
Rotation effect on the deconfinement phase transition in holographic QCD

Jia-Hao Wang1 and Sheng-Qin Feng 1,2,3,*

1College of Science, China Three Gorges University, Yichang 443002, China
2Center for Astronomy and Space Sciences and Institute of Modern Physics,

China Three Gorges University, Yichang 443002, China
3Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,

Central China Normal University, Wuhan 430079, China

(Received 27 January 2024; accepted 4 March 2024; published 21 March 2024)

The impact of rotation on the deconfinement phase transition under the Einstein-Maxwell system of the
soft and the hard wall models in holographic quantum chromodynamics is studied in this paper. The metric
by cylindrical coordinates with rotation is introduced into the system to calculate the Hawking temperature.
The first holographic study on the influence of the radius of a homogeneous rotating system on the phase
diagram is proposed. It is found that the phase transition temperature hardly changes with the rotation
angular velocity for a small rotation radius. Only with a larger rotation radius can the change in rotational
angular velocity significantly alter the phase transition temperature. The phase transition temperature
decreases rapidly with the increase of rotation angular velocity as the rotation radius increases.

DOI: 10.1103/PhysRevD.109.066019

I. INTRODUCTION

The phase and properties of matter become very extraor-
dinary under rotation, which has recently attracted a lot of
interest among people. This type of research is particularly
relevant to the strong interacting matter in quantum
chromodynamics (QCD). For example, astrophysical
objects composed of dense QCD matter such as neutron
stars can spin rapidly [1,2]. Typical noncentral nucleus-
nucleus collisions can generate QCD matter that carries a
nonzero angular momentum of the order of 104–105ℏ with
local angular velocities in the range of 0.01–0.1 GeV [3–5]
in relativistic heavy ion collision experiments. An impres-
sive progress [6] has also achieved to study the rotating
QCD matter by using lattice simulations.
Exploring the effect of rotation on the phase transition of

QCD matter is also very significant in relativistic heavy ion
collisions. As is well known, noncentral nucleus- nucleus
collisions can generate strong external magnetic fields
[7–12], which have interesting effects on the thermody-
namics and phase diagrams of QCD matter [13–18]. The
study of the magnetic catalytic and inverse magnetic
catalytic properties of chiral condensates by using the
Nambu–Jona-Lasini (NJL) model [19–22], as well as the

study of the effect of magnetic fields on phase diagrams by
using holographic methods [23–31] are currently in pro-
gressing smoothly. Given the close analogy between
magnetic field and rotation, it is tempting to ask how
rotation could affect phase transitions. In this article, we
will use holographic methods to study the effect of rotation
on QCD phase transition.
It is well known that the confinement phase is at a lower

temperature and density, while the deconfinement phase of
QCD is at a higher temperature and density. The explora-
tion of the phase structure of QCD is an important and
challenging topic. How to probe the phase diagrams in the
T − μ plane is a rather hard job because the QCD coupling
constant becomes very large near the phase change region,
and the traditional perturbation QCD method cannot be
used. For a long time, the lattice QCD method is token as
the only credible way to study the program. Although
lattice QCD works well under zero baryon density, there is
a sign problem when considering finite baryon density.
However, the most interesting region in the QCD phase
diagram is the region with finite baryon density. The QGP
generated by heavy ion collisions, as well as compact stars
in astrophysics, has a finite baryon density.
In holographic QCD, various approaches exist to study

the deconfinement phase transition. Among these, using the
Hawking-Page phase transition [32,33] from gravitational
theory to investigate the QCD deconfinement phase tran-
sition proves to be highly effective. The primary physical
idea involves the phase transition between thermal AdS
(tAdS) at low temperature and the Schwarzschild AdS
black hole at high temperature in pure gauge theory [33],
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which corresponds to the confinement-deconfinement phase
transition between hadron state and QGP state in QCD.
Reference [34] delved into the Hawking-Page phase tran-
sition between the tAdS space and the Schwarzschild AdS
black hole at zero chemical potential. Reference [35–37]
examined the Hawking-Page phase transition between ther-
mal charged (tc) AdS space and the Reissner-Nordström
(RN) AdS black hole at nonzero chemical potential.
Reference [38] conducted the first research work for the
effect of magnetic fields on the confinement-deconfinement
critical temperature in the hard wall model.
In heavy ion collisions, in addition to the presence of a

strong magnetic field, the plasma also exhibits significant
angular momentum. There have been some studies that
introduce rotation into holography [39–41] and effective
field theory [42,43]. Braga [39] utilized the corresponding
Hawking-Page phase transition between the thermal AdS
space and the Schwarzschild AdS black hole, and selected a
rotating cylindrical symmetric black hole model to study the
confinement-deconfinement phase transition and thermody-
namics of a rotating system with zero chemical potential.
In this article, we will expand corresponding Hawking-Page
phase transition into between thermal charged anti–de Sitter
(AdS) space and Reissner-Nordstrom AdS (RNAdS) black
hole, discussing the confinement-deconfinement phase tran-
sition and thermodynamic properties of nonzero chemical
potentials under rotational conditions.
The purpose of this article is to investigate the effect of

plasma rotation on the phase transition temperature Tc.
This article will use holographic AdS/QCD models, espe-
cially hard wall [44–46] and soft wall [16,47] models, to
discuss the dependence of phase transition temperature Tc
on rotational angular velocity, rotational radius and chemi-
cal potential. The structure of the paper is as follows: In
Sec. II, we introduce the rotation into holographic QCD and
discuss the consequent impacts on temperature and chemi-
cal potential. Section III delves into the effects of rotation
on the deconfinement phase transition by utilizing both the
hard and soft wall models. A summary and discussion are
presented in Sec. IV.

II. THE HOLOGRAPHIC SYSTEM UNDER
ROTATIONAL BACKGROUND

In this section, we will introduce some common theo-
retical settings in the context of rotation. To analyze the
rotating charged black hole, it is necessary to assume that
the spacetime has cylindrical symmetry [40,41,48–50].
Consequently, the metrics of Lorentzian signature in the
cylindrical form of both AdS black hole (bh) and thermal
charged (tc) AdS space can be uniformly reformulated as

ds2bh;tc¼
L2

z2

�
−fbh;tcðzÞdt2þdx⃗ 2þ l2dϕ2þ 1

fbh;tcðzÞ
dz2

�
;

ð1Þ

where L is AdS radius, ϕ is the angular coordinate
describing the rotation, and l is the radius of the rotation
axis. The metric function of Eq. (1) for the background
geometry of AdS black hole is given as

fbhðzÞ ¼ 1 −mz4 þ q2z6; ð2Þ
where m and q are the black hole mass and charge,
respectively.
The background geometry of thermal charged AdS

space is

ftcðzÞ ¼ 1þ q21z
6; ð3Þ

where q1 is the charge of thermal charged AdS space.
Because of boundary condition fbhðzhÞ ¼ 0, one can
obtain the mass as

m ¼ 1

z4h
þ q2z2h: ð4Þ

Next, the rotation will be introduced into the QCD
medium system. According to Ref. [51], one obtains the
rotating extension from the static configuration through a
local Lorentz boost as

t →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − l2ω2
p ðtþ l2ωϕÞ; ð5Þ

and

ϕ →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − l2ω2
p ðϕþ ωtÞ; ð6Þ

where ω is the angular velocity. The corresponding trans-
formation of the metric is given as

ds2 ¼ gttdt2 þ gtϕdtdϕþ gϕtdϕdtþ gϕϕl2dϕ2

þ gzzdz2 þ gxx
X2
i¼1

dx2i ; ð7Þ

with

gtt ¼
γ2ðωlÞL2

z2
ðω2l2 − fðzÞÞ; ð8Þ

gϕϕ ¼ γ2ðωlÞL2

z2
ð1 − ω2l2fðzÞÞ; ð9Þ

gtϕ ¼ gϕt ¼
γ2ðωlÞL2

z2
ωl2ð1 − fðzÞÞ; ð10Þ

gzz ¼
L2

z2fðzÞ ; ð11Þ

gxx ¼
L2

z2
; ð12Þ
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where γðωlÞ is the Lorentz factor

γðωlÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2ω2

p : ð13Þ

The Lorentz boost determines the relation between the
Hawking temperature T of the black hole and the horizon
position. Reestablishing the canonical form of rotation
metric given by Eq. (7), as shown in Refs. [40,48], one
yields the following metric as

ds2 ¼ L2

z2

�
−NðzÞ2fðzÞdt2 þ dz2

fðzÞ

þ RðzÞðdϕþ PðzÞdtÞ2 þ
X2
i¼1

dx2i

�
; ð14Þ

with

NðzÞ2 ¼ ð1 − ω2l2Þ
1 − fðzÞω2l2

; ð15Þ

RðzÞ ¼ γ2l2 − fðzÞγ2ω2l4; ð16Þ

PðzÞ ¼ ωð1 − fðzÞÞ
1 − fðzÞω2l2

; ð17Þ

where NðzÞ is the lapse function and PðzÞ is the shift
function.
Following Refs. [51,52], one can obtain the following

expressions for the Hawking temperature of rotating black
holes:

TH ¼ −
NðzhÞf0ðzhÞ

4π
: ð18Þ

It should be noted that due to the Lorentz transformation
of time and angular rotation components, the expression
of the chemical potential differs from that of the static
case. The quark chemical potential under rotation can be
given as [53,54]

μ ¼ Aμχ
μjz¼zh − Aμχ

μjz¼0; ð19Þ

where χ ¼ ∂t þΩ∂ϕ is the Killing vector, and the gauge
potential Aμ under rotation is given as

Aμ ¼ Atðγδtμ þ γωl2δϕμ Þ: ð20Þ

Substituting (20) into (19), one obtains the chemical
potential as

μ ¼ μ0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
: ð21Þ

The Ricci tensor Rmn and metric gmn are second rank
tensors, which transform under coordinate transformation
of rotation to

T 0
αβ ¼

∂xm

∂x0α
∂xn

∂x0β
Tmn ≡Mmn

αβ Tmn: ð22Þ

However, for scalar coordinate transformations, the
situation is different. For example: as one defines R as
the curvature scalar, and R0 as the curvature scalar with
coordinate transformation of rotation, this transformation
relation should be

R0 ¼ gmnRmn ¼ Mmn
αβ g

αβMαβ
mnRαβ ¼ gαβRαβ ¼ R; ð23Þ

so, we can conclude that scalar quantity is not affected by
the coordinate transformation of rotation.

III. THE PHASE DIAGRAM UNDER ROTATION
BACKGROUND

In this section, we will discuss holographic QCD phase
transition using the hard wall and soft wall model,
respectively.

A. Hard wall model

Following Refs. [35,37], the Euclidean action of the
Einstein-Maxwell (EM) system describing holographic
light quarks for the hard wall model is given by:

S ¼
Z

d5x
ffiffiffiffi
G

p �
1

2κ2
ð−Rþ 2ΛÞ þ 1

4g2
FMNFMN

�
; ð24Þ

where G is the determinant of metric, κ is the five-
dimensional Newton constant, R is the Ricci scalar,
Λ is the cosmological constant, g is the 5D gauge
coupling constant, and FMN is the U(1) bulk gauge field
strength tensor with FMN ¼∂MAN−∂NAM. According to
Refs. [35,55,56], the bulk gauge field AM is

At¼
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ω2l2
p −ρz2; Ai¼Az¼0 ði¼1;2;3Þ; ð25Þ

where ρ is the quark number density, which is related to the
black hole charge q

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3g2L2

2k2

s
q: ð26Þ

By imposing the Dirichlet boundary condition AtðzhÞ ¼ 0
near the boundary at horizon, one can rewrite ρ as

ρ ¼ μ

z2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2l2

p : ð27Þ
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The five-dimensional Newton constant κ, and the 5D
gauge coupling constant g are given as [56],

1

κ2
¼ N2

c

4π2L3
; ð28Þ

and

1

g2
¼ NcNf

4π2L
; ð29Þ

where Nc and Nf are the number of colors and flavors.
From Eq. (26) to Eq. (29), one can obtain

q ¼
ffiffiffiffiffiffiffiffiffi
2Nf

3Nc

s
μ

z2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2l2

p : ð30Þ

The boundary condition at the IR cut off z ¼ zIR is

AðzIRÞ ¼ α
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ω2l2
p ; ð31Þ

where α is a parameter, which can be determined as α ¼ − 1
2

given by Ref. [35]. The quark number density ρ is given

ρ ¼ 3μ

2z2IR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2l2

p : ð32Þ

By comparing Eq. (25) and Eq. (31), one can derive the
charge of thermal charged AdS space q1 as

q1 ¼
ffiffiffiffiffiffiffiffiffi
3Nf

2Nc

s
μ

z2IR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2l2

p : ð33Þ

From Eq. (24), the corresponding on-shell gravity
action of RNAdS BH and thermal charged AdS (tcAdS)
space for the hard wall model are

SBH ¼ L3V3

κ2

Z
β

0

dt
Z

zh

ϵ
dz

�
4

z5
− 2q2z

�
; ð34Þ

Stc ¼
L3V3

κ2

Z
β0

0

dt
Z

zIR

ϵ
dz

�
4

z5
− 2q21z

�
; ð35Þ

where V3 is the volume of the 3D space, ϵðϵ → 0Þ is the
UV cutoff, β and β0 are the time periodicity in RNAdS BH
and tcAdS space, respectively. At z ¼ ϵ, β0 is related to β
as follows:

β0
ffiffiffiffiffiffiffiffiffiffi
ftðϵÞ

p
¼ β

ffiffiffiffiffiffiffiffiffiffiffi
fbðϵÞ

p
: ð36Þ

The on-shell action density difference between RNAdS
BH and tcAdS space is given as:

Δε¼SBH−Stc
V3

¼L3

κ2

�
β

Z
zh

ϵ
dz

�
4

z5
−2q2z

�
−β0

Z
zIR

ϵ
dz

�
4

z5
−2q21z

��
:

ð37Þ

The free energy density is given as F ¼ −ðT lnZÞ=V3,
where Z is the partition function. It should be noted that,
in our pursuit of studying the thermodynamics of this
hard wall model, we utilize the compactified imaginary
time metric (Euclidean signature). Thus, the free energy is
expressed as:

F ¼ −
T lnZ
V3

≈
TSE
V3

: ð38Þ

Therefore, the difference of free energy density between
RNAdS BH and tcAdS space is

ΔF ¼ TΔε

¼ 3Ncð−1þ ω2l2Þ þ Nfz2hμ
2

18N2
cπð1 − ω2l2Þ32z4IRz5h

× ½−3Ncð−1þ ω2l2Þðz4IR − 2z4hÞ
þ Nfz2IRz

2
hð2z2IR − 9z2hÞμ2�; ð39Þ

where zIR ¼ 1=ð0.323 GeVÞ is obtained from the lightest ρ
meson mass [34].
The dependence of ΔF on zh with different μ and ω for

the hard wall withm ¼ Nf=Nc ¼ 1 is manifested in Fig. 1.
When ΔF is positive, the tcAdS space is stable. On the

contrary, when ΔF is negative, the RNAdS black hole
is stable. According to Hawking-Page phase transition,
the tcAdS space corresponds to confinement phase, the
RNAdS black hole corresponds to deconfinement phase.
Therefore, a positive (negative) ΔF suggests that the QCD
system is in the confinement (deconfinement) phase. Thus,
when the difference of free energy density equals zero, the
corresponding horizon position marks the phase transition
point for the Hawking-Page phase transition or confine-
ment-deconfinement phase transition.
From Figs. 1(a) and 1(b), one finds that at a constant

angular velocity ω, the horizon position of the phase
transition point becomes small with the increase of the
chemical potential μ. Comparing Figs. 1(a) and 1(b), one
also finds that at a fixed μ, the horizon position of the phase
transition point becomes small with the increase of the
angular velocity ω. It is found that chemical potential and
angular velocity have the same effects on the horizon
transition position., both of which cause the position of the
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phase transition point to decrease. Let us figure out what
cause the reason in the following.
In the context of a rotating QCD system, we know that

the introduction of rotation alters various physical quan-
tities. Refs. [57,58] point out that the influence of rotation
on thermodynamic quantities should have a modification of
the thermodynamic relation as

ϵ ¼ −Pþ Tsþ μρþ ωJ; ð40Þ

where ϵ, P, s, ρ, and J are the energy density, pressure,
entropy density, quark number density, and angular
momentum. In (40), it is evident that the energy density
of the system also increases with ω and μ increase.
Following the law of the black hole thermodynamics [59],
the energy density of black hole correlates with its other
properties as follows:

dE ∝ dM ∝ dA ∝ dr ∝
1

zh
; ð41Þ

whereM, A, and r denote the mass, area and radius of black
hole, respectively. One can find that the horizon position
decreases with the increase of energy density. This explains
why zh decreases with the increase of ω and μ.
In order to describe the status of a two-dimensional

ideal rotating system, two critical physical quantities must
be considered: angular velocity and radii of rotation.
Therefore, our study encompasses not only the variation
of phase transitions with rotation and chemical potential but
also its phase diagram on the radius of rotation.
In Fig. 2, the phase transition temperature is shown as a

function of the angular velocity with different chemical
potential for different rotational radiuses l ¼ 0.3 GeV−1,
l ¼ 0.6 GeV−1 and l ¼ 0.9 GeV−1, respectively. One finds
that small angular velocity has less impact on transition
temperature while large angular velocity induces a quick
decrease of phase transition temperature. It is also found

that the critical temperature Tc decreases with the increase
of angular velocity but has weak dependence of chemical
potential, which is analogous to some holographic work
and PNJL model of deconfinement transition of light

FIG. 2. Phase diagrams T − ω with different chemical potential
of μ ¼ 0 GeV, μ ¼ 0.15 GeV and μ ¼ 0.3 GeV for the hard wall
model. (a) for l ¼ 0.3 GeV−1, (b) for l ¼ 0.6 GeV−1, and (c) for
l ¼ 0.9 GeV−1.

FIG. 1. The difference of free energy density of rotational system ΔF as a function of the horizon position zh for different chemical
potential for the hard wall model. (a) with ω ¼ 0 GeV. and (b) with ω ¼ 0.5 GeV.
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flavor [60–62]. There it has been found that the presence of
anisotropy of rotation causes easier dissociation of the QQ̄
and that in phase transitions anisotropy takes a catalytic
reduction of the critical temperature.
Since we are discussing the rotational system of QCD

medium, the phase transition feature should rely on the
finite size of the rotational system. Due to the cylindrical
symmetry, these quantities are dependent on the rotation
radius l. It would be interesting to probe how the phase
transition feature in a strongly interacting rotating matter
depends on the radius of the rotating system. The properties
as a function of the radius of the rotating system may
be connected to experimental observations in the future.
And due to the limitation of the speed of light, it naturally
causes the limitations ωl ≤ 1. Comparing Fig. 2(a)
(l ¼ 0.3 GeV−1), Fig. 2(b) (l ¼ 0.6 GeV−1), and Fig. 2(c)
(l ¼ 0.9 GeV−1), one finds that the phase transition tem-
perature hardly changes with the rotation angular velocity
for small rotation radii (l ¼ 0.3 GeV−1), but as the rotation
radius increases, the phase transition temperature decreases
rapidly with the increase of rotation angular velocity.

B. Soft wall model

For soft wall model [36], the Euclidean action of the EM
system is given by:

S¼
Z

d5x
ffiffiffiffi
G

p
e−Φ

�
1

2κ2
ð−Rþ2ΛÞþ 1

4g2
FMNFMN

�
; ð42Þ

where Φ is is the nondynamical scalar field with Φ ¼ cz2,
c is the IR energy parameter. The RNAdS BH charge q and
tcAdS space charge q1 under the rotation background in the
soft wall model are given as

q ¼
ffiffiffiffiffiffiffiffiffi
2Nf

3Nc

s
μ

z2h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ; ð43Þ

and

q1 ¼
ffiffiffiffiffiffiffiffiffi
3Nf

2Nc

s
μcffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p : ð44Þ

The corresponding on-shell gravity action of RNAdS BH
and tcAdS space are

SBH ¼ L3V3

κ2

Z
β

0

dt
Z

zh

ϵ
dze−cz

2

�
4

z5
− 2q2z

�
; ð45Þ

Stc ¼
L3V3

κ2

Z
β0

0

dt
Z

∞

ϵ
dze−cz

2

�
4

z5
− 2q21z

�
: ð46Þ

Contrasted with the hard wall model, the integral term is
multiplied by a quadratic exponent of z, and the upper limit
of the integral extends from zIR to infinity for the soft wall
model. The free energy density difference ΔF between
RNAdS BH and tcAdS space is given as

ΔF ¼ TΔε

¼ −
1

6cNc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2l2

p
z4h

e−cz
2
hfð6c3Ncz4he

cz2hðω2l2 − 1ÞEið−cz2hÞ − 3c2z2hð3μ2Nfz2he
cz2h þ Ncð2 − 2ω2l2ÞÞ

þ cð3Ncðecz2h − 2Þðω2l2 − 1Þ − 2μ2Nfz2he
cz2hÞ þ 4μ2Nfðecz2h − 1Þg; ð47Þ

FIG. 3. Phase diagrams T − ω with different chemical potential
of μ ¼ 0 GeV, μ ¼ 0.15 GeV and μ ¼ 0.3 GeV for the soft wall
model. (a) for l ¼ 0.3 GeV−1, (b) for l ¼ 0.6 GeV−1 and (c) for
l ¼ 0.9 GeV−1.
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where the parameter c can be matched to the mass of the
lightest ρ meson [34], denoted as

ffiffiffi
c

p ¼ 0.338 GeV, and
EiðzÞ is the exponential integral function, which can be
expressed as

EiðzÞ ¼ −
Z

∞

−z
dt

e−t

t
: ð48Þ

Figure 3 shows the phase diagrams T − ω with different
chemical potentials and different rotation radii for the soft
wall model. It is found that the characteristics of the phase
diagram of soft wall case are generally similar to that of
hard wall case, but there are also some differences. For
example, when analyzing the dependence of phase tran-
sition temperature on chemical potential, it is found that for
the hard wall model, the larger the chemical potential is,

the smaller the phase transition temperature is. However,
for the soft wall model, the larger the chemical potential is,
the larger the phase transition temperature is.

C. The comparison of phase diagram
between the hard wall and the soft wall

The comparisons of phase diagram between the hard
wall and the soft wall are published in Fig. 4. Compared the
soft wall model with hard wall model, the trend of phase
transition temperature Tc decreasing with angular velocity
ω is almost the same. However, the phase transition
temperature given by soft wall model is obviously larger
than that of hard wall model under the same conditions. As
the rotation radius l increases, the decreasing speed of the
phase transition with angular velocity for the soft wall
model is faster than that of the hard wall model.

IV. SUMMARY AND CONCLUSIONS

In this paper, we focus on the impact of rotation on the
deconfinement phase transition under the EM system of
the soft and the hard wall model in holographic QCD. The
metric by cylindrical coordinates with rotation is intro-
duced into the system to calculate the Hawking temper-
ature. Whether it is a soft wall model or a hard wall model,
the phase transition temperatures decrease with the increase
of rotation angular velocity, but have weak dependence of
chemical potential.
The first holographic study on the influence of the radius

of a homogeneous rotating system on the phase diagram is
established in the article. As we are discussing the rotating
system of QCD medium, the phase transition character-
istics should depend on the finite size of the rotating
system. Due to the cylindrical symmetry of the rotating
system, the rotation radius l has become an important
characteristic quantity of the rotating system. Studying
the dependence of phase transition characteristics of the
strongly interacting rotating matter on the radius of the
rotating system is an important research topic. It is found
that the phase transition temperature hardly changes with
the rotation angular velocity for a small rotation radius,
but as the rotation radius increases, the phase transition
temperature decreases rapidly with the increase of rota-
tion angular velocity.
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FIG. 4. The phase diagram T − ω comparison between the hard
wall model and the soft wall model with chemical potential of
μ ¼ 0.2 GeV. (a) for l ¼ 0.3 GeV−1, (b) for l ¼ 0.6 GeV−1 and
(c) for l ¼ 0.9 GeV−1.
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