ðψ1;ψ2;ψ3Þ ¼m3hðψ1;ψ2;ψ3Þ

− ð−1Þψ1ðψ2þψ3Þm3hðψ2;ψ3;ψ1Þ: ð2:21Þ

This is just a redefinition of m3, not a projection, as it can
be inverted explicitly by using the above formula. The
redefined m3h is graded symmetric in its first two argu-
ments and vanishes upon total graded symmetrization.
Otherwise stated, it is a graded hook representation in
terms of Young diagrams.
Given the tensor product structure of K ¼ Z ⊗ C∞ðMÞ

and the expansion (2.11) of arbitrary vectors, the mn
products act on elements of K as follows:

m1ðψÞ ¼ m̂1ðZAÞψAðxÞ;
m2ðψ1;ψ2Þ ¼ μ½m̂2ðZA; ZBÞðψA

1 ðxÞ ⊗ ψB
2 ðxÞÞ�;

m3hðψ1;ψ2;ψ3Þ ¼ μ½m̂3hðZA; ZB; ZCÞðψA
1 ðxÞ

⊗ ψB
2 ðxÞ ⊗ ψC

3 ðxÞÞ�; ð2:22Þ

where the operations on the right are defined as
follows: First, the operators m̂nðZA1

;…; ZAn
Þ are Z-valued

multidifferential operators acting on the component
fields as

m̂1ðZÞ∶ C∞ðMÞ→ Z ⊗ C∞ðMÞ;
m̂2ðZ1; Z2Þ∶ C∞ðMÞ⊗ C∞ðMÞ

→ Z ⊗ ðC∞ðMÞ⊗ C∞ðMÞÞ;
m̂3hðZ1; Z2; Z3Þ∶ C∞ðMÞ⊗ C∞ðMÞ⊗ C∞ðMÞ

→ Z ⊗ ðC∞ðMÞ⊗ C∞ðMÞ⊗ C∞ðMÞÞ:
ð2:23Þ

Second, μ just denotes the local pointwise product:

μ½f1ðxÞ ⊗ � � � ⊗ fnðxÞ� ¼ f1ðxÞ � � � fnðxÞ: ð2:24Þ

To clarify this notation, let us give some explicit examples
(the explicit form of all mn products can be found in [40]).
Acting on the basis vectors of Z1 (corresponding to fields),
we have

m̂1ðθμÞ ¼ cθμ□þ θ−∂μ;

m̂1ðcθþÞ ¼ −cθμ∂μ − θ−: ð2:25Þ

Using (2.22) one computes the action of the differential m1

on a field A ¼ ZAψ
A ¼ θμAμ þ cθþφ∈K1 as
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m1ðAÞ ¼ m̂1ðZAÞψA

¼ m̂1ðθμÞAμ þ m̂1ðcθþÞφ
¼ cθμð□Aμ − ∂

μφÞ þ θ−ð∂ · A − φÞ; ð2:26Þ

where we omitted the explicit spacetime dependence of the
component fields and denoted the contraction of Lorentz
indices with a dot. One can see that setting m1ðAÞ ¼ 0
corresponds to the free Maxwell equations upon solving
for φ.
For the next example, the nonvanishing part of m2

between fields A1 and A2 is encoded in the bidifferential
operator

m̂2ðθμ; θνÞ ¼ cθν½ð∂μ ⊗ 1Þ þ 2ð1 ⊗ ∂μÞ�
− cθμ½ð1 ⊗ ∂νÞ þ 2ð∂ν ⊗ 1Þ�
þ cθρημν½ð∂ρ ⊗ 1Þ − ð1 ⊗ ∂

ρÞ�: ð2:27Þ

This acts on ðAμ
1 ⊗ Aν

2Þ as

m̂2ðθμ;θνÞðAμ
1 ⊗Aν

2Þ¼ cθν½ð∂ ·A1 ⊗Aν
2Þþ2ðAμ

1 ⊗ ∂μAν
2Þ�

−cθμ½ðAμ
1 ⊗ ∂ ·A2Þþ2ð∂νAμ

1 ⊗Aν
2Þ�

þcθρ½ð∂ρAμ
1 ⊗A2μÞ− ðAμ

1 ⊗ ∂
ρA2μÞ�:
ð2:28Þ

The pointwise multiplication implemented by μ then yields
(with a dot denoting contraction of Lorentz indices)

m2ðA1;A2Þ ¼ μ½m̂2ðθμ; θνÞðAμ
1 ⊗ Aν

2Þ�
¼ cθμð∂ · A1A

μ
2 þ 2A1 · ∂A

μ
2 þ ∂

μA1 · A2

− ð1 ↔ 2ÞÞ
≡ cθμðA1 • A2Þμ; ð2:29Þ

which gives the color-stripped cubic vertex of Yang-Mills
as hA3; m2ðA1;A2Þi. Similarly, the only nonvanishing
component of m3h comes from the operator

m̂3hðθμ; θν; θρÞ ¼ ðcθμηνρ − cθνημρÞð1 ⊗ 1 ⊗ 1Þ; ð2:30Þ

yielding

m3hðA1;A2;A3Þ ¼ μ½m̂3hðθμ; θν; θρÞðAμ
1 ⊗ Aν

2 ⊗ Aρ
3Þ�

¼ cθμðAμ
1A2 · A3 − ð1 ↔ 2ÞÞ; ð2:31Þ

corresponding to the color-stripped quartic vertex. A
complete list of the operators m̂n can be found in
Appendix A.

C. BV□
∞ algebra on K

While it is rather straightforward to determine that K
carries a C∞ structure (this is “just” rephrasing its usual

consistency conditions), the next algebraic layer on K is
highly nontrivial and plays a crucial role in the double copy
construction. To see how this deeper structure arises on K,
one has to look at the interplay of the C∞ algebra, given by
the products mn, with the b operator introduced before.
From its definition in (2.6) and the expression of the
differential m1 one may verify that it obeys

b2 ¼ 0; bm1 þm1b ¼ □; jbj ¼ −1; ð2:32Þ

where □ ¼ ∂
μ
∂μ is the wave operator. It turns out that

(2.32) should be viewed as the general defining property of
b, with our realization (2.6) and (2.13) being a particular
case.2 Although b does not play a role in the consistency
relations encoded in the C∞ algebra of the theory, it can be
viewed as providing a gauge fixing condition as bðAÞ ¼ 0,
as well as the related propagator as b

□
acting on the space of

equations. The peculiar property of our realization (2.6) is
that it acts on K as

bðψÞ ¼ ðbZAÞψAðxÞ; ð2:33Þ

implying in particular that it is local and does not contain
spacetime derivatives. This will be instrumental in order to
construct a local theory from double copy.
With this second differential at our disposal, one can

study its compatibility with the C∞ products. Its graded
commutator with m1 is given in (2.32). Going one step
further, b does not act as a derivation on m2. Rather, the
failure to do so defines a bracket b2:

b2ðψ1;ψ2Þ ≔ bm2ðψ1;ψ2Þ −m2ðbψ1;ψ2Þ
− ð−1Þψ1m2ðψ1; bψ2Þ; ð2:34Þ

on which b acts as a derivation by construction. Given a
product m2 and a bracket b2, one can ask if they are
mutually compatible, i.e. if they obey the graded Poisson
identity

b2ðψ ;m2ðψ1;ψ2ÞÞ ¼m2ðb2ðψ ;ψ1Þ;ψ2Þ
þ ð−1Þψ1ψ2m2ðb2ðψ ;ψ2Þ;ψ1Þ: ð2:35Þ

If this were the case (which also requires m2 to be
associative), b2 would be a graded Lie bracket, and the
triplet ðb;m2; b2Þ would form a BV algebra. While this
happens for Chern-Simons theory [36,45], it is not the case
for Yang-Mills theory (at least in standard formulations).
The compatibility (2.35) holds only up to an homotopy θ3
and further □ deformations originating from (2.32). This
prompts a cascade of higher relations, defined as a BV□

∞
algebra in [25].

2For different realizations of the b operator in various gauge
theories, see, e.g., [25,36,37,44,45].
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In order to give all the relevant relations of the resulting
BV□

∞ algebra (up to trilinear maps), we shall review a
convenient input-free notation introduced in [26], which
will allow us to establish the results of the forthcoming
sections. In this part we will denote by O any linear
operator in K, of degree jOj. Generic bilinear and trilinear
maps will be denoted by M and T , respectively, with
arbitrary intrinsic degrees jMj and jT j. Similar to (2.22),
these generic maps act on elements of K as

OðψÞ ¼ ÔðZAÞψAðxÞ;
Mðψ1;ψ2Þ ¼ μ½M̂ðZA; ZBÞðψA

1 ðxÞ ⊗ ψB
2 ðxÞÞ�;

T ðψ1;ψ2;ψ3Þ ¼ μ½T̂ ðZA; ZB; ZCÞðψA
1 ðxÞ ⊗ ψB

2 ðxÞ
⊗ ψC

3 ðxÞÞ�; ð2:36Þ

where Ô, M̂, and T̂ are Z-valued multidifferential
operators acting on the component functions. We define
the graded commutator of operators O1 and O2 by

½O1;O2�ðψÞ ≔ O1ðO2ψÞ − ð−1ÞO1O2O2ðO1ψÞ; ð2:37Þ

where every symbol in exponents refers to the degree of a
map or element. The commutators of an operator O with
bilinear and trilinear maps M and T are the bilinear map
½O;M� and trilinear map ½O; T � given by

½O;M�ðψ1;ψ2Þ≔OMðψ1;ψ2Þ− ð−1ÞOM½MðOψ1;ψ2Þ
þð−1Þψ1OMðψ1;Oψ2Þ�;

½O;T �ðψ1;ψ2;ψ3Þ≔OT ðψ1;ψ2;ψ3Þ− ð−1ÞOT

× ½T ðOψ1;ψ2;ψ3Þ
þð−1ÞOψ1T ðψ1;Oψ2;ψ3Þ
þð−1ÞOðψ1þψ2ÞT ðψ1;ψ2;Oψ3Þ�:

ð2:38Þ

The action of an operator O on a map (be it another
operator, a bilinear or trilinear map) gives a map of the
same kind, e.g.,

ðOMÞðψ1;ψ2Þ ≔ OðMðψ1;ψ2ÞÞ: ð2:39Þ

Finally, composition of bilinear maps is defined from the
left and denoted by juxtaposition:

M1M2ðψ1;ψ2;ψ3Þ ≔ M1ðM2ðψ1;ψ2Þ;ψ3Þ: ð2:40Þ

This is sufficient for our purposes, since all bilinear maps
involved are graded symmetric. With this notation one can
check that ½O;−� is a derivation on commutators and
compositions, in the sense that it obeys

½O1; ½O2;M�� ¼ ½½O1;O2�;M� þ ð−1ÞO1O2 ½O2; ½O1;M��;
½O1;O2M� ¼ ½O1;O2�Mþ ð−1ÞO1O2O2½O1;M�;
½O;M1M2� ¼ ½O;M1�M2 þ ð−1ÞOM1M1½O;M2�:

ð2:41Þ
We now turn to discuss the symmetry properties of

trilinear maps T . Since they are all graded symmetric in the
first two arguments (this is the reason we chose to work
with m3h rather than m3), they can be decomposed into a
totally graded symmetric part, which we denote by T s,
and a graded hook part T h ≔ T − T s. In terms of T , the
symmetrized map T s acts on three inputs as

T sðψ1;ψ2;ψ3Þ ¼
1

3
fT ðψ1;ψ2;ψ3Þ

þ ð−1Þψ1ðψ2þψ3ÞT ðψ2;ψ3;ψ1Þ
þ ð−1Þψ3ðψ1þψ2ÞT ðψ3;ψ1;ψ2Þg: ð2:42Þ

In line with (2.36) we want to associate a multidifferential
operator T̂ s with T s, such that

T sðψ1;ψ2;ψ3Þ ¼ μ½T̂ sðZA; ZB; ZCÞðψA
1 ⊗ ψB

2 ⊗ ψC
3 Þ�:
ð2:43Þ

To do so, we start by introducing a permutation operator Σ,
which acts on trilinear operators as

ðO1 ⊗ O2 ⊗ O3ÞΣ ≔ ðO3 ⊗ O1 ⊗ O2Þ; ð2:44Þ
and thus obeys

μ½T̂ ðZA; ZB; ZCÞΣðf1 ⊗ f2 ⊗ f3Þ�
¼ μ½T̂ ðZA; ZB; ZCÞðf2 ⊗ f3 ⊗ f1Þ�;
μ½T̂ ðZA; ZB; ZCÞΣ2ðf1 ⊗ f2 ⊗ f3Þ�
¼ μ½T̂ ðZA; ZB; ZCÞðf3 ⊗ f1 ⊗ f2Þ�; ð2:45Þ

and Σ3 ¼ 1. We then use this to define a projector π,
obeying π2 ¼ π, so that the symmetrized and hook oper-
ators T̂ s and T̂ h are defined via

T̂ s ≔ T̂ π; T̂ h ≔ T̂ ð1 − πÞ; T̂ ¼ T̂ s þ T̂ h: ð2:46Þ
In terms of the permutation operator Σ, π is explicitly
given by

T̂ πðZA; ZB; ZCÞ ¼
1

3
fT̂ ðZA; ZB; ZCÞ

þ ð−1ÞZAðZBþZCÞT̂ ðZB; ZC; ZAÞΣ
þ ð−1ÞZCðZAþZBÞT̂ ðZC; ZA; ZBÞΣ2g;

ð2:47Þ
which reproduces, upon using (2.43), the expression (2.42)
for the map T s. We will then use interchangeably the
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notation T s ≡ T π for the symmetrized map as well. The
operator T̂ s obeys the graded symmetry property

T̂ sðZA;ZB;ZCÞ¼ð−1ÞZAðZBþZCÞT̂ sðZB;ZC;ZAÞΣ
¼ð−1ÞZCðZAþZBÞT̂ sðZC;ZA;ZBÞΣ2; ð2:48Þ

which implies the standard graded symmetry of the map
T sðψ1;ψ2;ψ3Þ upon permutations of the inputs.
Let us illustrate the action of π with a concrete example.

We consider the trilinear map T associated with the
operator

T̂ ðθμ; θν; θρÞ ¼ cθ−ημν½ð1 ⊗ ∂ρ ⊗ 1Þ − ð∂ρ ⊗ 1 ⊗ 1Þ�;
ð2:49Þ

which is part of the actual map m2m2ðA1;A2;A3Þ. Acting
with (2.49) on ðAμ

1 ⊗ Aν
2 ⊗ Aρ

3Þ and evaluating the point-
wise product one obtains

T ðA1; A2; A3Þ ¼ cθ−ðA1μ∂ρA
μ
2A

ρ
3 − A2μ∂ρA

μ
1A

ρ
3Þ; ð2:50Þ

where we abbreviated Ai ¼ θμA
μ
i . According to the defi-

nition (2.47), the symmetrized operator T̂ π is given by

T̂ πðθμ;θν;θρÞ ¼
1

3
cθ−ðημνð1⊗ ∂ρ ⊗ 1Þ− ημνð∂ρ ⊗ 1⊗ 1Þ

þ ηνρð1⊗ 1⊗ ∂μÞ− ηνρð1⊗ ∂μ ⊗ 1Þ
þ ημρð∂ν ⊗ 1⊗ 1Þ− ημρð1⊗ 1⊗ ∂νÞÞ;

ð2:51Þ
yielding the symmetrized map

T πðA1; A2; A3Þ ¼
1

3
cθ−ðA1μ∂ρA

μ
2A

ρ
3 − A2μ∂ρA

μ
1A

ρ
3

þ A2μ∂ρA
μ
3A

ρ
1 − A3μ∂ρA

μ
2A

ρ
1

þ A3μ∂ρA
μ
1A

ρ
2 − A1μ∂ρA

μ
3A

ρ
2Þ: ð2:52Þ

From the definition (2.38) of the commutator ½O; T �, one
can check that the action of O preserves the symmetry
property of the map T in the sense that

½O;T �π ¼ ½O;T π�: ð2:53Þ

We conclude this review of the input-free formulation by
focusing on the possible □ obstructions. Since we are
working on flat spacetime, the wave operator □ commutes
with all the multidifferential operators Ô, M̂, and T̂ in
(2.36). Its commutators with the maps O, M, and T are
thus entirely determined by the commutator of □ on the
pointwise product of functions. We thus define the follow-
ing operators, acting on three local functions:

dsðf1 ⊗ f2 ⊗ f3Þ ≔ 2ð∂μf1 ⊗ ∂μf2 ⊗ f3Þ;
d□ðf1 ⊗ f2 ⊗ f3Þ ≔ 2ð∂μf1 ⊗ ∂μf2 ⊗ f3Þ

þ 2ðf1 ⊗ ∂
μf2 ⊗ ∂μf3Þ

þ 2ð∂μf1 ⊗ f2 ⊗ ∂μf3Þ: ð2:54Þ
The subscript in ds alludes to the Mandelstam variable s,
and should not be confused with the symmetrization T s.
One can compose a Z-valued tridifferential operator T̂
with ds and d□, which we denote by juxtaposition:

T̂ ds ≔ 2T̂ ∘ð∂μ ⊗ ∂μ ⊗ 1Þ;
T̂ d□ ≔ 2T̂ ∘fð∂μ ⊗ ∂μ ⊗ 1Þ þ ð1 ⊗ ∂

μ ⊗ ∂μÞ
þ ð∂μ ⊗ 1 ⊗ ∂μÞg: ð2:55Þ

These are also Z-valued tridifferential operators which
generate the corresponding maps T ds and T d□. For
instance, one has T dsðψ1;ψ2;ψ3Þ ¼ 2T ð∂μψ1; ∂μψ2;ψ3Þ
and so on. Under projection by π, ds and d□ obey

T d□π ¼ T πd□ ¼ 3T πdsπ: ð2:56Þ

The d□ operator is always related to a total commutator
with □, in the sense that

½□; T � ¼ T d□; ð2:57Þ

while T ds is not. Last, from the definition of ½O; T � it
follows that ds and d□ commute with linear operators O:

½O; T �ds ¼ ½O; T ds�; ½O; T �d□ ¼ ½O; T d□�: ð2:58Þ

With this notation at hand, we can summarize all the
relevant BV□

∞ relations up to trilinear maps [26]:

m2
1 ¼ 0; b2 ¼ 0; ½m1; b� ¼ □; differentials and central obstruction;

½m1; m2� ¼ 0; m2m2ð1 − πÞ ¼ ½m1; m3h�; C∞ structure;

b2 ¼ ½b;m2�; ½m1; b2� ¼ ½□; m2�; two-bracket and deformed Leibniz;

b2m2 þm2b2ð1 − 3πÞ ¼ ½m1; θ3� þm3hðd□ − 3dsπÞ; deformed homotopy Poisson;

3b2b2π þ ½m1; b3� þ 3θ3dsπ ¼ 0; deformed homotopy Jacobi;

θ3h þ ½b;m3h� ¼ 0; b3 þ ½b; θ3s� ¼ 0; compatibility of homotopies:

ð2:59Þ
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The explicit maps for mn and θ3 can be found in the
Appendix of [26], while b2 and b3 are easily derived from
these by taking b-commutators. The corresponding differ-
ential operators m̂n and θ̂3 are listed in Appendix A.
From the above table one can see that the only con-

sistent subsector is given by the original C∞ algebra
ðm1; m2; m3hÞ. On the other hand, the brackets ðb1 ≡
m1; b2; b3Þ form an L∞ algebra only up to□-deformations,
governed at this level by m2 and θ3. Armed with this
structure on K, in the next section we will show that a
natural BVΔ

∞ algebra exists on the tensor productK ⊗ K̄ of
two copies of K.

III. BVΔ
∞ ALGEBRA ON K ⊗ K̄

In this section we will consider two copies of the
kinematic algebra K and show that the respective BV□

∞
algebras give rise to a BVΔ

∞ algebra on the tensor product
X ≔ K ⊗ K̄, where Δ ≔ 1

2
ð□ − □̄Þ. This will be used in

the next sections to derive the three-brackets of DFT, both
on arbitrary flat backgrounds in the strongly constrained
sense and on a torus in the weakly constrained sense. At
this point we should mention that the space X is not the L∞
graded vector space of DFT, which we refer to as VDFT and
which is a linear subspace of X to be described below.

A. Grading and maps on K ⊗ K̄

We start by spelling out the structure of the tensor
product X ¼ K ⊗ K̄ as a graded vector space. From now
on, we will denote all elements and maps of K̄ with a
bar on the same symbols used for K. Recalling that
K ¼ Z ⊗ C∞ðMÞ, one obtains that X similarly factorizes
as a finite-dimensional graded vector space tensored with
functions on a doubled spacetime:

X ¼ K ⊗ K̄ ¼ ðZ ⊗ C∞ðMÞÞ ⊗ ðZ̄ ⊗ C∞ðM̄ÞÞ
≃ ðZ ⊗ Z̄Þ ⊗ C∞ðM × M̄Þ; ð3:1Þ

using that C∞ðMÞ ⊗ C∞ðM̄Þ ≃ C∞ðM × M̄Þ, which
under a certain topological completion holds for the tensor
product. Throughout this section, wewill takeM and M̄ to
be d-dimensional flat spaces with an unspecified signature,
but later on we will specialize to a Euclidean signature.
Given the structure (3.1) of X and two copies of the finite-
dimensional basis, i.e. fZAg of Z and fZ̄Āg of Z̄, we can
expand an arbitrary element Ψ∈X as

Ψðx; x̄Þ ¼ ZAZ̄B̄ΨAB̄ðx; x̄Þ; ð3:2Þ

where we denote coordinates of the doubled space by
ðxμ; x̄μ̄Þ, and from now on wewill use capitalΨ for elements
inX . The degree inX is defined as the sum of the degrees in
K and K̄, with an additional shift by 2. Specifically, for a
homogenous element Ψ ¼ ZZ̄Fðx; x̄Þ we set

jΨj ¼ jZj þ jZ̄j − 2; ð3:3Þ

where we recall that degrees in Z (the same for Z̄) are
displayed in (2.8). The shift in degree is by an even amount,
so it is immaterial for sign factors such as ð−1ÞjΨj and thus
strictly not necessary. However, the definition (3.3) com-
plies with standard L∞ degrees in the resulting double field
theory.
Given the definition (2.36) and the expansion (3.2) we

now proceed to lift the action of operators O∶K → K and
Ō∶K̄ → K̄ to X by defining

OðΨÞ ≔ ÔðZAÞZ̄B̄ΨAB̄ðx; x̄Þ;
ŌðΨÞ ≔ ð−1ÞZAŌZA

ˆ̄OðZ̄B̄ÞΨAB̄ðx; x̄Þ; ð3:4Þ

where the differential operators Ô and ˆ̄O act on functions
of x and x̄ by taking ∂μ ¼ ∂

∂xμ and ∂μ̄ ¼ ∂

∂x̄μ̄ derivatives,
respectively. This allows us to sum operators from K and K̄
and yield well-defined operators on X , such as Oþ Ō.
Similarly, tensor products of bilinear maps M and M̄ are
defined to act on elements of X as follows:

ðM ⊗ M̄ÞðΨ1;Ψ2Þ ¼ ðM ⊗ M̄ÞðZAZ̄B̄ΨAB̄
1 ; ZCZ̄D̄ΨCD̄

2 Þ
≔ ð−1ÞZCZ̄B̄þM̄ðZAþZCÞμ½M̂ðZA; ZCÞ
× ˆ̄MðZ̄B̄; Z̄D̄ÞðΨAB̄

1 ðx; x̄Þ
⊗ ΨCD̄

2 ðx; x̄ÞÞ�; ð3:5Þ

with a completely analogous expression for ðT ⊗ T̄ Þ×
ðΨ1;Ψ2;Ψ3Þ. With these definitions we can extend the
input-free notation of the previous section to X . It turns out
that operators O and Ō commute (in the graded sense). To
show this we compute

OðŌΨÞ ¼ ð−1ÞZAŌOðZA
ˆ̄OðZ̄B̄ÞΨAB̄Þ

¼ ð−1ÞZAŌÔðZAÞ ˆ̄OðZ̄B̄ÞΨAB̄ðx; x̄Þ
¼ ð−1ÞZAŌþŌðZAþOÞŌðÔðZAÞZ̄B̄ΨAB̄Þ
¼ ð−1ÞOŌŌðOΨÞ; ð3:6Þ

where we omitted the explicit dependence on ðx; x̄Þ in
intermediate steps. This can be written as the input-free
relation ½O; Ō� ¼ 0, where the graded commutator is defined
as in (2.37), albeit acting on elements of K ⊗ K̄. A similar
computation using the definition (3.5) shows that operators
ofK commute with bilinear and trilinear maps of K̄ and vice
versa, in the sense

½O;M ⊗ M̄� ¼ ½O;M� ⊗ M̄;

½Ō;M ⊗ M̄� ¼ ð−1ÞMŌM ⊗ ½Ō;M̄�; ð3:7Þ
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with analogous formulas for commutators with T ⊗ T̄ . Nesting of bilinear maps can also be extended naturally by defining

ðM1 ⊗ M̄1ÞðM2 ⊗ M̄2Þ ≔ ð−1ÞM̄1M2M1M2 ⊗ M̄1M̄2; ð3:8Þ

where the composition M1M2 (same for the barred ones) is defined by (2.40).
Finally, one can introduce on X a symmetric projector Π, obeying Π2 ¼ Π, via

ðT ⊗ T̄ ÞΠðΨ1;Ψ2;Ψ3Þ ¼
1

3
ð−1ÞEμ½ðT̂ ðZA; ZB; ZCÞ ˆ̄T ðZ̄Ā; Z̄B̄; Z̄C̄Þ

þ ð−1ÞZAðZBþZCÞþZ̄ĀðZ̄B̄þZ̄C̄ÞT̂ ðZB; ZC; ZAÞΣ ˆ̄T ðZ̄B̄; Z̄C̄; Z̄ĀÞΣ̄
þ ð−1ÞZCðZAþZBÞþZ̄C̄ðZ̄ĀþZ̄B̄ÞT̂ ðZC; ZA; ZBÞΣ2 ˆ̄T ðZ̄C̄; Z̄Ā; Z̄B̄ÞΣ̄2ÞðΨAĀ

1 ⊗ ΨBB̄
2 ⊗ ΨCC̄

3 Þ�; ð3:9Þ

where the global phase is E ¼ ZBZ̄Ā þ ZCðZ̄Ā þ Z̄B̄Þ þ ðZA þ ZB þ ZCÞT̄ . In terms of the map T ⊗ T̄ , this results in

ðT ⊗ T̄ ÞΠðΨ1;Ψ2;Ψ3Þ ≔
1

3
fðT ⊗ T̄ ÞðΨ1;Ψ2;Ψ3Þ þ ð−1ÞΨ1ðΨ2þΨ3ÞðT ⊗ T̄ ÞðΨ2;Ψ3;Ψ1Þ

þ ð−1ÞΨ3ðΨ1þΨ2ÞðT ⊗ T̄ ÞðΨ3;Ψ1;Ψ2Þg; ð3:10Þ

which makes the graded symmetry manifest. One can lift
the definition of the single copy π or π̄ to a trilinear map
T ⊗ T̄ on X by

ðT ⊗ T̄ Þπ ≔ ðT πÞ ⊗ T̄ ; ðT ⊗ T̄ Þπ̄ ≔ T ⊗ ðT̄ π̄Þ;
ð3:11Þ

and using (2.43) and (2.47) for the single copy sym-
metrized maps. From this it follows that πΠ ¼ π̄Π ¼ ππ̄,
which further implies the decomposition

Π ¼ ½ππ̄ þ ð1 − πÞð1 − π̄Þ�Π;
1 − Π ¼ ½πð1 − π̄Þ þ ð1 − πÞπ̄ þ ð1 − πÞð1 − π̄Þ�ð1 − ΠÞ:

ð3:12Þ

B. BVΔ
∞ algebra on X

We are now ready to show that, given the BV□
∞ algebras

on K and K̄, a natural BVΔ
∞ algebra arises on X . As for the

single copies, for the moment we will work this out up to
trilinear maps. The starting point is the C∞ sector of (2.59).

With the differentials m1 and m̄1 and the two-products m2

and m̄2 we define a differential M1 and two-product M2

on X by

M1 ≔ m1 þ m̄1;

M2 ≔ m2 ⊗ m̄2: ð3:13Þ
From the graded symmetry of m2 and m̄2 one can easily
show that M2 is graded symmetric in X . Due to the degree
shift (3.3), one has jM1j ¼ þ1 and jM2j ¼ þ2. Upon using
(3.6) and (3.7) it is immediate to see that M1 is nilpotent
and acts as a derivation on M2:

M2
1 ¼ ðm1 þ m̄1Þ2 ¼ m1m̄1 þ m̄1m1 ¼ 0;

¼ ½m1 þ m̄1; m2 ⊗ m̄2�
¼ ½m1; m2� ⊗ m̄2 þm2 ⊗ ½m̄1; m̄2� ¼ 0: ð3:14Þ

We next study the associativity of M2 by computing its
associator. Due to the graded symmetry of M2, the latter is
equivalent to the hook projectionM2M2ð1 − ΠÞ. Using the
definition (3.13), the property (3.12) of projectors, and the
homotopy associativity of m2 and m̄2, we can compute

M2M2ð1 − ΠÞ ¼ m2m2 ⊗ m̄2m̄2ðπð1 − π̄Þ þ ð1 − πÞπ̄ þ ð1 − πÞð1 − π̄ÞÞð1 − ΠÞ
¼ fm2m2π ⊗ ½m̄1; m̄3h� þ ½m1; m3h� ⊗ m̄2m̄2π̄ þ ½m1; m3h� ⊗ ½m̄1; m̄3h�gð1 − ΠÞ
¼ ½M1; m2m2π ⊗ m̄3h þm3h ⊗ m̄2m̄2π̄�ð1 − ΠÞ þ ½m1; m3h� ⊗ ½m̄1; m̄3h�ð1 − ΠÞ; ð3:15Þ

where in the last step we used ½m1; m2m2� ¼ 0 (and the barred relation) to extract a total differential M1. At this stage an
ambiguity arises on how to treat the last term, since

½m1; m3h� ⊗ ½m̄1; m̄3h� ¼
�
M1;

�
1

2
− ξ

�
m3h ⊗ ½m̄1; m̄3h� þ

�
1

2
þ ξ

�
½m1; m3h� ⊗ m̄3h

�
ð3:16Þ
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for arbitrary ξ. Keeping ξ arbitrary leads to a one-parameter
family of three-products, differing by an M1-exact term
(which for maps means a total M1 commutator). This is
expected, since in a homotopy associative algebra the three-
product is defined only up to an M1-closed quantity. For
simplicity we choose ξ ¼ 0 and obtain

M3h ¼
1

2
fm3h ⊗ m̄2m̄2ð1þ π̄Þ þm2m2ð1þ πÞ

⊗ m̄3hgð1 − ΠÞ; ð3:17Þ
obeying homotopy associativity in the formM2M2ð1−ΠÞ¼
½M1;M3h�. Even though the originalC∞ algebras onK and K̄
have no higher products than m3h, the tensor algebra X are
expected to have infinitely many higher Mn, which we will
not explore further.
In order to go beyond the C∞ structure, one has to

identify the analog of the b differential on the tensor space.
Two natural candidates are the linear combinations

b� ≔
1

2
ðb� b̄Þ: ð3:18Þ

Both b� are nilpotent and (anti)commute with each other.
Their commutators with M1, which determine the obstruc-
tion Δ, are given by

½M1; b�� ¼
1

2
ð□� □̄Þ: ð3:19Þ

For establishing a BVΔ
∞ algebra on X , both choices b� for

the second differential are equivalent. Our choice is dictated
by the goal of constructing double field theory on a suitable
subspace of X which, in particular, requires an unob-
structed L∞ algebra. In view of the fact that the subspace
VDFT is partly determined by constraining ð□ − □̄ÞΨ ¼ 0,
the natural choice for the b operator is b−, yielding

½M1; b−� ¼ Δ; Δ ≔
1

2
ð□ − □̄Þ: ð3:20Þ

Since Δ arises as the above commutator, it is guaranteed to
commute with both M1 and b−: ½M1;Δ� ¼ ½b−;Δ� ¼ 0.
With this choice one can construct a degreeþ1 two-bracket
B2, in perfect analogy with the single copy version (2.34):

B2 ≔ ½b−;M2� ¼
1

2
½b − b̄; m2 ⊗ m̄2�

¼ 1

2
ðb2 ⊗ m̄2 −m2 ⊗ b̄2Þ; ð3:21Þ

where in the second line we emphasized its tensor pro-
duct structure that is of the schematic form “Lie ⊗
Commutative.” While b− is trivially a derivation for B2,
M1 is not. The obstruction is easily computed and takes the
same form as in (2.59):

½M1; B2� ¼ ½M1; ½b−;M2��
¼ ½½M1; b−�;M2� − ½b−; ½M1;M2��
¼ ½Δ;M2�; ð3:22Þ

where we used ½M1;M2� ¼ 0. For the Δ-obstructions on
trilinear maps we define DΔ ≔ 1

2
ðd□ − d̄

□̄
Þ and Ds ≔

1
2
ðds − d̄sÞ which act on three functions Fiðx; x̄Þ as
DsðF1 ⊗ F2 ⊗ F3Þ ¼ ð∂μF1 ⊗ ∂μF2 ⊗ F3Þ

− ð∂μ̄F1 ⊗ ∂μ̄F2 ⊗ F3Þ;
DΔðF1 ⊗ F2 ⊗ F3Þ ¼ ð∂μF1 ⊗ ∂μF2 ⊗ F3Þ

− ð∂μ̄F1 ⊗ ∂μ̄F2 ⊗ F3Þ
þ ðF1 ⊗ ∂

μF2 ⊗ ∂μF3Þ
− ðF1 ⊗ ∂

μ̄F2 ⊗ ∂μ̄F3Þ
þ ð∂μF1 ⊗ F2 ⊗ ∂μF3Þ
− ð∂μ̄F1 ⊗ F2 ⊗ ∂μ̄F3Þ: ð3:23Þ

Given the definition of Ds and DΔ and the projector (3.9),
they obey

ðT ⊗ T̄ ÞDΔΠ¼ðT ⊗ T̄ ÞΠDΔ¼3ðT ⊗ T̄ ÞΠDsΠ; ð3:24Þ
similar to (2.56) for ds and d□.
Given the productM2 and the bracket B2 ¼ ½b−;M2�, the

Poisson compatibility condition [defined as in (2.35) upon
replacing m2 → M2 and b2 → B2] can be formulated as

B2M2þM2B2ð1−3ΠÞ≡ ½b−;M2M2�−3M2½b−;M2�Π¼? 0:

ð3:25Þ
The first form of (3.25) emphasizes the Poisson relation
between B2 and M2, while the second form shows that this
is equivalent to b− being second order with respect to M2.
Since the single copy b2 and m2 obey

½b;m2m2�− 3m2b2π ¼ ½m1;θ3� þm3hðd□− 3dsπÞ; ð3:26Þ
one does not expect (3.25) to vanish, but rather to obey a
similar relation in termsofM3h and aΘ3 yet to bedetermined.
To show that this is indeed the case, it is convenient to split the
computation of (3.25) into its totally symmetric and hook
parts. We start from the hook, which is simple to determine:

f½b−;M2M2� − 3M2B2Πgð1 − ΠÞ
¼ ½b−;M2M2�ð1 − ΠÞ
¼ ½b−;M2M2ð1 − ΠÞ� ¼ ½b−; ½M1;M3h��
¼ −½M1; ½b−;M3h�� þ ½½M1; b−�;M3h�
¼ −½M1; ½b−;M3h�� þ ½Δ;M3h�
¼ ½M1;Θ3h� þM3hDΔ; ð3:27Þ

where we identified Θ3h ¼ −½b−;M3h�. One can see that
(3.27) has the same form as the hook projection of (3.26), and
the relation betweenΘ3h andM3h is the same as in (2.59) for
compatibility of the homotopies. Computing the symmetric
projection of (3.25) is considerably more involved. We spell
out the computation in detail in Appendix B, which results in
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f½b−;M2M2� − 3M2B2ΠgΠ ¼ ½M1;Θ3s� − 3M3hDsΠ;

ð3:28Þ

where Θ3s is determined in terms of Yang-Mills maps as

Θ3s ≔
1

2

�
θ3s ⊗ m̄2m̄2 −m2m2 ⊗ θ̄3s þ 3m3h ⊗ m̄2b̄2

þ 3m2b2 ⊗ m̄3h −
3

2
m3h ⊗ m̄3hðds þ d̄sÞ

− ½b−; m2m2 ⊗ m̄3h þm3h ⊗ m̄2m̄2�
�
Π: ð3:29Þ

Given the Poisson relation, one can determine the Jacobiator
3B2B2Π of the two-bracket B2 by taking a b− commutator.
This is also presented inAppendixB and yields the deformed
L∞ relation

3B2B2Πþ ½M1; B3� þ 3Θ3DsΠ ¼ 0; ð3:30Þ

where the three-bracket is given by B3 ¼ −½b−;Θ3s�.
This concludes the BVΔ

∞ relations up to trilinear maps,
which we summarize in the following table, analogous to
the single copy one (2.59):

M2
1 ¼ 0; ðb−Þ2 ¼ 0; ½M1; b−� ¼ Δ; differentials and central obstruction;

½M1M2� ¼ 0; M2M2ð1 − ΠÞ ¼ ½M1;M3h�; C∞ structure;

B2 ¼ ½b−;M2�; ½M1; B2� ¼ ½Δ;M2�; two-bracket and deformed Leibniz;

B2M2 þM2B2ð1 − 3ΠÞ ¼ ½M1;Θ3� þM3hðDΔ − 3DsΠÞ; deformed homotopy Poisson;

3B2B2Πþ ½M1; B3� þ 3Θ3DsΠ ¼ 0; deformed homotopy Jacobi;

Θ3h þ ½b−;M3h� ¼ 0; B3 þ ½b−;Θ3s� ¼ 0; compatibility of homotopies:

ð3:31Þ

In particular, notice that the brackets of the L∞ sector (albeit obstructed) are all determined in terms of other structures as
B1 ≡M1, B2 ¼ ½b−;M2�, B3 ¼ −½b−;Θ3s�. This is in close analogy with closed string field theory, where all the string
brackets, apart from B1, are b-exact [17].
We conclude this section by collecting the expressions of the relevant maps in terms of Yang-Mills building blocks:

M1 ≔ m1 þ m̄1; b� ≔
1

2
ðb� b̄Þ;

M2 ≔ m2 ⊗ m̄2;

M3h ≔
1

2
ðm3h ⊗ m̄2m̄2ð1þ π̄Þ þm2m2ð1þ π̄Þ ⊗ m̄3hÞð1 − ΠÞ;

Θ3s ≔
1

2

�
θ3s ⊗ m̄2m̄2 −m2m2 ⊗ θ̄3s þ 3m3h ⊗ m̄2b̄2 þ 3m2b2 ⊗ m̄3h

−
3

2
m3h ⊗ m̄3hðds þ d̄sÞ − ½b−; m2m2 ⊗ m̄3h þm3h ⊗ m̄2m̄2�

�
Π: ð3:32Þ

IV. WEAKLY CONSTRAINED DOUBLE
FIELD THEORY

In this section we will start from the BVΔ
∞ algebra on X

and construct the L∞ algebra of weakly constrained DFTon
a spatial torus, up to and including the three-bracket, which
encodes all the quartic structures of the theory. The obvious
issue is that the L∞ sector of (3.31) is obstructed on X , due
to Δ. The idea is that these obstructions should be milder
when considering the relevant subspace of weakly con-
strained fields, obeying ΔΨ ¼ 0.
Let us start by giving the precise definition of the graded

vector space VDFT carrying the L∞ algebra of double field
theory. This is given by the following linear subspace of
X ¼ K ⊗ K̄:

VDFT ≔ fΨ∈X ; s:t:ΔΨ ¼ 0; b−Ψ ¼ 0g
¼ ðkerΔ ∩ ker b−Þ ⊂ X : ð4:1Þ

Given that an arbitrary element of X can be expanded as
in (3.2), with the graded vectors ZA ¼ ðθM; cθMÞ and
Z̄Ā ¼ ðθ̄M̄; c̄θ̄M̄Þ, one can explicitly characterize the ele-
ments of VDFT as

Ψ ¼ θMθ̄N̄ψ
MN̄ðx; x̄Þ þ cþθMθ̄N̄χMN̄ðx; x̄Þ;

ΔψMN̄ ¼ ΔχMN̄ ¼ 0; ð4:2Þ

where cþ ≔ cþ c̄, so that cþθMθ̄N̄ ¼ cθMθ̄N̄ þ
ð−1ÞjθM jθMc̄θ̄N̄ . From the degree assignment (3.3), one
can see that the degrees in VDFT are given by
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jθMθ̄N̄ j ¼ −ðM þ N̄Þ; jcþθMθ̄N̄ j ¼ 1 − ðM þ N̄Þ; ð4:3Þ

where we recall that we associate degrees ðþ1; 0;−1Þ with
M ¼ ðþ; μ;−Þ. One thus finds, for instance, the DFT gauge
parameters in degree −1 to be given by

Λ ¼ θþθ̄μ̄λ̄μ̄ − θμθ̄þλμ − 2cþθþθ̄þη; ð4:4Þ

which thus consist of two vector parameters, related to
generalized diffeomorphisms, and a Stückelberg scalar
parameter. Similarly, one has the fields in degree zero,

ψ ¼ θμθ̄ν̄eμν̄ þ 2θþθ̄−ēþ 2θ−θ̄þeþ 2cþθμθ̄þfμ

þ 2cþθþθ̄μ̄f̄μ̄; ð4:5Þ

comprising the tensor fluctuation eμν̄, two scalars (one
combination is related to the dilaton, and the other is pure
gauge), and two auxiliary vectors. This is precisely the field
content of DFT as first introduced in [3].
In order to construct an L∞ algebra on VDFT, we will

proceed in two steps: we will first transport the BVΔ
∞

structure of X to the subspace X̄ ≔ kerΔ via homotopy
transfer, to be discussed momentarily, and in the second
step we will restrict the maps to act on ker b−. In this last
step the BVΔ

∞ structure will be lost, leaving an unobstructed
L∞ algebra on VDFT.

A. Homotopy transfer to kerΔ
In order to perform homotopy transfer, we shall find a

suitable projector PΔ to kerΔ, together with an homotopy
operator h of degree jhj ¼ −1, obeying

½M1; h� ¼ 1 − PΔ: ð4:6Þ

Since X̄ ¼ kerΔ ⊂ X is a subspace of X , we consider the
projector PΔ∶ X → X̄ as an operator in X , implicitly
assuming a trivial inclusion map ι∶X̄ → X (see, e.g., [12]
for an introduction to homotopy transfer). The projector has
to be properly normalized and is required to be a chain map,
meaning that it should obey

P2
Δ ¼ PΔ; PΔM1 ¼ M1PΔ: ð4:7Þ

We further require that the homotopy h obeys the so-called
side conditions:

hPΔ ¼ PΔh ¼ 0; h2 ¼ 0: ð4:8Þ

In order to define PΔ, we specialize the signature and
topology of our underlying doubled space to be a doubled
Euclidean square torus. In particular, we have two copies of
the Euclidean metric δμν and δμ̄ ν̄ and we identify coor-
dinates with periodicity 2π. Any function on the doubled
torus can be expanded in discrete Fourier modes as

fðx; x̄Þ ¼
X
k;k̄

f̃ðk; k̄Þeik·xþik̄·x̄; ð4:9Þ

with an unconstrained sum over discrete momenta
ðkμ; k̄μ̄Þ∈Z2d. The obstruction Δ acts on (4.9) as

Δfðx; x̄Þ ¼ −
1

2

X
k;k̄

ðk2 − k̄2Þf̃ðk; k̄Þeik·xþik̄·x̄: ð4:10Þ

This allows us to write the projectors PΔ and ð1 − PΔÞ
explicitly in terms of the Fourier expansion by inserting
suitable Kronecker deltas:

ðPΔfÞðx; x̄Þ ¼
X
k;k̄

δk2;k̄2 f̃ðk; k̄Þeik·xþik̄·x̄

¼
X
k2¼k̄2

f̃ðk; k̄Þeik·xþik̄·x̄;

ðð1 − PΔÞfÞðx; x̄Þ ¼
X
k;k̄

ð1 − δk2;k̄2Þf̃ðk; k̄Þeik·xþik̄·x̄

¼
X
k2≠k̄2

f̃ðk; k̄Þeik·xþik̄·x̄: ð4:11Þ

This operator clearly projects to kerΔ, since

ΔPΔ ¼ PΔΔ ¼ 0; ð4:12Þ

and squares to itself: P2
Δ ¼ PΔ. Moreover, being a function

of Δ, it commutes with M1, thus complying with the
properties (4.7). To construct the homotopy operator, we
shall first introduce the “propagator” G. Given a function
orthogonal to kerΔ, meaning it obeys PΔf ¼ 0, one can
invert Δ by means of the propagator G, defined as

ðGfÞðx; x̄Þ ¼ −
X
k;k̄

2

k2 − k̄2
f̃ðk; k̄Þeik·xþik̄·x̄;

f̃ðk; k̄Þ≡ 0 ∀ k2 ¼ k̄2: ð4:13Þ

Such an operator is clearly not defined on kerΔ.
Nevertheless, the following operator relations hold on
the full space X :

GΔ ¼ 1 − PΔ; ΔGð1 − PΔÞ ¼ 1 − PΔ; ð4:14Þ

as one may quickly verify. Since Δ ¼ ½M1; b−�, it is now
straightforward to find the homotopy:

h ≔ b−Gð1 − PΔÞ; ð4:15Þ

which indeed obeys the fundamental relation (4.6) and the
side conditions (4.8). To verify this one uses that b− is
nilpotent and commutes with PΔ and G.
Equipped with the projector and homotopy maps we are

now ready to transport the BVΔ
∞ structure to X̄ . Homotopy
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transfer is well-established for L∞ and A∞ algebras but, to
the best of our knowledge, it has not been discussed for
BV□

∞ or BVΔ
∞ algebras. We will thus proceed step by step in

a constructive way. From now on, we will denote all
transferred maps in X̄ with an overline, which should not
be confused with the second copy K̄, since the underlying
Yang-Mills maps will not play a role anymore. Here all
inputs are intended as Ψ̄i, living in kerΔ. Since we do not
display any input, we shall denote byMjX̄ the restriction of
any multilinear map M (including operators) to act on
elements of the subspace X̄ ⊂ X .
We begin with the differential, which is unchanged

thanks to ½M1;PΔ� ¼ 0:

M̄1 ≔ M1jX̄ : ð4:16Þ

Next, the transferred two-productM2 is simply obtained by
restricting the map to the subspace and projecting the
output back to the subspace,

M̄2 ≔ PΔM2jX̄ ; ð4:17Þ

which obeys ΔM̄2 ¼ 0 by definition. Similarly, B̄2 is given
by projection, and it retains its BV relation with M̄2:

B̄2 ≔PΔB2jX̄ ¼PΔ½b−;M2�jX̄ ¼ ½b−;PΔM2jX̄ � ¼ ½b−; M̄2�:
ð4:18Þ

The original failure of M1 to be a derivation of B2 is now
cured for B̄2:

½M̄1; B̄2� ¼ ½M1; ½b−; M̄2�� ¼ ½Δ; M̄2� ¼ 0; ð4:19Þ

where we used the fact that acting on elements of kerΔ one
has ½Δ; M̄2� ¼ ΔM̄2 ¼ 0.
We move on to the first trilinear map, which requires the

homotopy operator. In order to find M̄3h, we compute the
associator of M̄2 [we leave the restriction ð� � �ÞjX̄ implicit]:

M̄2M̄2ð1 − ΠÞ ¼ PΔM2PΔM2ð1 − ΠÞ
¼ PΔðM2M2 −M2½M1; h�M2Þð1 − ΠÞ
¼ PΔð½M1;M3h� − ½M1;M2hM2�Þð1 − ΠÞ
¼ ½M̄1; M̄3h�; ð4:20Þ

with the transferred three-product

M̄3h ¼ PΔðM3h −M2hM2ð1 − ΠÞÞjX̄ : ð4:21Þ

Notice that we used ½M1;M2� ¼ 0 to compute

½M1;M2hM2� ¼ M2½M1; hM2� ¼ M2½M1; h�M2: ð4:22Þ

We now define the Poisson compatibility of the transferred
M̄2 and B̄2 as the one in X [see (3.25)] by

B̄2M̄2þ M̄2B̄2ð1− 3ΠÞ≡ ½b−; M̄2M̄2�− 3M̄2B̄2Π: ð4:23Þ

Since now both M̄2 and B̄2 commute with M1, one
immediately has that the expression (4.23) is M1-closed.
Its hook part is also exact, since

f½b−; M̄2M̄2� − 3M̄2B̄2Πgð1 − ΠÞ ¼ ½b−; M̄2M̄2ð1 − ΠÞ� ¼ ½b−; ½M1; M̄3h��
¼ −½M1; ½b−; M̄3h�� þ ½Δ; M̄3h�
¼ ½M1; Θ̄3h� ð4:24Þ

for Θ̄3h ¼ −½b−; M̄3h�. The Δ-obstruction above vanishes, since ½Δ; M̄3h� ¼ ΔM̄3h ¼ 0 when acting on inputs in X̄ .
Computing the symmetric part of (4.23) is, as usual, more complicated. We obtain

f½b−; M̄2M̄2� − 3M̄2B̄2ΠgΠ ¼ PΔð½b−;M2PΔM2� − 3M2PΔB2ÞΠ
¼ PΔð½b−;M2M2� − 3M2B2 − ½b−;M2½M1; h�M2� þ 3M2½M1; h�B2ÞΠ: ð4:25Þ

Now we can use

M2½M1; h�M2 ¼ ½M1;M2hM2�;
½M1; hB2� ¼ ½M1; h�B2 − h½M1; B2� ¼ ½M1; h�B2 − h½Δ;M2�; ð4:26Þ

in order to pull out some M1-commutators. Then, equation (4.25) becomes

PΔð½b−;M2M2� − 3M2B2 − ½b−; ½M1;M2hM2�� þ 3½M1;M2hB2� þ 3M2h½Δ;M2�ÞΠ
¼ PΔð½b−;M2M2� − 3M2B2 þ ½M1; ½b−;M2hM2� þ 3M2hB2� þ 3M2h½Δ;M2�ÞΠ; ð4:27Þ
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where we used PΔ½Δ;M2hM2�jX̄ ¼ PΔΔM2hM2jX̄ ¼ 0. The last term above can be further manipulated as follows:

3PΔM2h½Δ;M2�Π ¼ 3PΔM2hM2DsΠ ¼ 3pM2hM2ðΠþ 1 − ΠÞDsΠ

¼ PΔM2hM2DΔΠþ 3PΔM2hM2ð1 − ΠÞDsΠ

¼ PΔ½Δ;M2hM2�Πþ 3PΔM2hM2ð1 − ΠÞDsΠ

¼ 3PΔM2hM2ð1 − ΠÞDsΠ; ð4:28Þ

where we used (3.24) and the vanishing of total Δ-commutators under PΔ. We can now use the homotopy Poisson relation
(B13) on X to rewrite (4.27) as

PΔð½M1;Θ3s� − 3M3hDs þ ½M1; ½b−;M2hM2� þ 3M2hB2� þ 3M2hM2ð1 − ΠÞDsÞΠ
¼ ½M1;PΔðΘ3s þ ½b−;M2hM2� þ 3M2hB2ÞΠ� − 3PΔðM3h −M2hM2ð1 − ΠÞÞDsΠ

¼ ½M̄1; Θ̄3s� − 3M̄3hDsΠ; ð4:29Þ

with the transferred Θ̄3 given by

Θ̄3 ¼ PΔðΘ3 þ ½b−;M2hM2� þ 3M2hB2ΠÞjX̄ : ð4:30Þ

The full homotopy Poisson relation thus reads

½b−; M̄2M̄2� − 3M̄2B̄2Π ¼ ½M̄1; Θ̄3� − 3M̄3hDsΠ: ð4:31Þ

This is telling us that the BVΔ
∞ algebra is well-behaved

under homotopy transfer, but this is not enough to
completely remove the obstructions. The reason is that
Δ is not zero as an operator on X̄ . Rather, only total Δ-
commutators are transferred to zero.
The main difference of (4.31) compared to the identity

(B13) is that both sides of (4.31) are M1-closed. This is
obvious for the left-hand side, since M̄1 commutes with
both M̄2 and B̄2, while checking it for the right-hand side
requires some computation:

½M̄1; M̄3hDsΠ� ¼ ½M̄1; M̄3h�DsΠ

¼ M̄2M̄2ð1 − ΠÞDsΠ

¼ −
1

3
M̄2M̄2DΔΠþ M̄2M̄2DsΠ

¼ −
1

3
½Δ; M̄2M̄2�Πþ M̄2½Δ; M̄2�Π ¼ 0:

ð4:32Þ
We thus see that theΔ-obstruction in (4.31) isM1-closed. If it
were exact, one could shift Θ̄3 to obtain a genuine homotopy
Poisson identity. If this is not the case, on the other hand,
M̄3hDsΠ would be a genuine cohomological obstruction.
For the last step, let us determine the homotopy Jacobi

relation. Due to B̄2 ¼ ½b−; M̄2�, the Jacobiator is given by
taking a b−-commutator of the left-hand side of (4.31). The
computation is entirely analogous to the one leading to
(B15), and we obtain

3B̄2B̄2Πþ ½M̄1; B̄3� þ 3Θ̄3DsΠ ¼ 0; ð4:33Þ

including the deformation. It is interesting to note that only
the hook part of Θ̄3 (and thus M̄3h) contributes to (4.33),
since

Θ̄3sDsΠ ¼ Θ̄3ΠDsΠ ¼ 1

3
Θ̄3DΔΠ ¼ 0: ð4:34Þ

The transferred three-bracket is given by B̄3 ¼ −½b−; Θ̄3s�,
as dictated by BVΔ

∞. Upon using the expression (4.30), one
can see that B̄3 has also the standard form in terms of
homotopy transfer of L∞ algebras:

B̄3 ¼ PΔðB3 − 3B2hB2ΠÞjX̄ : ð4:35Þ

In the following subsection we will study the obstruction
to the homotopy Jacobi identity encoded in the last term of
(4.33) upon restricting the inputs to ker b−. Only the L∞
brackets B̄n will restrict to VDFT, and we will show that a
well-defined albeit nonlocal deformation of B̄3 can be used
to remove the obstruction.

B. Restriction to ker b− and three-bracket

In the last section we have shown that the space X̄ of
weakly constrained fields still carries a BVΔ

∞ structure with
milder, but nonvanishing, Δ deformations. The DFT vector
space (4.1) can be viewed, in terms of X̄ , as the subspace
VDFT ¼ ker b− ⊂ X̄ . In the following we will denote the
restriction of maps M̄ (which already act on inputs in X̄ ) to
act on elements in ker b− by M̄jker b−. Let us stress that here
we are merely restricting the inputs to lie in ker b−, but no
homotopy transfer is involved. While generic operators and
maps of the BVΔ

∞ algebra on X̄ are not well-defined on
VDFT upon restricting the inputs, the brackets of the L∞
sector are, as we will show in a moment.
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From now on wewill focus on the (obstructed) L∞ sector
on X̄ , with brackets B̄n given by

B̄1 ¼ M̄1;

B̄2 ¼ ½b−; M̄2�;
B̄3 ¼ −½b−; Θ̄3s�; ð4:36Þ

obeying the following quadratic relations:

B̄2
1 ¼ 0;

½B̄1; B̄2� ¼ 0;

3B̄2B̄2Πþ ½B̄1; B̄3� ¼ −3Θ̄3hDsΠ: ð4:37Þ

Before studying the obstruction of the homotopy Jacobi
identity, we recall that restricting the inputs to ker b− gives
us a well-defined differential and two-bracket on VDFT [40],
which we denote by B1 and B2, respectively,

B1 ≔ B̄1jker b− ;
B2 ≔ B̄2jker b− ¼ ½b−; M̄2�jker b− ¼ b−M̄2jker b− : ð4:38Þ

As we have mentioned, B1 and B2 are well-defined on
ker b−, since they obey b−Bi ¼ 0. While it is trivial to see
this for B2 from (4.38), for the differential it can be shown
by computing

b−B1 ¼ b−B̄1jker b− ¼ ½b−; B̄1�jker b−
¼ ½b−;M1�jkerΔjker b− ¼ ΔjkerΔjker b− ¼ 0: ð4:39Þ

This confirms that B1∶ VDFT → VDFT and B2∶ V⊗2
DFT →

VDFT restrict correctly and obey nilpotency and the Leibniz
relation, thus defining a consistent field theory (DFT) to
cubic order.
We now move on to the Jacobi identity of B2, which is

given by restriction of the corresponding relation (4.37):

3B2B2Πþ ½B1; B̄3jker b− � ¼ O;

where O ≔ −3Θ̄3hDsΠjker b− ; ð4:40Þ

with the obstruction denoted by O. Taking into account the
restriction to ker b−, one can express the obstruction as

O ¼ −3Θ̄3hDsΠjker b− ¼ 3½b−; M̄3h�DsΠjker b−
¼ 3b−M̄3hDsΠjker b− ; ð4:41Þ

where we used that ½b−; T �jker b− ¼ b−T jker b− . This expres-
sion can be further manipulated by using the definition
(4.21) of the transferred M̄3h:

O ¼ 3b−M̄3hDsΠjker b−
¼ 3PΔb−ðM3h −M2hM2ð1 − ΠÞÞDsΠjker b−∩kerΔ
¼ 3PΔb−ðM3hDsΠ −M2ΔhM2ΠÞjker b−∩kerΔ; ð4:42Þ

where we used M2hM2DsjkerΔ ¼ M2½Δ; hM2�jkerΔ ¼
M2ΔhM2jkerΔ. The homotopy (4.15) obeys Δh ¼
b−ð1 − PΔÞ and, for inputs in ker b−, we can also write

b−M2b−M2jker b− ¼ ½b−;M2�b−M2jker b− ¼ B2b−M2jker b−
¼ B2B2jker b− ; ð4:43Þ

yielding a simpler expression for the obstruction:

O¼ 3PΔðb−M3hDs−B2ð1−PΔÞB2ÞΠjkerb−∩kerΔ; ð4:44Þ

which we will use to determine whether it can be removed.
First of all, the obstruction is closed: ½B1;O� ¼ 0, as can

be seen by taking a B1-commutator of (4.40). However, O
is given by projection PΔ of an otherwise not closed
quantity:

O ¼ PΔÕ; ½B1; Õ� ¼ ΔW ⇒ ½B1;O� ¼ 0; ð4:45Þ

with explicit Õ and W given by

Õ¼ 3ðb−M3hDs−B2ð1−PΔÞB2ÞΠjkerb−∩kerΔ;
W¼ð3M3hDsþb−M2M2−3M2ð1−PΔÞB2ÞΠjkerb−∩kerΔ:

ð4:46Þ

Since Õ is not closed, it certainly cannot be exact. It is thus
hard to expect that one can extract a B1-commutator fromO
in a simple way.
In order to prove that O is, in fact, exact, we shall

consider the Laplacian corresponding to the Euclidean
signature:

Δþ ≔
1

2
ð∂μ∂μ þ ∂

μ̄
∂μ̄Þ; ½B1; bþ� ¼ Δþ; ð4:47Þ

which acts on the Fourier expansion (4.9) as

Δþfðx; x̄Þ ¼ −
1

2

X
k;k̄

ðk2 þ k̄2Þf̃ðk; k̄Þeik·xþik̄·x̄: ð4:48Þ

Since the metric in both k2 and k̄2 is Euclidean, Δþ is
almost invertible. The only solution to Δþfðx; x̄Þ ¼ 0 is the
doubled zero mode f̃ð0; 0Þ, which is allowed on the
doubled torus due to its nontrivial topology. We can thus
associate a zero mode projector P0 with kerΔþ, with a
corresponding homotopy

h0 ≔ bþ
1

Δþ
ð1 − P0Þ; ½B1; h0� ¼ 1 − P0: ð4:49Þ
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At this stage, it is important to notice that nonlinear
combinations of fields of the form

ðð1−PΔÞfPΔgÞðx; x̄Þ
X

k2≠k̄2;l2¼l̄2
f̃ðk; k̄Þg̃ðl; l̄ÞeiðkþlÞ·xþiðk̄þl̄Þ·x̄;

ð4:50Þ
do not contain zero modes. This is easily seen from the fact
that in the sum above ðkμ; k̄μ̄Þ ≠ −ðlμ; l̄μ̄Þ, given that
k2 ≠ k̄2, while l2 ¼ l̄2. The total momentum above is thus
ðkμ þ lμ; k̄μ̄ þ l̄μ̄Þ ≠ ð0; 0Þ. On such combinations one has
ð1 − P0Þ ¼ 1, yielding

ð1 − PΔÞfPΔg ¼ ½B1; h0�ðð1 − PΔÞfPΔgÞ: ð4:51Þ

In order to see that we can apply this argument to our
obstruction, let us act with O in (4.44) on three arbitrary
inputs ðΨ1;Ψ2;Ψ3Þ in VDFT:

OðΨ1;Ψ2;Ψ3Þ ¼ð123Þ3PΔb−ðM3hð∂μΨ1; ∂μΨ2;Ψ3Þ
−M3hð∂̄μ̄Ψ1; ∂̄μ̄Ψ2;Ψ3ÞÞ
− 3PΔB2ðð1 − PΔÞB2ðΨ1;Ψ2Þ;Ψ3Þ;

ð4:52Þ

where by (123) we denote graded symmetrization in the
labels. The B2B2 term above has momenta of the form
(4.50), given the explicit projector ð1 − PΔÞ and recalling
PΔΨi ¼ Ψi. TheM3h term falls in the same category, since
PΔ only acts on input functions, and one has

μ½DsðF1 ⊗F2 ⊗F3Þ� ¼ μ½ð∂μF1 ⊗ ∂μF2 ⊗F3Þ
− ð∂̄μ̄F1 ⊗ ∂̄μ̄F2 ⊗F3Þ�

¼ ∂
μF1∂μF2F3− ∂̄

μ̄F1∂̄μ̄F2F3

¼ΔðF1F2ÞF3

¼ ð1−PΔÞ½ΔðF1F2Þ�PΔF3; ð4:53Þ

for weakly constrained functions Fiðx; x̄Þ obeyingΔFi ¼ 0.
Having shown that Δþ is invertible on O, we can prove

that O is exact:

O ¼
�
B1;

bþ

Δþ

�
O ¼

�
B1;

bþ

Δþ
O
�
þ bþ

Δþ
½B1;O�

¼
�
B1;

bþ

Δþ
O
�
; ð4:54Þ

where we used ½B1;O� ¼ 0.
Since we have shown that the obstruction is exact, we

can shift the original B̄3jker b− appearing in (4.40) by bþ
Δþ

O
and obtain a genuine L∞ relation on VDFT:

3B2B2Πþ ½B1;B3� ¼ 0; ð4:55Þ

where B1 and B2 are given by (4.38), and the final three-
bracket reads

B3 ¼ PΔ

�
B3 − 3

bþ

Δþ
ðb−M3hDs

− B2ð1 − PΔÞB2ÞΠ
�����

ker b−∩kerΔ
: ð4:56Þ

Notice that the standard homotopy part B2hB2 in the
definition (4.35) of the transported B̄3 drops on ker b−,
due to h ∝ b− and B2 ∝ b−. We have thus succeeded in
constructing the three-bracket of weakly constrained DFT
on a purely spatial torus. Since the whole construction is
fairly abstract and intricate, in the next section we will
provide an explicit check of the above results by computing
the gauge algebra.

C. Gauge algebra

We now compute explicitly a consistent subsector of
the gauge algebra of weakly constrained DFT, which is
encoded in the homotopy Jacobi relation

JacðΛ1;Λ2;Λ2Þ þ ½B1;B3�ðΛ1;Λ2;Λ3Þ ¼ 0; ð4:57Þ
with the Jacobiator JacðΛ1;Λ2;Λ3Þ defined as

JacðΛ1;Λ2;Λ3Þ ≔ 3B2ðB2ðΛ½1;Λ2Þ;Λ3�Þ
¼½123� 3B2ðB2ðΛ1;Λ2Þ;Λ3Þ: ð4:58Þ

The input labels inside of the square brackets [123] on top
of the last equals sign denote antisymmetrization of the
labels. In the above equation, as in the remainder of the
paper, we employ the convention

3B2ðB2ðΛ½1;Λ2Þ;Λ3�Þ ¼ B2ðB2ðΛ1;Λ2Þ;Λ3Þ
þ B2ðB2ðΛ2;Λ3Þ;Λ1Þ
þ B2ðB2ðΛ3;Λ1Þ;Λ2Þ; ð4:59Þ

where we used the antisymmetry of B2 when acting on
gauge parameters: B2ðΛ1;Λ2Þ ¼ −B2ðΛ2;Λ1Þ.
In order to check the identity (4.57), it will be convenient to

rewrite the individual terms of the Jacobiator in a different but
equivalent way. One can rewrite the inner projector of the
nested brackets in the Jacobiator asPΔ ¼ 1− ð1−PΔÞwhile
keeping the external projector untouched. Doing so yields

JacðΛ1;Λ2;Λ3Þ ¼½123� 3PΔB2ðB2ðΛ1;Λ2Þ;Λ3Þ
− 3PΔB2ðð1 − PΔÞB2ðΛ1;Λ2Þ;Λ3Þ

¼½123� 3PΔB2ðB2ðΛ1;Λ2Þ;Λ3Þ
− 3PΔB2ðfB2ðΛ1;Λ2Þg⊥;Λ3Þ; ð4:60Þ

where here and in what follows it is understood that all the
maps are acting on ker b− ∩ kerΔ and in order to simplify our
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notation we introduced the perpendicular projector fB2g⊥ in
the second term in the last line which denotes ð1 − PΔÞB2.
The above split will be useful oncewe compute the part of the
homotopy Jacobi relation that contains the three-bracket B3

because it contains a term with PΔB2ð1 − PΔÞB2.
As presented in Eq. (4.4), a generic gauge parameter in

double field theory has three components: two vector
components and one scalar component. However, in order
to simplify the computation we will restrict our attention to
vanishing λ̄ν̄ and η while only keeping λμ. For this reason
from now on we consider the consistent subsector of the
gauge algebra with parameters of the form

Λ ¼ −θμθ̄þλμ: ð4:61Þ

The homotopy Jacobi relation (4.57) takes values in the
space of gauge parameters, and hence consists of three
components. For this reason we will check the gauge
algebra explicitly displaying the basis elements of the DFT
space ZAZ̄B̄. This will allow us to keep track of the different
components of the relation.
We now turn to finding the two-bracket between gauge

parameters using the technology developed in Sec. III. For
gauge parameters defined as in (4.61), we have

B2ðΛ1;Λ2Þ ¼ PΔb−m2 ⊗ m̄2ðθμθ̄þλμ1; θνθ̄þλν2Þ
¼ PΔb−μ½m̂2ðθμ; θνÞ ˆ̄m2ðθþ; θþÞðλμ1 ⊗ λν2Þ�
¼ PΔb−μf½cθν½ð∂μ ⊗ 1Þ þ 2ð1 ⊗ ∂μÞ� − cθμ½ð1 ⊗ ∂νÞ þ 2ð∂ν ⊗ 1Þ�
þ cθρημν½ð∂ρ ⊗ 1Þ − ð1 ⊗ ∂

ρÞ�θ̄þð1 ⊗ 1Þ�ðλμ1 ⊗ λν2Þg
¼ PΔb−cθρθ̄þð∂ · λ1λρ2 þ 2λ1 · ∂λ

ρ
2 þ ∂

ρλ1 · λ2 − ð1 ↔ 2ÞÞ

¼ 1

2
PΔθρθ̄þð∂ · λ1λρ2 þ 2λ1 · ∂λ

ρ
2 þ ∂

ρλ1 · λ2 − ð1 ↔ 2ÞÞ

≡ 1

2
PΔθρθ̄þðλ1 • λ2Þρ ∈V−1; ð4:62Þ

and we used the component form of m̂2ðθμ; θνÞ and ˆ̄m2ðθ̄þ; θ̄þÞ, which can be found in Appendix A in Eq. (A4). Using the
above expression for the two-bracket B2 we obtain the following Jacobiator:

JacðΛ1;Λ2;Λ3Þ ¼½123� − 3

2
PΔθμθ̄þ½∂μðλ1ρ∂ρλ2νλν3Þ þ 2∂ρλ1νλ

ν
2∂

ρλμ3 þ Δþλ1ρλ
ρ
2λ

μ
3

þ 2∂ρλ
ρ
1λ

ν
2∂νλ

μ
3 þ ∂ρλ

ρ
1∂

μλ2νλ
ν
3 þ λν2∂ν∂ρλ

ρ
1λ

μ
3� þ

3

4
PΔθμθ̄þ½fλ1 • λ2g⊥ • λ3�μ; ð4:63Þ

where we use PΔ□ ¼ PΔΔþ.
Having the Jacobiator (4.63) at our disposal, in order to verify the homotopy Jacobi relation (4.57) we need the following

components of B3: first, B3 on three gauge parameters, whose only nontrivial part can be found with the following
computation:

B3ðΛ1;Λ2;Λ3Þ ¼ PΔB3ðΛ1;Λ2;Λ2Þ

¼ −
1

2
PΔb−θ3s ⊗ m̄2m̄2ΠðΛ1;Λ2;Λ3Þ

¼½123� 1
2
PΔb−θ3s ⊗ m̄2m̄2ðθμθ̄þλμ1; θνθ̄þλν2; θρθ̄þλρ3

¼½123� 1
2
PΔb−μ½θ̂3sðθμ; θν; θρÞθ̄þð1 ⊗ 1 ⊗ 1Þðλμ1 ⊗ λν2 ⊗ λρ3Þ�

¼½123� 1
2
PΔb−μfcθþ½ημνð∂ρ ⊗ 1 ⊗ 1Þ − ημνð1 ⊗ ∂ρ ⊗ 1Þ þ ηνρð1 ⊗ ∂μ ⊗ 1Þ

− ηνρð1 ⊗ 1 ⊗ ∂μÞ þ ημρð1 ⊗ 1 ⊗ ∂νÞ − ημρð∂ν ⊗ 1 ⊗ 1Þ�θ̄þðλμ1 ⊗ λν2 ⊗ λρ3Þg
¼½123� 3PΔb−cθþθ̄þfλ1ρ∂ρλ2νλν3g

¼½123� 3
2
PΔθþθ̄þfλ1ρ∂ρλ2νλν3g∈V−2; ð4:64Þ
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where we used the component form θ̂3sðθμ; θν; θρÞ shown in Eq. (A12). Second, we need to find B3ðΛ1;Λ2;ΨÞ. From a
computation analogous to the above, we find

B3ðΛ1;Λ2;ΨÞ¼½12� −
1

2
PΔθμθ̄þ½2fρλρ1λμ2 þ 4eλν1∂νλ

μ
2 þ 2λν1∂νeλ

μ
2 þ 2e∂μλ1νλν2

− eμν̄∂ν̄λ1ρλ
ρ
2 þ ∂ν̄λ

μ
1e

ρν̄λ2ρ − ð2fρ þ ∂ν̄eρν̄Þλ1ρλμ2�

þ PΔ
1

Δþ
θμθ̄þ∂ν̄½∂ρλμ1∂ρλν2eνν̄ þ λν1∂ρλ

μ
2∂

ρeνν̄ þ ∂ρeμν̄∂ρλ1νλν2

− ∂ρ̄λ
μ
1∂

ρ̄λν2eνν̄ − λν1∂ρ̄λ
μ
2∂

ρ̄eνν̄ − ∂ρ̄eμν̄∂
ρ̄λ1νλ

ν
2�

−
1

4
PΔ

1

Δþ
θμθ̄þ∂ν̄½fλ1 • λ2g⊥ • eν̄ þ 2λ2 • fλ1 • eν̄g⊥�μ

−
1

2
PΔθþθ̄ν̄½λρ1∂ρλ2νeνν̄ þ λρ2∂ρe

νν̄λ1ν þ eνν̄∂νλ1ρλ
ρ
2�

−
1

2
PΔcþθþθ̄þ∂ν̄½λρ1∂ρλ2νeνν̄ þ λρ2∂ρe

νν̄λ1ν þ eνν̄∂νλ1ρλ
ρ
2�∈V−1: ð4:65Þ

From this expression one infers by inspection of the third to fifth line that the nonlocality inherent in 1
Δþ

is unavoidable: there

is no overallΔþ that can be factored out to cancel it, as ∂ν̄ is contracted with eμν̄ and not with a derivative. This changes after
replacing the field in (4.65) by B1ðΛÞ, which is the next step in order to verify the homotopy Jacobi relation. For instance, in
the last line in Eq. (4.65) one obtains

PΔ
1

Δþ
∂̄
ν̄ffλ½1 • λ2g⊥ • ∂̄ν̄λ3� þ 2λ½2 • fλ1 • ∂̄ν̄λ3�g⊥gμ ¼ PΔ

1

Δþ
∂̄
ν̄
∂̄ν̄ffλ½1 • λ2g⊥ • λ3�gμ; ð4:66Þ

where the equality follows using the Leibniz rule and the antisymmetry of the labels. Under the projector PΔ we can then
use the weak constraint ∂ν̄∂

ν̄ ≡ □̄ ¼ □ together with PΔ□ ¼ PΔΔþ to cancel 1
Δþ
. Doing so for the other terms and

appropriate antisymmetrizations of the inputs leads to

3B3ðΛ½1;Λ2;B1ðΛ3�ÞÞ ¼½123� 3

2
PΔθμθ̄þfΔþλ3ρλ

ρ
1λ

μ
2 þ 2∂ρλ

ρ
3λ

ν
1∂νλ

μ
2 þ λν1∂ν∂ρλ

ρ
3λ

μ
2 þ ∂ρλ

ρ
3∂

μλ1νλ
ν
2 þ 2∂ρλ

ν
1λ2ν∂

ρλμ3g

−
3

4
PΔθμθ̄þffλ1 • λ2g⊥ • λ3gμ −

3

2
PΔθþθ̄ν̄∂ν̄fλ1ρ∂ρλ2νλν3g −

3

2
PΔcþθþθ̄þΔþfλ1ρ∂ρλ2νλν3g;

ð4:67Þ

which has no nonlocalities.
Next, we act with the differential on B3ðΛ1;Λ2;Λ3Þ,

which yields

B1B3ðΛ1;Λ2;Λ3Þ ¼½123� 3

2
PΔθμθ̄þ∂μðλ1ρ∂ρλ2νλν3Þ

þ 3

2
PΔθþθ̄ν̄∂ν̄ðλ1ρ∂ρλ2νλν3Þ

þ 3

2
PΔcþθþθ̄þΔþðλ1ρ∂ρλ2νλν3Þ:

ð4:68Þ

Finally, adding up (4.63), (4.67), and (4.68) one verifies the
homotopy Jacobi relation (4.57).

V. CONCLUSIONS AND OUTLOOK

In this paper we have explicitly constructed weakly
constrained double field theory to quartic order in fields,
encoded in the three-brackets of the corresponding L∞
algebra. Due to the weak constraint originating from the
level-matching constraints of string theory, the construction
of such a theory is a highly nontrivial problem and requires
an essential nonlocality, which is also present in the full
string theory. Specifically, the weak constraint requires that
all fields are annihilated by Δ, the second-order Laplacian
with respect to the flat metric of signature ðd; dÞ. It is
precisely the second-order character of Δ that complicates
the construction of an algebra of fields, since the product of
two fields satisfying the weak constraint in general does not
satisfy the weak constraint. Rather, the naive product has to
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be modified by projecting the output to the Δ ¼ 0 sub-
space, an operation that singles out certain Fourier modes
and is hence nonlocal. Consequently, the resulting product
is nonassociative.
It is relatively straightforward to solve the resulting

consistency problems to cubic order [3,46], which is
essentially due to a “kinematical accident,” but to quartic
and higher order it is highly nontrivial to construct a
consistent field theory (an L∞ algebra). In this paper we
give the corresponding L∞ algebra up to and including
three-brackets, constructed via a double copy procedure
from Yang-Mills theory. Apart from the nonlocality inher-
ent in the weak constraint we found the need for additional
nonlocalities in the form of inverses of Δþ, the positive
definite flat-space Laplacian, but they only show up in
terms where they are fully well-defined on the torus. We
verified that these new nonlocalities are inevitable given the
problem we set out to solve: finding the three-brackets B3

so that the Jacobiator relation involving B2B2 is obeyed.
Since B1 and B2 are fixed from the cubic theory of Hull and
Zwiebach [3],3 which agrees with our double copy [40], the
only freedom is the definition of B3 (which is only well-
defined up to cohomologically trivial contributions that
drop out from ½B1; B3�). We have verified for the gauge
sector that the inverses of Δþ are essential.
The research presented here should be generalized in

many directions, which include the following:
(i) So far we have given the three-brackets only in the

case that all dimensions are toroidal and hence
Euclidean, with all coordinates being doubled. It
remains to include an undoubled time coordinate
or, more generally, an arbitrary number of dimensions
for the external or noncompact space. Thus, the theory
presented here should be thought of as the internal
sector of a split (or Hamiltonian-type) formulation as
in [50,51] for double field theory (or in [52–54] for the
closely related U-duality invariant exceptional field
theory). It would be interesting to see whether such
split formulations can be interpreted as a tensor
product between internal and external algebras along
the lines of [55,56].

(ii) One of the potentially most important applications,
and one of strongest original motivations, of a
weakly constrained double field theory is in the
realm of cosmology. One may imagine massive
string modes being excited in the very early universe
that leave an imprint on the cosmic microwave
background (CMB). For instance, the string gas
cosmology proposal of Brandenberger-Vafa invokes
the winding modes that must be present if some of

the spatial dimensions in cosmology are toroidal
[57] (see [58] for a recent review). Generalizing
the previous item, it remains to find a weakly
constrained double field theory on time-dependent
Friedmann-Robertson-Walker backgrounds, gener-
alizing the cubic perturbation theory of [46] to
quartic and higher orders.

(iii) Independent of the inclusion of noncompact dimen-
sions, the arguably most important outstanding
problem is to generalize the construction to higher
order in fields, even just for the internal or compact
dimensions. Since the quartic theory exists, it is
virtually certain that the theory exists to all orders,
but since the detailed construction is already quite
involved for the three-brackets, we need a more
efficient formulation for the kinematic BV□

∞ struc-
tures that are present in Yang-Mills theory proper in
order to display the algebra and its double copy to all
orders.4 It is intriguing that this is a problem already
in pure Yang-Mills theory, which thus displays a
complexity comparable to that of gravity.

(iv) Our double copy procedure developed in [26,40],
which is based on the additional structures involving
the b-ghost, may appear rather special and only
applicable to peculiar formulations, but this is not so.
We hope to be able to illustrate this with further
examples in the future and to develop the general
theory further. Notably, in this paper we have been
cavalier about the cyclic structure of the L∞ algebra,
which is needed in order to write an action. Thus, the
results presented here are strictly applicable to the
equations of motion only. We leave the detailed
construction of the cyclic L∞ brackets, which might
differ from the ones presented here by cohomolog-
ically trivial shifts (that, however, in the language of
BV, are not symplectomorphisms) to future work.

(v) The weakly constrained double field theory con-
structed here to quartic order is quite complicated
and nonlocal. While above we have emphasized that
the nonlocalities are inevitable given the fixed
starting point encoded in B1 and B2 of the cubic
theory of Hull and Zwiebach, it is conceivable that
there are simpler versions that carry more propagat-
ing fields, which would manifest themselves already
to quadratic order, and that are effectively integrated
out in the theory encountered here. One may wonder
if there are versions with weaker constraints or
perhaps even no level-matching constraints, as
recently explored in string field theory [59,60].

3A small caveat is that we do not include so-called cocycle
factors, which are claimed to be necessary in the full string theory
[47–49] (see also Sec. 3.3 in [46]), since in the present approach
they appear unnecessary.

4In order to describe these structures to all orders it would be
helpful to understand BV□

∞ algebras in terms of so-called
operads. We thank Bruno Vallette for explaining to us how a
strict BV□-algebra can indeed be described in the language of
differential graded operads.
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(vi) It would be very interesting to generalize weakly
constrained double field theory to theories including
massive M-theory states of the kind required by
U-duality invariance. The strongly constrained ver-
sions are known as exceptional field theory (see,
e.g., [52–54,61,62]). One of the challenges here is
that there is no immediate analog of the double copy
construction from Yang-Mills theory, but one may
speculate that there are exotic field theories waiting
to be constructed that could serve as similar building
blocks [63].
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APPENDIX A: YANG-MILLS MAPS
AND OPERATORS

In this appendix we collect all the relevant operators
associated with the maps of the BV□

∞ algebra of K. We start
from the operators m̂1; m̂2, and m̂3h in (2.22) corresponding
to theC∞ subalgebra. The differentialm1 is related to m̂1 via

m1ðψÞ ¼ m̂1ðZAÞψAðxÞ; ðA1Þ
where the complete list of operators m̂1ðZAÞ is given by

m̂1ðθþÞ ¼ θμ∂
μ þ cθþ□; m̂1ðcθþÞ ¼ −cθμ∂μ − θ−;

m̂1ðθμÞ ¼ cθμ□þ θ−∂μ; m̂1ðcθμÞ ¼ −cθ−∂μ;

m̂1ðθ−Þ ¼ cθ−□; m̂1ðcθ−Þ ¼ 0: ðA2Þ
We continue with the two-product m2, which acts as

m2ðψ1;ψ2Þ ¼ μ½m̂2ðZA; ZBÞðψA
1 ðxÞ ⊗ ψB

2 ðxÞÞ�; ðA3Þ
and the nonvanishing bidifferential operators m̂2ðZA; ZBÞ
read

m̂2ðθþ; θþÞ ¼ θþð1 ⊗ 1Þ;
m̂2ðθμ; θνÞ ¼ cθν½ð∂μ ⊗ 1Þ þ 2ð1 ⊗ ∂μÞ�

− cθμ½ð1 ⊗ ∂νÞ þ 2ð∂ν ⊗ 1Þ�
þ cθρημν½ð∂ρ ⊗ 1Þ − ð1 ⊗ ∂

ρÞ�; ðA4Þ
for “diagonal” ðZA; ZBÞ, while for “off-diagonal” ones we
give both orderings explicitly:

m̂2ðθμ; θþÞ ¼ θμð1 ⊗ 1Þ þ cθþð∂μ ⊗ 1þ 1 ⊗ ∂μÞ; m̂2ðθþ; θμÞ ¼ m̂2ðθμ; θþÞ;
m̂2ðθþ; cθμÞ ¼ cθμð1 ⊗ 1Þ; m̂2ðcθμ; θþÞ ¼ m̂2ðθþ; cθμÞ;
m̂2ðθþ; θ−Þ ¼ −cθμð1 ⊗ ∂

μÞ; m̂2ðθ−; θþÞ ¼ −cθμð∂μ ⊗ 1Þ;
m̂2ðθμ; cθνÞ ¼ −cθ−ημνð1 ⊗ 1Þ; m̂2ðcθν; θμÞ ¼ m̂2ðθμ; cθνÞ;
m̂2ðθμ; θ−Þ ¼ cθ−ð1 ⊗ ∂μÞ; m̂2ðθ−; θμÞ ¼ cθ−ð∂μ ⊗ 1Þ;

m̂2ðθþ; cθ−Þ ¼ cθ−ð1 ⊗ 1Þ; m̂2ðcθ−; θþÞ ¼ m̂2ðθþ; cθ−Þ; ðA5Þ

which enforce graded symmetry of the map m2. The C∞
maps are exhausted with the three-product

m3hðψ1;ψ2;ψ3Þ ¼ μ½m̂3hðZA; ZB; ZCÞðψA
1 ðxÞ

⊗ ψB
2 ðxÞ ⊗ ψC

3 ðxÞÞ�; ðA6Þ
whose only a nonvanishing component is associated with
the operator

m̂3hðθμ; θν; θρÞ ¼ ðcθμηνρ − cθνημρÞð1 ⊗ 1 ⊗ 1Þ: ðA7Þ

Coming to the BV□
∞ structure, the two-bracket b2 is

associatedwith a bidifferential operator b̂2 exactly as in (A4):

b2ðψ1;ψ2Þ ¼ μ½b̂2ðZA; ZBÞðψA
1 ðxÞ ⊗ ψB

2 ðxÞÞ�; ðA8Þ

but we do not give the explicit form of the operators
b̂2ðZA; ZBÞ, since they can be straightforwardly derived
from b2 ¼ ½b;m2�. The homotopy Poisson map θ3 is related
to tridifferential operators θ̂3ðZA; ZB; ZCÞ by

θ3ðψ1;ψ2;ψ3Þ ¼ μ½θ̂3ðZA; ZB; ZCÞðψA
1 ðxÞ

⊗ ψB
2 ðxÞ ⊗ ψC

3 ðxÞÞ�: ðA9Þ

The following operators correspond to totally graded sym-
metric maps:
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θ̂3ðθþ; θþ; θ−Þ ¼ θþð1 ⊗ 1 ⊗ 1Þ;
θ̂3ðθþ; θþ; cθ−Þ ¼ −cθþð1 ⊗ 1 ⊗ 1Þ;
θ̂3ðθþ; θμ; cθνÞ ¼ cθþημνð1 ⊗ 1 ⊗ 1Þ;
θ̂3ðθþ; θμ; θ−Þ ¼ θμð1 ⊗ 1 ⊗ 1Þ þ cθþð∂μ ⊗ 1 ⊗ 1Þ;

θ̂3ðθþ; cθþ; θ−Þ ¼ cθþð1 ⊗ 1 ⊗ 1Þ;
θ̂3ðθþ; θ−; θ−Þ ¼ θ−ð1 ⊗ 1 ⊗ 1Þ;
θ̂3ðθþ; θ−; cθμÞ ¼ cθμð1 ⊗ 1 ⊗ 1Þ;
θ̂3ðθþ; θ−; cθ−Þ ¼ cθ−ð1 ⊗ 1 ⊗ 1Þ;
θ̂3ðθμ; θ−; θ−Þ ¼ 2cθ−ð1 ⊗ ∂μ ⊗ 1þ 1 ⊗ 1 ⊗ ∂μÞ;
θ̂3ðθμ; cθν; θ−Þ ¼ −cθ−ημνð1 ⊗ 1 ⊗ 1Þ;
θ̂3ðcθþ; θ−; θ−Þ ¼ cθ−ð1 ⊗ 1 ⊗ 1Þ: ðA10Þ

Given the ordering of ðZA; ZB; ZCÞ above, the operator
corresponding to the exchange of the first two Z’s, i.e.
θ̂3ðZB; ZA; ZCÞ, is obtained by just exchanging the first two
factors in ðO1 ⊗ O2 ⊗ O3Þ, since the sign ð−1ÞZAZB in all
these cases is þ1. For instance, given the above expression
for θ̂3ðθþ; θμ; θ−Þ, one has
θ̂3ðθμ;θþ;θ−Þ¼θμð1⊗1⊗1Þþcθþð1⊗∂μ⊗1Þ: ðA11Þ
This ensures the graded symmetry of themap θ3ðψ1;ψ2;ψ3Þ
in the first two arguments. Since all the maps associated with
(A10) are totally graded symmetric, the corresponding
operators obey θ̂3 ¼ θ̂3s ¼ dθ3π. The remaining permutations
of the arguments ðZA; ZB; ZCÞ can then be recovered from
(2.48). The next θ̂3 operators have both a totally graded
symmetric part θ̂3s ¼ dθ3π and a hook part θ̂3h ¼ θ̂3 −dθ3π,
which we give separately:

θ̂3sðθμ; θν; θρÞ ¼ cθþ½ημνð∂ρ ⊗ 1 ⊗ 1Þ − ημνð1 ⊗ ∂ρ ⊗ 1Þ þ ηνρð1 ⊗ ∂μ ⊗ 1Þ
− ηνρð1 ⊗ 1 ⊗ ∂μÞ þ ημρð1 ⊗ 1 ⊗ ∂νÞ − ημρð∂ν ⊗ 1 ⊗ 1Þ�;

θ̂3hðθμ; θν; θρÞ ¼ ðθνημρ − θμηνρÞð1 ⊗ 1 ⊗ 1Þ; ðA12Þ

and one can see that they are antisymmetric in the simultaneous exchange of μ ↔ ν and O1 ↔ O2 in the factors
O1 ⊗ O2 ⊗ O3. The last group of nonvanishing θ̂3 also has totally graded symmetric and hook components, given by

θ̂3sðθμ; θν; cθρÞ ¼ ðcθνημρ − cθμηνρÞð1 ⊗ 1 ⊗ 1Þ;
θ̂3sðθμ; θν; θ−Þ ¼ cθνð1 ⊗ 1 ⊗ ∂μÞ − cθμð1 ⊗ 1 ⊗ ∂νÞ þ 2cθνð1 ⊗ ∂μ ⊗ 1Þ − 2cθμð∂ν ⊗ 1 ⊗ 1Þ

þ cθρημν½ð∂ρ ⊗ 1 ⊗ 1Þ − ð1 ⊗ ∂
ρ ⊗ 1Þ�;

θ̂3sðθμ; cθþ; θ−Þ ¼ −θ̂3sðcθþ; θμ; θ−Þ ¼ −cθμð1 ⊗ 1 ⊗ 1Þ;
θ̂3hðθμ; θν; cθρÞ ¼ ðcθνημρ − cθμηνρÞð1 ⊗ 1 ⊗ 1Þ;
θ̂3hðcθρ; θμ; θνÞ ¼ θ̂3hðθμ; cθρ; θνÞ ¼ ðcθμηνρ − cθρημνÞð1 ⊗ 1 ⊗ 1Þ: ðA13Þ

As for the two-bracket b2, we do not give the explicit form of the operators b̂3 corresponding to the three-bracket, since they
can be derived from b3 ¼ −½b; θ3s�.

APPENDIX B: DERIVATION OF Θ3 AND B3

In this appendix we compute the symmetric projection of the Poisson relation (3.25), in order to determine the symmetric
part of the homotopy Θ3. We then use this to compute the Jacobiator of the bracket B2, yielding the deformed homotopy
Jacobi identity.
We begin by writing the maps in terms of their Yang-Mills building blocks:

f½b−;M2M2� − 3M2B2ΠgΠ ¼ 1

2
f½b − b̄; ðm2 ⊗ m̄2Þðm2 ⊗ m̄2Þ� − 3ðm2 ⊗ m̄2Þðb2 ⊗ m̄2 −m2 ⊗ b̄2ÞgΠ

¼ 1

2
f½b − b̄; m2m2 ⊗ m̄2m̄2� − 3ðm2b2 ⊗ m̄2m̄2 −m2m2 ⊗ m̄2b̄2ÞgΠ

¼ 1

2
fð½b;m2m2� − 3m2b2Þ ⊗ m̄2m̄2 −m2m2 ⊗ ð½b̄; m̄2m̄2� − 3m̄2b̄2ÞgΠ: ðB1Þ

We continue by substituting the Poisson relation (3.26) for ½b;m2m2� and its barred counterpart:
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f½b−;M2M2� − 3M2B2ΠgΠ ¼ 1

2
fð½m1; θ3� þm3hðd□ − 3dsπÞ − 3m2b2ð1 − πÞÞ ⊗ m2m̄2

−m2m2 ⊗ ð½m̄1; θ̄3� þ m̄3hðd̄□̄ − 3d̄sπ̄Þ − 3m̄2b̄2ð1 − π̄ÞÞgΠ

¼
�
M1;

1

2
ðθ3 ⊗ m̄2m̄2 −m2m2 ⊗ θ̄3ÞΠ

�
þ 1

2
fðm3hðd□ − 3dsπÞ − 3m2b2ð1 − πÞÞ ⊗ m̄2m̄2

−m2m2 ⊗ ðm̄3hðd̄□̄ − 3d̄sπ̄Þ − 3m̄2b̄2ð1 − π̄ÞÞgΠ; ðB2Þ

where we have used ½m1; m2m2� ¼ 0 to extract a total differentialM1, which gives the first contribution to Θ3s. For the next
steps we will repeatedly use the projector relations πΠ ¼ π̄Π and ð1 − πÞΠ ¼ ð1 − π̄ÞΠ. The terms involving m2b2 and
m̄2b̄2 in (B2) can be further manipulated as

−
3

2
fm2b2ð1 − πÞ ⊗ m̄2m̄2 −m2m2 ⊗ m̄2b̄2ð1 − π̄ÞgΠ

¼ −
3

2
fm2b2 ⊗ m̄2m̄2ð1 − π̄Þ −m2m2ð1 − πÞ ⊗ m̄2b̄2gΠ

¼ −
3

2
fm2b2 ⊗ ½m̄1; m̄3h� − ½m1; m3h� ⊗ m̄2b̄2gΠ

¼ 3

2
½M1; ðm2b2 ⊗ m̄3h þm3h ⊗ m̄2b̄2ÞΠ� −

3

2
f½m1; m2b2� ⊗ m̄3h −m3h ⊗ ½m̄1; m̄2b̄2�gΠ

¼ 3

2
½M1; ðm2b2 ⊗ m̄3h þm3h ⊗ m̄2b̄2ÞΠ� −

3

2
fm2½□; m2� ⊗ m̄3h −m3h ⊗ m̄2½□̄; m̄2�gΠ; ðB3Þ

with the total M1-commutator contributing to Θ3s. Let us now consider the above terms containing □-commutators,
together with the m3hdsπ terms from (B2). Using the projector relations and rewriting ds ¼ 1

2
ðds þ d̄sÞ þ 1

2
ðds − d̄sÞ,

d̄s ¼ 1
2
ðds þ d̄sÞ − 1

2
ðds − d̄sÞ, we obtain

−
3

2
fm3hdsπ ⊗ m̄2m̄2 −m2m2 ⊗ m̄3hd̄sπ̄ þm2½□; m2� ⊗ m̄3h −m3h ⊗ m̄2½□̄; m̄2�gΠ

¼ −
3

2
fm3hdsπ ⊗ m̄2m̄2 −m2m2 ⊗ m̄3hd̄sπ̄ þm2m2ds ⊗ m̄3h −m3h ⊗ m̄2m̄2d̄sgΠ

¼ −
3

2
fm3hds ⊗ m̄2m̄2π̄ −m2m2π ⊗ m̄3hd̄s þm2m2ds ⊗ m̄3h −m3h ⊗ m̄2m̄2d̄sgΠ

¼ −
3

4
fm2m2ð1 − πÞ ⊗ m̄3hd̄s þm2m2ð1 − πÞds ⊗ m̄3h

−m3h ⊗ m̄2m̄2ð1 − π̄Þd̄s −m3hds ⊗ m̄2m̄2ð1 − π̄ÞgΠ

−
3

4
fm3hds ⊗ m̄2m̄2π̄ −m3h ⊗ m̄2m̄2π̄d̄s þm2m2πds ⊗ m̄3h −m2m2π ⊗ m̄3hd̄s

þm2m2ds ⊗ m̄3h −m2m2 ⊗ m̄3hd̄s þm3hds ⊗ m̄2m̄2 −m3h ⊗ m̄2m̄2d̄sgΠ

¼ −
3

4
f½m1; m3h� ⊗ m̄3hðds þ d̄sÞ −m3h ⊗ ½m̄1; m̄3h�ðds þ d̄sÞgΠ

−
3

2
fm3h ⊗ m̄2m̄2π̄Ds þm2m2π ⊗ m̄3hDs þm2m2 ⊗ m̄3hDs þm3h ⊗ m̄2m̄2DsgΠ

¼ −
3

4
½M1; ðm3h ⊗ m̄3hÞðds þ d̄sÞΠ� −

3

2
fm3h ⊗ m̄2m̄2ð1þ π̄Þ þm2m2ð1þ πÞ ⊗ m̄3hgDsΠ; ðB4Þ

with a new contribution to Θ3s. We now combine the obstructions above, proportional to Ds, with the remaining m3hd□
terms from (B2), and rewrite d□ ¼ 1

2
ðd□ þ d̄

□̄
Þ þ 1

2
ðd□ − d̄

□̄
Þ and d̄

□̄
¼ 1

2
ðd□ þ d̄

□̄
Þ − 1

2
ðd□ − d̄

□̄
Þ. Using the definition

DΔ ¼ 1
2
ðd□ − d̄

□̄
Þ, this yields
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1

2
fm3hd□ ⊗ m̄2m̄2 −m2m2 ⊗ m̄3hd̄□̄gΠ

−
3

2
fm3h ⊗ m̄2m̄2ð1þ π̄Þ þm2m2ð1þ πÞ ⊗ m̄3hgDsΠ

¼ 1

4
fm3hd□ ⊗ m̄2m̄2 þm3h ⊗ m̄2m̄2d̄□̄ −m2m2 ⊗ m̄3hd̄□̄ −m2m2d□ ⊗ m̄3hgΠ

þ 1

2
fm3h ⊗ m̄2m̄2DΔ þm2m2 ⊗ m̄3hDΔgΠ

−
3

2
fm3h ⊗ m̄2m̄2ð1þ π̄Þ þm2m2ð1þ πÞ ⊗ m̄3hgð1 − Πþ ΠÞDsΠ

¼ 1

4
fm3hd□ ⊗ m̄2m̄2 þm3h ⊗ m̄2m̄2d̄□̄ −m2m2 ⊗ m̄3hd̄□̄ −m2m2d□ ⊗ m̄3hgΠ

þ 1

2
fm3h ⊗ m̄2m̄2DΔ þm2m2 ⊗ m̄3hDΔgΠ

−
1

2
fm3h ⊗ m̄2m̄2ð1þ π̄Þ þm2m2ð1þ πÞ ⊗ m̄3hgDΔΠ − 3M3hDsΠ; ðB5Þ

where in the last line we used (3.24) and recognized M3h from (3.17). One can now use the implicit projection m3h ¼
m3hð1 − πÞ to see thatm3h ⊗ m̄2m̄2π̄Π ¼ 0 andm2m2π ⊗ m̄3hΠ ¼ 0 in the last line above. From (B5) we are thus left with

1

4
fm3hd□ ⊗ m̄2m̄2 þm3h ⊗ m̄2m̄2d̄□̄ −m2m2 ⊗ m̄3hd̄□̄ −m2m2d□ ⊗ m̄3hgΠ − 3M3hDsΠ

¼ 1

4
½□þ □̄; m3h ⊗ m̄2m̄2 −m2m2 ⊗ m̄3h�Π − 3M3hDsΠ

¼ 1

2
½½M1; bþ�; m3h ⊗ m̄2m̄2 −m2m2 ⊗ m̄3h�Π − 3M3hDsΠ

¼ 1

2
½M1; ½bþ; m3h ⊗ m̄2m̄2 −m2m2 ⊗ m̄3h��Πþ 1

2
½bþ; ½M1; m3h ⊗ m̄2m̄2 −m2m2 ⊗ m̄3h��Π − 3M3hDsΠ: ðB6Þ

We now use m3h ⊗ m̄2m̄2Π ¼ m3h ⊗ m̄2m̄2ð1 − π̄ÞΠ to show that the bþ-commutator above vanishes:

ðm3h ⊗ m̄2m̄2 −m2m2 ⊗ m̄3hÞΠ ¼ ðm3h ⊗ m̄2m̄2ð1 − π̄Þ −m2m2ð1 − πÞ ⊗ m̄3hÞΠ
¼ ðm3h ⊗ ½m̄1; m̄3h� − ½m1; m3h� ⊗ m̄3hÞΠ
¼ −½M1; m3h ⊗ m̄3h�Π; ðB7Þ

thus reducing (B6) to

1

2
½M1; ½bþ; m3h ⊗ m̄2m̄2 −m2m2 ⊗ m̄3h��Π − 3M3hDsΠ: ðB8Þ

Collecting all theM1-commutators from (B2), (B3), (B4), and (B8), we finally find that the symmetric projection of (3.25)
obeys

f½b−;M2M2� − 3M2B2ΠgΠ ¼ ½M1;Θ3s� − 3M3hDsΠ; ðB9Þ

which has the same structure as the symmetric projection of (3.26), where the symmetric part of Θ3 is given by

Θ3s ¼
1

2

�
θ3 ⊗ m̄2m̄2 −m2m2 ⊗ θ̄3 þ 3m2b2 ⊗ m̄3h þ 3m3h ⊗ m̄2b̄2 −

3

2
m3h ⊗ m̄3hðds þ d̄sÞ

þ ½bþ; m3h ⊗ m̄2m̄2 −m2m2 ⊗ m̄3h�
�
Π: ðB10Þ
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The contributions to Θ3s involving θ3 and θ̄3 are not separately projected in their single copy constituents. We do so by
splitting θ3 ¼ θ3s þ θ3h ¼ θ3s − ½b;m3h�. This produces

θ3 ⊗ m̄2m̄2 −m2m2 ⊗ θ̄3 ¼ θ3s ⊗ m̄2m̄2 −m2m2 ⊗ θ̄3s − ½b;m3h ⊗ m̄2m̄2� þ ½b̄; m2m2 ⊗ m̄3h�; ðB11Þ

which, inserted in (B10), gives the final expression for Θ3s:

Θ3s ¼
1

2

�
θ3s ⊗ m̄2m̄2 −m2m2 ⊗ θ̄3s þ 3m2b2 ⊗ m̄3h þ 3m3h ⊗ m̄2b̄2 −

3

2
m3h ⊗ m̄3hðds þ d̄sÞ

− ½b−; m3h ⊗ m̄2m̄2 þm2m2 ⊗ m̄3h�
�
Π: ðB12Þ

Collecting the two projections (3.27) and (B9), we find the complete homotopy Poisson relation

½b−;M2M2� − 3M2B2Π ¼ ½M1;Θ3� þM3hðDΔ − 3DsΠÞ; ðB13Þ

analogous to the single copy one (3.26).
Given the Poisson relation, the homotopy Jacobi identity of B2 is fixed by taking a b−-commutator of (B13):

0 ¼ ½b−; 3M2B2Π − ½b−;M2M2� þ ½M1;Θ3� þM3hðDΔ − 3DsΠÞ�
¼ 3B2B2Πþ ½b−; ½M1;Θ3�� þ ½b−;M3h�ðDΔ − 3DsΠÞ
¼ 3B2B2Π − ½M1; ½b−;Θ3�� þ Θ3DΔ − Θ3hðDΔ − 3DsΠÞ: ðB14Þ

Upon decomposing Θ3 ¼ Θ3ðΠþ 1 − ΠÞ and using 3ΠDsΠ ¼ ΠDΔ, we can further manipulate the above expression as
follows:

0 ¼ 3B2B2Π − ½M1; ½b−;Θ3�� þ Θ3DΔ − Θ3hðDΔ − 3DsΠÞ
¼ 3B2B2Π − ½M1; ½b−;Θ3s�� þ Θ3ΠDΔ þ 3Θ3ð1 − ΠÞDsΠ

¼ 3B2B2Πþ ½M1; B3� þ 3Θ3DsΠ; ðB15Þ

which is the deformed homotopy Jacobi relation. Above we have defined the three-bracket B3 as B3 ≔ −½b−;Θ3� ¼
−½b−;Θ3s�, where the last equality follows from Θ3h ¼ −½b−;M3h�. This exhausts the relations of the BVΔ

∞ algebra up to
trilinear maps.
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